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Clinical imaging with structural MRI routinely relies on multi-

ple acquisitions of the same region of interest under several

different contrast preparations. This work presents a recon-

struction algorithm based on Bayesian compressed sensing

to jointly reconstruct a set of images from undersampled k-

space data with higher fidelity than when the images are

reconstructed either individually or jointly by a previously pro-

posed algorithm, M-FOCUSS. The joint inference problem is

formulated in a hierarchical Bayesian setting, wherein solving

each of the inverse problems corresponds to finding the pa-

rameters (here, image gradient coefficients) associated with

each of the images. The variance of image gradients across

contrasts for a single volumetric spatial position is a single

hyperparameter. All of the images from the same anatomical

region, but with different contrast properties, contribute to

the estimation of the hyperparameters, and once they are

found, the k-space data belonging to each image are used in-

dependently to infer the image gradients. Thus, commonality

of image spatial structure across contrasts is exploited with-

out the problematic assumption of correlation across con-

trasts. Examples demonstrate improved reconstruction

quality (up to a factor of 4 in root-mean-square error) com-

pared with previous compressed sensing algorithms and

show the benefit of joint inversion under a hierarchical Bayes-

ian model. Magn Reson Med 66:1601–1615, 2011. VC 2011

Wiley Periodicals, Inc.
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INTRODUCTION

In clinical applications of structural magnetic resonance

imaging (MRI), it is routine to image the same region of

interest under multiple contrast settings to enhance the

diagnostic power of T1, T2, and proton-density weighted

images. In this article, we present a Bayesian framework

that makes use of the similarities between the images

with different contrasts in jointly reconstructing MRI

images from undersampled data obtained in k-space. To

the best of our knowledge, ours is the first attempt to-

ward joint reconstruction of such multi-contrast scans.

Our method applies the joint Bayesian compressive sens-

ing (CS) technique of Ji et al. (1) to the multi-contrast

MRI setting with modifications for computational effi-

ciency and k-space acquisition efficiency. Compared

with conventional CS algorithms that work on each of

the images independently (e.g., (2)), this joint inversion

technique is seen to improve the reconstruction quality

at a fixed undersampling ratio and to produce similar

reconstruction results at higher undersampling ratios

(i.e., with less data).

Conventional CS produces images using sparse

approximation with respect to an appropriate basis; with

gradient sparsity or wavelet-domain sparsity, the posi-

tions of nonzero coefficients correspond directly to spa-

tial locations in the image. A natural extension to exploit

structural similarities in multi-contrast MRI is to pro-

duce an image for each contrast setting while keeping

the transform-domain sparsity pattern for each image the

same. This is called joint or simultaneous sparse approx-

imation. One of the earliest applications of simultaneous

sparse approximation was in localization and used an

algorithm based on convex relaxation (3). An early

greedy algorithm was provided by Tropp et al. (4). Most

methods for simultaneous sparse approximation extend

existing algorithms such as Orthogonal Matching Pursuit,

FOCal Underdetermined System Solver (FOCUSS) (5), or

Basis Pursuit (6) with a variety of ways for fusing

multiple measurements to recover the nonzero transform

coefficients. Popular joint reconstruction approaches

include Simultaneous Orthogonal Matching Pursuit (4),

M-FOCUSS (7), and the convex relaxation algorithm in

(8). All of these algorithms provide significant improve-

ment in approximation quality; however, they suffer

from two important shortcomings for our problem state-

ment. First, they assume that the signals share a common

sparsity support, which does not apply to the multi-con-

trast MRI scans. Even though these images have nonzero

coefficients in similar locations in the transform domain,

assuming perfect overlap in the sparsity support is too

restrictive. Second, with the exception of (9), most meth-

ods formulate their solutions under the assumption that

all of the measurements are made via the same observa-

tion matrix, which in our context would correspond to

sampling the same k-space points for all of the multi-

contrast scans. As we demonstrate, observing different

frequency sets for each image increases our overall

k-space coverage and improves reconstruction quality.
The general joint Bayesian CS algorithm recently pre-

sented by Ji et al. (1) addresses these shortcomings and
fits perfectly to the multi-contrast MRI context. Given
the observation matrices Ui 2 CKi�M with Ki representing
the number of k-space points sampled for the ith image
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and M being the number of voxels, the linear relation-

ship between the k-space data and the unknown images

can be expressed as yi ¼ Uixi where i ¼ 1; :::; L indexes
the L multi-contrast scans and yi is the vector of k-space
samples belonging to the ith image xi. Let us further
denote the vertical and the horizontal image gradients as
dxi and d

y
i , which are approximately sparse since the MRI

images are approximately piecewise constant in the spa-
tial domain. In the Bayesian setting, our task is to pro-
vide a posterior belief for the values of the gradients dxi
and d

y
i , with the prior assumption that these gradients

should be sparse and the reconstructed images should be
consistent with the acquired k-space data. Each image
formation problem (for a single contrast) constitutes an
inverse problem of the form yi ! xi, and the joint Bayes-
ian algorithm aims to share information among these
tasks by placing a common hierarchical prior over the
problems. Such hierarchical Bayesian models can cap-
ture the dependencies between the signals without

imposing correlation, for example by positing correlation

of variances between zero-mean quantities that are con-

ditionally independent given the hyperparameters. Data

from all signals contribute to learning the common prior

(i.e., estimating the hyperparameters) in a maximum like-

lihood (ML) framework, thus making information sharing

among the images possible. Given the hierarchical prior,

the individual gradient coefficients are estimated inde-

pendently. Hence, the solution of each inverse problem

is affected by both its own measured data and by data

from the other tasks via the common prior. The depend-

ency through the estimated hyperparameters is essen-

tially a spatially varying regularization, so it preserves

the integrity of each individual reconstruction problem.

Apart from making use of the joint Bayesian CS ma-

chinery to improve the image reconstruction quality, the

proposed method presents several novelties. First, we

reduce the Bayesian algorithm to practice on MRI data

sampled in k-space with both simulated and in vivo

acquisitions. In the elegant work by Ji et al. (1), their

method was demonstrated on CS measurements made

directly in the sparse transform domain as opposed to

the k-space domain that is the natural source of raw MRI

data. The observations yi were obtained via yi ¼ Uihi
where hi are the wavelet coefficients belonging to the ith
test image. But in all practical settings of MRI data acqui-
sition, the observations are carried out in the k-space
corresponding to the reconstructed images themselves,
i.e., we do not acquire the k-space data belonging to the
wavelet transform of the image. In our method as pre-
sented here, we obtain measurements of the image gra-
dients by a simple modification of the k-space data and
thus overcome this problem. After solving for the gradi-
ent coefficients with the Bayesian algorithm, we recover
images that are consistent with these gradients in a least-
squares setting. Second, our version accelerates the com-
putationally demanding joint reconstruction algorithm
by making use of the Fast Fourier Transform (FFT) to
replace some of the demanding matrix operations in the
original implementation by Ji et al. This makes it possi-
ble to use the algorithm with higher resolution data than
with the original implementation, which has large mem-

ory requirements. Also, we exploit partially overlapping
undersampling patterns to increase our collective k-
space coverage when all images are considered; we
report that this flexibility in the sampling pattern design
improves the joint CS inversion quality. Additionally,
we generalize the algorithm to allow inputs that corre-
spond to complex-valued images. Finally, we compare
our findings with the popular method in (2) and with
the M-FOCUSS joint reconstruction scheme. In addition
to yielding smaller reconstruction errors relative to either
method, the proposed Bayesian algorithm contains no
parameters that need tuning. To our knowledge, this is
the first presentation of joint reconstruction of multi-con-
trast MRI data with either M-FOCUSS or joint Bayesian
reconstruction.

THEORY

Compressed Sensing in MRI

Compressed sensing has received abundant recent atten-

tion in the MRI community because of its demonstrated

ability to speed up data acquisition. Making use of CS

theory to this end was first proposed by Lustig et al. (2),

who formulated the inversion problem as

x̂ ¼ argmin
x

WTx
�� ��

1
þb � TVðxÞ s:t: y � FVxk k2< e ½1�

where W is the wavelet basis, TVð:Þ is the ‘1 norm of dis-
crete gradients as a proxy for total variation, b trades off
wavelet sparsity and gradient sparsity, FV is the under-
sampled Fourier transform operator containing only the
frequencies v 2 V, and e is a threshold parameter that
needs to be tuned for each reconstruction task. This con-
strained inverse problem can be posed as an uncon-
strained optimization program (2)

x̂ ¼ argmin
x

y � FVxk k22þlwavelet � WTx
�� ��

1
þlTV � TVðxÞ ½2�

where lwavelet and lTV are wavelet and total variation
regularization parameters that again call for tuning.

Conventional Compressed Sensing From a Bayesian
Standpoint

Before we present the mathematical formulation that is
the basis for our method, this section briefly demon-
strates that it is possible to recover the conventional CS
formulation in Eq. 2 with a Bayesian treatment. For the
moment, consider abstractly that we are working with a
sparse signal x 2 RM that is observed by compressive
measurements via the matrix U 2 RK�M , where K < M .
The general approach of Bayesian CS is to find the most
likely signal coefficients with the assumptions that the
signal is approximately sparse and that the data are cor-
rupted by noise with a known distribution. The sparsity
assumption is reflected by the prior defined on the signal
coefficients, whereas the noise model is expressed via
the likelihood term.

1602 Bilgic et al.



As a means to justify Eq. 2, we present a commonly
used signal prior and noise distribution. We model the
data as being corrupted by additive white Gaussian noise
with variance s2 via y ¼ Ux þ n. In this case, the proba-
bility of observing the data y given the signal x is a
Gaussian probability density function (pdf) with mean
Ux and variance s2,

pðyjxÞ ¼ ð2ps2Þ�K=2 exp � 1

2s2
y �Uxk k2

� �
½3�

which constitutes the likelihood term. To formalize our
belief that the signal x is sparse, we place a sparsity-pro-
moting prior on it. A common prior is the separable Lap-
lacian density function (10)

pðxÞ ¼ ðl=2ÞM exp �l
XM
i¼1

xij j
 !

½4�

Invoking Bayes’ theorem, the posterior for the signal
coefficients can be related to the likelihood and the
prior as

pðxjyÞ ¼ pðyjxÞpðxÞ
pðyÞ ½5�

We seek the signal that maximizes this posterior prob-
ability via maximum a posteriori (MAP) estimation.
Since the denominator is independent of x, the MAP
estimate can be found by minimizing the negative of the
logarithm of the numerator:

xMAP ¼ argmin
x

y �Uxk k22þ2s2l xk k1 ½6�

This expression is very similar to the unconstrained
convex optimization formulation in Eq. 2; we could
obtain Eq. 2 with a slightly more complicated prior that
the wavelet coefficients and gradient of the signal of in-
terest follow Laplacian distributions. Therefore, it is pos-
sible to view the convex relaxation CS algorithms as
MAP estimates with a Laplacian prior on the signal coef-
ficients. It is possible to view many algorithms used in
CS as MAP estimators with respect to some prior (11).

Extending Bayesian Compressed Sensing to
Multi-Contrast MRI

The Bayesian analysis in the previous section has two
significant shortcomings. First, it is assumed that the sig-
nal of interest is sparse with respect to the base coordi-
nate system. To get the maximum benefit from estima-
tion with respect to a separable signal prior, it is critical
to change to coordinates in which the marginal distribu-
tions of signal components are highly peaked at zero
(12). For MR image formation, we aim to take advantage
of the highly peaked distributions of image-domain gra-
dients, and we show how to modify k-space data to
obtain measurements of these gradients. Second, the
optimal MAP estimation through Eq. 6 requires knowl-
edge of parameters l and s. Our method eliminates the
tuning of such parameters by imposing a hierarchical
Bayesian model in which l and s are modeled as realiza-

tions of random variables; this introduces the need for

‘‘hyperpriors’’ at a higher level of the model, but as we

detail below, it suffices to eliminate tuning of the

hyperpriors using a principle of least informativeness.

Along with addressing these shortcomings, we also dis-

cuss modifications for joint reconstruction across con-

trast preparations.
In the multi-contrast setting, the signals xif gLi¼12 RM

represent MRI scans with different image weightings,
e.g., we might have obtained T1, T2 and proton density
weighted images for the same region of interest. These
are not sparse directly in the image domain. Therefore, it
is beneficial to cast the MRI images into a sparse repre-
sentation to make use of the Bayesian formalism. The
fact that the observation matrices FVi

2 CKi�M in MRI are
undersampled Fourier operators makes it very conven-
ient to use spatial image gradients as a sparsifying trans-
form (13,14). To obtain the k-space data corresponding to
vertical and horizontal image gradients, it is sufficient to
modify the data yi according to

FVi
dxi ðv; yÞ ¼ ð1� e�2pjv=nÞyiðv; yÞ ¼ yx

i ½7�
FVi

d
y
i ðv; yÞ ¼ ð1� e�2pjy=mÞyiðv; yÞ � y

y
i ½8�

where j ¼ ffiffiffiffiffiffiffi�1p
; dxi and d

y
i are the ith image gradients; yx

i

and y
y
i are the modified observations; and v and y index

the frequency space of the n by m pixel images, with
n �m ¼ M . To solve Eq. 2, Lustig et al. (2) proposes to
use the conjugate gradient descent algorithm, for which
it is relatively straightforward to incorporate the TV
norm. But algorithms that do not explicitly try to mini-
mize an objective function (e.g., Orthogonal Matching
Pursuit and Bayesian CS) will need to modify the k-
space data according to Eqs. 7 and 8 to make use of the
Total Variation penalty in the form of spatial derivatives.

Second, we need to express the likelihood term in
such a way that both real and imaginary parts of the
noise ni 2 CKi in k-space are taken into account. We rear-
range the linear observations yx

i ¼ FVi
dxi þ ni as

Reðyx
i Þ

Imðyx
i Þ

� �
¼ ReðFVi

Þ
ImðFVi

Þ
� �

dxi þ
ReðniÞ
ImðniÞ
� �

½9�

for i ¼ 1; :::; L, where Reð:Þ and Imð:Þ indicate real and
imaginary parts with the understanding that we also
have an analogous set of linear equations for the horizon-
tal gradients d

y
i . For simplicity, we adopt the notation

Yx
i ¼ Uid

x
i þN i ½10�

where Yx
i ;N i 2 R2Ki , and Ui 2 R2Ki�M correspond to the

respective concatenated variables in Eq. 9. With the
assumption that both real and imaginary parts of the k-
space noise are white Gaussian with some variance s2,
the data likelihood becomes

p Y ijdxi ;s2
� � ¼ 2ps2

� ��Kiexp � 1

2s2
Yx

i �Uid
x
i

�� ��2� �
½11�

With these modifications, it is now possible to com-
pute the MAP estimates for the image gradients by
invoking Laplacian priors over them. Unfortunately,

Multi-contrast Reconstruction With Bayesian CS 1603



obtaining the MAP estimates for each signal separately
contradicts with our ultimate goal to perform joint recon-
struction. In addition, it is beneficial to have a full poste-
rior distribution for the sparse coefficients rather than
point estimates, since having a measure of uncertainty
in the estimated signals leads to an elegant experimen-
tal design method. As argued in (10), it is possible to
determine an optimal k-space sampling pattern that
reduces the uncertainty in the signal estimates. But
since the Laplacian prior is not a conjugate distribution
to the Gaussian likelihood, the resulting posterior will
not be in the same family as the prior, hence it will
not be possible to perform the inference in closed form
to get a full posterior. The work by Ji et al. (1) presents
an elegant way of estimating the image gradients within
a hierarchical Bayesian model. This approach allows in-
formation sharing between the multi-contrast scans, at
the same yields a full posterior estimate for the sparse
coefficients. In the following section, we attempt to
summarize the algorithm used for finding this distribu-
tion and depict our complete image reconstruction
scheme in Fig. 1.

Bayesian Framework to Estimate the Image Gradient
Coefficients

Hierarchical Bayesian representation provides the ability
to capture both the idiosyncrasy of the inversion tasks
and the relations between them, while allowing closed
form inference for the image gradients. According to this
model, the sparse coefficients are assumed to be drawn
from a product of zero mean normal distributions
with variances determined by the hyperparameters
a ¼ aj

	 
M
j¼1

p dxi ja
� � ¼YM

j¼1
N dxi;jj0;a�1j

� �
½12�

where Nð�j0;a�1j Þ is a zero mean Gaussian density func-
tion with variance a�1j . To promote sparsity in the gradi-
ent domain, Gamma priors are defined over the hyper-
parameters a

pðaja;bÞ ¼
YM
j¼1

Gaðaj ja;bÞ ¼
YM
j¼1

ba

GðaÞa
a�1
j expð�bajÞ ½13�

where Gð:Þ is the Gamma function, and a and b are
hyper-priors that parametrize the Gamma prior. To see
why the combination of Gaussian and Gamma priors
will promote a sparse representation, we can consider
marginalizing over the hyperparameters a to obtain the
marginal priors acting on the signal coefficients (1,10,15)

pðdxi;jÞ ¼
Z

pðdxi;jjajÞpða;bÞdaj ½14�

which turn out to yield improper priors of the form
pðdxi;jÞ / 1=jdxi;j j in the particular case of uniform hyper-
priors a ¼ b ¼ 0. Similar to our analysis for the Laplacian
prior, this formulation would introduce an ‘1 regularizer

of the form
PM

j¼1 logjdxi;j j if we were interested in a non-

joint MAP solution. Here, we should also note that the
hyperparameters a are shared across the multi-contrast
images, each aj controlling the variance of all L gradient

coefficients dxi;j
n oL

i¼1
through Eq. 12. In this case, aj ’s

diverging to infinity implies that the pixels in the jth
location of all images are zero, due to the zero-mean,
zero-variance Gaussian prior at this location. On the
other hand, a finite aj does not constrain all L pixels in

the jth location to be nonzero, which allows the recon-
struction algorithm to capture the diversity of sparsity
patterns across the multi-contrast scans.

In practice, we would also need to estimate the noise
variance s2 as it propagates via the data likelihood term
to the posterior distribution of gradient coefficients (Eq.
5). Even though it is not difficult to obtain such an esti-
mate in image domain if we had the full k-space data,
this would not be straightforward with undersampled
measurements. Therefore, we follow Ji et al. (1) and
slightly modify our formulation so that we can integrate
out the noise variance analytically while computing the
posterior. This is made possible by including the noise
precision a0 ¼ s�2 in the signal prior,

p dxi ja;a0

� � ¼YM
j¼1
N dxi;jj0;a�1j a�10

� �
½15�

We further define a Gamma prior over the noise preci-
sion parameter a0

FIG. 1. Joint image reconstruction begins with modifying the

undersampled k-space data to obtain undersampled k-space rep-
resentations of vertical and horizontal image gradients. After find-
ing the hyperparameters via ML estimation, the means of the

posterior distributions are assigned to be the gradient estimates.
Finally, images are integrated from gradient estimates via solving

a Least Squares problem.
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pða0jc;dÞ ¼ Gaða0jc;dÞ ¼ dc

GðcÞa
c�1
0 expð�da0Þ ½16�

In all of our experiments, we set the hyper-priors
c ¼ d ¼ 0 to express that we favor no a priori noise pre-
cision as they lead to the ‘‘least informative’’ improper
prior pða0jc ¼ 0;d ¼ 0Þ / 1=a0. The choice of priors in
Eqs. 15–16 lets us analytically compute the posterior for
the image gradients pðdxi jYx

i ; aÞ, which turns out to be a
multivariate Student-t distribution with mean
li ¼ SiUT

i Y
x
i and covariance Si ¼ ðUT

i Ui þAÞ�1 with
A ¼ diagða1; :::;aM Þ. This formulation is seen to allow ro-
bust coefficient shrinkage and information sharing
thanks to inducing a heavy-tail in the posterior (1). It is
worth noting that placing a Gamma prior on the noise
precision does not change the additive nature of observa-
tion noise; however, a heavier-tailed t-distribution repla-
ces the normal density function in explaining this resid-
ual noise. This has been seen to be more resilient in
allowing outlying measurements (1).

Now that we have an expression for the posterior
pðdxi jYx

i ; aÞ, all we need to do is to find a point estimate
for the hyperparameters a 2 RM in a ML framework. This
is achieved by searching for the hyperparameter setting
that makes the observation of the k-space data most
likely, and such an optimization process is called evi-
dence maximization or type-II ML method (1,10,15).
Therefore, we seek the hyperparameters that maximize

LðaÞ ¼
XL
i¼1

pðYx
i jaÞ

¼
XL
i¼1

Z
pða0ja; bÞpðdxi ja;a0ÞpðYx

i jdxi ;a0Þddxi da0 ½17�

We stress that data from all L tasks contribute to the
evidence maximization procedure via the summation
over conditional distributions. Hence, the information
sharing across the images occurs through this collabora-
tion in the ML estimation of the hyperparameters. Once
the point estimates are constituted using all of the obser-
vations, the posterior for the signal coefficients dxi is esti-
mated based only on its related k-space data Yx

i due to
li ¼ SiUT

i Y
x
i . Thus, all of the measurements are used in

the estimation of the hyperparameters, but only the asso-
ciated data are utilized to constitute an approximation to
the gradient coefficients.

Ji et al. show that it is possible to maximize Eq. 17
with a sequential greedy algorithm, in which we begin
with a single basis vector for each signal, then keep add-
ing the basis function that yields the largest increase in
the log likelihood at each iteration. Alternatively, a
hyperparameter corresponding to a basis vector that is al-
ready in the dictionary of current bases can be updated
or deleted, if this gives rise to the largest increase in the
likelihood at that iteration. We added a final refinement
to Ji et al.’s Bayesian CS algorithm by replacing the ob-
servation matrices Uif gLi¼1 that we need to store with the
FFT. This enables us to work with MRI images of practi-
cal sizes; otherwise each of the observation matrices
would occupy 32GB of memory for a 256 � 256 image.
We refer the reader to Appendix B in (1) for the update

equations of this algorithm. Our FFT refinement for the
sequential algorithm is detailed in the Appendix.

Reconstructing the Images from Horizontal and Vertical
Gradient Estimates

Once the image gradients dxi
	 
L

i¼1 and d
y
i

	 
L
i¼1 are esti-

mated with the joint Bayesian algorithm, we seek to find
the images xi

	 
L
i¼1 consistent with these gradients and

the undersampled measurements Y i

	 
L
i¼1. Influenced by

(13), we formulate this as a least squares optimization
problem

x̂i ¼ argmin
xi

@xxi � dxi
�� ��2

2
þ @yxi � d

y
i

�� ��2
2
þl FVi

xi � Y ik k22
½18�

for i ¼ 1; :::; L where @xxi and @yxi represent vertical and
horizontal image gradients. Using Eqs. 7 and 8 and
invoking Parseval’s Theorem, the optimization problem
can be cast into k-space

X̂i ¼ argmin
Xi

ð1� e�2pjv=nÞX i � Dx
i

�� ��2
2

þ ð1� e�2pjy=mÞX i � D
y
i

�� ��2
2
þl XVi

� Y ik k22 ½19�

where X i, D
x
i and D

y
i are the Fourier transforms of xi, d

x
i

and d
y
i , respectively and XVi

is the transform of xi re-
stricted to the frequency set Vi. Based on this, we arrive
at the following solution by representing Eq. 19 as a
quadratic polynomial and finding the root with l!1

X̂iðv; yÞ ¼
XVi

if ðv; yÞ 2 Vi
ð1�e2pjv=nÞDx

i þð1�e2pjy=mÞDy

i

j1�e�2pjv=nj2þj1�e�2pjy=mj2 otherwise

(
½20�

Finally, taking the inverse Fourier transform gives the
reconstructed images x̂if gLi¼1.

Extension to Complex-Valued Images

In the general case where the underlying multi-contrast
images are complex-valued, the linear observation model
of Eq. 9 is no longer valid. Under the assumption that
the support of the frequency set Vi is symmetric, it is
possible to decouple the undersampled k-space observa-
tions belonging to the real and imaginary parts of the sig-
nals,

if suppðVi½kx ;ky �Þ ¼ suppðVi½�kx ;�ky �Þ; ½21�
yRe
i ¼D FVi

ReðxiÞ ¼ 1

2
� yi½kx; ky � þ y�

i
½ð�kx ;�kyÞ�

� �
½22�

yIm
i ¼D FVi

ImðxiÞ ¼ �j
2
� yi½kx; ky � � y�

i
½�kx ;�ky �

� �
½23�

Here, ½kx ;ky � index the frequency space and
y�i ½ð�kx;� kyÞ� is the complex conjugate of index-
reversed k-space observations. In the case of one dimen-
sional undersampling, the constraint on Vi would simply
correspond to an undersampling pattern that is mirror-
symmetric with respect to the line passing through the
center of k-space. After obtaining the k-space data yRe

i

and yIm
i belonging to the real and imaginary parts of the
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ith image xi, we solve for ReðxiÞ and ImðxiÞ jointly in the
gradient domain, in addition to the joint inversion of
multi-contrast data, hence exposing a second level of si-
multaneous sparsity in the image reconstruction prob-
lem. Final reconstructions are then obtained by combin-
ing the real and imaginary channels into complex-valued
images.

MATERIALS AND METHODS

To demonstrate the inversion performance of the joint
Bayesian CS algorithm, three data sets that include a nu-
merical phantom, the SRI24 brain atlas, and in vivo
acquisitions, were reconstructed from undersampled k-
space measurements belonging to the magnitude images.
In addition, two datasets including a numerical phantom
and in vivo multi-contrast slices, both consisting of com-
plex-valued images, were also reconstructed from under-
sampled measurements to test the performance of the
method with complex-valued image-domain signals. The
results were quantitatively compared against the popular
implementation by Lustig et al. (2), which does not make
use of joint information across the images, as well as our
realization of the M-FOCUSS algorithm, which is an al-
ternative joint CS reconstruction algorithm.

CS Reconstruction with Extended Shepp-Logan
Phantoms

To generalize the Shepp-Logan phantom to the multi-
contrast setting, we generated two additional phantoms
by randomly permuting the intensity levels in the origi-
nal 128�128 image. Further, by placing 5 more circles
with radii chosen randomly from an interval of [7, 13]
pixels and intensities selected randomly from [0.1, 1] to
the new phantoms, we also aimed to represent the idio-
syncratic portions of the scans with different weightings.
A variable-density undersampling scheme in k-space
was applied by drawing three fresh samples from a
power law density function, so that the three masks’ fre-
quency coverage was only partially overlapping. Power
law sampling indicates that the probability of sampling a
point in k-space is inversely proportional to the distance
of that point to the center of k-space, which makes the
vicinity of the center of k-space more densely sampled.
To realize this pattern, again Lustig et al.’s software
package (2) was used, which randomly generates many
sampling patterns and retains the one that has the small-
est sidelobe-to-peak ratio in the point spread function.
This approach aims to create a sampling pattern that
induces optimally incoherent aliasing artifacts (2). A
high acceleration factor of R ¼ 14.8 was tested using the
joint Bayesian CS, Lustig et al.’s gradient descent and
the M-FOCUSS algorithm. For the gradient descent
method, using wavelet and TV norm penalties were seen
to yield better results than using only one of them. In all
experiments, we tested all combinations of regularization
parameters lTV and lwavelet from the set
f10�4; 10�3;10�2; 0g and retained the setting that gave the
smallest reconstruction error as the optimal one. In the
Shepp-Logan experiment, the parameter setting
lTV ¼ lwavelet ¼ 10�3 was seen to yield optimal results
for the gradient descent method. The number of itera-

tions was taken to be 50 in all of the examples. The
Bayesian algorithm continues the iterations until conver-
gence, which is determined by

jD‘k � D‘k�1j<
? ðD‘max � D‘kÞ � h ½24�

where D‘k is the change in log likelihood at iteration k
and D‘max is the maximum change in likelihood that has
been encountered in all k iterations. The convergence pa-
rameter h was taken to be 10�8 in this example. For the
M-FOCUSS method, each image was undersampled with
the same mask as phantom 1 in the joint Bayesian CS
since M-FOCUSS does not admit different observation
matrices.

SRI24 Multi-Channel Brain Atlas Data

This experiment makes use of the multi-contrast data
extracted from the SRI24 atlas (16). The atlas features
structural scans obtained with three different contrast
settings at 3T,

i. Proton density weighted images: obtained with a
2D axial dual-echo fast spin echo (FSE) sequence
(TR ¼ 10,000 ms, TE ¼ 14 ms)

ii. T2 weighted images: acquired with the same
sequence as the proton density weighted scan,
except with TE ¼ 98 ms.

iii. T1 weighted images: acquired with a 3D axial IR-
prep Spoiled Gradient Recalled (SPGR) sequence
(TR ¼ 6.5 ms, TE ¼ 1.54 ms).

The atlas images have a resolution of 256 � 256 pixels
and cover a 24-cm field-of-view. Since all three data sets
are already registered spatially, we applied no postpro-
cessing except for selecting a single axial slice from the
atlas. Prior to reconstruction, retrospective undersam-
pling1 was applied along the phase encoding direction
with acceleration R ¼ 4 using a different undersampling
mask for each image. Again a power law density func-
tion was utilized in selecting the sampled k-space lines.
In this case, a 1-dimensional pdf was employed, so that
it was more likely to acquire phase encoding lines close
to the center of k-space. Reconstructions were performed
using Lustig et al.’s conjugate gradient descent algorithm
(with lTV ¼ lwavelet ¼ 10�3), joint Bayesian method (with
h ¼ 10�9) and the M-FOCUSS joint reconstruction
algorithm.

3T Turbo Spin Echo (TSE) Slices with Early and Late TE’s

T2-weighted axial multi-slice images of the brain of a
young healthy male volunteer were obtained with two
different TE settings using a TSE sequence (256 � 256
pixel resolution with 38 slices, 1�1 mm in-plane spatial
resolution with 3 mm thick contiguous slices, TR ¼ 6000
ms, TE1 ¼ 27 ms, TE2 ¼ 94 ms). Out of these, a single
image slice was selected and its magnitude was retro-
spectively undersampled in k-space along the phase

1We use the retrospective undersampling phrase to indicate that k-space sam-
ples are discarded synthetically from data obtained at Nyquist rate in software
environment, rather than skipping samples during the actual scan.
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encoding direction with acceleration R ¼ 2.5 using a dif-
ferent mask for each image, again by sampling lines due
to a 1-dimensional power law distribution. The images
were reconstructed using Lustig et al.’s algorithm with
an optimal parameter setting (lTV ¼ lwavelet ¼ 10�3), joint
Bayesian CS algorithm (with h ¼ 10�9) and the
M-FOCUSS method.

Complex-Valued Shepp-Logan Phantoms

Using four numerical phantoms derived from the original
Shepp-Logan phantom, two complex valued numerical
phantoms were generated by combining the four images
in real and imaginary pairs. Retrospective undersampling
was applied along the phase encoding direction with
acceleration R ¼ 3.5 using a different undersampling
mask for each image. A 1-dimensional power law density
function was utilized in selecting the sampled k-space
lines, making it more likely to acquire phase encoding
lines close to the center of k-space. We again randomly
generated many sampling patterns and retained the one
that has the smallest sidelobe-to-peak ratio in the point
spread function but also constrained the sampling masks
to be mirror-symmetric with respect to the center of k-
space. This way, it was possible to obtain the under-
sampled k-space data belonging to the real and imagi-
nary channels of the phantoms separately. The images
were reconstructed using Lustig et al.’s algorithm
(lTV ¼ lwavelet ¼ 10�3), joint Bayesian CS algorithm
(reconstructing real and imaginary parts together, in
addition to joint multi-contrast reconstruction) and the
M-FOCUSS method. Further, nonjoint reconstructions
with the Bayesian CS method (doing a separate recon-
struction for each image, but reconstructing real and
imaginary channels of each image jointly) and the
FOCUSS algorithm (nonjoint version of M-FOCUSS)
were conducted for comparison with Lustig et al.’s
approach.

Complex-Valued Turbo Spin Echo Slices With Early and
Late TE’s

To test the performance of the algorithms on complex-
valued in vivo images, axial multi-slice images of the
brain of a young healthy female subject were obtained
with two different TE settings using a TSE sequence (128
� 128 pixel resolution with 38 slices, 2�2 mm in-plane
spatial resolution with 3 mm thick contiguous slices, TR
¼ 6000 ms, TE1 ¼ 17 ms, TE2 ¼ 68 ms). Data were
acquired with a body coil and both the magnitude and
the phase of the images were recorded. To enhance SNR,
5 averages and a relatively large 2-mm in-plane voxel
size were used. A single slice was selected from the data-
set and its raw k-space data were retrospectively under-
sampled along the phase encoding direction with accel-
eration R ¼ 2 using a different mask for each image,
again by sampling lines due to a 1-dimensional power
law distribution. For the complex-valued image-domain
case, the masks were constrained to be symmetric with
respect to the line passing through the center of k-space.
The images were reconstructed using Lustig et al.’s algo-
rithm (lTV ¼ lwavelet ¼ 10�3), our joint Bayesian CS algo-
rithm (reconstructing real and imaginary parts and

multi-contrasts together) and the M-FOCUSS method. In
addition, nonjoint reconstructions with the Bayesian CS
method (using a separate reconstruction for each image,
but reconstructing real and imaginary parts of each
image together) and the FOCUSS algorithm were
performed.

RESULTS

CS Reconstruction With Extended Shepp-Logan
Phantoms

Figure 2 presents the reconstruction results for the three
algorithms for the extended phantoms, along with the
k-space masks used in retrospective undersampling. At
acceleration R ¼ 14.8, the Bayesian algorithm obtained
perfect recovery of the noise-free numerical phantom,
whereas the gradient descent algorithm by Lustig et al.
returned 15.9% root mean squared error (RMSE), which
we define as

RMSE ¼ 100 � Reðx̂Þ � xk k2
xk k2

½25�

where x is the vector obtained by concatenating all L
images together, and similarly x̂ is the concatenated vec-
tor of all L reconstructions produced by an inversion
algorithm. The M-FOCUSS joint reconstruction algorithm
yielded an error of 8.8%. The reconstruction times were
measured to be 5 min for gradient descent, 4 min for M-
FOCUSS and 25 min for the joint Bayesian CS algorithm.

SRI24 Multi-Channel Brain Atlas Data

The results for reconstruction upon phase encoding
undersampling with acceleration R ¼ 4 are given in Fig.
3. In this case, Lustig et al.’s algorithm returned 9.4%
RMSE, while the error was 3.2% and 2.3% for M-
FOCUSS and joint Bayesian CS methods, respectively.
The reconstructions took 43 min for gradient descent, 5
min for M-FOCUSS and 26.4 hours for the Bayesian CS
algorithm.

Turbo Spin Echo (TSE) Slices with Early and Late TE’s

Figure 4 depicts the TSE reconstruction results obtained
with the three algorithms after undersampling along
phase encoding with acceleration R ¼ 2.5. In this setting,
Lustig et al.’s code returned a result with 9.4% RMSE,
whereas M-FOCUSS and joint Bayesian reconstruction
had 5.1% and 3.6% errors, respectively. The total recon-
struction times were 26 min for gradient descent, 4 min
for M-FOCUSS and 29.9 hours for the Bayesian CS
algorithm.

For brevity, we present additional results in Table 1
from more extensive tests in which we experimented
with various undersampling patterns and accelerations.
To test the algorithms’ performance at a different resolu-
tion, we also downsampled the TSE and atlas images to
size 128�128 prior to undersampling, and noted similar
RMSE results as the high resolution experiments. The ta-
ble also includes an experiment with 256�256 TSE scans
accelerated along the phase encoding with R ¼ 2.5, but
using the same undersampling pattern for both images.
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Impact of Spatial Misregistration on Joint Reconstruction

Due to aliasing artifacts caused by undersampling, image
registration prior to CS reconstruction across multi-con-
trast images is likely to perform poorly. We investigated
the effect of spatial misalignments by shifting one of the
images in the TSE dataset relative to the other by 0 to 2 pix-
els with step sizes of 1=2 pixels using two different under-
sampling patterns. The first pattern incurs R ¼ 3 accelera-
tion by 2D undersampling with k-space locations drawn
from a power law probability distribution. In this case, we
tested the effect of vertical misalignments. The second pat-
tern undersamples k-space at R ¼ 2.5 in the phase encod-
ing direction, for which we tested horizontal dislocations.
For speed, we used low resolution images at size 128�128.
We tested M-FOCUSS and joint Bayesian CS methods for
robustness against misregistration and observed that the
effect of spatial misalignment was mild for both (Fig. 5).
Even though Bayesian CS consistently had less reconstruc-
tion errors relative to M-FOCUSS on both undersampling
patterns at all dislocations, the performance of M-FOCUSS
was seen to change less relative to Bayesian CS with
respect to the incurred translations. For joint Bayesian CS,
reconstruction error increased from 2.1% to 2.8% at 2 pix-
els of vertical shift for power law sampling, and from 5.2%

to 6.4% at 2 pixels of horizontal shift for phase encoding
sampling; for the M-FOCUSS method error increased from
4.7% to 4.9% for power law sampling, and from 6.2% to
6.6% for phase encoding sampling.

Complex-Valued Shepp-Logan Phantoms

Absolute values of the reconstruction results after under-
sampling with a symmetric mask with R ¼ 3.5 for the
complex-valued phantoms are depicted in Fig. 6. For
complex signals, we use the error metric
RMSE ¼ 100 � x̂ � xk k2= xk k2. In this case, Lustig et al.’s
algorithm returned a result with 13.1% RMSE, whereas
joint reconstructions with M-FOCUSS and joint Bayesian
methods had 5.4% and 2.4% errors, respectively. The
total reconstruction times were 21 min for gradient
descent, 0.5 min for M-FOCUSS and 18 min for the
Bayesian CS algorithm. On the other hand, reconstruct-
ing each complex-valued image separately with FOCUSS
and Bayesian CS yielded 6.7% and 4.6% RMSE.

Complex-Valued Turbo Spin Echo Slices With
Early and Late TE’s

Reconstruction results are compared in Fig. 7 for the dis-
cussed algorithms. Lustig et al.’s method had 8.8% error

FIG. 2. Reconstruction results with the extended Shepp-Logan phantoms after undersampling with acceleration R ¼ 14.8, at 128 � 128 re-
solution. a: Phantoms at Nyquist rate sampling. b: Undersampling patterns in k-space corresponding to each image. c: CS reconstructions

with Lustig et al.’s algorithm yielded 15.9% RMSE (root-mean-square error). d: Absolute error plots for Lustig et al.’s method. e: Reconstruc-
tions obtained with the M-FOCUSS joint reconstruction algorithm have 8.8% RMSE. f: Absolute difference between the Nyquist sampled

phantoms and the M-FOCUSS reconstruction results. g: Joint Bayesian CS reconstruction resulted in 0% RMSE. h: Absolute error plots for
the Bayesian CS reconstructions.Original images are scaled between [0,1]. All absolute error plots are scaled by clipping at half of the maxi-
mum error incurred by Lustig et al.’s algorithm to emphasize the results, so that the errors larger than this get saturated in the images.
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upon acceleration by R ¼ 2 with a symmetric pattern,
whereas the joint reconstruction algorithms M-FOCUSS
and joint Bayesian CS yielded 9.7% and 6.1% RMSE.
The processing times were 20 min for gradient descent,
2 min for M-FOCUSS and 5.2 hours for the Bayesian CS
algorithm. Nonjoint reconstructions with FOCUSS and
Bayesian CS returned 10.0% and 8.6% errors.

With the same dataset, additional reconstructions were
performed to quantify the effect of the symmetry con-
straint on the sampling masks. Both of the late and early
TE images were reconstructed five times with freshly
generated, random masks with R ¼ 2 (no symmetry con-
straints) and also five times with freshly generated sym-
metric masks again at R ¼ 2. Using Lustig et al.’s method
(lTV ¼ 10�3) with the random masks yielded an average
error of 10.5%, whereas using symmetric masks incurred
an average error of 11.5%.

DISCUSSION

The application of joint Bayesian CS MRI reconstruction
to images of the same object acquired under different
contrast settings was demonstrated to yield substantially
higher reconstruction fidelity than either Lustig et al.’s

(nonjoint) algorithm or joint M-FOCUSS, but at the cost
of substantially increased reconstruction times in this
initial implementation. In contrast to M-FOCUSS, the
proposed algorithm allows for different sampling matri-
ces being applied to each contrast setting and unlike the
gradient descent method, it has no parameters that need
adjustments. The success of this algorithm is based on
the premise that the multi-contrast scans of interest
share a set of similar image gradients while each image
may also present additional unique features with its own
image gradients. In Fig. 8, we present the vertical image
gradients belonging to the TSE scans and conduct a sim-
ple experiment to quantify the similarity between them.
After sorting the image gradient magnitudes of the early
TSE scan in descending order, we computed the cumula-
tive energy in them. Next, we sorted the late TSE gradi-
ent magnitude in descending order and calculated the
cumulative energy in the early TSE gradient by using the
pixel index order belonging to the late TSE scan. This
cumulative sum reached 95% of the original energy,
thus confirming the visual similarity of the two
gradients.

It is important to note that in the influential work by Ji
et al. (1), the authors also consider joint reconstruction

FIG. 3. Reconstruction results with SRI24 atlas after undersampling along the phase encoding direction with R ¼ 4, at 256 � 256 reso-
lution. a: Atlas images at Nyquist rate sampling. b: Undersampling patterns in k-space corresponding to each image. c: Applying the

gradient descent algorithm proposed by Lustig et al. resulted in reconstructions with 9.4% RMSE. d: Absolute difference between the
gradient descent reconstructions and the Nyquist rate images. e: M-FOCUSS reconstructions have 3.2% RMSE. f: Absolute error plots
for the M-FOCUSS algorithm. g: Joint Bayesian reconstruction yielded images with 2.3% RMSE. h: Error plots for the joint Bayesian

reconstructions. Original images are scaled between [0,1]. All absolute error plots are scaled by clipping at half of the maximum error
incurred by Lustig et al.’s algorithm to emphasize the results, so that the errors larger than this get saturated in the images.
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of MRI images. However, their dataset consists of five
different slices taken from the same scan, so the motiva-
tion for their MRI work is different from what we present
here. Even though the multislice images have consider-

able similarity from one slice to the next, one would
expect multi-contrast scans to demonstrate a yet higher
correlation of image features and a correspondingly
larger benefit in reconstruction fidelity.

FIG. 4. Reconstruction results with TSE after undersampling along the phase encoding direction with R ¼ 2.5, at 256 � 256 resolution.

a: TSE scans at Nyquist rate sampling. b: Undersampling patterns used in this experiment. c: Reconstructions obtained with Lustig
et al.’s gradient descent algorithm have 9.4% RMSE. d: Plots of absolute error for the gradient descent reconstructions. e: M-FOCUSS

joint reconstruction yielded images with 5.1% RMSE. f: Error plots for the M-FOCUSS results. g: Images obtained with the joint Bayes-
ian CS reconstruction returned 3.6% RMSE. h: Error plots for the Bayesian CS reconstructions. These results are also included in Table
1 as ‘‘PE, (Fig. 4)’’ for comparison with reconstruction using the same undersampling pattern.Original images are scaled between [0,1].

All absolute error plots are scaled by clipping at half of the maximum error incurred by Lustig et al.’s algorithm to emphasize the results,
so that the errors larger than this get saturated in the images.

Table 1
Summary of Additional Reconstruction Results on the TSE and SRI 24 Datasets using the Three Algorithms After Retrospective Under-

sampling with Various Patterns and Acceleration Factors

Dataset Resolution Undersampling method Acceleration factor R

RMSE %

Lustig et al. M-Focuss Bayesian CS

TSE 256 � 256 Phase encoding (PE) 3 9.7 6.8 5.8
256 � 256 Power law 6 8.1 7.8 6.3

256 � 256 PE (Fig. 4) 2.5 9.4 5.1 3.6
256 � 256 PE, same pattern 2.5 4.7

128 � 128 PE 2 8.1 3.8 2.1
SRI 24 256 � 256 Radial 9.2 6.0 4.5 3.0

128 � 128 PE 3 7.2 4.2 3.1
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Two aspects of the proposed Bayesian reconstruction
algorithm demand further attention. First, relative to the
other two algorithms we investigated, the Bayesian
method is dramatically more time consuming. The recon-
struction times can be on the order of hours, which is
prohibitive for clinical use as currently implemented. As
detailed in the Results section, the proposed algorithm is
about 40 times slower than gradient descent, and about
300 times slower than M-FOCUSS for the in vivo data.
We expect future implementations and optimizations
that utilize specialized scientific computation hardware
to overcome this current drawback. Particularly, it is
common to observe an order of magnitude speed-up
with CUDA (Compute Unified Device Architecture)
enabled Graphics Processing Units when the problem
under consideration can be adapted to the GPU architec-
ture (17). We expect that parallelizing matrix operations
and FFTs can yield significant performance boost. On
the other hand, an algorithmic reformulation can be
another source of performance increase. Solving the in-
ference problem via variational Bayesian analysis (18)
was seen to yield an order of magnitude speed-up rela-
tive to the greedy Bayesian CS method for nonjoint
image reconstruction.

A second aspect of this reconstruction method that
requires further analysis is the potentially detrimental
impact of source data that are not perfectly spatially
aligned. To maximize the information sharing among the
inversion tasks, it is crucial to register the multi-contrast
scans before applying the joint reconstruction. To mini-
mize the adverse consequences of such misalignment,
future implementations might deploy either real-time
navigators (e.g., (19)) or retrospective spatial registration
among datasets based on preliminary CS reconstructions
without the joint constraint. For some acquisitions,

subtle, nonrigid spatial misregistration may occur due to
eddy-current or B0 inhomogeneity induced distortions.
To correct for such higher-order translation effects, sev-
eral fast and accurate correction methods have been pro-
posed (e.g., (20,21)) and could be applied for correction
of undersampled images in joint Bayesian reconstruc-
tion. As our preliminary investigation in the Results sec-
tion demonstrates, joint Bayesian CS algorithm is robust
against misregistration effects up to shifts of 2 pixels,
and we believe that existing registration techniques can
bring us within this modest range. Alternatively, future
work aimed at the simultaneous joint reconstruction and
spatial alignment might pose an interesting and challeng-
ing research project in this area, which might be accom-
plished by introducing additional hidden variables.

Regarding real-valued image-domain datasets, the pre-
sented CS reconstructions obtained with Lustig et al.’s
conjugate gradient descent method yielded 2 to 4 times
of the RMSE returned by the joint Bayesian algorithm.
Even though this error metric cannot be considered the
sole criterion for ‘‘good’’ image reconstruction (22), we
believe that making use of similarities between multi-
contrast scans can be a first step in this direction. In the
more general case where we tested the methods with
complex-valued images, the improvement in RMSE
reduced to about 1.5 times on the in vivo data with the
joint Bayesian algorithm. When we reconstructed the
individual images separately, but using their real and
imaginary parts jointly, we also noted that this nonjoint
version of the Bayesian algorithm outperformed both
Lustig et al.’s method and M-FOCUSS on the complex-
valued numerical data and the TSE scans. This might
suggest that exploiting the similarity between real and
imaginary channels of the images can also be source of
performance increase. It is important to note that the cur-
rent Bayesian algorithm requires the sampling patterns
to be symmetric to handle complex-valued images, and
this constraint might be reducing the incoherence of the
aliasing artifacts. As reported in the Result section, using
symmetric patterns instead of unconstrained ones
increased the error incurred by Lustig et al.’s algorithm
from 10.5% to 11.5%, which seems to be a mild effect.
Even though the proposed joint reconstruction algorithm
increases the collective coverage of k-space by sampling
nonoverlapping data points across the multi-contrast
images, this benefit might be dampened by the symmetry
constraint.

For comparison, we implemented the M-FOCUSS joint
reconstruction algorithm and noted that it also attained
smaller RMSE figures compared with the gradient
descent technique. Even though M-FOCUSS is seen to
outperform other competing matching pursuit based joint
algorithms (7), the Bayesian method proved to exploit
the signal similarities more effectively in our experi-
ments. This is made possible by the fact that the Bayes-
ian framework is flexible enough to allow idiosyncratic
signal parts, and strict enough to provide information
sharing. Importantly, the Bayesian approach also permits
the use of different observation matrices for each signal.
This allows us to increase the total k-space coverage
across the multi-contrast scans, and its benefit can be
seen from the two experiments conducted on the TSE

FIG. 5. To investigate the impact of spatial misalignments on joint

reconstruction with Bayesian CS and M-FOCUSS, one of the TSE
images was shifted relative to the other by 0 to 2 pixels with step
sizes of 1=2 pixels using power law and phase encoding under-

sampling patterns. For speed, low resolution images with size 128
�128 were used. For joint Bayesian CS, reconstruction error

increased from 2.1% to 2.8% at 2 pixels of vertical shift for power
law sampling, and from 5.2% to 6.4% at 2 pixels of horizontal
shift for phase encoding sampling; for the M-FOCUSS method

error increased from 4.7% to 4.9% for power law sampling, and
from 6.2% to 6.6% for phase encoding sampling.
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scans with acceleration R ¼ 2.5 along the phase encod-
ing direction. The Bayesian reconstruction results dis-
played in Fig. 4 are obtained by using a different under-
sampling pattern for k-space corresponding to each
image, and this yielded 2.6 times less RMSE compared
with Lustig et al.’s algorithm, demonstrating the benefits
of variations in the sampling pattern for different con-
trast weightings. On the other hand, the experiment in
Table 1 that uses the same pattern for both images
returned 2 times smaller RMSE compared with the gradi-
ent descent method. However, M-FOCUSS has the
advantage of being a much faster algorithm with only

modest memory requirements. Interestingly, the perform-
ance of the M-FOCUSS algorithm deteriorated signifi-
cantly when tested on the complex-valued signals, yield-
ing poorer results relative to Lustig et al.’s method for
the complex-valued TSE dataset. Even though the joint
Bayesian algorithm also suffered a performance decrease,
it still yielded significantly lower errors with the com-
plex-valued signals.

In the current implementation of the joint CS recon-
struction algorithm, datasets with different contrast
were undersampled to the same degree. Future work
will explore asymmetric undersampling among the

FIG. 6. Reconstruction results with the complex-valued Shepp-Logan phantoms after undersampling with acceleration R ¼ 3.5, at 128

� 128 resolution. a: Magnitudes of phantoms at Nyquist rate sampling. b: Symmetric undersampling patterns in k-space corresponding
to each image. c: Real and imaginary parts of the first phantom (on the left in (a)). d: Real and imaginary parts of the second phantom
(on the right in (a)). e: CS reconstructions with Lustig et al.’s algorithm yielded 13.1% RMSE. f: Absolute error plots for Lustig et al.’s

method. g: Reconstructions obtained with the M-FOCUSS joint reconstruction algorithm have 5.4% RMSE. h: Absolute difference
between the Nyquist sampled phantoms and the M-FOCUSS reconstruction results. i: Joint Bayesian CS reconstruction resulted in

2.4% RMSE. (h) Absolute error plots for the Bayesian CS reconstructions. Original magnitude images are scaled between [0,1]. All abso-
lute error plots are scaled by clipping at half of the maximum error incurred by Lustig et al.’s algorithm to emphasize the results, so that
the errors larger than this get saturated in the images.
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component images where, for instance, one fully
sampled acquisition could be used as a prior in a joint
CS reconstruction of the remaining undersampled con-
trast sources. The relative tradeoffs of this approach com-
pared with the equally undersampled regime remain
unexplored, but it may yield improvements in robustness
or acceleration of the overall image acquisition for multi-
contrast data. Another direction for future work is the
application of the covariance estimates for the posterior
distribution produced by the Bayesian algorithm, which
could be used to design optimal undersampling patterns
in k-space so as to reduce the uncertainty in the esti-
mated signal (10,23). Also, it is possible to obtain SNR
priors, which might be utilized in the Gamma prior
pða0jc;dÞ ¼ Gaða0jc;dÞ defined over the noise precision
a0 in the Bayesian algorithm. We used the setting
c ¼ d ¼ 0 to incur a noninformative noise prior which
would not bias the reconstructions toward a particular
noise power. In our informal experiments, we also

obtained smaller RMSE scores with this setting. Yet, the
optimal selection of c and d needs further investigation.

Results in this work do not cover parallel imaging con-

siderations, yet combining compressive measurements

with multichannel acquisitions has received consider-

able attention, e.g., (24,25). Even though exposing the

Bayesian formalism to parallel imaging is beyond our

current scope, treating the receiver channels as a similar-

ity axis in addition to the contrast dimension might be a

natural and useful extension of the work presented here.

In addition to the demonstration of the joint CS recon-
struction of multiple different image contrasts, other
applications lend themselves to the same formalism for
joint Bayesian image reconstruction. These include, for
instance,

• Quantitative Susceptibility Mapping (QSM): In this
setting, we again aim to solve an inverse problem of
estimating a susceptibility map x related to the

FIG. 7. Reconstruction results for complex-valued TSE images after undersampling along the phase encoding direction with R ¼ 2, at

128�128 resolution. a: Magnitudes of the TSE scans at Nyquist rate sampling. b: Symmetric undersampling patterns used in this experi-
ment. c: Real and imaginary parts of the early echo image (on the left in (a)). d: Real and imaginary parts of the late echo image (on the right
in (a)). e: Reconstructions obtained with Lustig et al.’s gradient descent algorithm have 8.8% RMSE. (d) Plots of absolute error for the gra-

dient descent reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 9.7% RMSE. f: Error plots for the M-FOCUSS
results. g: Images obtained with the joint Bayesian CS reconstruction returned 6.1% RMSE. h: Error plots for the Bayesian CS reconstruc-

tions. Original magnitude images are scaled between [0,1]. All absolute error plots are scaled by clipping at half of the maximum error
incurred by Lustig et al.’s algorithm to emphasize the results, so that the errors larger than this get saturated in the images.
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phase of a complex image Mj jejf via an ill-posed
inverse kernel. Since the magnitude part Mj j is
expected to share common image boundaries with x,
it might be possible to use it as a prior to guide the
inversion task.

• Magnetic Resonance Spectroscopic Imaging (MRSI):
Combining spectroscopic data with high resolution
structural scans might help reducing the lipid con-
tamination due to the subcutaneous fat or enhance
resolution of brain metabolite maps.

• Multi-modal imaging techniques: Simultaneous
acquisitions with different modalities (e.g., PET-
MRI) may benefit from joint reconstruction with this
Bayesian formulation.

CONCLUSIONS

We presented the theory and the implementation details
of a Bayesian framework for joint reconstruction of
multi-contrast MRI scans. By efficient information shar-
ing among these similar signals, the Bayesian algorithm
was seen to obtain reconstructions with smaller errors
(up to a factor of 4 in RMSE) relative to two popular
methods, Lustig et al.’s conjugate gradient descent algo-
rithm (2) and the M-FOCUSS joint reconstruction
approach (7).
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APPENDIX

Using the FFT in the update equations: Normally, we
would need to store and use the matrices Ui which
would be a large burden on the memory. Luckily, it pos-
sible to implement the operations Uix and UT

i y by using
the FFT. These expressions are ubiquitous in the update
equations for the sequential Bayesian CS algorithm, and
replacing them with their FFT equivalent makes the stor-
age of these observation matrices no longer necessary:

Computing Uix:

• Starting with an empty 2D image t, we populate its
entries that correspond to the set of chosen basis
function indices B with the vector x: tðBÞ  x

• We take the 2D FFT and concatenate the vectorized
versions of the real and the imaginary parts,

• Uix � Reðfft2ðtÞÞ; Imðfft2ðtÞÞ½ �T

Computing UT
i y:

• Given the vector y 2 R2K , we form the complex vec-
tor z 2 CK : z � y1:K þ jyKþ1:2K , where y1:K is the

FIG. 8. a: Image gradients for the

multi-contrast TSE scans demon-
strate the similarity under the gra-
dient transform. b: To quantify

this similarity, we computed the
cumulative energy of the image

gradient of early TSE scan (TSE1

in TSE1 order). Then we sorted
the late TSE scan (TSE2) in de-

scending order, and computed
the cumulative energy in TSE1

corresponding to the sorted indi-
ces in TSE2 which gave the curve
TSE1 in TSE2 order. The similarity

of the curves indicates similar
sparsity supports across images.
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vector formed by using only the first half of y and
yKþ1:2K contains the second half.

• Again starting with an empty 2D image t, we popu-
late its entries that correspond to the set of chosen
basis function indices B with the vector z: tðBÞ  z

• Then the vectorized version of the real part of the
2D IFFT operation yields the desired result.
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