
Digital Fountain Technical Report DF2002-03-001

Constant-Rate Server Output in WEBRC

Vivek K Goyal
39141 Civic Center Drive, Suite 300

Fremont, CA 94538
vivek@digitalfountain.com

March 12, 2002
(Revised May 17, 2002)

Abstract

With the initial design of WEBRC, as described in the -00 and -01 IETF RMT building
block drafts [1, 2], the server output rate varies in time with period TSD (recommended to be
10 seconds). The variation is quite significant; when the recommended multiplicative decrease
value P = 0.75 is used, it causes the average output rate to be at least 13.1% less than the
peak rate. This document describes how increasing the number of wave channels by one and
changing the shape of the initial portion of the wave makes it possible to have constant-rate
server output. (A possibility that had been discussed but is not described in this document
would not increase the number of wave channels and would make the variation at most 13.1%.)

For the sake of brevity, this document is not self-contained. Those unfamiliar with WEBRC
should see [2, 3] for terminology.

1

1 Basic Principles

The cumulative server output in the original design of WEBRC is shown in Fig. 1. The basic idea
pursued here is to fill in the gaps between saw teeth to make the cumulative output have constant
rate SR. In addition, to prevent join time outs on the top wave, we would like each wave channel
to have a minimum rate of BCR for the full duration of every time slot in which it is active. (We
will abandon the latter requirement when SR/BCR is small.) An example of the cumulative server
output is shown in Fig. 2.

Suppose in the original design a wave channel starts in the middle of time slot 1. Use time
coordinates such that this time slot is t ∈ [TSD, 2∗TSD]. At first glance, it seems that the alteration
is merely as follows:

• Compute the time t0 at which the wave should crest. (This is slightly different than when
the wave would start in the original design. In the original design, the time at which a wave
starts is such that the rate of the top wave plus the rates of the N − 1 lower waves plus the
rate of base channel equals SR.1 In the new design, there is one fewer wave channel “below”
the crested wave and the sum should equal SR− BCR.) t0 would be in time slot 1.

• Fill in from t0 back to the beginning of time slot 1.

• Fill in (with slightly different form) from the end of time slot 0 back to time t1 = t0 − TSD.

• The rate equals BCR from the beginning of time slot 0 to time t1.

This is generally true, i.e., true for most values of SR/BCR. But for some values of SR/BCR, the
calculation of t0 gives a value greater than 2 ∗ TSD. Then, in the computation of t0 there is a
different sum and it should equal a different value (SR − 2 ∗ BCR). The t0 obtained with the
computation implied above is shown in Fig. 3. For reasonable (large) values of SR, t0/TSD is rarely
larger than 2, so it is easy to miss the fact that there are multiple cases. Specifically, t0 is larger
than TSD for the rare values of SR such that

1 +
1
P

+
1
P2

· · · + 1
Pk

<
SR

BCR
− 1 < p + 1 +

1
P

+
1
P2

· · · + 1
Pk

for an integer k.

2 Computation of Wave Channel Rates

The sender and receiver should compute the number of active wave channels as follows:

N =
⌈
log1/P

(
1 +

1
P

(
1
P
− 1
)

SR

BCR

)⌉
− 1. (1)

This is derived from the following fact: N should be smallest integer such that the rate at the end
of each time slot, without truncation of waves,

BCR

(
P + 1 +

1
P

+ · · · + 1
PN−1

)
,

is at least SR. This is the only calculation given in this document that is relevant to the receiver.
1All rates are in packets per second.

2

BCR
0

time

ra
te

Figure 1: Cumulative output in the original design.

Figure 2: Example of cumulative output with the new design.

3

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

SR/BCR

t 0/T
S

D

Figure 3: The time after which the rate decays exponentially is denoted t0. The plot shows that t0
as defined in (3) may exceed 2∗TSD. This is a roundabout demonstration that sometimes more than
two time slots must be affected by the change to constant rate output. The values of SR/BCR ≥ 5.2
are divided into “generic” and “secondary” cases based on whether t0/TSD exceeds 2.

The simplest way to make further calculations to proceed under the assumption that only two
time slots are affected by making the server output constant. Full details on the packet scheduling
are given for this “generic” case in Section 2.1. Sections 2.2 and 2.3 summarize other cases.
Complete Matlab code is given for all cases in Appendix B.

2.1 The generic case

A convenient intermediate variable is the maximum wave channel rate MWCR. In the generic case,
at the crest of the wave there are N − 2 lower waves and the base channel below, plus a wave at
rate BCR above.2 Thus,

MWCR
(
1 + P + P2 + · · · + PN−1

)
= SR− BCR,

or
MWCR =

1 − P

1 − PN
(SR− BCR). (2)

Noting that N ∗ TSD − t0 is the time for the rate on a channel to decay from MWCR to BCR, the
breakpoint after which the wave is a simple exponential decay is

t0 = TSD

(
N− log1/P

MWCR

BCR

)
. (3)

This yields t0 ≥ TSD. The hypothesis of the generic case is true as long as t0 ≤ 2 ∗ TSD is satisfied.
2“Below” and “above” are with respect to diagrams like Fig 2.

4

0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

55

time (TSD = 10)

ch
an

ne
l r

at
e

(B
C

R
 =

 1
)

200

100

50

Figure 4: Waves designed with (4). The curve labels are values of SR. The dotted lines are at times
TSD and 2 ∗ TSD.

For the generic case, the rate R(t) on the wave channel at time t ∈ [0, N ∗ TSD] is given by

R(t) =

BCR, 0 ≤ t < t0 − TSD;

SR− BCR ∗ Pt/TSD − BCR ∗ (1/P)N−1 − 1
(1/P) − 1

∗ Pt/TSD−1, t0 − TSD ≤ t < TSD;

SR− BCR− BCR ∗ (1/P)N−1 − 1
(1/P) − 1

∗ Pt/TSD−1, TSD ≤ t < t0;

BCR ∗ (1/P)N−t/TSD, t0 ≤ t ≤ N ∗ TSD.

(4)

Fig. 4 shows some examples of waves generated with (4) and Fig. 2 shows how stacking the waves
makes the cumulative rate constant.

Since packet transmissions are discrete events, the fluid model for the wave channel rate (4)
and the base channel rate

Rbase(t) = BCR ∗ Pt/TSD, t ∈ [0, TSD) (5)

must be converted to times for packet transmissions. According to the fluid model, the number of
packets sent in one time slot is K = TSD ∗ SR. We henceforth assume that this quantity is integral.
This allows the scheduling of packet transmissions on all channels in all time slots to be described
in terms of a precomputation involving one period of the base channel and one wave.

The conversion of the fluid-model rates to packet transmission times is demonstrated graphically
in Fig. 5. Build a curve with support [0, (N+1)∗TSD] by taking one period of the base channel rate
followed by the time-reversed rate of one wave.3 The area under this curve is the total number of

3Though it may seem arbitrary, there are reasons for taking the base channel period first and using the time-

5

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

Time (TSD = 10)

R
at

e
(in

 fl
ui

d
m

od
el

)

Figure 5: The conversion between rates from the fluid model and packet transmission times with
TSD = 10, SR = 25, BCR = 1, and P = 0.75. The plotted curve corresponds to one period of the
base channel followed by one time-reversed wave. Vertical lines indicate packet transmission times.
They divide the area under the curve into TSD ∗ SR = 250 unit-area regions.

packets to be transmitted in one time slot. Each packet transmission corresponds to one unit of
fluid, so the packet transmission times should divide this area into K unit-area regions.

Mathematically, determining the transmission times that make for equal areas in Fig. 5 corre-
sponds to solving for the times at which the integral of the rate curve crosses integer boundaries.
The first base channel packet is sent at time b0 = 0. The next is sent at the time b1 that satisfies

1 =
∫ b1

0
Rbase(τ) dτ =

∫ b1

0
BCR ∗ Pτ/TSD dτ.

Continuing this process, a total of L = dBCR∗TSD(1−P)
− ln P

e packets are sent at times

bk = TSD logP

(
1 +

ln P
BCR ∗ TSD ∗ k

)
, k = 0, 1, . . . , L − 1. (6)

Conceptually, this process is continued to find all of the wave channel transmission times. The
key differences are integrating from the end of the wave rather than the beginning and accounting

reversed wave. Taking the base channel first makes the first packet of each time slot a base channel packet; thus,
every receiver, regardless of rate, learns of time slot boundaries as soon as possible. Using the time-reversed wave
causes the first packet of a wave to occur as late as possible while being consistent with the fluid model; this is
important because receivers cannot join a wave until the indication of a new time slot reveals that the wave has
started. Finally, with this configuration it is possible to precompute the bks and sks that depend on TSD, BCR, and P

but are independent of SR.

6

for the difference between the number of base channel packets per time slot according to the fluid
model,

I0 =
∫ TSD

0
Rbase(τ) dτ =

∫ TSD

0
BCR ∗ Pτ/TSD dτ =

BCR ∗ TSD(1 − P)
− ln P

,

and the number of transmitted packets L = dI0e.
Let

S(s) =
∫ N∗TSD

N∗TSD−s
R(τ) dτ.

(s is time running backward from the end of the wave.) S(s) is the fluid-model approximation to
the number of packets to be sent in the last s seconds of the wave. The desired transmission times
(measured backward from the end of the wave) are the solutions to

I0 + S(sk) = k, k = L, L + 1, . . . , K − 1. (7)

Solving (7) for the sks is complicated by the fact that R(t), t ∈ [0, N ∗ TSD] is described separately
on four subintervals (see (4)). The remainder of this section details the computations of the sks.

For the last time range in (4), the integral of R(t) has a simple form:

S(s) =
BCR ∗ TSD
− ln P

((
1
P

)s/TSD

− 1

)
for s ∈ [0, N ∗ TSD− t0].

Thus for k = L and some larger values of k, (7) becomes

I0 +
BCR ∗ TSD
− ln P

((
1
P

)sk/TSD

− 1

)
= k. (8)

The range of k for which (8) is valid is determined based on the number of fluid-model base channel
packets I0 and the number of fluid-model packets sent in the last N ∗ TSD − t0 seconds of a wave.
The latter quantity is given by

I1 =
∫ N∗TSD

t0

R(τ) dτ = S(N ∗ TSD− t0) =
BCR ∗ TSD
− ln P

((
1
P

)N−t0/TSD

− 1

)
.

The sum of the number base channel packets in one time slot and the number of wave channel
packets in the portion of the wave under consideration is denoted K1 = dI0 + I1e. Thus (8) is
solved to obtain

sk = TSD ∗ log1/P

(
1 − ln P

BCR ∗ TSD (k − I0)
)

, k = L, L + 1, . . . , K1 − 1. (9)

Computing and inverting S(s) gets uglier from here on. For s ∈ (N ∗ TSD− t0, (N− 1)TSD], S(s)
has a fixed component I1 plus∫ t0

t0−τ
R(t) dt =

∫ t0

t0−τ

(
SR− BCR− BCR ∗ (1/P)N−1 − 1

(1/P) − 1
∗ Pt/TSD−1

)
dt

= (SR− BCR)︸ ︷︷ ︸
A

τ − BCR ∗ (1/P)N−1 − 1
(1/P) − 1

∗ TSD

− ln P
∗ Pt0/TSD−1

︸ ︷︷ ︸
B

(
P−τ/TSD − 1

)
,

7

where τ = s − (N ∗ TSD− t0). The total fluid contribution of the latter for this portion of the wave
is

I2 =
∫ t0

TSD

R(t) dt = A(t0 − TSD) − B
(
P−(t0−TSD)/TSD − 1

)
.

Thus the number of packets for one period of the base channel plus the number of packets for
the last (N − 1)TSD seconds of a wave is K2 = dI0 + I1 + I2e and scheduling the packets for
s ∈ (N ∗ TSD− t0, (N − 1)TSD] amounts to solving

I0 + I1 + Aτk − B(P−τk/TSD − 1) = k, k = K1, K1 + 1, . . . ,K2 − 1 (10)

for the τks. There is no elementary closed form solution; techniques for finding approximate solu-
tions are described in Appendix A. The τks in this calculation are transmission times measured
backward in time from time t0. We thus obtain sk = τk + N ∗ TSD− t0, k = K1, K1 + 1, . . . , K2 − 1.

The calculations are very similar for the next interval, s ∈ ((N− 1)TSD, (N+ 1)TSD− t0]. We are
interested in solutions to

S(τ + (N− 1)TSD) = I0 + I1 + I2 +
∫ TSD

TSD−τ
R(t) dt = k for τ ∈ [0, 2 ∗ TSD− t0].

Integrating yields
I0 + I1 + I2 + A′τk − B′(P−τk/TSD − 1) = k (11)

where A′ = SR and

B′ =
BCR ∗ TSD
− ln P

∗
(
P +

(1/P)N−1 − 1
(1/P) − 1

)
.

The range of integers k for which we solve (11) depends on how many packets are transmitted in
this time interval. Paralleling the previous calculations, let

I3 =
∫ TSD

t0−TSD

R(t) dt = SR(2 ∗ TSD− t0) − BCR ∗ TSD
− ln P

∗
(
P +

(1/P)N−1 − 1
(1/P) − 1

)
∗
(
Pt0/TSD−2 − 1

)
and K3 = dI0 + I1 + I2 + I3e. Then (11) is solved for k = K2, K2 + 1, . . . , K3 − 1. Of course,
(11) is of the same form as (10) and solutions can be approximated similarly. This process yields
sk = τk + (N− 1) ∗ TSD, k = K2, K2 + 1, . . . , K3 − 1.

In the final interval s ∈ ((N+1)TSD− t0, N∗TSD], the fluid-model rate is BCR so the time between
packets is 1/BCR. To correctly patch together the intervals, we seek solutions to

I0 + I1 + I2 + I3 + BCR ∗ τk = k, k = K3, K3 + 1, . . . , K − 1. (12)

The solutions are
τk =

1
BCR

(k − I0 − I1 − I2 − I3)

and yield

sk =
1

BCR
(k − I0 − I1 − I2 − I3) + (N + 1) ∗ TSD− t0, k = K3, K3 + 1, . . . , K − 1. (13)

As a sanity check for these calculations, let

I4 =
∫ t0−TSD

0
R(t) dt = BCR(t0 − TSD)

and verify I0 + I1 + I2 + I3 + I4 = TSD ∗ SR.

8

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

time (TSD = 10)

ch
an

ne
l r

at
e

(B
C

R
 =

 1
)

(a) (b)

Figure 6: Waves incorrectly designed with (4). (a) The rate of the wave channel does not stay
above BCR. (b) The cumulative rate is not constant.

2.2 The secondary case

When (3) yields t0 > 2 ∗ TSD, the crest of the wave does not occur until the third active time slot.
(We will abandon this methodology for very low values of SR so that we do not have to consider
t0 > 3 ∗ TSD.) An example of a ratio SR/BCR that yields t0 > 2 ∗ TSD is 20.5. The wave shape given
by (4) and the resulting cumulative rate are shown in Fig. 6. Clearly the calculations in Section 2.1
do not apply for this value of SR/BCR.

At the crest of the wave, there are N−3 lower waves and the base channel below, plus two waves
at rate BCR above. Thus,

MWCR
(
1 + P + P2 + · · · + PN−2

)
= SR− 2 ∗ BCR,

or
MWCR =

1 − P

1 − PN−1
(SR− 2 ∗ BCR). (14)

The computation of t0, which again means the time after which the wave rate is simply a decaying
exponential function, uses this new value of MWCR:

t0 = TSD

(
N− log1/P

MWCR

BCR

)
. (15)

The analogue to (4) is

R(t) =

BCR, 0 ≤ t < t0 − TSD;

SR− BCR− BCR ∗ (1/P)N−1 − 1
(1/P) − 1

∗ Pt/TSD−1, t0 − TSD ≤ t < 2 ∗ TSD;

SR− 2 ∗ BCR− BCR ∗ (1/P)N−2 − 1
(1/P) − 1

∗ Pt/TSD−2, 2 ∗ TSD ≤ t < t0;

BCR ∗ (1/P)N−t/TSD, t0 ≤ t ≤ N ∗ TSD.

(16)

Examples of waves designed with (16) and how they stack up are given in Fig. 7. The various
integrations of (16) for scheduling packets are omitted. However, all the corresponding equations
can be found in the Matlab code in Appendix B.

9

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

time (TSD = 10)

ch
an

ne
l r

at
e

(B
C

R
 =

 1
)

7.5

20.5

51.5

(a) (b)

(c) (d)

Figure 7: Waves designed with (16). (a) Waves labeled by their SR values. (b) Stack for SR = 7.5.
(c) Stack for SR = 20.5. (d) Stack for SR = 51.5.

(a) BCR(1 + 1/P + · · · + 1/PN−1) < SR (b) BCR(1 + 1/P+ · · · + 1/PN−1) > SR

Figure 8: Wave designs for very low SR/BCR.

10

2.3 Very low SRs

Computations (14)–(15) can yield t0 > 3 ∗ TSD, which means that (16) does not actually give
constant server output. However, this occurs only with SR/BCR < 5.084 (and hence N ≤ 4). Total
server output rates this low (41.6 kbps with the default base channel rate of 8192 bps) are not very
interesting for multiple rate congestion control. Furthermore, it is silly to have a regime where a
wave that is active for four or less time slots is constant for at least two slots. Thus I propose a
cutoff of SR/BCR = 5.2 below which we abandon the constraint that the minimum rate on a wave
channel is BCR for the entire duration of each active time slot.

Equation (1) is still valid for determining N. Then, there are is a qualitative difference depending
on whether BCR(1 + 1/P + · · · + 1/PN−1) exceeds SR. The two situations are shown in Fig. 8. As
shown in Fig. 8(a), when BCR(1 + 1/P + · · · + 1/PN−1) does not exceed SR, the server output limit
affects the rate only for the first time slot. The wave channel rate is given by

R(t) =

 SR− BCR ∗ (1/P)N − 1

(1/P) − 1
∗ Pt/TSD, 0 ≤ t < TSD;

BCR ∗ (1/P)N−t/TSD, TSD ≤ t ≤ N ∗ TSD.
(17)

If BCR(1 + 1/P + · · · + 1/PN−1) exceeds SR, as shown in Fig. 8(b), there is a breakpoint in the
second time slot as in the generic case studied in Section 2.1. Let

MWCR =
1 − P

1 − PN
∗ SR (18)

and

t0 = TSD

(
N− log1/P

MWCR

BCR

)
. (19)

Then

R(t) =

0, 0 ≤ t < t0 − TSD;

SR− BCR ∗ (1/P)N − 1
(1/P) − 1

∗ Pt/TSD, t0 − TSD ≤ t < TSD;

SR− BCR ∗ (1/P)N−1 − 1
(1/P) − 1

∗ Pt/TSD−1, TSD ≤ t < t0;

BCR ∗ (1/P)N−t/TSD, t0 ≤ t ≤ N ∗ TSD.

(20)

Again, the specifics of scheduling packets to satisfy (17) or (20) are given in the Matlab code
in Appendix B.

3 Suggested Server Implementation

Evaluating (6), (9), and (13) and solving (10) and (11) gives values over the reals as the times at
which to transmit packets. Since we intend to have constant rate output and packet transmissions
could turn out to be bursty for reasons unrelated to WEBRC, these times should be used only to
determine an ordering of packets for one period of TSD seconds and then discarded. This ordering
is determined by representing each transmission time as a quotient and remainder modulo TSD and
then sorting the remainders. This is detailed below.

Recall that in each time slot the server sends L packets on the base channel at times {bk}L−1
k=0

given by (6). Represent these times as (channel,time) pairs {(T, bk)}L−1
k=0 .

Without loss of generality, suppose the wave channel for which we have made computations is
channel N−1. This means that time 0 is the beginning of a time slot numbered 0. The wave channel

11

packet transmission time sk (measured from the end of the wave) is converted to a (channel,time)
pair as follows. Let N ∗ TSD − sk = m ∗ TSD + wk for m ∈ Z and wk ∈ [0, TSD). Transmission
of a packet on wave channel N − 1 at time N ∗ TSD − sk implies a packet is sent on wave channel
N− 1 − m mod T at time wk. Thus we have the mapping of sk to (N− 1 − m mod T, wk).

The bks and wks are all in the interval [0, TSD). By sorting the (channel,time) pairs by time, we
get a sequence of transmission events for time slot 0. The same sequence can be used in time slot
i 6= 0 if all channels CN 6= T are replaced by CN + i mod T. There is no need to retain the times in
the (channel,time) pairs after the sorting.

A Solving Aτ − B(P−τ/TSD − 1) = C

Although there is no elementary closed-form solution, any number of root finding methods could
be used to solve

Aτ − B(P−τ/TSD − 1) = C. (21)

To have a formula (rather than a recursion) for τ , one can replace (21) with an approximate
equation that has an elementary closed-form solution. For this purpose it is important to note that
we are interested in τ ∈ [0, TSD). Thus we get reasonable accuracy with Taylor approximations of
P−τ/TSD about τ = 0.

A first-order Taylor approximation is

P−τ/TSD = e−τ(ln P)/TSD ≈ 1 − ln P
TSD

τ.

This turns (21) into a linear equation with approximate solution

τ ≈ C

A + B ln P
TSD

. (22)

A second-order Taylor approximation is

P−τ/TSD = e−τ(ln P)/TSD ≈ 1 − ln P
TSD

τ +
1
2

(
ln P
TSD

)2

τ2,

which yields

−B

2

(
ln P
TSD

)2

︸ ︷︷ ︸
a

τ2 +
(

A + B
ln P
TSD

)
︸ ︷︷ ︸

b

τ − C︸︷︷︸
−c

= 0.

This is a standard quadratic equation; the desired solution is

τ =
−b +

√
b2 − 4ac

2a
.

The process of increasing the degree of the Taylor expansion can be continued to degree four;
beyond the quadratic case there is no closed-form solution to the approximate polynomial equation
that is obtained.

Since τ/TSD is not always small enough for fast convergence of the Taylor series about zero, a
better way to improve accuracy is to use Taylor approximations about different points. Let τ0 be

12

given by (22) and expand f(τ) = P−τ/TSD about τ0 to get

P−τ/TSD = e−τ(ln P)/TSD ≈ f(τ0) − ln P
TSD

f(τ0)(τ − τ0) +
1
2

(
ln P
TSD

)2

f(τ0)(τ − τ0)2

= P−τ0/TSD − ln P
TSD

P−τ0/TSD(τ − τ0) +
1
2

(
ln P
TSD

)2

P−τ0/TSD(τ − τ0)2.

Substituting this approximation in (21) gives

1
2
B

(
ln P
TSD

)2

P−τ0/TSD(τ −τ0)2−
(

A + B
ln P
TSD

P−τ0/TSD

)
(τ −τ0)+

(
Aτ0 + B(P−τ0/TSD − 1) − C

)
= 0.

Solving this quadratic for τ − τ0 gives a very good approximation for τ . This is implemented in
the Matlab code in Appendix B.6.

B Matlab code

B.1 packetSchedule()

This is the main function.
function [CN,T,t] = packetSchedule(SR, BCR, P, TSD, Q)

% packetSchedule(SR_P, BCR_P, P, TSD, Q)

% Determine the sequence of CNs for a single time slot.

% This sequence is used in subsequent time slots by incrementing

% modulo T all of the CNs that are different from T.

%

% Defaults: SR_P = 100

% BCR_P = 1

% P = 0.75

% TSD = 10

% Q = 30

if ~exist(’Q’,’var’),

Q = 30;

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

if ~exist(’BCR’,’var’),

BCR = 1;

if ~exist(’SR’,’var’),

SR = 100;

end

end

end

end

end

b = baseChannelTimes(BCR, P, TSD);

[w,N] = waveChannelTimes(SR, BCR, P, TSD);

T = N + Q;

times = [b,mod(N*TSD-w,TSD)];

CN = [T*ones(1,length(b)),floor(w/TSD)];

[t,j] = sort(times);

CN = CN(j);

13

B.2 baseChannelTimes()

This computes the transmission times for the base channel. It is subordinate to packetSchedule().

function [b,L] = baseChannelTimes(BCR_P, P, TSD)

% baseChannelTimes(BCR_P, P, TSD)

% Compute a vector of packet transmission times for the base

% channel for one time slot beginning at time 0.

%

% Defaults: BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

if ~exist(’BCR_P’,’var’),

BCR_P = 1;

end

end

end

L = ceil(-BCR_P*TSD*(1-P)/log(P));

b = TSD * log(1 + log(P)/BCR_P/TSD * (0:L-1)) / log(P);

B.3 waveChannelTimes()

This computes the transmission times for a single wave. It is subordinate to packetSchedule().

function [w,N] = waveChannelTimes(SR, BCR, P, TSD, makePlot)

% waveChannelTimes(SR_P, BCR_P, P, TSD)

% Compute a vector of packet transmission times for a single

% wave that starts at time 0.

%

% The result is accurate for any SR_P >= BCR_P. However, for

% certain values of SR_P/BCR_P the actual heavy lifting is done

% by waveChannelTimes_secondary() or waveChannelTimes_low().

%

% Defaults: SR_P = 100

% BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’makePlot’,’var’)

makePlot = 0;

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

if ~exist(’BCR’,’var’),

BCR = 1;

if ~exist(’SR’,’var’),

SR = 100;

end

end

end

end

end

14

if (SR/BCR < 5.2),

[w,N] = waveChannelTimesLowRate(SR, BCR, P, TSD, makePlot);

else

N = ceil(log(1 + (1/P)*(1/P-1)*(SR/BCR))/log(1/P)) - 1;

MWCR = (1-P)/(1-P^N)*(SR - BCR);

t0 = TSD*(N - log(MWCR/BCR)/log(1/P));

if (t0/TSD > 2),

[w,N] = waveChannelTimesSecondary(SR, BCR, P, TSD, makePlot);

else

kappa = ((1/P)^(N-1) - 1) / ((1/P) - 1);

I0 = -BCR*TSD*(1-P)/log(P);

I1 = -BCR*TSD/log(P) * ((1/P)^(N-t0/TSD) - 1);

I2 = (SR-BCR)*(t0-TSD) + BCR*TSD/log(P) * kappa * (1-P^(t0/TSD-1));

I3 = SR*(2*TSD-t0) + BCR*TSD/log(P) * (P + kappa) * ((1/P)^(2-t0/TSD)-1);

I4 = BCR*(t0-TSD);

L = ceil(I0);

% part 4/4 of wave:

K1 = ceil(I0+I1);

s1 = TSD * log(1 - log(P)/BCR/TSD * ((L:(K1-1)) - I0)) / log(1/P);

% part 3/4 of wave:

K2 = ceil(I0+I1+I2);

A = SR-BCR;

B = -BCR * kappa * TSD/log(P) * P^(t0/TSD-1);

tau = solveIntegerCrossings(A, B, (K1:(K2-1)) - I0 - I1, P, TSD);

s2 = (N*TSD-t0)+tau;

% part 2/4 of wave:

K3 = ceil(I0+I1+I2+I3);

A = SR;

B = -BCR * (P + kappa) * TSD/log(P);

tau = solveIntegerCrossings(A, B, (K2:(K3-1)) - I0 - I1 - I2, P, TSD);

s3 = (N-1)*TSD+tau;

% part 1/4 of wave:

K4 = round(TSD*SR);

tau = ((K3:(K4-1)) - I0 - I1 - I2 - I3)/BCR;

s4 = (N+1)*TSD-t0+tau;

w = [s1, s2, s3, s4];

if makePlot,

figure

plot((L+1):K1, s1, ’b.’);

hold on

plot((K1+1):K2, s2, ’r.’);

plot((K2+1):K3, s3, ’g.’);

plot((K3+1):K4, s4, ’m.’);

title([’Primary case: SR = ’,num2str(SR),’, BCR = ’,num2str(BCR)])

end

end

end

15

B.4 waveChannelTimesSecondary()

This handles the t0/TSD > 2 special case for waveChannelTimes().

function [w,N] = waveChannelTimesSecondary(SR, BCR, P, TSD, makePlot)

% waveChannelTimesSecondary(SR_P, BCR_P, P, TSD)

% Compute a vector of packet transmission times for a single

% wave that starts at time 0.

%

% This function is for the secondary case in which SR_P/BCR_P >= 5.2

% and t0/TSD > 2.

%

% Defaults: SR_P = 51.5

% BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’makePlot’,’var’),

makePlot = 0;

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

if ~exist(’BCR’,’var’),

BCR = 1;

if ~exist(’SR’,’var’),

SR = 51.5;

end

end

end

end

end

N = ceil(log(1 + (1/P)*(1/P-1)*(SR/BCR))/log(1/P)) - 1;

MWCR = (1-P)/(1-P^(N-1))*(SR - 2*BCR);

t0 = TSD*(N - log(MWCR/BCR)/log(1/P));

kappa = ((1/P)^(N-1) - 1) / ((1/P) - 1);

lambda = ((1/P)^(N-2) - 1) / ((1/P) - 1);

I0 = -BCR*TSD*(1-P)/log(P);

I1 = -BCR*TSD/log(P) * ((1/P)^(N-t0/TSD) - 1);

I2 = (SR-2*BCR)*(t0-2*TSD) - BCR*TSD/log(P) * lambda * (P^(t0/TSD-2) - 1);

I3 = (SR-BCR)*(3*TSD-t0) - BCR*TSD/log(P) * kappa * P * (1 - P^(t0/TSD-3));

I4 = BCR*(t0-TSD);

L = ceil(I0);

% part 4/4 of wave:

K1 = ceil(I0+I1);

s1 = TSD * log(1 - log(P)/BCR/TSD * ((L:(K1-1)) - I0)) / log(1/P);

% part 3/4 of wave:

K2 = ceil(I0+I1+I2);

A = SR-2*BCR;

B = -BCR * lambda * TSD/log(P) * P^(t0/TSD-2);

tau = solveIntegerCrossings(A, B, (K1:(K2-1)) - I0 - I1, P, TSD);

s2 = (N*TSD-t0)+tau;

% part 2/4 of wave:

K3 = ceil(I0+I1+I2+I3);

16

A = (SR-BCR);

B = -BCR * kappa * TSD/log(P) * P;

tau = solveIntegerCrossings(A, B, (K2:(K3-1)) - I0 - I1 - I2, P, TSD);

s3 = (N-2)*TSD+tau;

% part 1/4 of wave:

K4 = round(TSD*SR);

tau = ((K3:(K4-1)) - I0 - I1 - I2 - I3)/BCR;

s4 = (N+1)*TSD-t0+tau;

w = [s1, s2, s3, s4];

if makePlot,

figure

plot((L+1):K1, s1, ’b.’);

hold on

plot((K1+1):K2, s2, ’r.’);

plot((K2+1):K3, s3, ’g.’);

plot((K3+1):K4, s4, ’m.’);

title([’Secondary case: SR = ’,num2str(SR),’, BCR = ’,num2str(BCR)])

end

B.5 waveChannelTimesLowRate()

This handles the SR/BCR < 5.2 special case for waveChannelTimes().

function [w,N] = waveChannelTimesLowRate(SR, BCR, P, TSD, makePlot)

% waveChannelTimesLowRate(SR_P, BCR_P, P, TSD)

% Compute a vector of packet transmission times for a single

% wave that starts at time 0.

%

% This function is for the low rate case in which SR_P/BCR_P < 5.2.

%

% Defaults: SR_P = 4.5

% BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’makePlot’,’var’),

makePlot = 0;

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

if ~exist(’BCR’,’var’),

BCR = 1;

if ~exist(’SR’,’var’),

SR = 4.5;

end

end

end

end

end

N = ceil(log(1 + (1/P)*(1/P-1)*(SR/BCR))/log(1/P)) - 1;

alpha = ((1/P)^N - 1) / ((1/P) - 1);

I0 = -BCR*TSD*(1-P)/log(P);

L = ceil(I0);

17

if alpha < SR/BCR,

I1 = -BCR*TSD/log(P) * ((1/P)^(N-1) - 1);

I2 = SR*TSD - BCR*TSD/log(P) * alpha * P * (1 - (1/P));

% part 2/2 of wave:

K1 = ceil(I0+I1);

s1 = TSD * log(1 - log(P)/BCR/TSD * ((L:(K1-1)) - I0)) / log(1/P);

% part 1/2 of wave:

K2 = round(TSD*SR);

A = SR;

B = -BCR * alpha * TSD/log(P) * P;

tau = solveIntegerCrossings(A, B, (K1:(K2-1)) - I0 - I1, P, TSD);

s2 = (N-1)*TSD+tau;

w = [s1, s2];

if makePlot,

figure

plot((L+1):K1, s1, ’b.’);

hold on

plot((K1+1):K2, s2, ’r.’);

title([’Case in Fig. 7(a): SR = ’,num2str(SR),’, BCR = ’,num2str(BCR)])

end

else

MWCR = (1-P)/(1-P^N)*SR;

t0 = TSD*(N - log(MWCR/BCR)/log(1/P));

kappa = ((1/P)^(N-1) - 1) / ((1/P) - 1);

I1 = -BCR*TSD/log(P) * ((1/P)^(N-t0/TSD) - 1);

I2 = SR*(t0-TSD) - BCR*TSD/log(P) * kappa * (P^(t0/TSD-1) - 1);

I3 = SR*(2*TSD-t0) - BCR*TSD/log(P) * alpha * P * (1 - P^(t0/TSD-2));

% part 3/3 of wave:

K1 = ceil(I0+I1);

s1 = TSD * log(1 - log(P)/BCR/TSD * ((L:(K1-1)) - I0)) / log(1/P);

% part 2/3 of wave:

K2 = ceil(I0+I1+I2);

A = SR;

B = -BCR * kappa * TSD/log(P) * P^(t0/TSD-1);

tau = solveIntegerCrossings(A, B, (K1:(K2-1)) - I0 - I1, P, TSD);

s2 = (N*TSD-t0)+tau;

% part 1/3 of wave:

K3 = round(TSD*SR);

A = SR;

B = -BCR * alpha * TSD/log(P) * P;

tau = solveIntegerCrossings(A, B, (K2:(K3-1)) - I0 - I1 - I2, P, TSD);

s3 = (N-1)*TSD+tau;

w = [s1, s2, s3];

if makePlot,

figure

plot((L+1):K1, s1, ’b.’);

hold on

plot((K1+1):K2, s2, ’r.’);

plot((K2+1):K3, s3, ’g.’);

title([’Case in Fig. 7(b): SR = ’,num2str(SR),’, BCR = ’,num2str(BCR)])

end

18

end

B.6 solveIntegerCrossings()

This makes the calculation described in Appendix A. It is used by waveChannelTimes(),
waveChannelTimesSecondary(), and waveChannelTimesLowRate().
function tau = solveIntegerCrossings(A, B, C, P, TSD)

%tau = solveIntegerCrossings(A, B, C, P, TSD)

%

% Find approximate solution to A*tau + B*(1-P^(-tau/TSD)) = C.

%

% The normal usage is to pass a vector C of integer-spaced values,

% in which case the equation is solved for each component of C.

%

% Implemented with a quadratic Taylor expansion about tau0, where tau0

% is the approximate solution obtained with a linear Taylor expansion.

if ~exist(’TSD’,’var’),

TSD = 10;

if ~exist(’P’,’var’),

P = 0.75;

end

end

tau0 = C/(A + B*log(P)/TSD);

ftau0 = P.^(-tau0/TSD);

a = 0.5*B*(log(P)/TSD)^2 * ftau0;

b = -(A + B*log(P)/TSD * ftau0);

c = C + B*(ftau0 - 1) - A*tau0;

zeta = (-b-sqrt(b.^2-4*a.*c))./(2*a);

tau = tau0 + zeta;

Acknowledgment

In the original version of this document, transmission times for the base and wave channels were
computed independently. Armin Haken demonstrated the possibility of off-by-one errors in the
number of wave channel packets produced. This was traced to the difference between I0 and L and
inspired the more elegant, unified treatment given here.

References

[1] M. Luby, V. K Goyal, and S. Skaria. Wave and equation based rate control: A massively scalable
receiver driven congestion control protocol. IETF Reliable Multicast Transport Working Group
Internet-Draft, October 2001. Document draft-ietf-rmt-bb-webrc-00.txt superceded by [2].

[2] M. Luby and V. K Goyal. Wave and equation based rate control building block. IETF
Reliable Multicast Transport Working Group Internet-Draft, March 2002. Available on-
line at http://www.ietf.org/internet-drafts/draft-ietf-rmt-bb-webrc-01.txt. Work
in progress. Expires Sept. 2002.

[3] M. Luby, V. K Goyal, S. Skaria, and G. B. Horn. Wave and equation based rate control using
multicast round trip time. In Proc. ACM SIGCOMM, Pittsburgh, PA, August 2002. To appear.

19

