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Abstract

A WEBRC sender transmits packets on a base channel and on T wave channels. The
transmission pattern on each wave channel is a sequence of periodically-spaced waves
separated by quiescent periods. In a fluid model, the rate of each wave is predominantly
described by an exponential decay by a factor of P each TSD seconds. The beginnings of
the waves are designed so that the sum over all of the channels of the fluid-model rate
is constant. This design is complicated by requirements motivated by keeping receiver
MRTT measurements simple.

Presented here is the design of the beginnings of the waves and a mechanism to con-
vert fluid-model rates to packet transmission times. The final design has two parameters
to trade off the range of fine-grained rate control against the maximum interpacket spac-
ing in the early portion of the wave. For the sake of brevity, this document is far from
self-contained. Those unfamiliar with WEBRC should see [1, 2] for an introduction.
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1 Introduction

This document primarily addresses the design of a prototype wave that ends at time N ·TSD. We will
say that the wave starts at time 0 whether or not the rate of wave is immediately greater than zero.
(Note that this obvious choice of time coordinates places time slot boundaries at integer multiples
of TSD.) With appropriate shifting by multiples of TSD, the prototype wave design results in a
fluid-model transmission rate for every wave channel. The final part of this document addresses
the scheduling of (discrete) packet transmissions to approximate the fluid model.

2 Fluid-Model Wave Design Problem

Many of the rate control mechanisms of WEBRC depend on the sum of channel rates being expo-
nential with a multiplicative decay rate that is independent of the time within a time slot and the
number of channels that the receiver is subscribed to. (To fix terms: the “multiplicative decay rate”
is a factor of P per TSD seconds.) The fact that shifting in time does not change a multiplicative
decay rate is what makes the exponential wave shape appropriate.

Most, if not all, of the wave has a simple exponential form:1

R(t) = P−N+t/TSD · BCR. (1)

Define the crest time of the wave tcrest as the time after which the wave follows (1). The rate on
the base channel follows the same exponential decay as the waves, but with a period of TSD. The
base channel rate is given by

Rbase(t) = P〈t/TSD〉 · BCR, (2)

where 〈x〉 is the fractional part of x; i.e., 〈x〉 = x− �x�.
The original design of WEBRC, as described in [3, 4], did not specify how waves should start or

whether waves should start at time slot boundaries. Implicitly from the definition of MSR, one could
conclude that waves would generally not start at time slot boundaries. Equivalently, a prototype
wave with support t ∈ [0, N · TSD] has rate 0 for t < tcrest where tcrest ∈ [0, TSD). An example of the
cumulative sender output with this original design is shown in Fig. 1.

Many figures similar to Fig. 1 appear in this document, so it is important to understand how to
interpret them. The horizontal dimension represents the passage of time, and black vertical lines
indicate time slot boundaries. Colors represent channel identities, where black is used for the base
channel and all other colors represent wave channels. Heights represent fluid-model rates and the
“fluid” for different channels is stacked so that being one higher in the stack corresponds to having
a channel number one larger (modulo T). Since the fluid is stacked, the total height is the total
instantaneous sending rate and the heights in different colors give the rates on the various active
channels. In this figure, the prototype wave is tan because it is the wave that starts in the first
time slot shown. Since the tan wave ends at time 10 · TSD, one can conclude that N = 10. The
“earlier” or “lower” waves are brown, gray, magenta, . . .; the “later” or “higher” waves are steel
blue, royal blue, violet, . . .. Looking at any one color in Fig. 1, the wave channel rate appears at
first to be discontinuous. This is an illusion caused by the stacking, the discontinuity in the base
channel rate at time slot boundaries, and the discontinuous manner in which a wave ends at each
time slot boundary.

The total sender output with this wave design is periodic with period TSD and may be far from
constant; the ratio between the maximum and minimum rates can be as large as 1 + P−1 (though

1All rates are in packets per second.

2



BCR

SR

0

time

ra
te

Figure 1: Example of cumulative output with the original design (P = 3
4 , SR/BCR = 65).

P−1 is a more typical value). This periodicity has various disadvantages including incomplete usage
of sender bandwidth and buffering and synchronization problems within the sender. This motivates
filling in the gaps between saw teeth to make the cumulative output have constant rate SR.

More germane to the mechanisms of WEBRC, consider what happens when a receiver joins
a highest wave early in the time slot in which it becomes active. Let time 0 be the beginning
of the time slot at the network element where the receiver in question is grafted to the multicast
tree.2 Then let tjoin be the time at which the receiver joins, tup be the total propagation and
processing times for all necessary IGMP and PIM messages, and tdown be the propagation time for
data packets. The packet flow first arrives at the receiver at time max{tcrest, tjoin + tup} + tdown.
The normal mechanism for computing MRTT yields

MRTT = [max{tcrest, tjoin + tup} + tdown] − tjoin

though the desired result is tup + tdown. Thus MRTT may be overestimated by as much as TSD and
the ratio between the measured and desired MRTTs can be arbitrarily large. This is unacceptable,
so the wave design or MRTT calculation must be changed. Note that an accurate MRTT calculation
by the receiver requires not only tcrest, which would probably be fixed throughout a session, but also
an estimate of the join time. Thus far, the design of WEBRC has avoided tracking time within time
slots as much as possible. For the purposes of this document, assume that the MRTT calculation
is not changed.

The design objectives are to create a prototype wave that makes the total sender output constant
while also reducing MRTT measurement errors.

2In the terminology of [2], the computations are using wave time at the network element where the receiver is
grafted to the multicast tree.
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Figure 2: Example of Design 1 (P = 3
4 , SR/BCR = 65).

3 Preliminary Designs

3.1 Design 1: Simple Extension

Perhaps the most obvious way to adjust the wave design from Fig. 1 is to extend waves to the left
to fill the fluid level up to SR. The result is shown in Fig. 2. Notice that this adds one time slot to
the active duration of a wave. The resulting N is given by

N =
⌈
log1/P

(
1 +

1
P

(
1
P
− 1
)

SR

BCR

)⌉
− 1, (3)

as in [1, 2]. This value is derived from the following fact: N should be smallest integer such that
the rate at the end of each time slot, without truncation of waves,

BCR

(
P + 1 +

1
P

+ · · · + 1
PN−1

)
,

is at least SR.
By comparing Figs. 1 and 2, one can conclude that the prototype wave for Design 1 is given by

R(t) =




0, 0 ≤ t < tcrest − TSD;

SR− P−N − 1
P−1 − 1

· Pt/TSD · BCR, tcrest − TSD ≤ t < TSD;

SR− P−(N−1) − 1
P(P−1 − 1)

· Pt/TSD · BCR, TSD ≤ t < tcrest;

P−N+t/TSD · BCR, tcrest ≤ t ≤ N · TSD.

(4)
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Figure 3: Rates that are attainable with only exponential portions of waves (P = 3
4). Segments are

labeled with values of i as in (5). Segment lengths increase geometrically with fixed gaps of length
P · BCR.

The second of the four cases above is obtained by subtracting the sum of the rates of N− 1 waves
and the base channel from the total rate SR. Specifically, for a time tcrest − TSD ≤ t < TSD the rate
on the base channel and all lower waves is

Pt/TSD · BCR︸ ︷︷ ︸
base channel

+ P−1 · Pt/TSD · BCR + P−2 · Pt/TSD · BCR+ · · · + P−(N−1) · Pt/TSD · BCR︸ ︷︷ ︸
wave channels

=

(
N−1∑
k=0

P−k

)
· Pt/TSD · BCR =

P−N − 1
P−1 − 1

· Pt/TSD · BCR.

The third case in (4) is obtained similarly by adding the rates of N− 2 wave channels and the base
channel.

One subtlety in this description—and it applies also to the original design in Fig. 1—is that
not all cumulative rates are attainable as the sum of post-crest (exponential) waves. Time t from
the crest to the end of a wave implies a crest rate R(tcrest) = P−t/TSD · BCR and a number of lower
channels (counting active wave channels and the base channel) k = 1 + �t/TSD�. The cumulative
rate at the crest time is then

k∑
i=0

Pi ·R(tcrest) =
1 − P�t/TSD�+2

1 − P
· P−t/TSD · BCR.

Sweeping t over [0,∞) gives cumulative rates in the achievable set

A =
∞⋃
i=1

Ai, where Ai =

[
P · P

−(i+1) − 1
P−1 − 1

· BCR, P
−(i+1) − 1
P−1 − 1

· BCR
]
. (5)

This set is depicted in Fig. 3. When SR is in A, tcrest is found by determining the value that results
in cumulative rate SR at the crest; otherwise, when SR is in a gap in A, tcrest = TSD. This can be
expressed as

tcrest = TSD · max
{
N− log1/P

(
1 − P

1 − PN
· SR

BCR

)
, 1
}
. (6)

Note that SR ∈ Ai implies N = i+ 1. Also, SR in the gap between Ai and Ai+1 implies N = i+ 1.
The design expressed in (4) starts waves at rate 0 except for the rare values of SR that are not

in A. Therefore, it does not solve the difficulties of measuring MRTT when the top wave is joined,
as described in Section 2. However, this design falls within a family of designs that includes the
current best practice, so it is a good starting point.

5



3.2 Design 2: Start Waves at BCR

To avoid problems in measuring MRTT, we would like the prototype wave to start at some strictly
positive rate. Here we adjust Design 1 so that each wave channel starts at a minimum rate BCR.
(We will abandon this requirement when SR/BCR is very small.) This is very similar to—though
already somewhat better than—the design described in the current protocol specification [5]. The
current best practice as described in Section 4 has further refinements.

Starting waves at BCR forces the crest rate to be lower and may reduce the necessary N. We
would like the crest time to be such that the rate at the crest plus the rates of N− 2 waves and the
base channel below equals SR− BCR. For values of SR such that SR− BCR ∈ Ai, there is such a crest
time; otherwise, when SR− BCR lies between Ai and Ai+1 set tcrest = TSD and the starting rate will
be greater than BCR. This is achieved by choosing N = i + 1, or to avoid the intermediate step of
placing SR− BCR in or between the Aks,

N =
⌈
log1/P

(
1 +

1
P

(
1
P
− 1
)(

SR

BCR
− 1
))⌉

− 1. (7)

Then,

tcrest = TSD · max
{
N− log1/P

(
1 − P

1 − PN
·
(

SR

BCR
− 1
))

, 1
}
. (8)

Finally, the prototype wave is given by

R(t) =




BCR, 0 ≤ t < tcrest − TSD;

SR− P−N − 1
P−1 − 1

· Pt/TSD · BCR, tcrest − TSD ≤ t < TSD;

SR−
(

1 +
P−(N−1) − 1
P(P−1 − 1)

· Pt/TSD

)
· BCR, TSD ≤ t < tcrest;

P−N+t/TSD · BCR, tcrest ≤ t ≤ N · TSD.

(9)

Design 2 makes sense for SR/BCR ≥ 2; Design 1 can be used for smaller values of SR. An example
of the cumulative output rate is shown in Fig. 4.

The minimum rate in (9) occurs either at t = 0+ or at t = TSD+. For the latter we have

R(TSD+) = SR−
(

1 +
P−(N−1) − 1
P−1 − 1

)
· BCR ≥ P · BCR,

where the bound can be obtained by rearranging (7). Design 2 thus partially solves the problems
associated with joining the top wave: Since the fluid rate is at least P · BCR when a join is issued,
a flow of packets should begin immediately. This prevents join timeouts and spuriously very large
MRTT measurements as large as TSD.

A weakness remains in this design, however. Receiving at a high rate in WEBRC requires a
small value of ARTT · √LOSSP. Thus, presumably, the MRTT must be very small. When the top
wave is joined and its rate is BCR, the interpacket spacing is 1/BCR seconds. If no modification is
made to the MRTT calculation for the top wave, MRTT values will have deviation on the order
of 1/BCR. This noise-like contribution to MRTT may be much larger than the true value, and
large MRTTs will drive the target rate down. Lab testing and ns simulation of a design similar to
Design 2 exhibited reception rates with large-amplitude limit cycles.3

3This testing used the wave design in [5], which differs slightly from Design 2 presented here.
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Figure 4: Example of Design 2 (P = 3
4 , SR/BCR = 65).

3.3 Unification of Designs 1 and 2

It is worth noting that Designs 1 and 2 can be unified with a single set of equations. With µ = 0
for Design 1 and µ = 1 for Design 2, both of these designs are described as follows:

N =
⌈
log1/P

(
1 +

1
P

(
1
P
− 1
)(

SR

BCR
− µ

))⌉
− 1 (10)

tcrest = TSD · max
{
N− log1/P

(
1 − P

1 − PN
·
(

SR

BCR
− µ

))
, 1
}

(11)

R(t) =




µ · BCR, 0 ≤ t < tcrest − TSD;

SR− P−N − 1
P−1 − 1

· Pt/TSD · BCR, tcrest − TSD ≤ t < TSD;

SR−
(
µ+

P−(N−1) − 1
P(P−1 − 1)

· Pt/TSD

)
· BCR, TSD ≤ t < tcrest;

P−N+t/TSD · BCR, tcrest ≤ t ≤ N · TSD.

(12)

In this unified design, the influence of µ is most transparent in R(t) for t ∈ [0, tcrest−TSD]: µ ·BCR is
the rate at the beginning of a wave, as long as tcrest > TSD is satisfied. When tcrest = TSD, the rate
at the beginning of a wave is larger, so µ ·BCR is the minimum rate at the beginning of a wave. One
modification pursued in Section 4 is to increase µ so that the interpacket spacing at the beginning
of a wave is reduced.

The maximum interpacket spacing in the first two time slots of a wave depends on the minimum
rate in that interval. The minimum rate may be at least µ · BCR or it may be R(TSD+). Because of
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the way N and µ are related, one can prove

R(TSD+) = SR−
(
µ+

P−(N−1) − 1
P−1 − 1

)
· BCR ≥ P · BCR (13)

and that this bound is tight for some values of SR/BCR. The fact that the bound (13) is independent
of µ suggests that some additional degree of freedom is needed to increase the minimum rate. In
Section 4, a parameter is introduced to (10) that potentially changes N to decrease tcrest and increase
R(TSD+).

While the minimum rate will be increased in Section 4, note that the minimum rate is generally
less important than the starting rate because the minimum rate affects MRTT measurements for
a narrower range of join times. With reference to Fig. 4, for example, note that the starting rate
influences the variance of MRTT measurements made when the join time is in [0, tcrest−TSD] while
the minimum rate affects MRTTs when the join time is in a small interval [TSD, TSD+ε]. In addition
to the sizes of these intervals, note that all receivers with target rates greater than SR have join
times very close to 0.

4 Current Wave Design

The weakness of Design 2 described above suggests that performance can be improved simply by
increasing µ. While it is true that this will improve (lower) the interpacket spacing at the beginning
of a wave, excessively large values of µ are not desirable. Larger values of µ shorten the exponential
portion of the wave, and it is the exponential portion that allows fine-grained rate control. In the
extreme, making µ close to SR/BCR puts almost all of the packets into the (non-exponential) first
time slots of the waves.

The exponential shape of the waves, and hence the manner of rate increase as waves are joined,
suggests a good way to choose µ. The fraction of the total rate on the top wave is approximately
1−Γ−1 ≈ 1−P. This fraction being approximately fixed suggests that µ should grow in proportion
to SR/BCR and certainly not be larger than (1 − P)(SR/BCR). Specifically, we use

µ = ψ · (1 − P)
(

SR

BCR
− 1
)
, (14)

where ψ ∈ (0, 1) trades off the interpacket spacing at the beginning of the wave against the length
of the exponential portion of the wave; its value is chosen later. Using an affine function of SR/BCR
rather than a linear function makes it possible to apply a single set of equations for all values of
SR/BCR ≥ 1. (Recall that Design 2 does not make sense for SR/BCR < 2.)

Increasing µ while leaving all other computations in (10)–(12) unchanged does not always
increase the minimum rate of a wave, as shown in (13). We now alter the design to increase
the minimum rate. First, it helps to understand how N, tcrest and R(TSD+) vary when they are
determined through (10)–(12). Let µ be given by (14) with ψ = 1

2 . Then µ, N, tcrest and R(TSD+)
vary with SR/BCR as shown in Fig. 5. This plot confirms that the bound in (13) is tight. The
smallest values of R(TSD+) occur for the SR values just above a threshold where N has changed. At
these critical values of SR, N given by (10) can be replaced by its upper envelope

Nupper = log1/P

(
1 +

1
P

(
1
P
− 1
)(

SR

BCR
− µ

))
.
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Figure 5: Variation of parameters through (10)–(12) when µ is given by (14). In this example,
ψ = 1

2 , P = 3
4 and TSD = 10.

Substituting

PNupper =
(

1 +
1
P

(
1
P
− 1
)(

SR

BCR
− µ

))−1

for PN in (11) and simplifying shows that the upper envelope of tcrest is 2·TSD. Similarly, substituting
in (12) gives the lower envelope of R(TSD+) as P · BCR. These calculations explain some of the
envelopes observed in Fig. 5 and the bound (13).

To increase the minimum rate by increasing R(TSD+), introduce a parameter ϕ ∈ [0, 1] to (10):

N =
⌈
log1/P

(
1 +

1
P1−ϕ

(
1
P
− 1
)(

SR

BCR
− µ

))⌉
− 1. (15)

The influence of ϕ on tcrest is most transparent. Computing with the upper envelope of the new
value of N gives

1 − P

1 − PN
·
(

SR

BCR
− µ

)
=

1 − P

1 − PN
· P

1−ϕ(P−N − 1)
P−1 − 1

= P−N+2−ϕ.

Thus,

N− log1/P

(
1 − P

1 − PN
·
(

SR

BCR
− µ

))
= N− (N − 2 + ϕ) = 2 − ϕ

and so the upper envelope of tcrest becomes (2 − ϕ) · TSD.
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Though tcrest is visually striking, we are more interested in the effect of ϕ on the minimum rate.
Using the upper envelope of (15), we have the following:

R(TSD+)
BCR

=
SR

BCR
− µ− P−(N−1) − 1

P(P−1 − 1)
· P

=
SR

BCR
− µ− 1

P−1 − 1
[
P · P−N − 1

]
=

SR

BCR
− µ− 1

P−1 − 1

[
P ·
(

1 +
1

P1−ϕ

(
1
P
− 1
)(

SR

BCR
− µ

))
− 1
]

=
SR

BCR
− µ− 1

P−1 − 1

[
1

P1−ϕ
(1 − P)

(
SR

BCR
− µ

)
− (1 − P)

]

= (1 − Pϕ)
(

SR

BCR
− µ

)
+ P

= (1 − Pϕ)
(

SR

BCR
− ψ(1 − P)

(
SR

BCR
− 1
))

+ P

= (1 − Pϕ) (1 − ψ(1 − P))
(

SR

BCR
− 1
)

+ 1 − Pϕ + P (16)

Thus introducing ϕ > 0 makes R(TSD+) approximately a linear function of SR. Considering also
R(0+), the minimum rate can be bounded below by an affine function of SR with slope

min{ψ(1 − P), (1 − Pϕ) (1 − ψ(1 − P))}.
As an example, Fig. 6 shows the same variables as Fig. 5 but with ϕ = 1

3 . This confirms that the
upper envelope of tcrest is (2−ϕ) ·TSD and that the lower envelope of R(TSD+) is the affine function
given by (16).

We are now prepared to finalize the wave design by choosing ψ and ϕ. As mentioned previously,
increasing ψ shortens the exponential portion of the wave. The effect of increasing ϕ is not quite as
obvious. Increasing ϕ decreases tcrest—thus seemingly lengthening the exponential portion of the
wave—but also may decrease N.

When a wave crests, its rate is P−N+tcrest/TSD · BCR. The cumulative rate of the crested wave and
all lower channels is

Rcrest =
N−1∑
i=0

P−i · P−N+tcrest/TSD · BCR =
1 − PN

1 − P
· P−N+tcrest/TSD · BCR =

P−N − 1
1 − P

· Ptcrest/TSD · BCR.

Fine-grained rate control is possible up to rate Rcrest. Fig. 7 shows Rcrest as a fraction of SR, as a
function of SR, for a few (ψ,ϕ) pairs. It appears that upper and lower envelopes both converge to
constants. This is in fact true, and we now determine these constants.

Using the upper envelope of N and upper envelope of tcrest gives

Rcrest =

(
1 + 1

P1−ϕ

(
1
P
− 1
) (

SR
BCR

− µ
))− 1

1 − P
· P2−ϕ · BCR =

(
SR

BCR
− µ

)
· BCR = SR− µ · BCR

= SR− ψ(1 − P)
(

SR

BCR
− 1
)
· BCR = (1 − ψ(1 − P)) · SR + ψ(1 − P) · BCR.

This shows that the upper envelope of Rcrest/SR in Fig. 7 approaches the constant value 1−ψ(1−P).
The lower envelope of N and lower envelope of tcrest give

Rcrest =
P · (1 + 1

P1−ϕ

(
1
P
− 1
) (

SR
BCR

− µ
))− 1

1 − P
· P · BCR =

(
1

P1−ϕ

(
SR

BCR
− µ

)
− 1
)
· P · BCR
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Figure 6: Variation of parameters through (15), (11) and (12) when µ is given by (14). In this
example, ψ = 1

2 , φ = 1
3 , P = 3

4 and TSD = 10.
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Figure 8: Example of the final design (P = 3
4 , ψ = 1

4 , φ = 1
5 , SR/BCR = 65).

= Pϕ(SR− µ · BCR) − P · BCR = Pϕ(1 − ψ(1 − P)) · SR+ (Pϕψ(1 − P) − P) · BCR.
Thus the lower envelope of Rcrest/SR approaches Pϕ(1 − ψ(1 − P)). The upper and lower envelope
calculations are consistent with Fig. 7.

To summarize, to have low interpacket spacing at the beginning of each wave, we would like for

ψ(1 − P) and (1 − Pϕ)(1 − ψ(1 − P))

to be large. To have fine-grained rate control for a large range of rates, we would like for

1 − ψ(1 − P) and Pϕ(1 − ψ(1 − P))

to be large. These objectives thus stand in direct opposition and any choice of ψ and φ can be
second-guessed. The design space can be limited somewhat by the following observation: There is
no point in making (1 − Pϕ)(1 − ψ(1 − P)) larger than ψ(1 − P) because the rate at the beginning
of a wave is more important than the minimum over the first two time slots. This translates to
limiting ϕ to

ϕ ≤ log1/P

(
1 − ψ(1 − P)
1 − 2ψ(1 − P)

)
. (17)

On the other hand, ϕ should not be much smaller than the value in (17) because pathologies in
MRTT will then be dominated by small R(TSD+) values. Furthermore, with reference to Fig. 7 note
that the negative impact of large ϕ values on granularity of rate control is somewhat overstated by
looking only at envelopes.

The suggested values for ψ and φ to use with the default value of P = 3
4 are 1

4 and 1
5 , respectively.

An example of the resulting design is given in Fig. 8.
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5 Computing Transmission Times from the Fluid Model

This section describes a method for converting the fluid model rate given by (12) to a set of packet
transmission times. According to the fluid model, the number of packets sent in one time slot is
K = SR · TSD. We henceforth assume that this quantity is integral. This allows the scheduling of
packet transmissions on all channels in all time slots to be described in terms of a computation
involving one period of the base channel and one wave.

Form a function f(t), t ∈ [0, (N+ 1) · TSD], by taking one period of the base channel followed by
one time-reversed wave. That is,

f(t) =
{
Rbase(t), t ∈ [0, TSD];
R((N + 1) · TSD− t), t ∈ (TSD, (N + 1) · TSD].

This function is strictly positive on [0, (N + 1) · TSD] and integrates over this interval to SR · TSD.
Choosing times at which to transmit packets is then equivalent to dividing the area under f(t) into
SR ·TSD regions of unit area. The left edge of each of these regions is taken as a packet transmission
time. An example of this graphical construction is given in Fig. 9. The algebraic equivalent is to
solve ∫ τk

0
f(t) dt = k, k = 0, 1, 2, . . . , SR · TSD− 1. (18)

Though it may seem arbitrary, there are reasons for taking the base channel period first, using
the time-reversed wave, and equating left edges of regions to transmission times. Taking the base
channel first makes the first packet of each time slot a base channel packet; thus, every receiver,
regardless of rate, learns of time slot boundaries as soon as possible. Using the time-reversed wave
causes the first packet of a wave to occur as late as possible while being consistent with the fluid
model; this is important because receivers cannot join a wave until the indication of a new time
slot reveals that the wave has started. Finally, with this configuration it is possible to precompute
the τks that depend on TSD, BCR, and P but are independent of SR.

The first solution of (18) is τ0 = 0, so the first base channel packet is sent at time b0 = 0. The
next is sent at the time b1 that satisfies

1 =
∫ b1

0
Rbase(τ) dτ =

∫ b1

0
Pτ/TSD · BCR dτ.

Continuing this process, a total of L = �BCR·TSD(1−P)
− ln P

� packets are sent at times

bk = TSD · logP
(

1 +
ln P

BCR · TSD · k
)
, k = 0, 1, . . . , L− 1. (19)

Conceptually, this process is continued to find all of the wave channel transmission times. The
key differences are integrating from the end of the wave rather than the beginning and accounting
for the difference between the number of base channel packets per time slot according to the fluid
model,

I0 =
∫ TSD

0
Rbase(τ) dτ =

∫ TSD

0
Pτ/TSD · BCR dτ =

BCR · TSD(1 − P)
− ln P

,

and the number of transmitted packets L = �I0�.
Let

S(s) =
∫ N·TSD

N·TSD−s
R(τ) dτ.
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Figure 9: Graphical depiction of the computation of packet transmission times from fluid-model
rates. The packet transmission times divide the area under f(t) into SR · TSD unit-area regions. In
this example P = 3

4 , BCR = 1, SR = 20, and TSD = 10.

(s is time running backward from the end of the wave.) S(s) is the fluid-model approximation to
the number of packets to be sent in the last s seconds of the wave. The desired transmission times
(measured backward from the end of the wave) are the solutions to

I0 + S(sk) = k, k = L, L+ 1, . . . , K − 1. (20)

Solving (20) for the sks is complicated by the fact that R(t), t ∈ [0, N · TSD] is described separately
on four subintervals (see (12)). The remainder of this section details the computations of the sks.

For the last time range in (12), the integral of R(t) has a simple form:

S(s) =
BCR · TSD
− ln P

(
P−s/TSD − 1

)
for s ∈ [0, N · TSD− tcrest].

Thus for k = L and some larger values of k, (20) becomes

I0 +
BCR · TSD
− ln P

(
P−sk/TSD − 1

)
= k. (21)

The range of k for which (21) is valid is determined based on the number of fluid-model base
channel packets I0 and the number of fluid-model packets sent in the last N · TSD− tcrest seconds of
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a wave. The latter quantity is given by

I1 =
∫ N·TSD

tcrest

R(τ) dτ = S(N · TSD− tcrest) =
BCR · TSD
− ln P

(
P−N+tcrest/TSD − 1

)
.

The sum of the number base channel packets in one time slot and the number of wave channel
packets in the portion of the wave under consideration is denoted K1 = �I0 + I1�. Thus (21) is
solved to obtain

sk = TSD · log1/P

(
1 − ln P

BCR · TSD (k − I0)
)
, k = L, L+ 1, . . . , K1 − 1. (22)

Computing and inverting S(s) gets uglier from here on. For s ∈ (N · TSD− tcrest, (N− 1) · TSD],
S(s) has a fixed component I1 plus∫ tcrest

tcrest−τ
R(t) dt =

∫ tcrest

tcrest−τ

(
SR− µ · BCR− P−(N−1) − 1

P(P−1 − 1)
· Pt/TSD · BCR

)
dt

= (SR− µ · BCR)︸ ︷︷ ︸
A

τ − P−(N−1) − 1
P(P−1 − 1)

· BCR · TSD

− ln P
· Ptcrest/TSD

︸ ︷︷ ︸
B

(
P−τ/TSD − 1

)
,

where τ = s − (N · TSD − tcrest). The total fluid contribution of the latter for this portion of the
wave is

I2 =
∫ tcrest

TSD

R(t) dt = A(tcrest − TSD) −B
(
P−(tcrest−TSD)/TSD − 1

)
.

Thus the number of packets for one period of the base channel plus the number of packets for
the last (N − 1)TSD seconds of a wave is K2 = �I0 + I1 + I2� and scheduling the packets for
s ∈ (N · TSD− tcrest, (N − 1)TSD] amounts to solving

I0 + I1 +Aτk −B(P−τk/TSD − 1) = k, k = K1, K1 + 1, . . . ,K2 − 1 (23)

for the τks. There is no elementary closed form solution; techniques for finding approximate solu-
tions are described in Appendix A. The τks in this calculation are transmission times measured
backward in time from time tcrest. We thus obtain sk = τk+N·TSD−tcrest, k = K1, K1+1, . . . , K2−1.

The calculations are very similar for the next interval, s ∈ ((N− 1)TSD, (N + 1)TSD− tcrest]. We
are interested in solutions to

S(τ + (N− 1)TSD) = I0 + I1 + I2 +
∫ TSD

TSD−τ
R(t) dt = k for τ ∈ [0, 2 · TSD− tcrest].

Integrating yields
I0 + I1 + I2 +A′τk −B′(P−τk/TSD − 1) = k (24)

where A′ = SR and

B′ =
BCR · TSD
− ln P

· P
−(N−1) − P

P−1 − 1
.

The range of integers k for which we solve (24) depends on how many packets are transmitted in
this time interval. Paralleling the previous calculations, let

I3 =
∫ TSD

tcrest−TSD

R(t) dt = SR(2 · TSD− tcrest) − BCR · TSD
− ln P

· P
−(N−1) − P

P−1 − 1
·
(
Ptcrest/TSD−2 − 1

)
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and K3 = �I0 + I1 + I2 + I3�. Then (24) is solved for k = K2, K2 + 1, . . . , K3 − 1. Of course,
(24) is of the same form as (23) and solutions can be approximated similarly. This process yields
sk = τk + (N− 1) · TSD, k = K2, K2 + 1, . . . , K3 − 1.

In the final interval s ∈ ((N + 1)TSD − tcrest, N · TSD], the fluid-model rate is µ · BCR so the time
between packets is (µ · BCR)−1. To correctly patch together the intervals, we seek solutions to

I0 + I1 + I2 + I3 + µ · BCR · τk = k, k = K3, K3 + 1, . . . , K − 1. (25)

The solutions are
τk =

1
µ · BCR (k − I0 − I1 − I2 − I3)

and yield

sk =
1

µ · BCR (k − I0 − I1 − I2 − I3) + (N+ 1) · TSD− tcrest, k = K3, K3 + 1, . . . , K − 1. (26)

As a sanity check for these calculations, let

I4 =
∫ tcrest−TSD

0
R(t) dt = µ · BCR · (tcrest − TSD)

and verify I0 + I1 + I2 + I3 + I4 = TSD · SR.

6 Suggested Sender Implementation

Evaluating (19), (22), and (26) and solving (23) and (24) gives values over the real numbers as
the times at which to transmit packets. Since we intend to have constant rate output and packet
transmissions could turn out to be bursty for reasons unrelated to WEBRC, these times should be
used only to determine an ordering of packets for one period of TSD seconds and then discarded.
This ordering is determined by representing each transmission time as a quotient and remainder
modulo TSD and then sorting the remainders. This is detailed below.

Recall that in each time slot the sender sends L packets on the base channel at times {bk}L−1
k=0

given by (19). Represent these times as (channel,time) pairs {(T, bk)}L−1
k=0 .

Without loss of generality, suppose the wave channel for which we have made computations is
channel N−1. This means that time 0 is the beginning of a time slot numbered 0. The wave channel
packet transmission time sk (measured from the end of the wave) is converted to a (channel,time)
pair as follows. Let N ·TSD−sk = m ·TSD+wk for m ∈ Z and wk ∈ [0, TSD). Transmission of a packet
on wave channel N− 1 at time N ·TSD− sk implies a packet is sent on wave channel N− 1−m mod T
at time wk. Thus we have the mapping of sk to (N− 1 −m mod T, wk).

The bks and wks are all in the interval [0, TSD). By sorting the (channel,time) pairs by time, we
get a sequence of transmission events for time slot 0. The same sequence can be used in time slot
i = 0 if all channels CN = T are replaced by CN + i mod T. There is no need to retain the times in
the (channel,time) pairs after the sorting.

The transmissions on all the channels for a set of consecutive time slots is depicted in Fig. 10.
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Figure 10: Idealized packet transmission times for a session with BCR = 1, SR = 14, P = 0.75, Q = 2,
and TSD = 10. (Larger ratios SR/BCR are of more interest, and in practice Q is much larger.) Notice
that waves start at time slot boundaries and reach their crests in their second active time slot.
Taking all the channels together, the sender transmits at a constant rate.

A Solving Aτ − B(P−τ/TSD − 1) = C

Although there is no elementary closed-form solution, any number of root finding methods could
be used to solve

Aτ −B(P−τ/TSD − 1) = C. (27)

To have a formula (rather than a recursion) for τ , one can replace (27) with an approximate
equation that has an elementary closed-form solution. For this purpose it is important to note that
we are interested in τ ∈ [0, TSD). Thus we get reasonable accuracy with Taylor approximations of
P−τ/TSD about τ = 0.

A first-order Taylor approximation is

P−τ/TSD = e−τ(ln P)/TSD ≈ 1 − ln P
TSD

τ.

This turns (27) into a linear equation with approximate solution

τ ≈ C

A+B ln P
TSD

. (28)

A second-order Taylor approximation is

P−τ/TSD = e−τ(ln P)/TSD ≈ 1 − ln P
TSD

τ +
1
2

(
ln P
TSD

)2

τ2,

which yields

−B
2

(
ln P
TSD

)2

︸ ︷︷ ︸
a

τ2 +
(
A+B

ln P
TSD

)
︸ ︷︷ ︸

b

τ − C︸︷︷︸
−c

= 0.
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This is a standard quadratic equation; the desired solution is

τ =
−b+

√
b2 − 4ac

2a
.

The process of increasing the degree of the Taylor expansion can be continued to degree four;
beyond the quadratic case there is no closed-form solution to the approximate polynomial equation
that is obtained.

Since τ/TSD is not always small enough for fast convergence of the Taylor series about 0, a
better way to improve accuracy is to use Taylor approximations about different points. Let τ0 be
given by (28) and expand f(τ) = P−τ/TSD about τ0 to get

P−τ/TSD = e−τ(ln P)/TSD ≈ f(τ0) − ln P
TSD

f(τ0)(τ − τ0) +
1
2

(
ln P
TSD

)2

f(τ0)(τ − τ0)2

= P−τ0/TSD − ln P
TSD

P−τ0/TSD(τ − τ0) +
1
2

(
ln P
TSD

)2

P−τ0/TSD(τ − τ0)2.

Substituting this approximation in (27) gives

1
2
B

(
ln P
TSD

)2

P−τ0/TSD(τ−τ0)2−
(
A+B

ln P
TSD

P−τ0/TSD

)
(τ−τ0)+

(
Aτ0 +B(P−τ0/TSD − 1) − C

)
= 0.

Solving this quadratic for τ − τ0 gives a very good approximation for τ . This is implemented in
the Matlab code in Appendix B.4.

B Matlab code

B.1 packetSchedule()

This is the main function.

function [CN,T,t] = packetSchedule( SR, BCR, P, TSD, Q )

%[CN,T,t] = packetSchedule( SR_P, BCR_P, P, TSD, Q )

% Determine the sequence of CNs for a single time slot.

% This sequence is used in subsequent time slots by incrementing

% modulo T all of the CNs that are different from T.

%

% Defaults: SR_P = 100

% BCR_P = 1

% P = 0.75

% TSD = 10

% Q = 30

if ~exist(’SR’,’var’),

SR = 100;

end

if ~exist(’BCR’,’var’),

BCR = 1;

end

if ~exist(’P’,’var’),

P = 0.75;

end

if ~exist(’TSD’,’var’),

TSD = 10;
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end

if ~exist(’Q’,’var’),

Q = 30;

end

b = baseChannelTimes( BCR, P, TSD );

[w,N] = waveChannelTimes( SR, BCR, P, TSD );

T = N + Q;

times = [b,mod(N*TSD-w,TSD)];

CN = [T*ones(1,length(b)),floor(w/TSD)];

[t,j] = sort(times);

CN = CN(j);

B.2 baseChannelTimes()

This computes the transmission times for the base channel. It is subordinate to packetSchedule().

function [b,L] = baseChannelTimes( BCR_P, P, TSD )

% baseChannelTimes( BCR_P, P, TSD )

% Compute a vector of packet transmission times for the base

% channel for one time slot beginning at time 0.

%

% Defaults: BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’BCR_P’,’var’),

BCR_P = 1;

end

if ~exist(’P’,’var’),

P = 0.75;

end

if ~exist(’TSD’,’var’),

TSD = 10;

end

L = ceil( -BCR_P*TSD*(1-P)/log(P) );

b = TSD * log( 1 + log(P)/BCR_P/TSD * (0:L-1) ) / log(P);

B.3 waveChannelTimes()

This computes the transmission times for a single wave. It is subordinate to packetSchedule().

function [w,N] = waveChannelTimes( SR, BCR, P, TSD, psi, phi, makePlot )

% waveChannelTimes( SR_P, BCR_P, P, TSD )

% Compute a vector of packet transmission times for a single

% wave that starts at time 0.

%

% The result is accurate for any SR_P >= BCR_P.

%

% Defaults: SR_P = 100

% BCR_P = 1

% P = 0.75

% TSD = 10

if ~exist(’SR’,’var’),

SR = 100;

19



end

if ~exist(’BCR’,’var’),

BCR = 1;

end

if ~exist(’P’,’var’),

P = 0.75;

end

if ~exist(’TSD’,’var’),

TSD = 10;

end

if ~exist(’psi’,’var’),

psi = 1/4;

end

if ~exist(’phi’,’var’),

phi = 1/5;

end

if ~exist(’makePlot’,’var’)

makePlot = 0;

end

mu = psi * (1-P) * (SR/BCR - 1);

N = ceil( log( 1 + (1/P)^(1-phi)*(1/P-1)*(SR/BCR - mu) )/log(1/P) ) - 1;

MWCR = (1-P)/(1-P^N)*(SR - mu*BCR);

tCrest = TSD * max([( N - log(MWCR/BCR)/log(1/P) ), 1]);

kappa = ( P^(-N+1) - 1 ) / ( (1/P) - 1 );

I0 = -BCR*TSD*(1-P)/log(P);

I1 = -BCR*TSD/log(P) * (P^(-N+tCrest/TSD) - 1);

I2 = (SR-mu*BCR)*(tCrest-TSD) + BCR*TSD/log(P) * kappa * (1-P^(tCrest/TSD-1));

I3 = SR*(2*TSD-tCrest) + BCR*TSD/log(P) * (P + kappa) * ((1/P)^(2-tCrest/TSD)-1);

I4 = mu*BCR*(tCrest-TSD);

L = ceil( I0 );

K1 = ceil( I0+I1 );

K2 = ceil( I0+I1+I2 );

K3 = ceil( I0+I1+I2+I3 );

K4 = round(TSD*SR);

K3 = min( [K3, K4] );

% part 4/4 of wave:

s1 = TSD * log( 1 - log(P)/BCR/TSD * ((L:(K1-1)) - I0) ) / log(1/P);

% part 3/4 of wave:

A = SR - mu*BCR;

B = -BCR * kappa * TSD/log(P) * P^(tCrest/TSD-1);

tau = solveIntegerCrossings( A, B, (K1:(K2-1)) - I0 - I1, P, TSD );

s2 = (N*TSD-tCrest)+tau;

% part 2/4 of wave:

A = SR;

B = -BCR * (P + kappa) * TSD/log(P);

tau = solveIntegerCrossings( A, B, (K2:(K3-1)) - I0 - I1 - I2, P, TSD );

s3 = (N-1)*TSD+tau;

% part 1/4 of wave:

tau = ((K3:(K4-1)) - I0 - I1 - I2 - I3)/(mu*BCR);

s4 = (N+1)*TSD-tCrest+tau;
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w = [s1, s2, s3, s4];

if makePlot,

figure

plot( (L+1):K1, s1, ’b.’ );

hold on

plot( (K1+1):K2, s2, ’r.’ );

plot( (K2+1):K3, s3, ’g.’ );

plot( (K3+1):K4, s4, ’m.’ );

title([’SR = ’,num2str(SR),’, BCR = ’,num2str(BCR)])

end

B.4 solveIntegerCrossings()

This makes the calculation described in Appendix A. It is used by waveChannelTimes().

function tau = solveIntegerCrossings( A, B, C, P, TSD )

%tau = solveIntegerCrossings( A, B, C, P, TSD )

%

% Find approximate solution to A*tau + B*(1-P^(-tau/TSD)) = C.

%

% The normal usage is to pass a vector C of integer-spaced values,

% in which case the equation is solved for each component of C.

%

% Implemented with a quadratic Taylor expansion about tau0, where tau0

% is the approximate solution obtained with a linear Taylor expansion.

if ~exist(’P’,’var’),

P = 0.75;

end

if ~exist(’TSD’,’var’),

TSD = 10;

end

tau0 = C/(A + B*log(P)/TSD);

ftau0 = P.^(-tau0/TSD);

a = 0.5*B*(log(P)/TSD)^2 * ftau0;

b = -(A + B*log(P)/TSD * ftau0);

c = C + B*(ftau0 - 1) - A*tau0;

zeta = (-b-sqrt(b.^2-4*a.*c) )./(2*a);

tau = tau0 + zeta;
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