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Time-Stampless Adaptive Nonuniform Sampling for
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Abstract—In this paper, we introduce a time-stampless adap-
tive nonuniform sampling (TANS) framework, in which time
increments between samples are determined by a function of the
most recent increments and sample values. Since only past

samples are used in computing time increments, it is not necessary
to save sampling times (time stamps) for use in the reconstruction
process. We focus on two TANS schemes for discrete-time sto-
chastic signals: a greedy method, and a method based on dynamic
programming. We analyze the performances of these schemes by
computing (or bounding) their trade-offs between sampling rate
and expected reconstruction distortion for autoregressive and
Markovian signals. Simulation results support the analysis of the
sampling schemes. We show that, by opportunistically adapting
to local signal characteristics, TANS may lead to improved power
efficiency in some applications.

Index Terms—Adaptive signal processing, dynamic program-
ming, nonuniform sampling.

I. INTRODUCTION

S AMPLING is essential in any digital system that interfaces
with the analog world. All else being equal, it is desirable to

minimize the number of samples while maintaining an accept-
able reconstruction distortion. In some applications, minimizing
the number of samples can be translated into having power-effi-
cient sampling, since the power consumption at an analog-to-
digital converter (ADC) is approximately proportional to its
sampling rate [1]. Also, having fewer samples can increase the
efficiency of other processing of these measurements. For ex-
ample, if these samples should be transmitted to another place
via a communication channel, having fewer samples will im-
prove power and bandwidth efficiencies.
One can view sampling as a query to obtain information from

a signal or a function that can only be measured remotely. We
get a sample of this function at an arbitrary time when we query
for it over a communication medium. Here, a portion of the
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Fig. 1. A schematic view of the TANS framework: sampling times are deter-
mined by a function of most recently taken samples. Hence, it is not necessary
to save sampling times (time stamps) for use in the reconstruction process.

operational cost (e.g., power) is proportional to the number of
samples that we acquire. Hence, again it is desirable tominimize
the number of samples taken.
A uniform sampling at the Nyquist rate of the signal may

cause some redundant samples, since the global signal band-
width may not be a good measure of local variations of the
signal. Although traditional nonuniform sampling schemes
(e.g., [2], [3]) deal with this problem, they have certain lim-
itations. Firstly, they are mostly designed to operate under
specific conditions for restrictive signal models (e.g., [4]–[8])
and, secondly, sampling times (i.e., time stamps) must be
stored/transmitted to be used in the reconstruction process. This
may cause power/bandwidth inefficiencies in sampling/com-
munication procedures.
In this paper, we introduce a new framework for an adaptive

nonuniform sampling scheme (see Fig. 1). The key idea of this
framework is that time increments between samples are com-
puted by using a function of previously taken samples. There-
fore, keeping sampling times (time stamps), except initializa-
tion times, is not necessary. The function by which sampling
time intervals is computed is called the sampling function. The
aim of this sampling framework is to have a balance between
the reconstruction distortion and the average sampling rate. We
refer to this sampling framework as Time-stampless Adaptive
Nonuniform Sampling (TANS). The TANS concept can be ap-
plied on continuous- or discrete-time signals, and the design and
analysis can be based on deterministic or stochastic models.
The TANS framework is described in general terms in

Section II. Section III then formalizes the problem setup for
this paper, where we focus on discrete-time signals and sto-
chastic models. A greedy method is developed in Section IV,
and a method based on dynamic programming (DP) is de-
veloped in Section V. Simulation results are provided in
Section VI, and some proofs are relegated to Section VII.
Section VIII concludes the paper.

II. TANS FRAMEWORK

In this section, we introduce the TANS framework and sketch
design approaches that will be developed in more detail in later
sections. Fix some nonnegative integer and suppose the th

1053-587X/$31.00 © 2012 IEEE
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sample of signal is taken at time . We take the st
sample after a time increment of

where is called the sampling function. This makes the sam-
pling rate adapt to local characteristics of the signal. Since the
time increment is a function of the most recently taken sam-
ples, we say the order of the sampling function is . The
sampling is nonuniform except in the trivial cases when is a
constant-valued function (e.g., ). Some initialization of
the first sampling times is necessary, but the effect of this ini-
tialization on the rate is amortized.
The sampling function is known at the reconstruction side.

Assuming that the state

is also known at the reconstruction side when reconstructing
on , there is no need for the sampling times (time

stamps) to be transmitted. These times can be computed by
using the sampling function and previously taken samples:

This type of synchronization in an adaptive system without ex-
plicit communication is often called backward adaptation [9].
In a practical setting involving both sampling and quantization,
backward adaptivity requires using the quantized values to drive
the adaptation [10]–[13]. Here, to maintain focus on sampling
rate and adaptation of sampling increments, we do not explicitly
include quantization effects. Note that, while the sampling time
selection is causal, the reconstruction method can be causal or
non-causal.
The aim of TANS is to balance between the average sampling

rate and the reconstruction distortion. This objective is different
from the one considered in change point analysis [14] or active
learning [15]. There, the objective is to find points of the signal
at which statistical behaviors of the signal change, by causal or
non-causal sampling, respectively.
Suppose is the reconstructed signal computed by some

reconstruction method. For the case of discrete time and a sto-
chastic signal model, define as the expected recon-
struction distortion over samples from time until time

. That is,

where is the known probabilistic model of the signal
and represents the distortion at time .1 In this
paper, we use mean-squared error (MSE) as our distortion
metric. Note that, at times and , the reconstruction
distortion is zero since exact sample values are known at these
times. Note that, for a given state is an increasing

1An analogous formulation for continuous time would replace the sum with
an integral over . Without a stochastic model, a maximum error
criterion could be used.

Fig. 2. Demonstrating the behavior of different parts of sampling state cost
, where is the reconstruction dis-

tortion and is the rate penalty function.

function with respect to . On the other hand, the greater the
next sampling step, the larger the rate benefit. Hence, a rate
penalty can be defined as , where
is a rate award parameter. We define the cost of each sampling
state as the sum of the expected reconstruction distortion and
the rate penalty, that is,

(1)

The overall cost of the sampling process is the sum of dif-
ferent sampling state costs, that is, .
Finding an appropriate sampling function for TANS depends

on requirements such as average sampling rate, maximum dis-
tortion, etc. In this paper, we investigate two general approaches
to computing appropriate sampling functions for given sam-
pling setups: greedy methods and dynamic programming (DP)
methods.
In greedy methods, a sampling function at state chooses

the next sampling increment to minimize the sampling state
cost . As depicted in Fig. 2, for any given state

is an increasing function of , while is a
decreasing function. Therefore, there is a trade-off between
the sampling rate and the expected reconstruction distortion.
A greedy method balances this trade-off by choosing the state
cost minimizer as the next sampling increment. In certain cases,
greedy sampling schemes can perform closely to an optimal
scheme.
Since depends on the current sampling state , a

greedy sampling function does not take into account character-
istics of the next sampling state. Intuitively, the larger the sam-
pling increment at the sampling state , the lower the quality
of the next sampling state. Hence, in general, greedy methods
are not optimal sampling schemes considering the overall sam-
pling cost as a comparison measure. We consider
effects of the next sampling states’ quality in DP methods. We
show that, an exact Bellman-Ford equation (BFE) can be written
and solved for some sampling setups. For those cases, the solu-
tion of BFE provides an optimal sampling function which mini-
mizes the overall sampling cost. In cases where solving the BFE
is not practically feasible (for instance because the number of
possible sampling states is large or exact sampling states are not
known), we propose sampling functions based on approximate
dynamic programming (ADP) algorithms. Sampling functions
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derived by greedy methods can be used in ADP-based sampling
methods. In fact, greedy methods can be viewed as DP-based
methods with a unit time horizon.
In this paper, we consider two examples of stochastic signals:

stationary signals and Markovian signals. Unlike stationary sig-
nals, Markovian processes have sudden changes in their statis-
tical properties based on an underlying hidden Markov chain.
Note that, the general sampling framework can be applied on
other signal models.

III. PROBLEM SETUP, SIGNAL MODELS AND
BACKGROUND RESULTS

In this section, we first present the problem setup of TANS.
Then,we introduce signalmodels considered in this paper.At the
end of this section, a generalized linear prediction filter is pro-
posed, which linearly predicts the future samples of a stationary
process by using a set of nonuniform samples from its past.

A. Problem Setup

Consider a discrete-time signal . TANS with order
is used to take samples from this signal. Hence, the next sam-
pling increment at time is a function of most recently taken
samples at that time (i.e., ). The set of samples
taken using the sampling function is denoted by .
A function is used to reconstruct the original signal from
its samples, that is, . The reconstruction error

signal is . The overall sampling cost is
the sum of sampling state costs over different states, that is,

.
A system optimization problem under the TANS framework

can be stated as follows:
Definition 1 (Optimal TANS Sampling Problem): For a class

of signals , a given reconstruction function , and an
order , a sampling function is desired to minimize the
overall expected sampling cost:

(2)

The resulting cost is denoted .

B. Signal Models

In this paper, we consider the following signal models:
• Case 1: an autoregressive signal with memory of one (i.e.,
AR(1)):

(3)

where is a Gaussian noise with zero mean. If the
power of the signal is assumed to be one, the noise variance
is .

• Case 2: a Markovian signal:

(4)

where represents the state of a hidden Markov chain
(MC) with state transition probabilities depicted in Fig. 3.
At time , if the MC is at state 0, ; otherwise, .
Depending on the value of , the signal is generated by
a first-order AR model with parameter and the noise

Fig. 3. A hidden Markov chain considered in Markovian signal model of (4).

variance . Note that, in this model, unlike the pre-
vious case, the coefficient of the AR model has a sudden
change in time depending on the state of the underlying
hidden Markov chain.

C. Generalized Linear Prediction Filter

Suppose is a stationary signal. Assume we have sam-
ples of at times . Our aim is to predict
linearly , where for some , by using
these known samples and their times so that the expected mean
square error is minimized (MMSE predictor).
Consider as a predicted value of by using these
sample values and their times. The prediction error is

. Define for . We
want to find optimal linear prediction weights
so that the prediction error power is minimized:

(5)

A solution to this linear optimization is referred to as , for
. Note that, unlike a regular linear prediction

filter ([16]), a generalized linear prediction filter predicts
by using a set of nonuniform samples.
Since is a real signal, the auto-correlation function of
can be written as

(6)

To simplify notations, we define the following matrices:

(7)

Also, a auto-correlation matrix is defined whose com-
ponent in the th row and th column is .
The following theorem provides optimal weights for the gen-

eralized linear prediction filter:
Theorem 2:

Proof: See Section VII.A.
For with zero mean, the variance of the prediction error

is defined as follows:
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The following theorem provides a way to compute the vari-
ance of the prediction error for a generalized linear prediction
filter:
Theorem 3: .
Proof: See Section VII.B.

IV. GREEDY TANS

In this section, we investigate greedy sampling functions for
various signal models. In Section V, we evaluate performance
of these schemes and compare them with some other schemes,
including uniform sampling setups. In all of these sampling
schemes, the reconstruction function is assumed to be a gener-
alized linear prediction filter, introduced in Section III.C. Note
that, it is a causal reconstruction function.
In greedy methods, a sampling function is computed as

follows:

(8)

where . The sampling function of a greedy method
depends on the current sampling state and does not take into ac-
count characteristics of the next sampling states. Intuitively, the
larger the sampling increment at the sampling state , the
lower the quality of the next sampling state. Therefore, we have
a trade-off between the sampling rate award of the current state
and the sampling cost of the next state (Fig. 2). Hence, greedy
methods usually are not optimal solutions of a TANS sampling
problem presented in Definition 1. However, these greedy so-
lutions can be used to approximate optimal solutions, since the
latter may have high computational complexity.
Here, we investigate the greedy sampling function of (8) for

two signal classes described in Section III.B. We analyze their
sampling rate versus the expected reconstruction distortion in
Theorems 4 and 8. Simulation results of proposed schemes are
shown in Section VI.

A. Greedy TANS for Autoregressive Signals

In this section, we consider greedy sampling functions for an
AR(1) signal model described in (3).
Suppose is an optimal greedy sampling function.

Also, suppose is the expected reconstruction distortion per
sample corresponding to this sampling function. The following
theorem introduces an optimal greedy sampling function and its
expected reconstruction distortion per sample.
Theorem 4: For an AR(1) signal with parameter described

in (3), over a large enough time interval , an optimal
greedy sampling function is

(9)

where . This sampling
function leads to the following average reconstruction distortion
per sample:

(10)

Proof: See Section VII.C.

Note that, for this signal model, an optimal greedy sampling
function yields to a uniform sampling with the sampling rate

. In the following corollary, we present a formula to com-
pute .
Corollary 5: Suppose is a solution of the following

equation:

(11)

where and . If , then
i) is unique; and
ii) or .
Proof: See Section VII.D.

We shall illustrate this Corollary by simulation in Section VI.
Also, arguments of Theorem 4 can be extended for a general
stationary signal.
For an AR signal, since statistical properties of the signal do

not vary in time, there is no rate adaption with respect to sample
values. This is not the case for Markovian signals. We inves-
tigate the greedy TANS framework for Markovian signals in
the next section; a rate adaptation with respect to sample values
would be helpful to minimize the sampling cost and leads to a
nonuniform sampling scheme.

B. Greedy TANS for Markovian Signals

Consider a Markovian signal described by (4), where rep-
resents the state of a hidden underlying Markov chain depicted
in Fig. 3. In this section, for simplicity we assume the MC is
symmetric (i.e., ). However, all arguments can be ex-
tended for a general MC. We also assume that and are
known. However, the state of the Markov chain (i.e., ) is un-
known and needed to be estimated by using the taken samples.
We use a generalized linear prediction filter for the reconstruc-
tion. Note that, if and are also unknowns, one can learn
these parameters at the beginning of the process by taking more
samples. Then, our proposed scheme can be applied for the rest
of the process.
Extending the previous notation, define as the state of

the MC during the sampling state . If during the MC state
stays at zero, . Similarly, if the MC state stays at one,

. Otherwise, if there is an MC transition within this
sampling state, . We assume that is unknown and
needs to be estimated by using the taken samples. The estimated
value of is referred by . The error probability of this
estimation is referred by .
Algorithm 6: A greedy sampling function for the considered

Markovian signal has the following steps:
• Step i,0: Compute and .
• Step i,1: Compute , where

is the sampling state cost given (see (14)
and (15)).

• Step i,2: Take a sample at time .
• Step i,3: Compute . Repeat.
For simplicity, we assume that the sampling increment

is small enough that the probability of having more than one
MC transition is negligible. Formally, we have the following
assumptions.
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Assumption 7: The transition probabilities and are
small and the sampling increments are bounded, so

(12)

for all .
The sampling state cost, , can be conditioned on the

value of as follows:

(13)

Equality (a) follows from the definition of the sampling state
cost in (1). To compute the expected distortion, we consider
two cases: when the estimation is correct (with probability

) and when the estimation is incorrect. If the estimation
is correct, with probability , there is no MC transition over
the interval of length (part I), and the expected distortion
is (part II). AMC transition happens at time

, with probability (part III). The expected distortion
in this case is (parts IV and
V), where is the maximum prediction error variance (in
this example, ). If the estimation process fails (with
probability ), a maximum prediction error variance
occurs over all samples (part VI). Finally, part VII shows
the rate award.
If the probability of having aMarkov chain transition over the

time interval of length is negligible, for all , parts (I-V) of
(13) can be simplified further, by only considering the case when
there is no MC transition over this interval. This can happen
when , for all . Therefore, under this assumption, (13)
can be approximated as follows:

(14)

The sampling state cost function conditioned on (i.e.,
) can be written similarly.

Finally, for the case , we assume that the prediction
variance is the maximum prediction error variance :

(15)

We analyze the performance of the proposed greedy sampling
scheme in the following theorems. We derive upper and lower
bounds for average sampling rate and expected reconstruction
distortion per sample of the proposed sampling scheme. Simula-
tion results for this sampling scheme are presented in SectionVI.
Before presenting theorems, we introduce some notations.

Suppose that, for all . By consid-
ering an upper bound on , we define

(16)

is defined similarly by considering a lower bound on
. Analogously, and can be defined.

Also, , an upper bound on the expected reconstruction
distortion per sample given is defined as follows:

Quantities and are defined similarly.
The following theorem provides analytical upper and lower

bounds on the average sampling rate and the expected recon-
struction distortion of the greedy sampling scheme introduced
in Algorithm 6.
Theorem 8: Consider a Markovian signal defined in (4) over

a large enough time interval . Under Assumption 7, an
achievable rate-distortion pair of the greedy sampling
scheme of Algorithm 6 can be bounded as follows:

(17)

(18)

Proof: See Section VII.E.
Similarly to Corollary 5, and can be

calculated by finding roots of some equations. For example:
Corollary 9: Suppose is a solution of the following

equation:

(19)

where and . If , then,
i) is unique; and
ii) or .
The proof of Corollary 9 is similar to the one of Corollary 5.

Also, a similar corollary can be stated for and .
In Theorem 8, the performance of the proposed sampling

scheme (i.e., its average sampling rate and the expected re-
construction distortion) is bounded. However, it is insightful
to compare its performance to a genie-aided sampling scheme
where the state of the underlying Markov chain is known. For a
genie-aided scheme, , and therefore upper and
lower bounds of Theorem 8 match:
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Corollary 10: For a genie-aided sampling scheme, the fol-
lowing rate-distortion pair is achievable:

(20)

(21)

where

and and are defined similarly.
Corollary 10 can be derived by using in

Theorem 8.
In the first step of this sampling function, we need to estimate
by using most recently taken samples of the signal and

compute its probability of error . In the following, we
give an example of such a scheme.
Example 11: Suppose and we use a maximum likeli-

hood estimator. If , the probability distribution of
is , where represents a
Gaussian distribution with mean and variance . The prior
probability of this event is . Similarly, if is
distributed by . The prior proba-
bility of this event is . Otherwise, the distribution of
is with the prior
probability , for . Each
of these events corresponds to the case (i.e., there is
a transition within the sampling state.). Therefore, by having
the observed value of and using these distributions, a
maximum likelihood estimator can estimate and compute
its error probability.
Remarks:
1) If the state space is not large, computations can be per-
formed off-line and results can be used in the sampling
function.

2) When the order of the sampling function is large and/or au-
tocorrelation coefficients change continuously, amaximum
likelihood estimator may not be practically interesting. In
these cases, we can use previously taken samples within a
window of size from the last sample (i.e., all taken sam-
ples from time to the time ) to update or es-
timate autocorrelation coefficients to use in the sampling
function. The quality of this estimation process depends on
thewindow size , the variation rate of autocorrelation co-
efficients, and the technique used.Twopossiblemethods for
estimating autocorrelation coefficients are as follows:
• A gradient-based method. Suppose at the sampling state

, the set of estimated autocorrelation coefficients is
. By taking a sample at time , these

coefficients are updated as follows:

(22)

for all possible ’s, where represents an update sign,
and is a gradient step size. This gradient-based
update method can be useful when is not large.

• A window-based method. If the window size is large
and there are enough known samples within the window,
an empirical value for each autocorrelation coefficient
can be computed.

The estimated autocorrelation coefficients
can be used in the generalized linear prediction filter in
order to design a sampling function similar to the one of
Algorithm 6.

V. DYNAMIC PROGRAMMING-BASED TANS

In greedy TANS, sampling functions are derived based on
minimizing the sampling cost at each sampling state. Therefore,
in general, greedy methods may not provide optimal sampling
functions with respect to the overall sampling cost.
We consider quality of next sampling states in dynamic pro-

gramming-based TANS methods.
For the sampling state , a cost-to-go function is de-

fined as follows:

(23)

In this setup, is called a discount factor. An inter-
pretation of this factor is that, the cost of the next sampling state
is less important for the current state policy by a factor of .
Another interpretation of this factor is that, the process may be
ended at each sampling state with probability . An optimal
cost-to-go function of the sampling state is defined as
follows:

(24)

A Bellman-Ford equation (BFE) can be written for this
problem by using cost-to-go functions of different sampling
states as follows:

(25)

A solution of this Bellman-Ford equation (BFE) is an optimal
solution for the sampling problem presented in Definition 1
when the reconstruction function is causal. We investigate this
problem for various signal models and sampling setups in this
section. For some cases where the number of sampling states
is not large, an optimal sampling function can be derived. In
other cases where finding this optimal solution is computation-
ally difficult, we propose sampling functions based on approx-
imate dynamic programming (ADP) algorithms. We define a
quality function for each sampling state . A greedy so-
lution is used to define this quality function. Then, a sampling
function can be computed as follows:

(26)

In this setup, we consider quality effects of just one sampling
state ahead. Also, note that the solution of the BFE is optimal
if the reconstruction function is causal. It is a necessary
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assumption of the dynamic programming setup to have a sepa-
ration of sampling state costs at different stages.

A. An Online Source Coding Scheme Based on TANS

In this section, we consider a sampling problem where an
exact DP-based solution can be derived as a solution of the BFE
equation (25). Consider a Markovian signal with an underlying
hidden Markov chain depicted in Fig. 3. For simplicity, suppose

and . Other regimes of transition
probabilities can be analyzed similarly. Suppose is a bi-
nary signal generated by this underlying hidden Markov chain
so that, at state 0, , and at state 1, . For the re-
construction, we use a causal function that selects a most-prob-
able binary sequence to fill missing places. Hamming distance is
used as an error measure. We call this problem an online source
coding problem, since it does not have a compression delay as in
an unconstrained block source coding scheme. In this problem,
TANS can provide some compression gain without having any
delay. This problem can be extended to Markov chains with
more states and different regimes of transition probabilities.
In this sampling problem, there are two different sampling

states: If , then, ; otherwise, . Sup-
pose is the sampling function (i.e., .). Suppose

and . Hence, and repre-
sent sampling steps at different sampling states.
Since , the reconstruction method would choose

all-0 and all-1 sequences when and , respectively.
Suppose . Hence, the next sample is taken at time .
An error happens if there are one or more Markov chain tran-
sitions over the time interval . To simplify
our analysis, we only consider first-order error terms (i.e., we
assume at most one transition happens over a time interval

). To have this simplifying assumption, we need
to restrict the sampling increments such that

. Therefore, the probability of having more than
one Markov chain transition over a time interval of a length
or is negligible.
By considering Hamming distance as a distortion measure,

the sampling state cost at can be written as follows:

(27)

Note that, is the probability of not having a tran-
sition over the first samples of the sampling interval and
having a transition at the th sample. Hence, the considered re-
construction method makes errors on samples from time
to , corresponding to a Hamming distance of .
A similar argument can be made for the case of .
By considering these sampling state cost functions, the BFE

can be written as follows:

Since these BFEs have only two variables, various numerical
and analytical methods can be applied to find their solution (e.g.,
see [17]), which in turn corresponds to an optimal sampling
scheme in TANS. Simulation results for this sampling scheme
are given in Section VI.

B. Approximate Dynamic Programming Methods

Finding a solution of the BFE of a DP-based sampling func-
tion may not be practically feasible if the sampling state space
is large or is unknown (or is known partially). In these cases,
approximate dynamic programming (ADP) algorithms can pro-
vide suboptimal solutions with a reasonable computation com-
plexity. In this section, we investigate an ADP-based sampling
function of TANS introduced in (26). To use this approximate
algorithm, for any sampling state , a quality measure
is assigned. We use a greedy sampling solution to define this
quality function.
Consider a Markovian signal described in Section III.B.

A greedy sampling function for this signal is introduced inAlgo-
rithm 6.We refer to this greedy sampling function as ,
where .
A quality function of each state is defined as

(28)

where is a scaling parameter. Intuitively, the larger the greedy
sampling step, the higher the quality of the sampling state.
Therefore, an ADP-based sampling function of TANS can be
derived by using the optimization setup of (26).
For computing the expected quality of the next sampling

state, transition probabilities among different sampling states
should be known. Suppose, at a sampling state , the next
sample is taken after a time interval . The value of the sample

is a random variable with a mean , which
can be computed by a generalized linear prediction filter. The
probability distribution of determines the proba-
bility distribution of the next sampling state . Therefore,
the expected value of the quality function of the next state can
be computed by using this probability distribution. However, to
simplify this sampling function further, one may approximate
this expected quality by the quality of the most probable next
state, which has a sample value of at time .
We call this state . Therefore, a more simplified sampling
function based on an ADP algorithm can be written as

For any given state and can be computed.
Intuitively, the term is a correction term for the greedy
solution considering the quality of the next sampling state. In
this scheme, the quality of only one future sampling state is
considered. However, one can extend this algorithm to consider
the quality of more than one future sampling state.
Algorithm 12: An approximate dynamic programming-based

sampling function for the Markovian signal of (4) can be sum-
marized as follows:
• Step i,0: Compute and .
• Step i,1: Compute

.
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Fig. 4. Illustration of Corollary 5 by simulation. The red curve is the solution
of (11). The blue curve is optimal sampling rate . Note that, their difference
is always less than 1.

• Step i,2: Take a sample at time .
• Step i,3: Compute . Repeat.
Simulation results for this sampling procedure are presented

in Section VI.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
sampling schemes by simulations and compare their perfor-
mance against uniform sampling. In uniform sampling, the
sampling rate is always in the form of , where
is a positive integer. To be able to compare the performance
of different methods with uniform sampling at different rates,
we modify the uniform sampling setup to capture all possible
sampling rates. To do this, for a given rate where

is not an integer number, the th sample is taken at time
.

First, we consider an autoregressive signal model introduced
in (3). In Theorem 4, we show that, an optimal sampling scheme
for this signal is uniform. Also, Corollary 5 provides a straight-
forward way to compute the optimal sampling rate. Fig. 4 illus-
trates this corollary for the case of (i.e., noise power
is 0.02) and for different values.
Now, we consider Markovian signals introduced in (4).

Transition probabilities of the underlying MC are assumed
to be 0.001. We demonstrate the performance of different
sampling methods on a rate-distortion plots (Figs. 5, 6 and 7).
Rate refers to average sampling rate and distortion refers to
average reconstruction distortion per sample. We use MSE as
our distortion measure. For greedy TANS, we use generalized
linear prediction (GLP) filter as the reconstruction method.
Note that, this reconstruction is causal. For uniform sampling,
we use three reconstruction methods: causal line-connecting
(CLC), non-causal line-connecting (NCLC) and GLP filtering.
Lower curves in these plots indicate better performance.
Fig. 5 shows analytical rate-distortion curves of Theorem 8

for a Markovian signal of (4) for different estimation error prob-
abilities. Here, the noise power in state 0 of the Markov chain
is 0.05 (i.e., ) and the noise power in state 1 is 0.5
(i.e., ). As illustrated in this plot, the lower the error
probability, the better the performance. Note that the case where

is referred to as a genie-aided scheme.

Fig. 5. Rate-distortion curves of Theorem 8 for a Markovian signal of (4) with
the signal parameters and . represents error prob-
ability of the estimation process. curve corresponds to the so-called
genie-aided scheme.

Fig. 6. Average sampling rate versus average reconstruction distortion for a
Markovian signal with parameters and for methods:
(i) uniform sampling with causal line-connecting (CLC) reconstruction,
(ii) uniform sampling with non-causal line-connecting (NCLC) reconstruction,
(iii) uniform sampling with generalized linear prediction (GLP) filtering
(iv) greedy TANS with generalized linear prediction (GLP) filtering, and
(v) analytical lower bound for greedy TANS based on Theorem 8.

Figs. 6 and 7 show rate-distortion curves achieved by simu-
lations for various schemes. The signal model is Markovian as
in (4) with parameters and in schemes
considered in Fig. 6 and, and in the
ones of Fig. 7. In greedy schemes, we use a maximum likeli-
hood estimation block with to estimate the state of the
underlying Markov chain. Although, it is not fair to compare
performance of greedy TANS with causal reconstruction with
a uniform sampling scheme with non-causal reconstruction, in
the case of Fig. 6, greedy TANS outperforms uniform sam-
pling schemes including the one with a non-causal reconstruc-
tion method. In the case of Fig. 7, greedy TANS outperforms
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Fig. 7. Average sampling rate versus average reconstruction distortion for a
Markovian signal with parameters and for methods:
(i) uniform sampling with causal line-connecting (CLC) reconstruction,
(ii) uniform sampling with non-causal line-connecting (NCLC) reconstruction,
(iii) uniform sampling with generalized linear prediction (GLP) filtering
(iv) greedy TANS with generalized linear prediction (GLP) filtering, and
(v) analytical lower bound for greedy TANS based on Theorem 8.

uniform schemes with causal reconstructions. In the low-distor-
tion regime (distortion less than 0.08), it also outperforms uni-
form sampling with non-causal reconstruction.
As illustrated in these figures, genie-aided greedy TANS pro-

vides an analytical lower bound for greedy TANS in the rate-dis-
tortion plot. The proposed greedy TANS performs closely to this
lower bound. Also, by choosing the estimation error probability
0.05 (estimated from simulations), an analytical upper bound
for greedy TANS can be achieved as proposed in Theorem 8.
Moreover, by comparing two greedy TANS schemes of these
figures, we notice that, the gain provided by the TANS frame-
work is larger in the case that, noise variances differ more in two
MC states.
Fig. 8 shows the performance of a dynamic programming-

based TANS scheme for an online source coding application
explained in Section V.A. Here, we assume and

. To solve the Bellman-Ford equation (28), a value-iteration
method is used [17]. As shown in this plot, a DP-based TANS
scheme outperforms uniform sampling.
Fig. 9 illustrates performance of a TANS scheme based

on approximate dynamic programming for a Markovian
signal explained in Algorithm 12. Here, we assume that un-
derlying Markov chain transition probabilities are 0.1 (i.e.,

). The signal parameters are assumed to be
and . As illustrated in this figure, a TANS

scheme based on ADP outperforms the greedy one.

VII. PROOFS

A. Proof of Theorem 2

To find a solution of the optimization problem equation (5),
we use similar techniques as for the regular linear prediction

Fig. 8. A rate-distortion plot of a dynamic programming-based TANS for an
online source coding application explained in Section V.A.

Fig. 9. Comparison of a dynamic programming-based TANS with greedy
TANS for a Markovian signal model.

filter [16]. Note that, in an optimal scheme, the error term should
be orthogonal to all known samples:

(29)

for , where
.

By using (6) and (29), optimal weights , for
should satisfy the following set of linear equations:

(30)

for . By using matrix notations of (7), linear
equations of (30) can be written as follows:
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B. Proof of Theorem 3

Since has zero mean and , by using
(29), we have

(31)

where . Therefore,

(32)

Equations (31) and (32) establish the theorem.

C. Proof of Theorem 4

By using the definition of an AR(1) signal, the sampling state
cost can be written as follows:

(33)

Hence, an optimal greedy sampling solution for this sampling
state cost can be computed as follows:

(34)

Now, we show that this optimal greedy TANS (which is a
uniform sampling scheme) performs closely to an optimal sam-
pling scheme, which may be nonuniform. A sampling state
is a uniform sampling state if signal samples within that state
are distributed uniformly in time. Consider a uniform sampling
state with an inter-state sampling increment . The
sampling state cost of this uniform sampling scheme is referred
to by (this sampling state cost can be achieved by having

as a solution of the optimization setup (8)). First, we
show that this uniform sampling scheme satisfies the BFE (25).
Since under this sampling scheme, , therefore, the
cost-to-go function at the sampling state can be written as
follows:

(35)

Now, consider the right hand side (RHS) of the BFE (25):

(36)

Therefore, the above uniform sampling scheme satisfies the
BFE when (i.e., the initialization state) happens to be a

uniform sampling state with an inter-state sampling step size
. If the process starts from another sampling state, we

assume that there is always a way to reach to this uniform
sampling state (e.g., take uniform samples with a sampling
increment ). Moreover, the mapping functions between
policies and costs are continuous. Hence, a small difference in
costs due to initialization effects has a small effect in sampling
policies. Therefore, for an AR(1) signal model, the optimal
greedy TANS (which is uniform) performs closely to an optimal
sampling scheme (which may be nonuniform).

D. Proof of Corollary 5

Define for .
Note that is a continuous function over this interval. Since

and ,
by using the mean value theorem, has a root in .
Since , this root is unique, completing the proof
of part (i).
For an AR(1) signal, we have:

Since and also is an integer, either
or , completing the proof of

part (ii).

E. Proof of Theorem 8

Under conditions of (12), (14) shows the sampling state cost
given . By using the sampling scheme proposed in Al-
gorithm 6, we have:

(37)

Since , by having , given
, we have: . Similarly, one can show that,
given . Since the underlyingMarkov
chain is symmetric (i.e., ), in steady state,
approximately half of the time and approximately half
of the time. Hence, the number of samples taken in that state by
using the proposed sampling scheme of Algorithm 6 is bounded
between

This demonstrates the sampling rate bounds. By using bounds
on and in (14), deriving bounds on the expected re-
construction distortion is straightforward.

VIII. CONCLUSION

In this paper, we introduced a new framework for an adap-
tive nonuniform sampling scheme called time-stampless adap-
tive nonuniform sampling (TANS). The key idea of this frame-
work is that, time increments between samples are computed by
using a function of previously taken samples. Therefore, keeping
sampling times (time stamps), except initialization times, is not
necessary.We introduced twomethods to design sampling func-
tions for discrete-time stochastic signals: a greedy method, and
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a method based on dynamic programming.We analyzed the per-
formances of these schemes by computing (or bounding) their
trade-offs between sampling rate and expected reconstruction
distortion for autoregressive andMarkovian signals.We showed
that, by being time-stampless and opportunistically adapting
to local signal characteristics, TANS can provide significant
rate-distortion gains, which can be translated to improved power
efficiency in some applications.
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