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Scalar Quantization With Random Thresholds
Vivek K Goyal, Senior Member, IEEE

Abstract—The distortion-rate performance of certain ran-
domly-designed scalar quantizers is determined. The central
results are the mean-squared error distortion and output entropy
for quantizing a uniform random variable with thresholds drawn
independently from a uniform distribution. The distortion is at
most six times that of an optimal (deterministically-designed)
quantizer, and for a large number of levels the output entropy is
reduced by approximately bits, where is the
Euler–Mascheroni constant. This shows that the high-rate asymp-
totic distortion of these quantizers in an entropy-constrained
context is worse than the optimal quantizer by at most a factor of

.

Index Terms—Euler–Mascheroni constant, harmonic number,
high-resolution analysis, quantization, Slepian–Wolf coding, sub-
tractive dither, uniform quantization, Wyner–Ziv coding.

I. INTRODUCTION

W HAT is the performance of a collection of subtrac-
tively-dithered uniform scalar quantizers with the same

step size, used in parallel? The essence of this question—and
a precise analysis under high-resolution assumptions—is cap-
tured by answering another fundamental question: What is the
mean-squared error (MSE) performance of a -cell quantizer
with randomly-placed thresholds applied to a uniformly-dis-
tributed source? For both (equivalent) questions, it is not ob-
vious a priori that the performance penalties relative to op-
timal deterministic designs are bounded; here we find concise
answers that demonstrate that these performance penalties are
small. Specifically, the multiplicative penalty in MSE for quan-
tization of a uniform source is at most 6 in the codebook-con-
strained case and about in the entropy-con-
strained case at high rate, where is the Euler-Mascheroni con-
stant [1]. The translation of these results is that the multiplica-
tive penalty in MSE for high-rate parallel dithered quantization
is at most 6 when there is no expoitation of statistical dependen-
cies between channels and about when joint entropy
coding or Slepian–Wolf coding [2] is employed and the number
of channels is large.
Quantization with parallel channels is illustrated in Fig. 1.

Each of quantizers is a subtractively-dithered uniform scalar
quantizer with step size . Denoting the dither, or offset, of
quantizer by , the thresholds of the quantizer are
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Fig. 1. Use of dithered uniform scalar quantizers in parallel. Quantizer
has thresholds , with its offset.

. One may imagine several stylized applications in
which it is advantageous to allow the s to be arbitrary or
chosen uniformly at random. For example, with parallel quan-
tizer channels, one may turn channels on and off adaptively
based on available power or the desired signal fidelity [3]. Al-
teration of the lossless coding block could then be achieved
through a variety of means [4]–[6]. The same figure could rep-
resent a distributed setting, in which sensors measure highly-
correlated quantities (all modeled as ); with a Slepian–Wolf
code [2] or universal Slepian–Wolf code [7], the sensors can
quantize and encode their samples autonomously. Variations in
the s could also arise unintentionally, through process vari-
ation in sensor manufacturing due to cost reduction or size re-
duction; mitigation of process variations is expected to be of in-
creasing importance [8]. This letter addresses the performance
loss relative to deterministic joint design of the channels or co-
ordinated action by the distributed sensors.
Collectively, the parallel quantizers specify input with

thresholds . One would expect the best
performance from having uniformly spaced in [0,1]
through ; this intuition is verified under high-res-
olution assumptions, where the optimal entropy-constrained
quantizers are uniform [9]. To analyze performance relative
to this ideal, it suffices to study one interval of length in
the domain of the quantizers because the thresholds repeat
with a period of . This analysis is completed in Section II.
The ramifications for the system in Fig. 1 are made explicit in
Section III. Section IV considers uniform quantizers with un-
equal step sizes, and Section V provides additional connections
to related results and concludes the letter.

II. RANDOM QUANTIZER FOR A UNIFORM SOURCE

Let be uniformly distributed on [0,1). Suppose that a
-level quantizer for is designed by choosing thresh-

olds independently, each with a uniform distribution on [0,1).
Put in ascending order, the random thresholds are denoted

, and for notational convenience, let and
. A regular quantizer with these thresholds has lossy

encoder given by
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The optimal reproduction decoder for MSE distortion is
given by

We are interested in the average rate and distortion of this
random quantizer as a function of , both with and without
entropy coding.
Theorem 1: The MSE distortion, averaging over both the

source variable and the quantizer thresholds , is

(1)

Proof: Let denote the length of the quan-
tizer partition cell that contains when the random thresholds
are ; i.e.,

Since is uniformly distributed and the thresholds are inde-
pendent of , the quantization error is conditionally uniformly
distributed for any values of the thresholds. Thus the conditional
MSE given the thresholds is , and averaging
over the thresholds as well gives .
The possible values of the interval length, ,

are called spacings in the order statistics literature [10, Sec. 6.4].
With a uniform parent distribution, the spacings are identically
distributed. Thus they have the distribution of the minimum, :

The density of is obtained from the density of by noting
that the probability that falls in an interval is proportional to
the length of the interval:

for . Now

completing the proof. An alternative proof is outlined in the
Appendix.
The natural comparison for (1) is against an optimal -level

quantizer for the uniform source. The optimal quantizer has
evenly-spaced thresholds, resulting in partition cells of length

and thus MSE distortion of . Asymptotically in
, distortion (1) is worse by a factor of ,

which is at most 6 and approaches 6 as . In other
words, designing a codebook-constrained or fixed-rate quan-
tizer by choosing the thresholds at random creates a multiplica-
tive distortion penalty of at most 6.
Now consider the entropy-constrained or variable-rate case.

If an entropy code for the indexes is designed without knowing
the realization of the thresholds, the rate remains bits
per sample. However, conditioned on knowing the thresholds,
the quantizer index is not uniformly distributed, so the
performance penalty can be reduced.
Theorem 2: The expected quantizer index conditional en-

tropy, averaging over the quantizer thresholds , is

Fig. 2. MSE penalty factor as a function of . For quantization of uniform
source on [0,1], is the number of codewords (Section II). For parallel dithered
quantization, is the number of channels (Section III).

(2)

Proof: The desired expected conditional entropy is the ex-
pectation of the self-information, . Let be de-
fined as in the proof of Theorem 1 to be the length of the interval
containing . Since the probability of falling into any subin-
terval of [0,1) of length is , we have

which equals (2) by direct calculation; see also [11], [12, Sec.
4.6]. An alternative proof is outlined in the Appendix.
To compare again against an optimal -level quantizer, note

that evenly-spaced thresholds would yield while
the rate in (2) is also essentially logarithmic in . The quantity
(2) includes the harmonic number , which has
been studied extensively. For example,

where is called the Euler–Mascheroni constant
[1].
Combining (1) and (2) while exploiting the asymptotic ap-

proximation yields

and a distortion-rate performance of

(3)

where represents a ratio approaching 1 as increases for
distortions and difference approaching zero as increases for
rates. The exact performance from (1), (2) is shown in Fig. 2
with normalization through division by .

III. PARALLEL DITHERED QUANTIZERS

Let us now return to the system depicted in Fig. 1. High-
resolution analysis of this system for any number of channels
follows easily from the results of the previous section.
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For notational convenience, let us assume that the source
has a continuous density supported on [0,1). Fix and
consider uniform quantizers with step size applied to .
Quantizer has lossy encoder with thresholds at integer
multiples of . The remaining quantizers are offset by

, i.e., the thresholds of Quantizer with lossy encoder
are at .
We would like to first approximate the distortion in joint

reconstruction from . The first
quantizer index isolates to an interval
of length . Since has a continuous density and , we
may approximate as conditionally uniformly distributed on
this interval. Thus we may apply Theorem 1 to obtain

(4)

where represents a ratio approaching 1 as . The av-
erage of the joint entropy is increased from (2) by precisely

. Since

where is the differential entropy of [13],

(5)

where represents a difference approaching 0 as . For
a large number of channels , eliminating gives

(6)

where (a) is exact as , (b) is the standard approximation
for harmonic numbers, and (c) is an approximation for large
. This distortion exceeds the distortion of optimal entropy-

constrained quantization by the factor .

IV. QUANTIZERS WITH UNEQUAL STEP SIZES

The methodology introduced here can be extended to cases
with unequal quantizer step sizes. The details become quickly
more complicated as the number of distinct step sizes is in-
creased, so we consider only two step sizes. We also limit at-
tention to source uniformly distributed on [0,1).
Let quantizer be a uniform quantizer with step size
and thresholds at integer multiples of (no offset). Let be
a uniform quantizer with step size and thresholds offset
by , where is uniformly distributed on [0, ). Without
loss of generality, assume . (It does not matter which
quantizer is fixed to have no offset; it only simplifies notation.)
Mimicking the analysis in Section II, the performance of this

pair of quantizers is characterized by the p.d.f. of the length of
the partition cell into which falls. Furthermore, because of

the random dither , the partition cell lengths are identically
distributed.
Let be the length of the partition cell with left edge at zero.

Clearly is related to by

if ;
if .

(7)

So is a mixed random variable with (generalized) p.d.f.

With defined (as before) as the length of the partition cell that
contains :

for . The average distortion is given by

(8)

This expression reduces to (4) (with ) for .
Also, it approaches as consistent with the
second quantizer providing no information. The average rate is

(9)

This reduces to (5) (with and ) for
.

One way in which unequal quantization step sizes could arise
is through the quantization of a frame expansion [14]. Suppose
the scalar source is encoded by dithered uniform scalar quan-
tization of with step size for
each component of . This is equivalent to using quantizers
with step sizes

directly on . Fixing so that , we can
express the distortion (8) as

and the rate (9) as

The quotient

(10)

can be interpreted as the multiplicative distortion penalty as
compared to using a single uniform quantizer. This is bounded
above by

which is consistent with evaluating (6) at . Thus, joint
entropy coding of the quantized components largely compen-
sates for the (generally disadvantageous) expansion of into
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a higher-dimensional space before quantization; the penalty is
only an distortion factor or 0.221 bits.

V. DISCUSSION

This letter has derived distortion-rate performance for cer-
tain randomly-generated quantizers. The thresholds (analogous
to offsets in a dithered quantizer) are chosen according to a
uniform distribution. The technique can be readily extended to
other quantizer threshold distributions; however, the uniform
distribution is motivated by the asymptotic optimality of uni-
form thresholds in entropy-constrained quantization.
The analysis in Section III puts significant burden on the en-

tropy coder to remove the redundancies in the quantizer out-
puts . This is similar in spirit to the universal
coding scheme of Ziv [15], which employs a dithered uniform
scalar quantizer along with an ideal entropy coder to always per-
form within 0.754 bits per sample of the rate-distortion bound.
In the case that the quantizers are distributed, we are analyzing
the common strategy for Wyner–Ziv coding [16] of quantizing
followed by Slepian–Wolf coding; we obtain a concrete rate loss
upper bound of per sample
when the rate is high; this is approached when the number of
encoders is large. With non-subtractive dither, the randomiza-
tion of thresholds is unchanged but the reproduction points are
not matched to the thresholds. Thus, the rate computation is un-
changed but distortions are increased.
Use of analog-to-digital converter channels with differing

quantization step sizes was studied in [17]. Unlike the present
letter, this work exploits correlation of a wide-sense stationary
input; however, it is limited by a simple quantization noise
model and estimation by linear, time-invariant (LTI) filtering.
Exact MSE analysis of quantized overcomplete expansions
has proven difficult, so many papers have focused on only the
scaling of distortion with the redundancy of the frame [14],
[18]–[20]. The example in Section IV could be extendable to
more general frame expansions.

APPENDIX

The proofs of Theorems 1 and 2 are indirect in that they in-
troduce the random variable for the length of the partition cell
containing . A more direct proof is outlined here.
Lemma 1: For fixed thresholds ,

Proof: The quantizer maps interval to so

The entropy expression is thus immediate. The distortion ex-
pression follows by expanding the expectation using the law of
total expectation with conditioning on :

The theorems are proved by averaging over the joint distri-
bution of the quantizer thresholds , which is uniform
over the simplex .
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