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ABSTRACT 
 

 

In this thesis, a new approach is studied for inverse modeling of ill-posed problems with 

spatially continuous parameters that exhibit sparseness in an incoherent basis (e.g. a 

Fourier basis). The solution is constrained to be sparse in the transform domain and the 

dimension of the search space is effectively reduced to a low frequency subspace to 

improve estimation efficiency. The solution subspace is spanned by a subset of a discrete 

cosine transform (DCT) basis containing low-frequency elements. The methodology is 

related to compressive sensing, which is a recently introduced paradigm for estimation 

and perfect reconstruction of sparse signals from partial linear observations in an 

incoherent basis. The sparsity constraint is applied in the DCT domain and reconstruction 

of unknown DCT coefficients is carried out through incorporation of point measurements 

and prior knowledge in the spatial domain. The approach appears to be generally 

applicable for estimating spatially distributed parameters that are approximately sparse in 

a transformed domain such as DCT. The suitability of the proposed inversion framework 

is demonstrated through synthetic examples in characterization of hydrocarbon 

reservoirs.  
 

 

Thesis Supervisors: 

 

William T. Freeman  

Title: Professor of Electrical Engineering and Computer Science 

 

Vivek K. Goyal  

Title: Esther and Harold E. Edgerton Assistant Professor of Electrical Engineering 

 

 



 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

DEDICATION 

 

To the precious memories of my brother PARVIZ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

 

 

ACKNOWLEDGEMENTS 
 

 

I would like to express my gratitude to those who have had direct contribution to my 

research work in this thesis.  
 

I wish to thank my thesis advisors, Professor Vivek K. Goyal and Professor William T. 

Freeman, for accepting to supervise my research work in this thesis and for their valuable 

advice and input in the past two years. I also would like to extend my gratitude to my 

PhD supervisor professor Dennis McLaughlin in the Department of Civil and 

Environmental Engineering for supporting me in pursuing my SM degree while 

completing my PhD work. I wish to thank Shell International Exploration and Production 

for their financial support. I also would like to acknowledge Schlumberger for donating 

ECLIPSE reservoir simulator that was used in this research. I appreciate the assistance 

from the staff at EECS and CEE departments. In particular, I am thankful to Janet Fisher, 

Kris Kipp, and Jeannette Marchockie for their help with administrative issues.  
 

I have been privileged to meet and make friends with outstanding individuals who made 

my years in Boston and MIT unforgettable and precious. It is not possible to mention 

everyone’s name in here; however I would like express my appreciation for their 

friendship and support and for all the things I have learned from them. I am grateful for 

the support, inspiration, and understanding that I have received from my girlfriend, 

Maryam Modir-Shanechi, during the completion of this thesis. The past few years would 

not have been as memorable, productive, and beautiful without her in my life.  
 

Above all, I would have never been where I am if it were not for my family’s 

unconditional love, support, sacrifice, and patience. My utmost respect and heart-felt 

gratitude go to my mother, Effat Gholizadeh Zargar, who has been a great example of 

selflessness to me. I am grateful to my father, Ahmad, for every thing he has done for me. 

I am thankful to my brothers Aref, Parviz (may his soul rest in peace), Behrouz, and my 

sister Fatemeh for supporting me at different stages of my life and during this long 

journey away from home. I bring this section to end by expressing my special thanks to 

my Brother Behrouz for his support and encouragements.  

 

 

 

 

 

 

 

 

 

 

 

 



 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

 

Contents 
 

 

1. Introduction and Problem Statement 

1.1 Introduction and Significance....................................................................................15 

1.2 Compression and Inverse Problems...........................................................................17 

1.3 Mathematical Modeling of Fluids Flow in Porous Media.........................................19 

1.4 Reservoir Inverse Modeling.......................................................................................22 

1.5 Prior Information........................................................................................................23 

1.6 Sparse Representation through Linear Transformation..............................................25 

1.7 Discrete Cosine Transform.........................................................................................26 

1.8 Summary of Problem Statement.................................................................................28 

 

2. Methodology and Problem Formulation 

2.1 Basic Compressive Sensing Formulation...................................................................30 

2.2 A Simple Interpolation Example................................................................................32 

2.3 A More General Formulation.....................................................................................36 

2.3.1 Basis Training Procedure.............................................................................37 

2.4 Solution Approaches..................................................................................................39 

2.4.1 Linear Least Squares (LLS) Solution..........................................................40 

2.4.2 Linear Absolute Deviation (LAD) Solution............................................... 41 

2.4.2 Least Mixed Norm (LMN) Solution...........................................................42 

2.5 Incorporation of Dynamic Measurements.................................................................44 



 10 

 

3. Results and Discussion  

3.1 Experimental Setup....................................................................................................49 

3.2 Interpolation Using Spatially Random Observations.................................................51 

3.2.1 Linear Least Squares (LLS) Solution..........................................................51 

3.2.2 Linear Absolute Deviation (LAD) Solution................................................53 

3.2.3 Least Mixed Norm (LMN) Solution...........................................................55 

3.3 Spatially Fixed (Non-Random) Observations ...........................................................57 

3.3.1 LMN Solution with Spatially Fixed Observations and Untrained Basis.....58 

3.3.2 LMN Solution with Spatially Fixed Observations and Trained Basis.........60 

3.4 Sensitivity to Observation Errors.............................................................................. 62 

3.4 Conclusions............................................................................................................... 64 

 

4. Inversion Using Dynamic Observations 

4.1 Experimental Setup.....................................................................................................66 

4.2 Problem Formulation with Dynamic Observations....................................................67 

4.3 Estimation/Reconstruction Results............................................................................70 

4.3.1 Solution with Untrained Basis and No Sparsity Constraint........................71 

4.3.2 Solution with Untrained Basis and Sparsity Constraint..............................73 

4.3.3 Solution with Trained Basis and No Sparsity Constraint............................75 

4.3.3 Solution with Trained Basis and Sparsity Constraint..................................75 

 

 



 11 

 

5. Conclusions and Future Directions 

5.1 Thesis Conclusions.....................................................................................................81 

5.2 Thesis Contributions and Future Research Directions...............................................83 

 

References....................................................................................................................86 

 

 

 

  

 

 

 

 

 

 



 12 

 

List of Figures 

1.1 Waterflooding Example .............................................................................................21 

1.2 Prior training image and realizations from multiple-point geostatistics ...................24 

1.3 Compression power of discrete cosine transform .....................................................27 

2.1 Interpolation example using compressed sensing ….................................................33 

2.2 Compressed sensing reconstruction example using low-frequency DCT subspace. 35 

2.3 DCT basis training procedure.....................................................................................38 

3.1 Linear Least Squares (LLS) reconstruction results ...................................................52 

3.2 Least Absolute Deviation (LAD) reconstruction results ...........................................54 

3.3 Least Mixed Norm (LMN) reconstruction results for random observations.............56 

3.4 LMN reconstruction for a sparse signal and fixed observations (no training)...........59 

3.5 LMN reconstruction for a sparse signal and fixed observations (with training)........60 

3.6 LMN reconstruction for a non-sparse signal and fixed observations (with training).61 

3.7 Sensitivity of LMN reconstruction to measurement noise.........................................63 

4.1 Reconstruction with dynamic measurements (no prior training - no sparsity)…......72 

4.2 Reconstruction with dynamic measurements (no prior training - with sparsity).......74 

4.3 Reconstruction with dynamic measurements (prior training - no sparsity)...............76 

4.4 Reconstruction with dynamic measurements (prior training - with sparsity)…........78 

4.5 Saturation forecasts using the estimated permeabilities.............................................80 

 



 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

 

 

Chapter 1 

 

Introduction and Problem Statement 

 

1.1 Introduction and Significance 

The inverse problem of estimating patterns and structures using uncertain prior models 

and limited point measurements is encountered in several engineering and science 

applications, from geophysics to medical imaging for diagnosis. These problems are 

known to be severely ill-posed and challenging to solve. For example, estimating 

subsurface structures/patterns such as channels and faults using discretized pixel-based 

descriptions of them in the spatial domain is futile unless important prior assumptions 

about these structures are built into the solution algorithm. These assumptions limit the 

application of these algorithms when prior knowledge is not available or is inaccurate. A 

similar issue is encountered in pattern recognition, computer vision, and medical 

applications in which limited point data sets are used to infer the shape of an existing 

feature.  
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The commonality between these problems lies in the presence of a structure (pattern) in 

the solution. Patterns are nearly constant (continuous) features that can have irregular 

shapes, which makes their parametric description in spatial domain very challenging. 

Therefore, it is a common practice to resort to pixel-based descriptions that can introduce 

significant redundancy. The two-dimensional discrete cosine transform (DCT) efficiently 

approximates image data by encoding the main information in continuous features into a 

few coefficients in the Fourier domain. Patterns and structures lend themselves to such 

parsimonious descriptions due to their continuity in the spatial domain. In this thesis, a 

compressed sensing framework is proposed for reconstruction of structural patterns in a 

compression domain (such as DCT) by using limited point observations of the original 

feature in the spatial domain and constraining the solution to be sparse in the DCT 

domain. The sparsity assumption is the key behind the new formulation and stems from 

the continuity that is ubiquitous in most of these applications. For instance, the prevailing 

geological continuity of the subsurface channels in the spatial domain translates into 

nearly sparse representation in the DCT domain, which fits well into the compressive 

sensing problem formulation proposed here. 

 

In the proposed approach of this thesis, patterns and structures are estimated in a 

compression domain (such as Fourier or discrete cosine transform) and the inverse 

problem is defined using the compressive sensing framework to arrive at an efficient and 

better-posed algorithm. Compressive sensing has recently been a topic of great interest in 

statistics and signal processing. While theoretical aspects of this method are currently 

being investigated, its immediate application in other areas such as geophysics, pattern 
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recognition, and medical imaging needs to be studied. Compressive sensing theory uses 

assumptions such as randomness of the observation points and strictly sparse signals that 

may seem to limit its application in realistic systems. Relaxing some of these assumptions 

to some extent (to make the approach more practical) may not affect the quality of the 

estimation results dramatically. The approach proposed here is evaluated using examples 

from subsurface characterization and identification of geological channels in hydrocarbon 

reservoirs. 

 

1.2 Compression and Inverse Problems 

The inverse problem of estimating high-dimensional spatially distributed parameters 

from limited point measurements can be better posed through their low-rank 

representation. This reduces the dimension of the underlying model parameters by 

providing an effective description in a suitable coordinate system and eliminating 

parameters that represent insignificant (high frequency) details. This approach is often 

taken in image compression [1,2].  

 

Compression transform algorithms that are used for parsimonious signal representation 

may also be applied to parameterization of ill-posed problems. A specific example of this 

is in characterization of hydrocarbon reservoirs. Petrophysical reservoir properties, such 

as porosity and permeability, are highly correlated spatial parameters that determine fluid 

flow displacement within rocks and oil production behavior, which is of great interest to 

reservoir engineers. Reservoir simulators use these parameters as inputs to solve a set of 

PDEs that represent flow movement in porous media. In practice, these model parameters 
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are far from known; as a result model predicted production patterns are highly uncertain. 

Identification of these input parameters using available knowledge and observations is 

essential for accurate characterization of subsurface media and optimal development of 

the resources they contain. 

  

The commonality between image compression and parameterization lies in the sparse 

basis used to describe the underlying image. However, for a pre-specified basis and a 

known image, the significant (energy carrying) basis vectors are uniquely identified by 

coefficients representing the transformed image. The image and its transform are both 

known and compression is achieved by truncating insignificant basis elements. In 

contrast, parameterization is usually done to constrain the solution space in an inverse 

problem and to avoid redundant computation in the original parameter space that may 

lead to unrealistic estimation results. In this case, the solution (parameter field) and its 

transform are unknown a priori. However, prior knowledge and observations may be 

among available sources of information that can be used for identifying the appropriate 

basis vectors and estimating their corresponding coefficients.  

 

In this thesis a few examples are used to show how these information sources can be 

combined with a reduced representation to provide an efficient estimation framework. A 

compressed sensing approach is then proposed to improve the estimation performance. 

The particular inverse problem that has been considered in the examples of this thesis is 

drawn from characterization of petroleum reservoirs using static and dynamic point 
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measurements of their attributes and states. To provide context, the inverse problem of 

interest is described first. 

 

1.3 Mathematical Modeling of Fluid Flow in Porous Media 

Reservoir engineers use a mathematical model to represent, analyze, and quantify a 

reservoir’s flow displacement pattern and production behavior. Predictions of future 

performance can be used to prepare sound reservoir development and management 

strategies. Therefore, reservoir modeling plays a central role in planning oilfield 

operational activities.  

 

The general form of the governing equations for the two phase (oil-water) immiscible 

flow in porous media is derived from mass and momentum conservation principles [3,4]: 
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Here, λo and λw represent mobility of oil and water (measure of the ease with which a 

fluid can be moved in a specific medium), Bo and Bw are the formation volume factors 

(volume of fluid as function of pressure relative to its volume at standard pressure), k is 

intrinsic permeability (a physical property of rocks that indicates their conductivity), Po 

and Pw are oil and water pressures, γo and γw represent oil and water densities, Z is 

elevation, So and Sw are oil and water saturation (ratio of oil (water) volume to total 



 20 

volume of pore space in rocks), and finally qo and qw are sink and source (control) terms 

referring to injection and production rates per unit volume. 

 

These two equations have four unknown dynamic variables, namely Po, Pw, So, Sw. For a 

given set of model input parameters, boundary conditions, initial conditions, and 

reservoir controls (well rates and/or pressures) two additional (constitutive) equations are 

used to find a unique solution for these unknowns at any given time. The constitutive 

equations reflect capillary pressure (pressure difference between the two phases at any 

given point) relations and physical saturation constraint for a given control volume: 
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ow

wcwo

SS
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Forward integration of equations (1.1)-(1.3) provides model solutions in time that are 

used to predict flow behavior within the reservoir. In general, these equations need to be 

discretized and numerically solved to obtain reservoir states (saturation and pressure) in 

time. Figure 1.1 shows the solution of these equations in a waterflooding experiment for a 

given set of input parameters. Waterflooding is a secondary drive production method 

(after natural depletion), in which water is injected to push the resident oil toward the 

production wells and to maintain high reservoir pressure. It is important to observe that 

the shape of the high permeability channels (shown in red) strongly affects saturation and 

pressure profiles (Figure 1.1). 
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Permeability 

b) Pressure solution 

c) Saturation solution 

a) Permeability and injection/production scenario 

Figure 1.1 Simple waterflooding experiment to demonstrate solution to the multiphase flow 

equations in porous media (equations (1)-(3): a) permeability field and horizontal injection 

production wells (64 injection wells (left) and 64 production wells (right)); b) pressure field 

solution in time; c) saturation profile solution in time. 

Initial 6 Month 18 Month 36 Month 

Initial 6 Month 18 Month 36 Month 

Water 

Injection 

Oil 

Production 

2D Reservoir 
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1.4 Reservoir Inverse Modeling  

Solution of the PDE equations (1.1)-(1.3) is only useful when accurate model inputs are 

available assuming the model adequately captures the physics of the system. In practice, 

however, several sources of error exist that make the solution of these equations 

uncertain. It is, therefore, important to calibrate reservoir models by tuning reservoir 

parameters to match reservoirs observed past performance (a process referred to as 

history matching in the reservoir engineering literature).   

 

When pixel-based description is adopted, history matching of even and up-scaled model 

of a heterogeneous hydrocarbon reservoir is an extremely underdetermined problem, i.e. 

the number of unknown parameters is significantly larger than the number of available 

data. As a result, the solution of the estimation problem is known to be non-unique [5]. 

This results in several solutions with different geological characteristics that match the 

observed past data equally well but provide incorrect forecasts.  

 

The inherent geological continuity (correlations) in a reservoir makes pixel-based 

descriptions inefficient. The information content of a reservoir property image (volume in 

3D cases) can be represented in a significantly lower dimensional subspace. While the 

examples used in this thesis are simplified, the proposed approach is effective due to 

strong spatial correlation that is dominant in many realistic reservoirs (per geological 

continuity). 
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The major focus of this thesis is on improving the stated ill-posed problem by reducing 

the size of the unknown parameters while preserving their important features. To do this, 

a widely used sparse representation basis, discrete cosine transform (DCT) is used [6,7]. 

While DCT bases are used for compressing known images in the image compression 

literature [6,7], in inverse modeling it can also be used for sparse representation of 

unknown parameters (i.e. parameterization). This distinction makes identification of 

significant basis vectors an interesting problem in inverse modeling.  

 

Since permeability is a major source of uncertainty in reservoir modeling and plays a 

prominent role in governing flow displacements (see Figure 1.1), it is considered as the 

only unknown to be estimated here. Furthermore, the estimation approaches in this thesis 

require the solutions of the flow equations (state-space model), in (1.1)-(1.3), which are 

obtained using a commercial reservoir simulator [8]. 

 

1.5 Prior Information 

Reasonable probabilistic models for the permeability field can be constructed from 

seismic and geological surveys. In this thesis, unconditional permeability realizations 

were generated using a channelized training image shown in Figure 1.2. This training 

image has 250 × 250 × 1 grid blocks comprising two rock (litho-facies) types: low 

permeability background (blue) and high permeability channels (red). The training image 

has mainly horizontal (east-west) channels that are believed to be present at the site of 

interest.  
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The permeability realizations in Figure 1.2 are generated using the multiple-point 

geostatistical algorithm SNESIM [9,10]. Each realization is discretized over a 45 × 45 × 1 

(450m × 450m × 10m) grid block system. The varying shape and geometry of the 

channel facies in these realizations are the major source of uncertainty. The highly 

structured nature of the facies distribution in these realizations suggests a distinctive 

preferential flow displacement pattern. In addition, a high level of correlation 

(redundancy) is observed in description of these facies, suggesting that the field could be 

represented more efficiently if a more appropriate description were adopted.  

 

Sample Realization, Training Image 1 

(45×45×1) 

Training Image 1 

(250×250×1) 

Figure 1.2 Permeability training image (left) and nine sample permeability 

realizations (right), generated by SGeMS using multiple point geostatistics.  
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1.6 Sparse Representation through Linear Transformation 

A general unitary transformation of a one dimensional sequence {u(n), 0 ≤ n ≤ N-1} can 

be expressed as convolution of u(n)  with a specified function a(k,n) [1,2]:     

 

10for      )().,( ),(),( )(
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The original sequence can be reconstructed by applying the inverse transform a
*
(k,n) to 

the transform coefficients:    
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where {a
*
(k,n), 0 ≤ n ≤ N-1}

T
 is the inverse transform kernel. It is often possible to 

construct a good approximation to u(n) with a truncated version of the inverse transform. 

In particular, we compute and retain only the first Kr << N expansion terms of u(n) if the 

remaining N-Kr terms have small contribution in the summation:  
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For a unitary transform, the terms with small coefficients are omitted from the u(n) 

expansion since they make a small contribution to the signal energy. In this case, the 

retained coefficients in the expansion represent a compressed version of the original 

signal [1,2]. The truncated basis coefficients vector v(k) provides a sparse version of u(n) 

that requires less transmission time and storage than the original known image [1,2].  
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1.7 Discrete Cosine Transform 

The discrete cosine transform (DCT) is a linear transform that is widely used for image 

compression due to the sparsity of its basis vectors. The one dimensional forward DCT of a 

signal u(n) of length N has the following form [6,7]:  
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where α(k) is defined as: 
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The inverse DCT can then be written as : 
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Extension of the above equations to higher dimensional signals (images and volumes) is 

straightforward [7,11]. However, the separability property of DCT bases can be exploited 

to achieve computational savings by applying the one dimensional transform in each 

direction [7,11]. Figure 1.3a shows sample low frequency image bases that can be used for 

representing 45-by-45 images. The basis images are arranged according to their orientation 

and level of detail in a descending order from upper left to lower right. Depending on the 

desired level of details in the approximation more high frequency components (lower right 

basis images) are included.  
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(a) Low-frequency discrete Cosine transform modes 

Original Image Log-DCT Coefficients 

(b) An example image and its log-DCT coefficients 

(c) Low-rank approximations with increasing number of DCT modes 

Figure 1.3 Compression power of the discrete cosine transform: (a) sample discrete cosine transform modes 

(bases); (b) an example image (the famous MIT dome) with its log-DCT coefficients; (c) approximate 

representations of the example image with increasing number of included modes. 

0.1% 1% 5% 10% 
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Figure 1.3b shows an image of the MIT dome with a truck on top of it (first column) and 

the DCT coefficients for this image, using the same ordering convention as in Figure 1.3a 

(second column). Figure 1.3c illustrates how the DCT can be used to compress the 

original image. It shows the approximation using the largest 0.1%, 1%, 5%, and 10% of 

the original DCT coefficients. The concentration of the large coefficients on the top left 

corner (low frequency modes) of the DCT coefficients in (middle right panel of) Figure 

1.3b is apparent. This clustering of coefficients generally corresponds to the modes with 

large scale variations in the horizontal, vertical, and diagonal directions. It is clearly seen 

in Figure 1.3c that after including only 5% of the DCT coefficients most of the details in 

the original image are retrieved. 

 

 

1.8 Summary of Problem Statement 

The introduction presented in previous sections covered several important components 

that can be combined to formulate the problem. The inverse problem of interest is 

summarized in this section.  

 

We are given the following knowledge about a synthetic test reservoir: 

 

i. Equations (1.1)-(1.3) as the governing equations describing multiphase flow 

in porous media.  

ii. All inputs into equations (1.1)-(1.3) except the permeability k, which is the 

unknown parameter. 
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iii. The permeability field k is (nearly) sparse in a predefined transform domain 

(DCT in this case). 

iv. Point observations of the permeability field at well locations.  

v. Prior knowledge of the permeability field in the form of a training-image or 

training library that portray structurally similar features to the true 

permeability. 

vi. Observations of reservoir production variables at well locations (flow rates 

and pressures at well locations). 

 

An efficient estimation technique is desired that integrates all these sources of 

information to provide an accurate estimate of the unknown permeability field.  

 

This problem is formulated and solved in the later chapters of this thesis. Chapters 2 and 

3 consider solution of the problem without dynamic observations (i.e. an interpolation 

problem). Chapter 4 presents the solution when dynamic sources of information are also 

available for integration. Finally, Chapter 5 summarizes the conclusions of this work and 

discusses possible future research directions. 
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Chapter 2 

 

Methodology and Problem Formulation 

 

2.1 Basic Compressed Sensing Formulation 

Compressed sensing [12-15] is a recently introduced paradigm for estimation or perfect 

reconstruction of sparse signals from partial observations in a complementary, 

“incoherent” domain using convex optimization. It has attracted researchers’ attention in 

several disciplines including signal processing and statistics. A simple formulation of the 

approach is given in this section. A more general formulation is presented later in the 

chapter while further mathematical details are left to original publications on this topic 

[12-15]. 

 

Assume a sparse signal xN with sparsity S (a signal with S non-zero coefficients) and its 

transformation coefficients yN under the transformation matrix ΦΦΦΦN×N:  
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×××

=
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xy Φ                                                 (2.1) 
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Reconstruction of the signal xN using only K<<N observations of it in the transformed 

domain (yK): 

           Kkxy
kk
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The reconstruction is shown [13,14] to be perfect under specific conditions by solving the 

following l1 norm constrained minimization: 
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This minimization problem can be posed [16] as a linear program of the form: 

 

                                       z1 min
T

Rz
⋅

∈ N
   subject to  

1221
 

×××
=

NNKK
uy D                     (2.5) 

    

 

where [ ]T

12
 −+

×
= uuu

N
with 

−+= u-ux  ~ and [ ]
NKNKNK

D
×××

−= ΦΦ 
2

. For an 

appropriate choice of the incoherent basis ΦΦΦΦ (one in which the signal is not sparse), and a 

signal x with sparsity S, reconstruction is exact with very high probability when K ≥ C · S 

· log N [13,14], where C is a constant between 3 to 5 [13,14]. A critical assumption for 

this result to hold is sparsity. It is natural to ask “Is it reasonable to assume that realistic 

reservoir properties such as permeability are sparse in DCT (or any other transform) 

domain?” In most cases the answer is yes, at least as a first order approximation. This is 

due to the geological continuity of rock formations that often exhibit strong correlations. 

The decorrelating power of DCT basis can be exploited to provide sparse representation 
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(approximation) of reservoir properties in the DCT domain. This is shown with an 

example in the next section. 

 

2.2 A Simple Interpolation Example  

An example is used in this section to illustrate the above formulation in the context of 

reservoir characterization. The DCT basis is used as transformation matrix (ΦΦΦΦ). Figure 

2.1a shows a sample permeability field and its corresponding DCT coefficients 

magnitude (in logarithmic scale) after transformation (first and second columns 

respectively). Although the coefficients are not exactly zero, most of them are small and 

can be zeroed out without a major loss in quality (third column). The third and fourth 

columns in Figure 2.1a show the (S=15) largest DCT coefficients and their corresponding 

approximate representation, respectively.  

 

For K observed pixels of this permeability in spatial domain, reconstruction of the DCT 

coefficients was carried out following the above formulation. The results for K = 20, 40, 

60, 80, 100 are shown in Figures 2.1b-2.1f. After including 100 random observations the 

original signal was perfectly constructed in almost all trials with different sets of random 

observations. Examination of Figure 2.1 indicates that perfect reconstruction is not 

possible for smaller number of observations due to existence of a solution with smaller l1 

norm that matches the observations perfectly. In other words, the observations do not 

constrain the solution sufficiently. As the number of observations increases it becomes 

less likely to fit the observations with a set of DCT coefficients that have a smaller l1 

norm than the true solution. Since the problem has a unique global minimum (due to  
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a) True Permeability Field (Spatial and DCT domains) 

b) Estimated Permeability with K = 20 observations. 

c) Estimated Permeability with K = 40 observations. 

d) Estimated Permeability with K = 60 observations. 

e) Estimated Permeability with K = 80 observations. 

f) Estimated Permeability with K = 100 observations. 

Figure 2.1 Interpolation example using compressed sensing formulation: True and DCT representation 

of the permeability (full and approximated) are shown in (a). Rows b-f show the reconstructed 

permeability using K = 20, 40, 60, 80, and 100 random observations (observations (first column), 

estimated DCT coefficients (third column), and the estimated spatial permeability field (last column) 

are shown).  
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convexity), in the limit when K� C · S · log N the minimum l1 solution is expected to 

converge to perfect reconstruction [13,14]  

 

Another important observation is the distribution of the DCT solution coefficients when 

perfect reconstruction is not achieved. The wide frequency spread in the coefficients 

suggest that by imposing certain constraints on the solution, such as excluding high 

frequency modes, the probability of achieving perfect reconstruction can be increased. 

This is demonstrated in Figure 2.2. In this figure, K=40 observations are used to constrain 

the reconstruction. The experiment is run using three different scenarios. Figure 2.2b 

shows the representation when the entire N=2025 space is searched to find the correct 

feature in sparse permeability field. It is seen that some of the estimated DCT coefficients 

are selected from the high-frequency region. Figure 2.2c and 2.2d show the same 

experiment when N = 210 and N = 120 low-frequency bases are included in the search. It 

is clear that reducing the search space results in a solution that is more representative in 

this example. This has important implications for reservoir characterization where prior 

knowledge of the permeability field is available and can be used to constrain the search 

subspace.  

 

However, for perfect reconstruction, the number of observations is proportional to the 

logarithm of the search dimension.  This implies that exponential reduction in dimension 

of search space (N) is needed to reduce the number of observations in a linear manner. 

This is important in reservoir characterization where only limited spatial observations are 

available (small K) due to the cost associated with data acquisition. Therefore, it may be  
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(a) True Permeability with its sparse (S = 15) representation and K = 40 observations 

(b) Reconstructed permeability with N = 2025 dimensional search space 

(c) Reconstructed permeability with N = 210 dimensional search space 

(d) Reconstructed permeability with N = 120 dimensional search space 

Figure 2.2 Compressed sensing reconstruction using a reduced low-frequency subspace: (a) true 

permeability and its DCT representation (first and second columns) and their corresponding sparse (S=15) 

representation (third and fourth columns) are shown as well as K = 40 observations (fifth column); (b) 

Reconstruction of the permeability shown in (a) using the original DCT space N = 2025);  (c) 

Reconstruction of the permeability shown in (a) using a reduced low-frequency subspace of dimension  N 

= 210; (c) Reconstruction of the permeability shown in (a) using a reduced low-frequency subspace of 

dimension  N = 120. The search spaces in (b)-(d) are shown with the masks plot (triangle). 
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possible that sufficient measurements are not available to constrain even a reduced 

representation of the signal. 

 

2.3 A More General Formulation  

The preceding examples suggest that the sparsity of the parameter of interest can be 

exploited to develop a more efficient and better posed estimation scheme. While above 

results are encouraging, they are overly simplified and further development of the 

approach is required to solve a full-blown dynamic inverse problem. A few 

generalization of this formulation is considered in this section. 

 

When reliable prior knowledge of the unknown parameters is available the inverse 

problem is further constrained and the reconstruction algorithm is improved. In addition, 

specifying equality (hard) constraint for observations can be too restrictive and in practice 

observation errors need to be taken into account. This can be achieved by including the 

observations as soft constraints. Further, while in the compressed sensing formulation the 

l1 norm is typically used for reconstruction of sparse signals, a generalization can be 

considered in which other norms are used in the problem formulation. A few alternative 

norms will be considered in the next section. 

 

A more general formulation of the above problem that incorporates prior information and 

allows for observation error can be written as: 

 

qp xxC
N

||~ ||  ||)~(y || min 2/1

y
Rx

⋅+−−

∈
WΦ γ               (2.6) 
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The first term in the objective function represents the penalty for deviation from the 

observations. The matrix 2/1

y

−C  contains the information about the quality of each 

observation. The second term is often referred to as regularization and is used to improve 

the ill-posedness of the inversion. In our application, W is the weighting matrix that can 

be computed using the prior information (training images). The weighting coefficients 

can be used to include (exclude) relevant (irrelevant) basis vectors in the approximation 

and give more weight to the ones that are likely to have significant contribution to 

approximation of the unknown permeability field. The coefficient γ  in front of the 

second term is used to adjust the fidelity to prior versus observations.  

 

2.3.1 Basis Training Procedure 

A training procedure can be developed to obtain the weighting coefficients (elements of 

W) through the prior permeability library. This is briefly described in this section.  

 

When a prior library (or training image) exists that contains features that are believed to 

be structurally similar to the unknown image, it can be utilized to determine the 

significance of each basis vector in the reconstruction. The weighing matrix W is 

computed using the following procedure: 

 

1) The DCT transform of each image in the library is computed 

2) The magnitude (absolute value) of the DCT coefficients is averaged across the 

library  
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3) The resulting mean of magnitudes is truncated by specifying a threshold to 

remove basis vectors that are likely to have insignificant contribution (small 

magnitude). 

4) The remaining coefficients are inverted and normalized to yield W. 

 

The matrix W obtained from the above procedure ensures that in the reconstruction 

algorithm significant basis vectors (as suggested by prior library) are given small 

penalties so they can assume large values, whereas large penalties are associated with less 

significant basis vectors to keep their corresponding coefficients small.  

 

Figure 2.3 illustrates the training procedure used to obtain W. In this figure, a threshold 

specified to retain 78 coefficients in the expansion.  

 

 

 

 

 

 

 

 

 

 

 

DCT basis training procedure 
 

Figure 2.3 Basis training procedure using a library (ensemble) of prior models: (a) prior images used in 

the training; (b)  the logarithm of DCT coefficients magnitudes; (c) the largest (over prior library) 78 

DCT coefficient magnitudes selected to represent the important DCT basis vectors for reconstruction; 

(d) the weighting matrix obtained by taking the inverse of the DCT coefficients in (c). 

 

a) Prior Library  
 

b) Log-DCT Coeffs. of (a) 
 

c) Mean Largest 

DCT Coeffs. in the 

Library 
 

d) Weighting 

Matrix W  

(Inverse of (c)) 
 



 39 

It is important to note that if the prior image library does not represent the unknown 

features accurately, the reconstruction results will be adversely affected. Therefore, when 

prior is specified the reconstruction outcome is less robust and is sensitive to prior 

information [17]. 

 

2.4 Solution Approaches 

This section discusses the solution to the general formulation presented above. Based on 

the specified norms lq and lp, three alternatives objective functions are considered. These 

formulations can be derived from the Bayesian approach to regularization with either 

Gaussian or Laplacian distribution assumptions for observation noise and/or prior 

statistics [16,18,19,20]. When these statistical assumptions are applicable, the solutions to 

the formulations presented in the following sections provide the Maximum A Posteriori 

(MAP) estimate.  

 

Several studies have been conducted on the distribution of DCT coefficients for various 

types of images including natural and medical images. Different probabilistic 

distributions have been proposed to model the transform coefficients [21-24]. Some 

studies have found the Laplacian distribution to be a better fit for the DCT coefficients 

while others have reported that no single distribution can be used to model individual 

DCT coefficients [22]. Recently, the Generalized Gaussian Function (GGF), which 

includes the Uniform, Laplacian, and Gaussian distributions as special cases, has been 

used to model the distribution of the DCT coefficients [24]. The lack of agreement in 
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these studies suggests that DCT coefficients distribution can vary depending on the 

image/data sources and types.  

 

In the following formulations, both Laplace and Gaussian distributions are considered as 

prior statistics for the DCT coefficients. However, it is generally agreed that l1 norm is a 

better choice for representing sparsity. This will be studied in the examples of next 

chapter.  

 

2.4.1 Linear Least Squares (LLS) Solution (q =  p = 2) 

A formulation that is obtained by assuming Gaussian additive noise for observations and 

a regularization term [25] to represent Gaussian prior statistics takes the following form:  

 

          22

2/1

y
Rx

||~ ||  ||)~(y || min xxC
N

⋅+−−

∈
WΦ γ                                 (2.7) 

 

The second term in the LLS formulation is often used to enforce regularity (e.g. when W 

is a difference operator or inverse of the squared root of covariance). Here, the l2 norm is 

used to compare its performance with the more widely used l1 norm sparsity constraint. If 

the observations have additive white noise with Gaussian distribution, and the prior is 

also Gaussian with exactly specified covariance, the LLS solution can be interpreted as 

the “maximum a posteriori” (MAP) estimator [19,25].  

 



 41 

A closed form solution of the above minimization can be obtain by setting the derivative 

of the objective function with respect to x~  equal to zero. This results in the following 

closed-form solution: 

 

[ ] y )( )()(~ 2/
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For symmetric W and  
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−
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y
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y
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TTT

ΦΦΦWWγ                (2.9) 

This equation is widely known as the LLS solution. 

 

2.4.2 Least Absolute Deviation (LAD) Solution (q =  p = 1) 

If the above Gaussian assumptions are not applicable, the LLS formulation may not give a 

good representation. For instance, in image processing due to presence of edges the 

Gaussian prior assumption is often violated. In addition, the l1 norm is well known for 

facilitating automatic order selection [16,26], which is desirable in this application. 

Furthermore, in some cases the additive noise may follow a Laplace distribution rather 

than a Gaussian distribution. Under these circumstances the l1 norm would be more 

appropriate for describing observation errors. The advantage of using the l1 norm is that 

the solution is more robust than when the l2 norm is used for statistical estimation. 

Specifically, compared with the l2 norm a small number of outliers would have less 

influence on the solution [16,25]. 
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When l1 norm is used for the deviation from the observations and the prior (sparsity) term 

a Least Absolute Deviation (LAD) solution is obtained: 

 

    11

2/1

y
Rx

||~ ||  ||)~(y || min xxC
N

⋅+−−

∈
WΦ γ                           (2.10)           

 

The LAD formulation can be reduced to a linear programming (LP) problem when the 

following change of variables is applied (assuming W is invertible): 

 

xu ~ ⋅⋅= Wγ    and   

                     )~(y2/1

y
xCv Φ−= −   or  )(y 112/1

y
uCv

−−− −= ΦWγ               (2.11) 

 

and by splitting u and v into their nonnegative and nonpositive  parts:  
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where )0,(max uu =+ , )0,(-max uu =− , )0,(max vv =+ , )0,(-max vv =− . The equivalent 

linear programming formulation can now be written as: 
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2.4.3 Least Mixed Norm (LMN) Solution (q = 2,  p = 1) 

A third alternative formulation is used when the Laplace prior distribution and Gaussian 

additive observation noise are assumed. In this case, the l1 and l2 norms are more 

appropriate for the prior (sparsity constraint here) and observation deviation, respectively. 

 

                      12

2/1

y
Rx

||~ ||  ||)~(y || min xxC
N

⋅+−−

∈
WΦ γ                           (2.14) 

 

This formulation is closely related to the total variation regularization that is used in 

many inverse problem applications [20]. This LMN problem can be written as a quadratic 

programming (QP) algorithm with the following manipulations: 
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This reduces the LMN problem to the (QP) formulation below: 
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which can be written in standard (QP) form. After eliminating the linear constraint (and 

variable v) the following (QP) problem is obtained: 
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Where x, G, and c are defined by: 
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It is straightforward to verify that the Hessian matrix G is positive-semidefinite and 

therefore the above objective function is convex (sum of two convex norms). Efficient 

minimization algorithms are available to solve the above (QP) problem [27]. In the 

examples of Chapter 3 the solution is obtained using MATLAB (QP) solver quadprog 

[28]. 

 

2.5 Incorporation of Dynamic Measurements  

The compressed sensing formulations presented in previous section were only solving 

interpolation problems where dynamic flow equations were not included. While 

interpolation covers a broad range of inference problems, the goal of this research is to 

extend the approach to dynamic systems such as those described by equations (1.1)-(1.3).   

In order to include the dynamic information into the inference problem, a parameter 

estimation approach can be formulated that minimizes an objective function comprising 
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penalty terms for deviation of predicted quantities from observed values, and a term 

accounting for departure from the prior knowledge about the parameters:  

 

2

2/1
~2

2/1

2

2/1

x
~~

||)~(||  ||)~(||||)~(|| )~(  min xxyxdxhxJ xyobsd −+−Φ+−= −−− CC)(C  

                   subject to 0~ =)xg(                     (2.19)   

 

where, x~  and x   are vectors of unknown and prior parameter mean, respectively, with 

prior covariance specified as Cx; J(x) is the minimization objective function; h( x~ ) is the 

measurement operator that maps parameter space to observation subspace, dobs is the 

uncertain observation vector with covariance Cd, and )xg(~  represents a discretized 

version of the multiphase flow equations (1.1)-(1.3), ( )xg(~  depends on several other 

input parameters that are assumed known and dropped here). Since flow equations are 

derived from mass and momentum conservation principles they are commonly 

incorporated as hard equality constraints. This leads to an adjoint formulation of the 

problem, that can be solved using variational calculus [29]. The solution of the adjoint 

model is used to derive the sensitivities of the objective function to unknown parameters 

(i.e. gradient information). The resulting optimization is a nonlinear non-convex problem 

that may have several local solutions.  

 

With linear models (h), Gaussian prior distribution, and additive Gaussian error statistics 

[19,25,30], this objective function can be derived from Baysian probabilistic framework 
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where the solution yields the peak of the a posteriori distribution. When the model is 

nonlinear this estimator can only approximate the mode of the a posteriori distribution.  

 

While a Gaussian assumption for observation error statistics may be justified, prior 

information may not have a Gaussian distribution. In that case the last term on the right 

hand side of (2.19) may be a poor choice as the mean x  may not be a good central 

estimate of the prior distribution (for instance, when prior is bimodal). In this work, the 

sparsity constraint is used to include the prior information and improve the ill-posedness 

of the inverse problem. The proposed parameter estimation approach includes a penalty 

term in the objective function that accounts for the sparsity of the solution and contains 

prior information about the unknown parameters. The new objective function can be 

written as: 

 

122

2/1

12

2/1

x
~~

||~||  ||~||||~|| ~  min xyxxhxJ yobsd ⋅+−Φ+−= −− W)(C)d)((C)( γγ  

                   subject to 0~ =)xg(                   (2.20) 

 

The two parameters γ1 and γ2 control the relative significance that is given to each term in 

the objective function. The first two departure terms are penalized using l2 norm while 

the sparsity constraint is enforced through a l1 norm (this choice is based on experiments 

with different formulations presented in previous section and is discussed in the next 

chapter). 
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Several first order search algorithms can be used to solve the resulting optimization 

problem [31,32]. However, an efficient approach that has been successfully used to solve 

similar optimization problems is the Limited Memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) quasi-Newton (or its limited memory version for large problems) [33]. 

The adjoint solution resulting from the mass conservation constraint can be used to 

compute the gradient information efficiently [8]. The implementation of the adjoint 

model to derive the gradient information is available in the commercial reservoir 

simulator used in this study [8]. It is worthwhile to note that the gradient information is 

obtained with respect to the original permeability field, which is then converted to the 

transformed permeability field (DCT domain) through a simple differentiation chain rule.  

 

The approach proposed here is expected to offer an overall improvement in 

computational cost, ill-posedness, and accuracy of the original formulation of the inverse 

problem (2.19). This inverse modeling framework is implemented in Chapter 4 using a 

waterflooding experiment with a synthetic 2D reservoir model.  
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Chapter 3 

 

Results and Discussion 

 

In this chapter, application of the three approaches introduced in Chapter 2 to an 

interpolation problem with a channelized permeability field is presented. The purpose of 

this chapter is to investigate the form of sparsity constraint that should be used for 

inversion. The experimental setup is described in Section 3.1. The problem formulations 

that resulted in LAD, LLS and LMN solutions are discussed in Section 3.2. Section 3.3 

discusses a more realistic setting, in which fewer observations are used and observation 

locations are fixed. Finally, the chapter is closed with a brief discussion on the overall 

results and concluding remarks. 
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3.1 Experimental Setup 

This chapter investigates the application of the general problem formulations in Chapter 2 

with an example of channelized reservoir permeability. The example is similar to that in 

Section 2.2. Two sets of experiments are designed each with a different purpose.  

 

In the first set of experiments, suitability of the three problem formulations in Chapter 2 

is studied. In each experiment, four different test runs are considered. Sensitivity of each 

of these formulations to two conditions is tested: 1) training DCT basis with the prior 

library; and 2) sparsity of the original permeability. Varying the above parameters results 

in four test runs: 

 

T1:     No prior basis training and the original permeability field is perfectly sparse 

T2:    With prior basis training and the original permeability is perfectly sparse 

T3:    No prior basis training and the original permeability field is not sparse 

T4:    With prior basis training and the original permeability is not sparse 

 

In these set of runs the observation points are randomly selected. The observation 

locations and their values are identical in each of these runs. The sparsity level, 

dimension of search subspace, and the number of observations is fixed at S=15, N=78, 

and K=30. It is important to note that the sparsity level S = 15 is only relevant when the 

original permeability field has been made sparse through truncation in the DCT domain 

(T1 and T2 cases above). When trained, the prior weighting matrix W is obtained from 
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the same permeability library and is fixed in all experiments. Otherwise, this matrix is set 

equal to identity. The value of parameter γ is varied to arrive at a balance in the 

contributions from observations and the sparse prior in the objective function that 

resulted in the best achievable estimate. Based on these tests, a formulation that gives a 

robust and accurate performance is selected for application in a more realistic setting 

described below. 

 

 A second set of experiments is designed to investigate the performance of the selected 

formulation in previous tests under more realistic assumptions. In these experiments, the 

observation locations are fixed at the two (east-west) ends of the reservoir. This setting 

will also be used for dynamic data integration in a waterflooding experiments in Chapter 

4. The number of observations in these experiments is changed to K = 90 while the 

search dimension and sparsity level are the same as above (N=78 and S=15). In these 

experiments the sensitivity to γ is also studied. Three test runs are performed with small, 

intermediate, and large γ values corresponding to non-sparse, moderately sparse, and very 

sparse estimates, respectively. These experiments are conducted with and without 

including prior basis training.  

 

The results of the experiments described above are summarized in the next section. 
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3.2 Interpolation Using Spatially Random Observations 

 

3.2.1 Linear Least Squares (LLS) Solution 

The solutions to the LLS formulation for the experimental setup with random 

observations are shown in Figure 3.1. In Figure 3.1a when no basis training is used 

(second, third, and fourth rows) it was not possible to find a reasonable estimate for the 

sparse permeability field. Rows two, three, and four in Figure 3.1a show the estimation 

results by specifying a small, intermediate, and large weight for sparsity term in the 

objective function, respectively (through adjusting γ). Similar results are achieved for the 

case when the original permeability field is not perfectly sparse in Figure 3.1b. These 

results may be expected due to the fact that the l1 norm provides a better measure of 

sparsity (it is closer approximation to the original l0 norm that defines the exact number 

of sparse coefficients). 

 

The last rows in Figures 3.1a and 3.1b illustrate the LLS estimates when prior basis 

training is used. As seen in these figures the LLS estimates perform well only when an 

accurate prior is used to weigh the appropriate basis vectors. In the absence of a good 

prior, the l2 norm constraint that is used for sparsity does not yield the channelized 

structure observed in the original permeability. Closer examination of the results reveals 

that the estimated DCT coefficients are not sparse confirming that the l2 norm is not a 

good choice to preserve sparsity.  
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Figure 3.1 Linear Least Squares (LLS) reconstruction results for originally sparse (a) and non-sparse (b) 

permeability fields: the first row in (a) and (b) show (left to right) the original permeability field, its DCT 

transformations, the truncated DCT with S = 15 non-zero coefficients, reconstructed sparse permeability 

field, observations used in the estimation (observations in (a) and (b) are generated from sparse and non-

sparse permeability fields, respectively); the second to last rows show (left to right) the search subspace, 

estimated DCT coefficients, estimated permeability field, and estimated observations; rows two to five in (a) 

show the estimation results under T1 experimental conditions with increasing sparsity level (top to bottom). 

a) LLS reconstruction results for an originally sparse permeability 

b) LLS reconstruction results for an originally non-sparse permeability 

Non-sparse perm., 

Untrained basis  

 

Non-sparse perm., 

Trained basis  

 

Sparse Perm., 

Untrained Basis  

(γ small) 

Sparse perm., 

Untrained basis  

(γ  intermediate) 

 

Sparse perm., 

Untrained basis  

(γ  large) 

 

Sparse perm., 

Trained basis  
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These results suggest that the l2 norm fails to identify the sparsity of the original signal 

and can only provide a reasonable estimate when accurate prior information is supplied. 

In general, l2 norm is very sensitive to large deviations (outliers) and tends to ignore 

smaller terms, which is not desirable for preserving sparsity. This can have negative 

implications in realistic settings, in which the prior information may be inaccurate. 

 

3.2.2 Least Absolute Deviation (LAD) Solution 

The solutions to the LAD formulation for similar experimental setup as in Figure 3.1 are 

shown in Figure 3.2. Figure 3.2a shows the case for which the original permeability field 

is made sparse through the truncation shown in the first row. Two sets of estimates are 

shown in this figure. The second row in Figure 3.2a shows estimates with no basis 

training and the third row contains the results with prior basis training. It is seen from 

these results that the l1 norm is very effective in perfect reconstruction of the original 

sparse signals. It is important to note that these results are a function of the sparsity S, 

search dimension N, and number of observation K. The results of these experiments 

suggest that for the chosen values of S, N, and K the untrained bases are sufficient for 

constructing the original sparse signal. This is not the case when a smaller K is used and 

the trained basis is expected to give better reconstruction if a reasonable training library is 

used.  
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Figure 3.2 Least Absolute Deviations (LAD) reconstruction results for originally sparse (a) and non-sparse 

(b) permeability fields: the first row in (a) and (b) show (left to right) the original permeability field, its DCT 

transformations, the truncated DCT with S = 15 non-zero coefficients, reconstructed sparse permeability 

field, observations used in the estimation (observations in (a) and (b) are generated from sparse and non-

sparse permeability fields, respectively); the second and third rows show (left to right) the search subspace, 

estimated DCT coefficients, estimated permeability field, and estimated observations. 

a) LAD reconstruction results for an originally sparse permeability 

Sparse Perm., 

Untrained Basis 

 

Sparse Perm. 

Trained Basis 

b) LAD reconstruction results for an originally non-sparse permeability 

Non-Sparse Perm., 

Untrained Basis 

Non-Sparse Perm., 

Trained Basis 
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Figure 3.2b illustrates the same experiment as in 3.2a, except that the original signal has 

not been made sparse. One way of interpreting this effect is assuming that the original 

signal is sparse as in Figure 3.2a but the observations are noisy (observations come from 

the original non-sparse permeability field). As seen in Figure 3.2b, the results are quite 

sensitive to observation noise, however, the trend in the permeability field is captured.  

 

3.2.3 Least Mixed Norm (LMN) Solution 

The results in Sections 3.2.1 and 3.2.2 imply that for a robust reconstruction with and 

without prior training of the basis an l1 norm representation of the sparsity constraint is 

more appropriate. This is tested with the implementation of the LMN formulation for 

similar examples. Figure 3.3 summarizes the results for LMN reconstruction in a similar 

manner to previous sections. As seen in second rows of Figures 3.3a and 3.3b, unlike the 

LLS reconstruction results, the LMN reconstruction is quite accurate when prior basis 

training is not used. This further confirms the conclusion of the previous section, that the 

sparsity constraint is important in the reconstruction and better preserved using an l1 

norm.  

 

Figure 3.3b shows the LMN reconstruction results for the case in which the original 

signal is not sparse. The results appear to have similar performance to those of the LAD 

reconstruction solutions. While the accuracy of the two methods is similar, the LMN 

formulation requires solution of a quadratic programming (QP) problem, which can be 

computationally more demanding than solving a linear programming (LP) problem in the 

LAD formulation.  While this distinction is very important to make for the  
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b) LMN reconstruction results for an originally non-sparse permeability 

Non-sparse perm., 

Untrained basis  

 

Non-sparse perm., 

Trained basis  

 

Figure 3.3 Least Minimum Norm (LMN) reconstruction results for originally sparse (a) and non-sparse (b) 

permeability fields: the first row in (a) and (b) show (left to right) the original permeability field, its DCT 

transformations, the truncated DCT with S = 15 non-zero coefficients, reconstructed sparse permeability field, 

observations used in the estimation (observations in (a) and (b) are generated from sparse and non-sparse 

permeability fields, respectively); the second to last rows show (left to right) the search subspace, estimated 

DCT coefficients, estimated permeability field, and estimated observations. 

a) LMN reconstruction results for an originally sparse permeability 

Sparse perm., 

Untrained basis  

 

Sparse perm., 

Trained basis  
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interpolation example, in the dynamic data integration problem with a non-linear flow 

model the LP and QP formulations are not possible and an adjoint-based formulation is 

used to minimize the corresponding objective function.  

 

Given the results in of three formulations in this section, the LMN formulation is adopted 

for further analysis and development with spatially fixed observation points in the next 

section. 

 

3.3 Spatially Fixed (Non-Random) Observations  

The examples in Section 3.2 used observations that were randomly located in space. This, 

however, is not likely to happen in operational settings. The point observations in real 

reservoirs come from the drilled production, injection, and monitoring wells. The 

prohibitive cost associated with drilling activities result in minimal number of wells that 

are drilled in specified locations. This raises two issues that need to be addressed. 

 

First, the non-random nature of well locations may conflict with the assumptions and 

results of Section 3.2. Depending on the abundance of data in the field (the second issue 

to be addressed next) this may or may not be a problem. In general, limited localized data 

tend to degrade the performance of the compressed sensing formulation. The randomness 

requirement of the observations would allow for wider signal support coverage in its non-

sparse domain, which provides more information content and helps its reconstruction in 

the domain in which it is sparse. This can potentially become an issue in field settings 
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where limited observation points are available. However, the production wells are usually 

spread in the field and provide a good coverage. 

 

The second issue to address is the quantity of the observations. This is likely to be a 

limiting factor in practice if interpolation problems with limited well locations are 

considered. Fortunately enough, there are other sources of measurements that can 

complement static point observations. Examples of these measurements are 3D and 4D 

seismic data, well logs, and dynamic production data. Availability of each of these data 

sources can further constrain the reconstruction problem and compensate for the 

observational requirement of the reconstruction formulations in Chapter 2. In this section, 

reconstruction of the permeability field with fixed observation locations is considered. 

Integration of additional dynamic production measurements is considered in Chapter 4. 

 

3.3.1 LMN Solution with Spatially Fixed Observations and Untrained Basis  

In this section, the reconstruction results with spatially fixed observation points and 

without including the prior information is presented.  The observations are located at the 

east-west ends of the reservoir to resemble a horizontal waterflooding scenario in a smart 

oilfield setting (Figure 1.1). In this setup, the observation points are localized, which is 

expected to adversely affect the reconstruction. 

 

Figure 3.4 shows the reconstruction results when the original permeability is made sparse 

(S=15) and with increasing confidence in sparsity, forced by adjusting the value of γ (the 

rows from top to bottom). It is clear from these results that the observations are not 
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sufficient to allow for reconstruction of the original permeability using sparsity 

constraint. It is important to note that the number of observations here (K=90) is three 

times the number of observations in the examples of Section 3.2. However, the 

observations are not randomly located and fail to provide global information. The 

increasing degree of sparsity constraint as seen in rows three and four of Figure 3.4 

manifest itself in the extension of the high permeability observation regions inward, but a 

sparse solution appears to exist that provides a smaller objective function than the true 

permeability. Similar results are obtained when the original permeability is non-sparse 

(not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Least Mixed Norm (LMN) reconstruction results for originally sparse permeability field using 

spatially fixed observation points and untrained basis: rows two to four show the estimation results with 

increasing sparsity level (top to bottom). 

LMN reconstruction results for spatially fixed observation points (untrained basis)  
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3.3.2 LMN Solution with Spatially Fixed Observations and Trained Basis  

The LMN reconstruction results of previous section can be improved by training the basis 

vectors.  This assumes a good prior library is available and is expected to make the 

solution sensitive to prior specification (less robust).  

 

Figures 3.5 and 3.6 summarize the reconstruction results for the cases in which the 

original permeabilities are sparse and non-sparse, respectively. As expected, 

incorporating the prior information in the basis guides the reconstruction algorithm in 

identifying the two horizontal channels.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Least Mixed Norm (LMN) reconstruction results for originally sparse permeability field using 

spatially fixed observation points and prior-trained basis: rows two to four show the estimation results with 

increasing sparsity level (top to bottom). 
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Sparse perm., 
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LMN reconstruction results for spatially fixed observation points (prior-trained basis)  
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Although the prior-trained reconstruction identifies the presence of channels in Figures 

3.5 and 3.6, the exact shape of the channels is not captured well. This implies that even 

when correct prior information is included in the reconstruction, the sparsity constraint 

may not result in accurate identification of the existing features if sufficient observations 

are not available to constrain the algorithm. The example in Figure 3.6 shows similar 

results for the case in which the original signal is not sparse (or the observations are 

noisy). The results suggest that the solution still identifies the two channels under prior-

trained basis and sparsity constraint. Again in this case, however, the channels are not 

accurately retrieved due to insufficient information content in the observations. This calls 

for integration of additional observations to constrain the reconstruction algorithm, which 

is considered in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 Least Mixed Norm (LMN) reconstruction results for originally non-sparse permeability field 

using spatially fixed observation points and untrained basis: rows two to four show the estimation results 

with increasing sparsity level (top to bottom). 
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LMN reconstruction results for spatially fixed observation points (prior-trained basis)  
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3.4 Sensitivity to Observation Errors 

The results presented in previous sections assumed perfect observations, which is often 

not the case in practice. In this section sensitivity of the estimates to different levels of 

measurement errors is studied. The ill-posed nature of the problem necessitates such 

sensitivity studies to assess the robustness of the reconstruction formulation to the noise 

level in the measurements. Figure 3.7 shows the estimation results for LMN estimate in a 

similar experiment to that shown in Figure 3.6. In this example additive Gaussian 

pseudo-random noise with zero mean and standard deviations equivalent to 5%, 10%, 

20%, and 50% of the observation mean are considered in the reconstruction.  

 

From Figure 3.7 reconstruction results appear to be quite robust for noise levels less than 

20% while degradation in the quality is observed when higher noise levels are 

considered.  At noise levels of 50% or more the reconstruction loses the location of the 

present channels in the field. However, for this application, since point measurements in 

the field have very small errors associated with them, higher level of measurement errors 

does not seem to be a major concern. This may become an important issue when remotely 

sensed seismic observations with higher levels of uncertainty are integrated. 
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Obs. Std. = 0% 

Obs. Std. = 5% 

Obs. Std. = 10% 

Obs. Std. = 20% 

Obs. Std. = 50% 

Figure 3.7 Sensitivity of the LMN reconstruction results to errors in the measurements: effect of different levels of 

measurement errors (0%, 5%, 10%, 20%, and 50%) on the quality on the estimates (rows two to six, respectively) 

is depicted. The degradation in the quality of the estimates is most pronounced for noise levels above 20% of the 

mean values. 

 

Sensitivity of the reconstruction to level of noise in observations 
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3.5 Conclusions 

The results presented in this chapter leads to the conclusion that the l1 norm can represent 

the sparsity constraint in the reconstruction of sparse (or approximately sparse) signals 

while the l2 norm fails to do so without additional assumptions. The l2 norm could provide 

reasonable reconstruction results only when accurate prior information was included. For 

the sparsity constraint formulation to perform well, it is also essential to constrain the 

algorithm with observations that provide sufficient information content (signal support 

coverage).  The examples suggested that a large number of localized observations may 

constrain the reconstruction algorithm less than fewer observations that are distributed 

through the domain and provide a good global coverage. This may or may not be the case 

in realistic reservoirs depending on the field type and production strategies; however, it is 

an important consideration in applying the proposed approach. 

 

While in realistic reservoirs point observations can be limited due to prohibitive data 

acquisition costs, other sources of information may be present to constrain the 

reconstruction algorithm. One of the most frequently used observation types is the 

dynamic production information. These observations are obtained during the 

development phase of the reservoir and indicate reservoir’s response to specified 

injection/production strategies at well locations. This is investigated further in Chapter 4. 
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Chapter 4 

 

Inversion Using Dynamic Observations 

 

This chapter discusses the application of the methodology proposed in previous chapters 

to an inverse problem with time-variant state-space model. The model describes 

displacement of two immiscible fluids (oil and water) in subsurface media by solving the 

system of equations in (1.1)-(1.3). The chapter starts with a description of the 

experimental setup and the water-flooding example that will be used in the inversion 

study. The inversion formulation and an overview of the solution method is discussed 

next, followed by the presentation of several examples that are used to illustrate the 

importance of prior training versus sparsity constraint.  
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4.1 Experimental Setup 

A water flooding example that is also studied in [4,34] is considered in this section. In 

this example a 450 m × 450 m × 10 m synthetic reservoir is discretized into a two-

dimensional 45 × 45 × 1 uniform grid block system, as shown in Figure 1.1. The 

simulations are performed with the commercially available ECLIPSE [8] reservoir 

simulator, which is set up for two phase (oil and water) black oil flow. Observations after 

90 days of simulations are integrated as dynamic production data. Horizontal wells with 

45 ports are used to inject water uniformly into the left side of the reservoir and to 

produce oil and water from the right side end. The injection wells are operated with 

specified flow rates while the production wells are operated with specified pressures 

(2950 psi).   

 

In this study the only source of simulator uncertainty is the permeability, which is treated 

as a random field. Initial and boundary conditions are assumed to be known perfectly and 

dynamic model errors are assumed to be negligible. The initial reservoir pressure and 

water saturation are 3000 psi and 0.10, respectively, throughout the reservoir. Two types 

of measurements are assumed to be available: 1) pressure observations at each of the 45 

ports in the injection wells and 2) oil and water flow rate measurements at each of the 45 

ports in the production wells. In each experiment the observations of injection well 

pressures and production well flow rates are generated by running the simulator from a 

specified “true” permeability field. After integrating the observations on day 90, the 

permeability estimates are used to perform flow simulations for 360 days to predict future 

saturation profiles and compare them with the true saturations. 
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4.2 Problem Formulation with Dynamic Observations 

The compressed sensing framework and examples presented in previous chapters were 

only for interpolation problems and dynamic observations were not included. In addition, 

it was clear from examples in Section 3.3.2 that when the number of observations is 

reduced and observation locations are fixed, the theoretical requirements of the 

compressed sensing algorithm may not be met and the reconstruction can become under-

constrained. However, in dynamic systems time-variant information may be available to 

help further constrain the reconstruction problem.  

 

Dynamic observations usually provide additional information about the response of the 

system to specified input forcing. While the response may be observed in a particular 

location, it is often lumped and contains regional or even global information about 

existing features in the system. Therefore, dynamic observations can often provide 

information about a system that goes beyond the measurement location and can be used 

to make inferences about the unknown global attributes of the system.  

 

In dynamical systems, a parameter estimation approach can be formulated that include 

sparsity constraint, prior information, and observation of static and dynamic attributes of 

the system as discussed in Section 2.5. The resulting objective function is given below: 
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The nonlinear constraint g(.) represents mass and momentum conservation principles that 

are used in deriving equations (1.1)-(1.3). Adjoint-based optimization methods can be 

used to derive the normal equations of the augmented objective function and compute, 

quite efficiently, its gradient with respect to unknown parameters in spatial domain. 

Gradient-based search algorithms that can be used to minimize objective functions of this 

type have been reported in the literature [31,32]. A particularly suitable search method 

for the problem of interest in this section is the quasi-Newton LBFGS  algorithm [31,32].  

 

The adjoint solution is implemented in the commercial reservoir simulator used in this 

research and the LBFGS implementation in MATLAB’s fmincon [28] has been used to 

find the solutions. It is important to note that the output gradients from ECLIPSE are 

computed for well variables (i.e h(x)) with respect to the original parameters in the spatial 

domain. Therefore, the differentiation chain rule has to be used to obtain the Jacobian of 

the objective function with respect to the retained DCT coefficients as follows: 
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Where J1, J2, and J3 refer to the first, second, and third term of the right hand side of the 

objective function (4.2).  In addition, 
x

xh
~d

~d )(
 can be computed through the differentiation 

chain rule and using
y

yh

d

d )(
, which is the gradient information calculated by the 

simulator:   
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The final result can be written as: 
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All the terms in this Jacobian equation are known and the LBFGS search method can be 

used to reduce the value of this objective function to its (local) minimum.  

 

A few remarks are in order before ending this section: first, in doing the parameter 

estimation, the logarithm of the permeability field is usually used instead of the original 

permeability values. This leads to a slight modification (change of variable) in equations 

(4.1)-(4.2), which is not shown here. Second, since the LBFGS is a gradient-based search 

method and the objective function is nonlinear and non-convex, it is likely for the search 

algorithm to be trapped in a local minimum. Therefore, unlike the LP and QP formulation 

of previous chapters, a global minimum solution is not guaranteed.  
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4.3 Estimation/Reconstruction Results 

In this section the results for integration of dynamic measurements in the reconstruction 

with and without sparsity constraint are presented. The cases with trained and untrained 

bases are also considered separately. First, a solution is presented without including any 

prior information and where no assumption has been made about the sparsity of the 

parameter. This is followed by examples in which different levels of prior information are 

incorporated as discussed briefly here. 

 

First, the prior information can be included through providing a selected set of more 

relevant basis vectors using the available image library or training images. The new basis 

vectors contain information about the directionality of the existing features, which can 

make the solution sensitive to the accuracy of the specified prior. This approach does not 

include information about sparsity and is used as a reference case to evaluate the 

performance of the solution with sparsity constraint and trained basis. To address the 

issue of sensitivity to prior specification, a second method can be considered in which the 

prior knowledge enters in the form of sparsity constraints without including any 

information about the directionality of the features present in the library.  This approach 

is particularly useful for situations in which the prior knowledge is either unavailable or 

inaccurate. However, when dependable prior information is available, the search space 

can be trained and a more appropriate subset of basis images can be selected, in addition 

to the sparsity constraint. The results for all of these implementations are presented and 

discussed in this section. 
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4.3.1 Solution with Untrained Basis and No Sparsity Constraint  

The solution discussed in this section is related to the case in which no basis training is 

performed and the sparsity constraint is not included in the objective function. That is, γ2 

is set equal to zero in equation (4.1) and the prior information has not been used to train 

DCT basis vectors. Therefore, a solution is sought without providing any directionality 

preference or weighting for DCT basis vectors. Figure 4.1 shows the reconstruction plots 

and the reduction in objective function after each iteration in the minimization. The 

maximum number of minimization iterations was set to 20 as in most cases after 10 

iterations no major improvement was observed in the objective function and the 

estimated parameters. In general, it was observed that the algorithm took some time to 

eliminate incorrect high permeability regions in the initial field at locations away from 

the observation areas. Even in the end, small signatures of these regions can be seen in 

the estimates.  

 

It is clear from Figure 4.1 that the reconstruction algorithm can not identify the 

connectivity of the channels even though accurate observations from the two ends of the 

reservoir are available and included. Without including the sparsity constraint and prior 

information, the reconstruction algorithm appears to have failed to capture the shape of 

the channels and overestimates (darker red) the values of high permeability areas while it 

underestimates (darker blue) low permeability regions. These over-/under- estimations 

can compensate for each other in terms of fluid flow velocity and may produce a net 

(average) travel time that is consistent with the observations. In the next section, an 

identical experiment is conducted in which sparsity constraint is added to the objective 
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function. However, no prior assumption is made about the directionality of the channels 

and the weighting matrix (W) is identity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Reconstruction results for inversion with static and dynamic measurements without using prior 

information and sparsity constraint: (a) log-perm after each minimization iteration; (b) reduction in the 

objective function at each iteration. 
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(b) Reduction in objective function after each minimization iteration. 

(a) Permeability estimates after each minimization iteration 



 73 

4.3.2 Solution with Untrained Basis and Sparsity Constraint 

Figure 4.2 shows the solution of the same inverse problem as in Section 4.3.1 when 

sparsity constraint is added to the objective function. The other terms in the objective 

function remain identical to the previous example. As seen in Figure 4.2 the sparsity 

constraint seems to be able to connect the two end of the reservoir where measurements 

are taken. It is important to note that the algorithm did not use any information about 

presence of channelized structures and their directionality in the field, nevertheless it was 

able to approximately detect the shape of the existing channels.  

 

A comparison between Figures 4.2 and 3.4 (similar experiment without dynamic 

measurements) reveals that the production data have played a major role in capturing the 

existing channel structure. It is noteworthy that even though these observations were 

collected at exactly the same locations as static measurements, they provide lumped 

information about values of the permeability away from the observation points. This 

result is promising as it indicates the usefulness of the approach in problems where static 

point observations are limited in space and dynamic measurements may be available to 

provide additional information about unobserved locations.  
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(a) Permeability estimates after each minimization iteration 

Iteration 

Objective 

Function 

 

(b) Reduction in objective function after each minimization iteration. 

Figure 4.2 Reconstruction results for inversion with static and dynamic measurements without using prior 

information and when sparsity constraint in included: (a) log-perm after each minimization iteration; (b) 

reduction in the objective function at each iteration. 
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4.3.3 Solution with Trained Basis and No Sparsity Constraint 

In this example, a similar problem to Section 4.3.1 is considered, except that the training 

library is used to pre-select more relevant basis vectors for the reconstruction. The 

solution is expected to depend on the accuracy of the prior information. However, since 

the prior library is statistically representative of the unknown features in this example, the 

solution is likely to improve compared to the example of Section 4.3.1.  

 

Figure 4.3 illustrates the results for this example. It is observed that even when prior 

information provides knowledge about orientation of the existing channels, the algorithm 

fails to detect the shape and connectivity of the two channels. Unlike the convex 

examples in Chapter 2, it is possible that the minimization algorithms in this chapter are 

trapped in a local minimum due to the nonlinearities in the model. The results suggest 

that, without the sparsity constraint, the problem is still under-constrained even when 

dynamic measurements are used to further constrain the solution.  

 

4.3.4 Solution with Trained Basis and Sparsity Constraint 

The last example of this section evaluates the reconstruction performance when sparsity 

constraint is included in the objective function and the prior training library is used to 

select more relevant basis images for the reconstruction. The minimization iterations and 

final solution are shown in Figure 4.4. As expected, the reconstruction quality is better in 

this case than all the other examples in previous sections since all sources of information 

are incorporated into the problem.  
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Figure 4.3 Reconstruction results for inversion with static and dynamic measurements using prior information 

and without sparsity constraint: (a) log-perm after each minimization iteration; (b) reduction in the objective 

function at each iteration. 
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(b) Reduction in objective function after each minimization iteration. 

 

(a) Permeability estimates after each minimization iteration 
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Figure 4.4 can be compared with Figures 4.3 and 4.2 to evaluate the effect of adding 

sparsity constraint and prior model, respectively. It is evident from these comparisons 

that sparsity has a stronger effect on the quality of the solution than prior training does. 

This is not unexpected because in these examples the important basis images are present 

in both trained and untrained cases (from Chapter 2, even S=15 coefficients out of 78 can 

provide a reasonable approximation). The untrained basis, however, contains some 

irrelevant basis images (e.g. those that represent vertical variability for instance) that are 

truncated in the case of the prior trained basis. On the other hand, the sparsity constraint 

is more important because it removes non-sparse local solutions.   

 

Finally, Figure 4.5 shows saturation predictions using the estimated permeabilities in 

above experiments. Figure 4.5a has the predictions using the true permeability model and 

the rows in Figure 4.5b, i.e. (b1)-(b4), contain the same predictions using the final 

permeability estimates in each of the experiments described above. The predictions with 

permeability estimates under sparsity constraint, (b2) and (b4), are similar and closer to 

the true predications. However, the main absent feature in these two predictions is the 

leftover oil on the top section of the reservoir at the end of the simulation (36 months) as 

indicated by the true predictions (first row). This appears to be mainly due to the lack of 

observations from the mid-section of the field to reveal the presence of the low-

permeability feature on the top. 
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Figure 4.4 Reconstruction results for inversion with static and dynamic measurements without using prior 

information and sparsity constraint: (a) log-perm at each minimization iteration; (b) reduction in the objective 

function after each iteration. 
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(b) Reduction in objective function after each minimization iteration. 

(a) Permeability estimates after each minimization iteration 
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On the other hand, the predictions without using the sparsity constraint, (b1) and (b3), 

deviate greatly from the true predictions as expected from the poor permeability 

estimation results.  The water saturation fronts (blue) in these two cases move faster in 

the beginning (first 6 months) due to overestimated permeabilities on the left side of the 

reservoir. However, these saturation fronts are delayed when they hit the discontinuity on 

the right hand side. It appears from these figures that these two effects tend to cancel each 

other and the net arrival time of the front at the production side is similar to predictions 

with the connected true permeability. 

 

Based on the results presented in this section, dynamic measurements appear to provide 

useful information about unsampled points of the permeability to guide the reconstruction 

algorithm. When sparsity constraint is not used, the addition of the new dynamic 

measurements is not sufficient to constrain the inversion and minimization is likely to be 

stuck in a local solution. However, when sparsity is used to constrain the likely solutions, 

the solution appears to better resemble the true permeability field. This however, does not 

mean that a global minimum is found as the objective function is not convex and several 

local solutions may exist. Nevertheless, the sparsity constraint tends to avoid irrelevant 

and disconnected local solutions of the ill-posed inverse problem. In a sense, by requiring 

sparsity in the DCT domain, continuity seems to be achieved in the spatial domain, which 

is desirable for characterization of geological structures.  
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Log-Perm Saturation Forecast 

initial 6 months 18 months 36 months 

b) Estimated log-perms and their corresponding saturation forecasts 

a) True log-perm and its corresponding saturation forecasts 

(b1) 

(b2) 

(b3) 

(b4) 

Figure 4.5 Saturation forecasts using the estimated permeabilities for experiments in section 4.3: (a) true log-

permeability and saturation distribution; (b1)-(b4) estimated permeabilites and saturations for sections 4.3.1 – 

4.3.4, respectively. 
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Chapter 5 

 

Conclusions and Future Directions 

This chapter presents a summary of the conclusions that can be drawn from previous 

chapters of this thesis. It also outlines the contribution of this thesis and possible future 

research directions. 

 

5.1 Thesis Conclusion  

In this thesis, an estimation approach was introduced for solving ill-posed inverse 

problems with unknown parameters that are approximately sparse in a transformed 

domain such as DCT. The formulation has its origin in basis pursuit and compressed 

sensing, with widespread application in signal processing and data compression. The 

method was examined in several interpolation examples, starting with a setup that 

satisfied the theoretical requirements of the formulation. Some of the restrictive 

assumptions that are hard to realize in practice were relaxed to make the method 

applicable to realistic problems. The formulation was also considered in dynamic inverse 
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problems where observations of time-variant quantities are used to constrain the proposed 

reconstruction algorithm further.  

 

In general, it is concluded that the sparsity constraint can improve the solution of the ill-

posed problems, in which the unknown parameters have an approximately sparse 

representation in compression domains such as DCT. The theoretical perfect 

reconstruction was observed in the interpolation problems only when a relatively large 

number of observations (compared to level of sparsity) at random locations were used. 

Unfortunately, perfect reconstruction is more sensitive to degree of sparsity and number 

of observation than it is to the dimension of search space. This can have practical 

implications in the areas where the number of observations and the level of sparsity can 

not be controlled. Therefore, applicability of the approach in situations where the 

observations are limited and the sparsity requirements may not be perfectly satisfied was 

evaluated. 

 

The quality of reconstruction was adversely affected when the observations were fixed 

and limited in space and the original image was approximately sparse (with many non-

zero but small coefficients).  However, compared to the experiments in which no sparsity 

constraints were used, the estimation results were significantly better when sparsity 

constraint was included.  

 

Several nonlinear inversion experiments with dynamic observations were also conducted 

to examine the influence of the sparsity constraint in these settings. The results of these 
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experiments are in agreement with the general conclusions drawn from the interpolation 

examples; that is, the sparsity constraint enhances the reconstruction of the unknown 

large scale features (patterns) by providing a systematic way of identifying the significant 

basis vectors and tuning their corresponding coefficients. The proposed estimation 

approach seems to be a suitable framework for detecting continuous objects such as 

geological facies and channels. These results may also hold in other similar applications 

where the solution to under-constrained inverse problems with (nearly) sparse unknown 

parameters in an incoherent basis is desired, e.g. in geophysics, medical imaging, and 

pattern recognition.  

 

5.2 Thesis Contributions and Future Research Directions 

The original contributions of this thesis can be summarized as: 

 

1) Adaptation of the compressed sensing framework for solving linear 

interpolation problems to estimate smooth and continuous 

parameters that exhibit “approximately” sparse behavior in an 

incoherent transform domain such as DCT. 

 

2) Extension of the new formulation to nonlinear inverse problems 

with a dynamical state-space model and more realistic 

assumptions about observation quantity and distribution. 
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While the proposed formulation in this thesis has its origin in compressed sensing theory, 

the novelty and contribution of this thesis lies in the adaptation and successful application 

of this theory to problems in which theoretical assumptions about observed quantities and 

their spatial distributions, as well as the perfect sparsity of the original signal, were 

violated. Also, reduction of the search subspace dimension (N) was proposed to improve 

the computational complexity and efficiency of the algorithm. In addition, the 

reconstruction problem was applied to nonlinear and ill-posed inverse problems with only 

approximately sparse unknown parameters and limited observations in space.  

 

In summary, the results presented in this research suggest that sparsity constraint 

provides a promising approach for inversion of ill-posed problems with approximately 

sparse unknowns in a complementary transform domain. However, there are several 

issues to be studied before successful application of the current form of this method is 

achieved in practice. The study in this thesis has been limited to simple two dimensional 

examples with a good prior model (when it was used). Therefore, success in generalizing 

the proposed approach to realistic situations with more complex three dimensional 

features cannot be assumed. It will be interesting to see the performance of the proposed 

algorithm in retrieving complex three dimensional features.  

 

Finally, these results and the important implications that they may have in dealing with 

many real-world ill-posed inverse problems (such as geophysical inverse problems, 

subsurface characterization, and medical imaging to name a few) call for evaluation of 

the proposed inversion algorithm in large-scale problems. Several topics can be studied in 
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future, including estimation of more complex features and patterns, selection of a more 

specialized basis than the DCT for a given application, incorporation of remotely sensed 

data such as 3D and 4D seismic, and integration of observations at different scales and 

with different resolution.  
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