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Abstract—Estimation of a vector from quantized linear mea-
surements is a common problem forwhich simple linear techniques
are suboptimal—sometimes greatly so. This paper develops mes-
sage-passing de-quantization (MPDQ) algorithms for minimum
mean-squared error estimation of a random vector from quan-
tized linear measurements, notably allowing the linear expansion
to be overcomplete or undercomplete and the scalar quantization
to be regular or non-regular. The algorithm is based on general-
ized approximate message passing (GAMP), a recently-developed
Gaussian approximation of loopy belief propagation for estimation
with linear transforms and nonlinear componentwise-separable
output channels. ForMPDQ, scalar quantization of measurements
is incorporated into the output channel formalism, leading to the
first tractable and effective method for high-dimensional esti-
mation problems involving non-regular scalar quantization. The
algorithm is computationally simple and can incorporate arbitrary
separable priors on the input vector including sparsity-inducing
priors that arise in the context of compressed sensing. More-
over, under the assumption of a Gaussian measurement matrix
with i.i.d. entries, the asymptotic error performance of MPDQ
can be accurately predicted and tracked through a simple set
of scalar state evolution equations. We additionally use state
evolution to design MSE-optimal scalar quantizers for MPDQ
signal reconstruction and empirically demonstrate the superior
error performance of the resulting quantizers. In particular, our
results show that non-regular quantization can greatly improve
rate-distortion performance in some problems with oversampling
or with undersampling combined with a sparsity-inducing prior.

Index Terms—Analog-to-digital conversion, approximate mes-
sage passing, belief propagation, compressed sensing, frames,
non-regular quantizers, overcomplete representations, quantiza-
tion, Slepian-Wolf coding, Wyner-Ziv coding.
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I. INTRODUCTION

E STIMATION of a signal from quantized samples is a fun-
damental problem in signal processing. It arises both from

the discretization in digital acquisition devices and the quanti-
zation performed for lossy compression.
This paper considers estimation of an i.i.d. vector from

quantized transformed samples of the form where
is a linear transform of and is a scalar (componen-

twise separable) quantization operator. Due to the transform
, the components of may be correlated. Even though the

traditional transform coding paradigm demonstrates the advan-
tages of expressing the signal with independent components
prior to coding [1], quantization of vectors with correlated com-
ponents nevertheless arises in a range of circumstances. For
example, to model oversampled analog-to-digital conversion
(ADC), we may write a vector of time-domain samples as
, where the entries of the vector are statistically indepen-

dent Fourier components and is an oversampled inverse dis-
crete Fourier transform. The oversampled ADC quantizes the
correlated time-domain samples , as opposed to the Fourier
coefficients . Distributed sensing also necessitates quantiza-
tion of components that are not independent since decorrelating
transforms may not be possible prior to the quantization. More
recently, compressed sensing has become a motivation to con-
sider quantization of randomly linearly mixed information, and
several sophisticated reconstruction approaches have been pro-
posed [2]–[4].
Estimation of a vector from quantized samples of the form

is challenging because the quantization function is
nonlinear and the transform couples, or “mixes,” the compo-
nents of , thus necessitating joint estimation. Although recon-
struction from quantized samples is typically linear, more so-
phisticated, nonlinear techniques can offer significant improve-
ments in the case of quantized transformed data. A key example
is ADC, where the improvement from replacing conventional
linear estimation with nonlinear estimation increases with the
oversampling factor [5]–[13].
We propose a simple reconstruction algorithm called mes-

sage-passing de-quantization (MPDQ) that improves upon the
state of the art. The algorithm is based on a recently-devel-
oped Gaussian-approximated belief propagation (BP) algorithm
called generalized approximate message passing (GAMP) [14]
or relaxed belief propagation [15], [16], which extends earlier
methods [17]–[19] to nonlinear output channels. The applica-
tion of GAMP to de-quantization was first introduced in a con-
ference version of this paper [20] for regular quantization in a
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compressive acquisition setting; the present paper provides ex-
tensive explanations and simulations for both overcomplete and
undercomplete settings, with both regular and non-regular quan-
tization.MPDQ is the first computationally-tractablemethod for
settings with non-regular quantization.

A. Contributions

Gaussian approximations of loopy BP have previously been
shown to be effective in several other applications [16]–[19],
[21], [22]; for our application to estimation from quantized sam-
ples, the extension to general output channels [14], [16] is es-
sential. Using this extension to nonlinear output channels, we
show that MPDQ estimation offers several key benefits:
• General quantizers: The MPDQ algorithm permits essen-
tially arbitrary quantization functions including non-
uniform and even non-regular quantizers (i.e., quantizers
with cells composed of unions of disjoint intervals) used,
for example, in Wyner-Ziv coding [23] and multiple de-
scription coding [24]. In Section VI, we will demonstrate
that a non-regular modulo quantizer can provide perfor-
mance improvements for correlated data. We believe that
the MPDQ algorithm provides the first tractable estimation
method that can exploit such quantizers.

• General priors:MPDQ estimation can incorporate a large
class of priors on the components of , provided that the
components are independent. For example, in Section VI,
we will demonstrate the algorithm on recovery of vectors
with sparse priors arising in quantized compressed sensing
[2]–[4].

• Exact characterization with random transforms: In the
case of certain large random transforms , the componen-
twise performance of MPDQ can be precisely predicted
by a so-called state evolution (SE) analysis presented in
Section V-A. From the SE analysis, one can precisely eval-
uate any componentwise performance metric, including
mean-squared error (MSE). In contrast, works such as
[5]–[13] mentioned above have only obtained bounds or
scaling laws.

• Performance: Our simulations indicate significantly-im-
proved performance over traditional methods for esti-
mating from quantized samples in a range of scenarios.

• Computational simplicity: The MPDQ algorithm is com-
putationally extremely fast. Our simulation and SE anal-
ysis indicate good performance with a small number of it-
erations (10 to 20 in our experience), with the dominant
computational cost per iteration simply being multiplica-
tion by and .

• Applications to optimal quantizer design:When quantizer
outputs are used as inputs to a nonlinear estimation algo-
rithm, minimizing the MSE between quantizer inputs and
outputs is generally not equivalent to minimizing the MSE
of the final reconstruction [25]. To optimize the quantizer
for the MPDQ algorithm, we use the fact that the MSE
under large random mixing matrices can be predicted
accurately from a set of simple SE equations [14], [15].
We use the SE formalism to optimize the quantizer to min-
imize the asymptotic distortion after the reconstruction by
MPDQ. Note that our use of random is for rigor of the

SE formalism; the effectiveness of MPDQ does not depend
on this.

B. Outline

The remainder of the paper is organized as follows. Section II
provides basic background material on quantization and
compressed sensing. Section III introduces the problem of
estimating a random vector from quantized linear transform
coefficients. It concentrates on geometric insights for both the
oversampled and undersampled settings. Section IV presents
theMPDQ algorithm by formulating the reconstruction problem
in Bayesian terms. Note that this Bayesian formulation does
not require sparsity of the signal nor specify undersampling or
oversampling. Section V describes the use of SE to optimize
the quantizers for MPDQ reconstruction. Experimental results
are presented in Section VI. Section VII concludes the paper.

Notation

Vectors and matrices will be written in boldface type
to distinguish from scalars written in normal

weight . Random and non-random quantities (or
random variables and their realizations) are not distinguished
typographically since the use of capital letters for random vari-
ables would conflict with the convention of using capital letters
for matrices (or in the case of quantization, an operator on a
vector rather than a scalar). The probability density function
(p.d.f.) of random vector is denoted , and the conditional
p.d.f. of given is denoted . When these densities are
separable and identical across components, we use for the
scalar p.d.f. and for the scalar conditional p.d.f. Writing

indicates that is a Gaussian random variable
with mean and variance . The resulting p.d.f. is written as

.

II. BACKGROUND

This section establishes concepts and notations central to the
paper. For a comprehensive tutorial history of quantization, we
recommend [26]; and for an introduction to compressed sensing,
[27].

A. Scalar Quantization

A -level scalar quantizer is defined by its output
levels or reproduction points and (partition) cells

. It can be decomposed into a composition of two
mappings where is the
(lossy) encoder and is the decoder. The
boundaries of the cells are called decision thresholds. One may
allow to denote that is countably infinite.
A quantizer is called regular when each cell is a convex set,

i.e., a single interval. Each cell of a regular scalar quantizer thus
has a boundary of one point (if the cell is unbounded) or two
points (if the cell is bounded). When the input to a quantizer
is a continuous random variable, it suffices to specify the cells
of a -point regular scalar quantizer by its decision thresholds

, with and ; the encoder satisfies

and the output for boundary points can be safely ignored.
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The lossy encoder of a non-regular quantizer can be decom-
posed into the lossy encoder of a regular quantizer followed
by a many-to-one integer-to-integer mapping. Suppose -level
non-regular scalar quantizer has decision thresholds ,
and let be the lossy encoder of a regular quantizer with these
decision thresholds. Since is not regular, . Let

denote the lossy encoder of . Then
, where

is called a binning function, labeling function, or index assign-
ment. The binning function is not invertible.
The distortion of a quantizer applied to scalar random vari-

able is typically measured by the MSE

A quantizer is called optimal at fixed rate when it
minimizes distortion among all -level quantizers. To opti-
mize scalar quantizers under MSE distortion, it suffices to con-
sider only regular quantizers; a non-regular quantizer will never
perform strictly better.
While regular quantizers are optimal for the standard lossy

compression problem, non-regular quantizers are sometimes
useful when some information aside from is available
when estimating . Two key examples are Wyner-Ziv coding
[23] and multiple description coding [24]. One method for
Wyner-Ziv coding is to apply Slepian-Wolf coding across a
block of samples after regular scalar quantization [28]; the
Slepian-Wolf coding is binning, but across a block rather than
for a single scalar. In multiple description scalar quantization
[29], two binning functions are used that together are invertible
but individually are not. In these uses of non-regular quantizers,
side information aids in recovering with resolution commen-
surate with while the rate is only commensurate with ,
with .
A quantizer is called a scalar quantizer when

it is the Cartesian product of scalar quantizers . In
this paper, always represents a scalar quantizer with identical
component quantizers .

B. Compressed Sensing

An important value of the proposedMPDQ framework is that
it can exploit non-Gaussian priors on the input vector . To il-
lustrate this feature, wewill apply theMPDQ algorithm to quan-
tization problems in compressed sensing (CS) [30]–[32], which
considers the reconstruction of sparse vectors through ran-
domized linear transforms.
A vector is sparse if it has a relatively small number of

nonzero components. A central principle of CS is that sparse
vectors can be reconstructed from certain underdetermined
linear transforms , where and . Such
linear transforms can thus be used as a form of “compression”
on , reducing the vector’s dimension from to a smaller value
. Since many signals are naturally sparse in some domain,

there are now a large number of works advocating CS methods
in analog front ends prior to quantization to reduce the overall

acquisition bit rate. However, properly understanding the
rate-distortion performance of such approaches requires that
we analyze and design CS reconstruction methods precisely
accounting for the effects of quantization on the transform-do-
main measurements [33].
Analysis and design of CS reconstruction algorithms is chal-

lenging, even in the absence of quantization. Most approaches
are based on either greedy heuristics (matching pursuit [34] and
its variants with orthogonalization [35]–[37] and iterative re-
finement [38], [39]) and convex relaxations (basis pursuit [40],
LASSO [41], Dantzig selector [42], and others). These methods
are all nonlinear and their performance can be difficult to pre-
cisely characterize, particularly with quantization. Some ini-
tial performance bounds for CS reconstruction with quantiza-
tion can be found in [33], [43]. In [44], high-resolution func-
tional scalar quantization theory was used to design quantizers
for LASSO estimation. The papers [2]–[4] consider alternate re-
construction algorithms that use the partition cells of the quan-
tizers that compose . Analyses of these methods produce per-
formance bounds that are not generally tight. Moreover, the re-
sults are generally limited to specific sparsity priors as well as
regular quantizers.
We will show here that the MPDQ framework enables CS

reconstruction for a large class of sparse priors and essentially
arbitrary quantization functions. Moreover, the method is com-
putationally simple and, for certain large random transforms,
admits an exact performance analysis.

III. QUANTIZED LINEAR EXPANSIONS

This paper focuses on the general quantized measurement ab-
straction of

(1)

where is a signal of interest, is a linear
mixing matrix, and is a scalar quantizer. We will
be primarily interested in (per-component) MSE

for various estimators that depend on , , and . The
cases of and are both of interest. We sometimes
use to simplify expressions.

A. Overcomplete Expansions

Let have rank . Then is a frame in ,
where is row of . Rank can occur only with , so

is called an overcomplete expansion of . In some cases of
interest, the frame may be uniform, meaning for each
.
Commonly-used linear reconstruction forms estimate

(2)

where is the pseudoinverse of . Linear
reconstruction generally has MSE inversely proportional to .
For example, suppose the frame is uniform, ,
and is an unknown deterministic quantity. By modeling scalar
quantization as the addition of zero-mean white noise, one can
compute the MSE to be [45].
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Fig. 1. Visualizing the information present in a quantized overcomplete expansion of when is a regular quantizer (a) A single hyperplane wave partition
with one single-sample consistent set shaded (b) Partition boundaries from two hyperplane waves; is specified to the intersection of two single-sample consistent
sets, which is a bounded convex cell (c) Partition from part (b) in dashed lines with a third hyperplane wave added in solid lines.

Even when an additive white noise model is accurate [46], the
linear reconstruction (2) may be far from optimal. A nonlinear
estimate may exploit the boundedness of the single-sample con-
sistent sets

Assuming for now that scalar quantizer is regular and its cells
are bounded, the boundary of is two parallel hyperplanes.
The full set of hyperplanes obtained for one index by varying
over the output levels of is called a hyperplane wave parti-

tion [47], as illustrated for a uniform quantizer in Fig. 1(a). The
set enclosed by two neighboring hyperplanes in a hyperplane
wave partition is called a slab; one slab is shaded in Fig. 1(a).
Intersecting for distinct indexes specifies an -dimen-
sional parallelotope as illustrated in Fig. 1(b). Using more than
of these single-sample consistent sets restricts to a finer par-

tition, as illustrated in Fig. 1(c) for .
The intersection

is called the consistent set. Since each is convex, one may
reach asymptotically through a sequence of projections
onto using each infinitely often [5], [6].
In a variety of settings, nonlinear estimates achieve MSE in-

versely proportional to , which is the best possible depen-
dence on [47]. The first result of this sort was in [5]. When
is an oversampled discrete Fourier transform matrix and

is a uniform quantizer, represents uniformly quantized
samples above Nyquist rate of a periodic bandlimited signal.
For this case, it was proven in [5] that any has

MSE, under a mild assumption on . This was ex-
tended empirically to arbitrary uniform frames in [7], where
it was also shown that consistent estimates can be computed
through a linear program. The techniques of alternating projec-
tions and linear programming suffer from high computational
complexity; yet, since they generally find a corner of the con-
sistent set (rather than the centroid), the MSE performance is
suboptimal.

Full consistency is not necessary for optimal MSE depen-
dence on . It was shown in [8] that MSE is guar-
anteed for a simple algorithm that uses each only once,
recursively, under mild conditions on randomized selection of

. These results were strengthened and extended to de-
terministic frames in [13].
Quantized overcomplete expansions arise naturally in acqui-

sition subsystems such as ADCs, where represents over-
sampling factor relative to Nyquist rate. In such systems, high
oversampling factor may be motivated by a trade-off between
MSE and power consumption or manufacturing cost: within cer-
tain bounds, faster sampling is cheaper than a higher number of
quantization bits per sample [48]. However, high oversampling
does not give a good trade-off between MSE and raw number of
bits produced by the acquisition system: combining the propor-
tionality of bit rate to number of samples with the best-case

MSE, we obtain MSE; this is poor compared
to the exponential decrease of MSE with obtained with scalar
quantization of Nyquist-rate samples.
Ordinarily, the bit-rate inefficiency of the raw output is made

irrelevant by recoding, at or near Nyquist rate, soon after acqui-
sition or within the ADC. An alternative explored in this paper
is to combat this bit-rate inefficiency through the use of non-reg-
ular quantization.

B. Non-Regular Quantization

The bit-rate inefficiency of the raw output with regular quan-
tization is easily understood with reference to Fig. 1(c). After
and are fixed, is known to lie in the intersection of the

shaded strips. Only four values of are possible (i.e., the solid
hyperplane wave breaks into four cells), and bits
are wasted if this is not exploited in the representation of .
Recall the discussion of generating a non-regular quantizer

by using a binning function in Section II-A. Binning does not
change the boundaries of the single-sample consistent sets, but it
makes these sets unions of slabs that may not even be connected.
Thus, while binning reduces the quantization rate, in the absence
of side information that specifies which slab contains (at least



6274 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 12, DECEMBER 2012

Fig. 2. Visualizing the information present in a quantized overcomplete expansion of when using non-regular (binned) quantizers (a) A single hyperplane
wave partition with one single-sample consistent set shaded. Note that binning makes the shaded set not connected (b) Partition boundaries from two hyperplane
waves; is specified to the intersection of two single-sample consistent sets, which is now the union of four convex cells (c) A third sample now specifies to
within a consistent set that is convex.

with moderately high probability), it increases distortion signif-
icantly. The increase in distortion is due to ambiguity among
slabs. Taking quantized samples together may pro-
vide adequate information to disambiguate among slabs, thus
removing the distortion penalty.
The key concepts in the use of non-regular quantization are

illustrated in Fig. 2. Suppose one quantized sample spec-
ifies a single-sample consistent set composed of two
slabs, such as the shaded region in Fig. 2(a). A second quan-
tized sample will not disambiguate between the two slabs.
In the example shown in Fig. 2(b), is composed of two
slabs, and is the union of four connected sets. A
third quantized sample may now completely disambiguate;
the particular example of shown in Fig. 2(c) makes

a single convex set.
When the quantized samples together completely disam-

biguate the slabs as in the example, the rate reduction from
binning comes with no increase in distortion. The price to pay
comes in complexity of estimation.
The use of binned quantization of linear expansions was in-

troduced in [49], where the only reconstruction method pro-
posed is intractable in high dimensions because it is combinato-
rial over the binning functions. Specifically, using the notation
from Section II-A, let the quantizer forming be defined by

. Then will be a set of possible values
of specified by . One can try every combination, i.e.,
element of

(3)

to seek a consistent estimate. If the binning is effective, most
combinations yield an empty consistent set; if the slabs are dis-
ambiguated, exactly one combination yields a nonempty set,
which is then the consistent set . This technique has com-
plexity exponential in (assuming non-trivial binning). The
recent paper [50] provides bounds on reconstruction error for
consistent estimation with binned quantization; it does not ad-
dress algorithms for reconstruction.

This paper provides a tractable and effective method for re-
construction from a quantized linear expansion with non-regular
quantizers. To the best of our knowledge, this is the first such
method.

C. Undercomplete Expansions

Maintaining the quantizedmeasurement model (1), let us turn
to the case of . Since the rank of is less than ,
is a many-to-one mapping. Thus, even without quantization,

one cannot recover from . Rather, specifies a proper
subspace of containing ; when is in general position,
the subspace is of dimension . Quantization increases
the ambiguity in the value of , yielding consist sets similar
to those depicted in Figs. 1(a) and 2(a). However, as described
in Section II-B, knowledge that is sparse or approximately
sparse could be exploited to enable accurate estimation of
from .
For ease of explanation, consider only the case where is

known to be -sparse with . Let be
the support (sparsity pattern) of , with . The product

is equal to , where denotes the restriction of the
domain of to and is the submatrix of con-
taining the -indexed columns. Assuming has rank (i.e.,
full rank), is a quantized overcomplete
expansion of . All discussion of estimation of from the
previous subsections thus applies, assuming is known.
The key remaining issue is that may or may not pro-

vide enough information to infer . In an overcomplete repre-
sentation, most vectors of quantizer outputs cannot occur; this
redundancy was used to enable binning in Fig. 2, and it can be
used to show that certain subsets are inconsistent with the
sparse signal model. In principle, one may enumerate the sets
of size and apply a consistent reconstruction method for

each . If only one candidate yields a nonempty consistent
set, then is determined. This is intractable except for small
problem sizes because there are candidates for .
The key concepts are illustrated in Fig. 3. To have an inter-

pretable diagram with , we let
and draw the space of unquantized measurements . (This
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Fig. 3. Visualizing the information present in a quantized undercomplete expansion of a 1-sparse signal when . The depicted 2-di-
mensional plane represents the vector of measurements . Since is 1-sparse, the measurement lies in a union of 1-dimensional subspaces (the angled
solid lines); since is 3 dimensional, there are three such subspaces (a) Scalar quantization of divides the plane of possible values for into vertical strips. One
particular value of does not specify which entry of is nonzero since the shaded strip intersects all the angled solid lines. For each possible support,
the value of the nonzero entry is specified to an interval (b) Scalar quantization of both components of specifies to a rectangular cell. In most cases, including
the one highlighted, the quantized values specify which entry of is nonzero because only one angled solid line intersects the cell. The value of the nonzero entry
is specified to an interval (c) In many cases, including the one highlighted, the quantizers can be non-regular (binned) and yet still uniquely specify which entry
of is nonzero.

contrasts with Figs. 1 and 2where the space of is drawn.)
The vector has one of possible supports .
Thus, lies in one of 3 subspaces of dimension 1, which are de-
picted by the angled heavy lines. Scalar quantization of cor-
responds to separable partitioning of with cell boundaries
aligned with coordinate axes, as shown with lighter solid lines.
Only one quantized measurement is not adequate to

specify , as shown in Fig. 3(a) by the fact that a single shaded
cell intersects all the subspaces.1 Two quantized measurements
together will usually specify , as shown in Fig. 3(b) by the
fact that only one subspace intersects the specified square cell;
for fixed scalar quantizers, ambiguity becomes less likely as
decreases, increases, increases, or increases. Fig. 3(c)
shows a case where non-regular (binned) quantization still
allows unambiguous determination of .
The naïve reconstruction method implied by Fig. 3(c) is to

search combinatorially over both and the combinations in (3);
this is extremely complex. While the use of binning for quan-
tized undercomplete expansions of sparse signals has appeared
in the literature, first in [49] and later in [50], to the best of our
knowledge this paper is the first to provide a tractable and ef-
fective reconstruction method.

IV. ESTIMATION FROM QUANTIZED SAMPLES

In this section, we provide the Bayesian formulation of the
reconstruction problem from quantized measurements and in-
troduce the MPDQ algorithm as a low-complexity alternative
to belief propagation.

A. Bayesian Formulation

We now specify more explicitly the class of problems for
which we derive new estimation algorithms. Generalizing (1),
let

(4)

1Intersections with two subspaces are shown within the range of the diagram.

as depicted in Fig. 4. The input vector is random
with i.i.d. entries with prior p.d.f. . The linear mixing matrix

is random with i.i.d. entries . The
(pre-quantization) additive noise is random with i.i.d.
entries . The quantizer is a scalar quantizer
with identical component quantizers and has output levels.
Note that, the mapping from to is a separable probabilistic
mapping with identical marginals. Specifically, quantized mea-
surement indicates , so each component output
channel can be characterized as

where is the Gaussian p.d.f. We then construct the following
conditional probability distribution over random vector given
the measurements

(5)

where denotes identity after normalization to unity and
. The posterior distribution (5) of the signal provides a

complete statistical characterization of the problem. In partic-
ular, we wish to obtain a tractable approximation to the MMSE
estimator of specified by

(6)

B. Loopy Belief Propagation

Loopy BP [51], [52] is a popular computational method to ap-
proximate theMMSE estimator iteratively. The method
is based on computation of marginal probability distributions
of . To apply loopy BP to the quantization reconstruction
problem, construct a bipartite factor graph where
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Fig. 4. Quantized linear measurement model considered in this work. Vector
with an i.i.d. prior is estimated from scalar quantized measurements
. The quantizer input is the sum of and an i.i.d.

Gaussian noise vector .

denotes the set of variable or input nodes associated with
transform inputs , and is the set of factor
or output nodes associated with the transform outputs

. The set of (undirected) edges consist of the pairs
such that . Loopy BP passes the following mes-

sages along the edges of the graph:

(7a)

(7b)

where integration is over all the elements of except . We
refer to messages as variable updates and to
messages as factor updates. BP is initialized by
setting . The approximate marginal distri-
bution is computed as

(8)

Finally, the component of the estimate is computed as

(9)

When the graph induced by the matrix is cycle free,
the BP outputs will converge to the true marginals of the pos-
terior density . However, for general , loopy BP is only
approximate—the reader is referred to the references above for
a general discussion on the performance of loopy BP. We will
discuss the performance of the specific variant of loopy BP used
in MPDQ in detail in Section V-A. What is important here is the
computational complexity of loopy BP: Direct implementation
of loopy BP is impractical for the de-quantization problem un-
less is very sparse. For dense , the algorithm must compute
the marginal of a high-dimensional distribution at each mea-
surement node; i.e., the integration in (7b) is over many vari-
ables. Furthermore, integration must be approximated through
some discrete quadrature rule.

C. Message-Passing De-Quantization

To overcome the computational complexity of loopy BP, the
proposed MPDQ algorithm uses a Gaussian approximation.
Gaussian approximations of loopy BP have been used success-
fully in CDMA multiuser detection [15], [17], [18] and, more
recently, in compressed sensing [14], [16], [22]. We apply the
specific generalized approximate message passing (GAMP)
method in [14], which allows for nonlinear output channels.
The approximations are based on a Central Limit Theorem

and other second-order approximations at the measurement
nodes. Details can be found in [14]. Here, we simply restate the
algorithm as applied to the specific de-quantization problem.
Given the measurements , the measurement matrix

, the noise variance , the mapping of the scalar
quantizer, and the prior , the MPDQ estimation proceeds as
follows:
1) Initialization: Set and evaluate

(10a)

(10b)

(10c)

where the expected value and the variance are with respect
to the prior .

2) Factor update: First, compute the linear step

(11a)

(11b)

where denotes the Hadamard product (i.e., component-
wise multiplication). Then, evaluate the nonlinear step

(12a)

(12b)

where is an all-ones vector. The scalar functions and
are applied component-wise and given by

(13a)

(13b)

The expected value and the variance are evaluated with
respect to .

3) Variable update: First, compute the linear step

(14a)

(14b)

Then, evaluate the nonlinear step

(15a)

(15b)

where the scalar functions and are applied compo-
nent-wise and given by

(16a)

(16b)

The expected value and the variance are evaluated with
respect to . This is essen-
tially a scalar AWGN denoising problem with noise

.
4) Set and proceed to step 2).
For each iteration , the proposed update rules
produce estimates of the true signal . Thus the algorithm
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reduces the intractable high-dimensional integration to a se-
quence of matrix-vector products and scalar nonlinearities.
Note that scalar inequalities (13a) and (13b) are easy to eval-
uate since they admit closed-form expressions in terms of

. Depending on the prior distribu-
tion , the scalar inequalities (16a) and (16b) either admit
closed-form expressions or can be implemented as a look-up
table.

V. QUANTIZER OPTIMIZATION

A remarkable fact about MPDQ is that, under large random
transforms, the MPDQ performance can be precisely predicted
by a scalar state evolution (SE) analysis presented in this sec-
tion. One can then apply the SE analysis to the design of MSE
optimal quantizers under MPDQ reconstruction. Superior re-
construction performance of MPDQ with such quantizers is nu-
merically confirmed in the Section VI.

A. State Evolution for MPDQ

The computations (10)–(16) are easy to implement, however
they provide us no insight into the performance of the algorithm.
The goal of the SE equation is to describe the asymptotic be-
havior of MPDQ under large random measurement matrices .
For , it is defined as a recursion

(17)

where the scalar function implicitly depends on ,
the prior distribution , the mapping of the scalar quantizer,
and AWGN variance ; it is given by

(18a)

(18b)

(18c)

where and are defined in (13b) and (16b), respectively.
The recursion is initialized by setting , with
. The expectation in (18b) is taken over and

, where covariance matrix is given by

(19)

Similarly, the expectation in (18c) is taken over the scalar
random variable , with and .
One of the main results of [14], which is an extension of

the analysis in [19], was to demonstrate the convergence of the
error performance of the GAMP algorithm to the SE equations.
Specifically, these works consider the case where is an i.i.d.
Gaussian matrix, is i.i.d. with a prior and with

. Then, under some further technical conditions, it is
shown that for any fixed iteration number , the empirical joint
distribution of the components of the unknown vector
and its estimate converges to a simple scalar equivalent

model parameterized by the outputs of the SE equations. From
the scalar equivalent model, one can compute any asymptotic
componentwise performance metric. It can be shown, in partic-
ular, that the asymptotic MSE is given simply by . That is,

(20)

Thus, can be used as a metric for the design and analysis
of the quantizer, although other non-squared error distortions
could also be considered. Although our simulations will con-
sider dense transforms , similar SE equations can be derived
for certain large sparse matrices [15]–[18]. In this case, when
the fixed points of the SE equations are unique, it can be shown
that the approximate message passing method is mean-squared
error optimal.
To conclude, despite the fact that the prior on may be non-

Gaussian and the quantizer function is nonlinear, one can pre-
cisely characterize the exact asymptotic behavior of MPDQ at
least for large random transforms.

B. Optimization

Ordinarily, quantizer designs depend on the distribution of the
quantizer input, with an implicit aim of minimizing theMSE be-
tween the quantizer input and output. Often, only uniform quan-
tizers are considered, in which case the “design” is to choose
the loading factor of the quantizer. When quantized data is used
as an input to a nonlinear function, overall system performance
may be improved by adjusting the quantizer designs appropri-
ately [25]. In the present setting, conventional quantizer design
minimizes , but minimizing is de-
sired instead.
The SE description of MPDQ performance facilitates the

desired optimization. By implementing the SE equations for
MPDQ, we can make use of the convergence result (20) to
recast our optimization problem to

(21)

where minimization is done over -level scalar quantizers.
Based on (20), the optimization is equivalent to finding the
quantizer that minimizes the asymptotic MSE. In the optimiza-
tion (21), we have considered the limit in the iterations, .
One can also consider the optimization with a finite , although
our simulations exhibit close to the limiting performance with
a relatively small number of iterations.
It is important to note that the SE recursion behaves well

under quantizer optimization. This is due to the fact that SE is in-
dependent of actual output levels and small changes in the quan-
tizer boundaries result in onlyminor change in the recursion (see
(18b)). Although closed-form expressions for the derivatives of
for large ’s are difficult to obtain, we can approximate them

by using finite difference methods. Finally, the recursion itself
is fast to evaluate, which makes the scheme in (21) practically
realizable under standard optimization methods.
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Fig. 5. Performance comparison for oversampled observation of a jointly
Gaussian signal vector (no sparsity). MPDQ outperforms linear MMSE and
MAP estimators.

VI. EXPERIMENTAL RESULTS

A. Overcomplete Expansions

Consider overcomplete expansion of as discussed in
Section III-A. We generate the signal with i.i.d. elements
from the standard Gaussian distribution . We
form the measurement matrix from i.i.d. zero-mean Gaussian
random variables. To concentrate on the degradation due to
quantization we assume noiseless measurement model (1); i.e.,

in (4).
Fig. 5 presents squared-error performance of three estima-

tion algorithms while varying the oversampling ratio and
holding . To generate the plot we considered estima-
tion from measurements discretized by a 16-level regular uni-
form quantizer. We set the granular region of the quantizer to

, where is the variance of the measure-
ments. For each value of , 200 random realizations of the
problem were generated; the curves show the median-squared
error performance over these 200 Monte Carlo trials. We com-
pare error performance of MPDQ against two other common
reconstruction methods: linear MMSE and maximum a poste-
riori probability (MAP). The MAP estimator was implemented
using quadratic programming (QP).
The MAP estimation is a type of consistent reconstruction

method proposed in [5]–[13]; since the prior is a decreasing
function of , the MAP estimate is the vector consistent
with of minimum Euclidean norm. In the earlier works,
it is argued that consistent reconstruction methods offer im-
proved performance over linear estimation, particularly at high
oversampling factors.We see in Fig. 5 thatMAP estimation does
indeed outperform linear MMSE at high oversampling. How-
ever, MPDQ offers significantly better performance than both
LMMSE andMAP, with more than 5 dB improvement for many
values of . In particular, this reinforces that MAP is subop-
timal because it finds a corner of the consistent set, rather than
the centroid. Moreover, the MPDQ method is actually compu-
tationally simpler than MAP, which requires the solution to a
quadratic program.
With Fig. 6 we turn to a comparison among quantizers, all

with MPDQ reconstruction, , , and and
distributed as above. To demonstrate the improvement in rate-

Fig. 6. Performance comparison of MPDQ with optimal uniform quantizers
under Gaussian prior for regular and binned quantizers.

distortion performance that is possible with non-regular quan-
tizers, we consider simple uniform modulo quantizers

(22)

where is the size of the quantization cells. These quantizers
map the entire real line to the set in a peri-
odic fashion.
We compare three types of quantizers: those optimized for

MSE of the measurements (not the overall reconstruction MSE)
using Lloyd’s algorithm [26], regular uniform quantizers with
loading factors optimized for reconstruction MSE using SE
analysis, and (non-regular) uniform modulo quantizers with
optimized for reconstruction MSE using SE analysis. The last
two quantizers were obtained by solving (21) via the standard
SQP method found in MATLAB. The uniform modulo quan-
tizer achieves the best rate-distortion performance, while the
performance of the quantizer designed with Lloyd’s algorithm
is comparatively poor. The stark suboptimality of the latter is
due to the fact that it optimizes the MSE only between quantizer
inputs and outputs, ignoring the nonlinear estimation algorithm
following the quantizer.
It is important to point out that, without methods such as

MPDQ, estimation with a modulo quantizer such as (22) is not
even computationally possible in works such as [5]–[13], since
the consistent set is non-convex and consists of a disjoint union
of convex sets. Beyond the performance improvements, we be-
lieve that MPDQ provides the first computationally-tractable
and systematic method for such non-convex quantization recon-
struction problems.

B. Compressive Sensing With Quantized Measurements

We next consider estimation of an -dimensional sparse
signal from random measurements—a problem con-
sidered in quantized compressed sensing [2]–[4]. We assume
that the signal is generated with i.i.d. elements from the
Gauss-Bernoulli distribution

with probability

with probability
(23)

where is the sparsity ratio that represents the average fraction
of nonzero components of . In the following experiments we
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Fig. 7. Performance comparison of MPDQ with LMMSE, BPDN, and BPDQ
(with moment ) for estimation from compressive measurements.

assume . Similarly to the overcomplete case, we form
the measurement matrix from i.i.d. Gaussian random vari-
ables and we assume no additive noise ( in (4)).
Fig. 7 compares MSE performance of MPDQ with three

other standard reconstruction methods. In particular, we con-
sider linear MMSE and the Basis Pursuit DeNoise (BPDN)
program [53]

where and is the parameter representing the
noise power. In the same figure, we additionally plot the error
performance of the Basis Pursuit DeQuantizer (BPDQ)2 of mo-
ment , proposed in [3], which solves the problem above for

. It has been argued in [3] that BPDQ offers better error
performance compared to the standard BPDN as the number of
samples increases with respect to the sparsity of the signal
.
We obtain the curves by varying the ratio and holding

. We perform estimation from measurements obtained
from a 16-level regular uniform quantizer with granular region
of length centered at the origin.
The figure plots the median of the squared error from 1000

Monte Carlo trials for each value of . For basis pursuit
methods we optimize the parameter for the best squared error
performance; in practice this oracle-aided performance would
not be achieved. The top curve (worst performance) is for linear
MMSE estimation; and middle curves are for the basis pursuit
estimators BPDN and BPDQ with moment . As expected,
BPDQ achieves a notable 2 dB reduction in MSE compared to
BPDN for high values of , however MPDQ significantly out-
performs both methods over the whole range of . Note also
that MPDQ is significantly faster than both BPDN and BPDQ.
For example, in Fig. 7 the average reconstruction times—across
all realizations and undersampling rates—were 7.45, 19.95, and
4.52 seconds for BPDN, BPDQ, and MPDQ, respectively.
In Fig. 8, we compare the performance of MPDQ under

three quantizers consider before: those optimized for MSE of
the measurements using Lloyd’s algorithm, and regular and
non-regular quantizers optimized for reconstruction MSE using

2The source codes for the BPDQ algorithm can be downloaded from http://
wiki.epfl.ch/bpdq

Fig. 8. Performance comparison of MPDQ with optimal uniform quantizers
under Gauss-Bernoulli prior for regular and binned quantizers.

SE analysis. Note that MPDQ is the first tractable reconstruc-
tion method for compressive sensing that handles non-regular
quantizers. We assume the same and distributions as above.
We plot MSE of the reconstruction against the rate measured in
bits per component of . For each rate and for each quantizer,
we vary the ratio for the best possible performance. We
see that, in comparison to regular quantizers, binned quantizers
with MPDQ estimation achieve much lower distortions for
the same rates. This indicates that binning can be an effective
strategy to favorably shift rate-distortion performance of the
estimation.

VII. CONCLUSIONS

We have presented message-passing de-quantization as an ef-
fective and efficient algorithm for estimation from quantized
linear measurements. The proposed methodology is general, al-
lowing essentially arbitrary priors and quantization functions.
In particular, MPDQ is the first tractable and effective method
for high-dimensional estimation problems involving non-reg-
ular scalar quantization. In addition, the algorithm is computa-
tionally extremely simple and, in the case of large random trans-
forms, admits a precise performance characterization using a
state evolution analysis.
The problem formulation is Bayesian, with an i.i.d. prior over

the components of the signal of interest ; the prior may or may
not induce sparsity of . Also, the number of measurements may
be more or less than the dimension of , and the quantizers ap-
plied to the linear measurements may be regular or not. Exper-
iments show significant performance improvement over tradi-
tional reconstruction schemes, some of which have higher com-
putational complexity. Moreover, using extensions of GAMP
such as hybrid approximate message passing [54], [55], onemay
also in the future be able to consider quantization of more gen-
eral classes of signals described by general graphical models.
MATLAB code for experiments with GAMP is available online
[56].
Despite the improvements demonstrated here, we are not ad-

vocating quantized linear expansions as a compression tech-
nique—for the oversampled case or the undersampled sparse
case; thus, comparisons to rate-distortion bounds would obscure
the contribution. For regular quantizers and some fixed over-
sampling , the MSE decay with increasing rate
is , worse than the distortion-rate bound. For
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a discussion of achieving exponential decay of MSE with in-
creasing oversampling, while the quantization step size is held
constant, see [57]. For the undersampled sparse case, [33] dis-
cusses the difficulty of recovering the support from quantized
samples and the consequent difficulty of obtaining near-optimal
rate-distortion performance. Performance loss rooted in the use
of a random transformation is discussed in [58].
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