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Abstract

Classical photography uses steady-state illumination and light sensing with focusing optics
to capture scene reflectivity as images; temporal variations of the light field are not exploited.
This thesis explores the use of time-varying optical illumination and time-resolved sensing
along with signal modeling and computational reconstruction. Its purpose is to create new
imaging modalities, and to demonstrate high-quality imaging in cases in which traditional
techniques fail to even form degraded imagery. The principal contributions in this thesis
are the derivation of physically-accurate signal models for the scene’s response to time-
varying illumination and the photodetection statistics of the sensor, and the combining of
these models with computationally tractable signal recovery algorithms leading to image
formation.

In active optical imaging setups, we use computational time-resolved imaging to exper-
imentally demonstrate: non line-of-sight imaging or looking around corners, in which only
diffusely scattered light was used to image a hidden plane which was completely occluded
from both the light source and the sensor; single-pixel 3D imaging or compressive depth ac-
quisition, in which accurate depth maps were obtained using a single, non-spatially resolving
bucket detector in combination with a spatial light modulator; and high-photon efficiency
imaging including first-photon imaging, in which high-quality 3D and reflectivity images
were formed using only the first detected photon at each sensor pixel despite the presence
of high levels of background light.
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Chapter 1

Introduction

The goal of imaging is to produce a representation in one-to-one spatial correspondence

with an object or scene. For centuries, the primary technical meaning of image has been

a visual representation formed through the interaction of light with mirrors and lenses,

and recorded through a photochemical process. In digital photography, the photochemical

process has been replaced by an electronic sensor array, but the use of optical elements

is unchanged. Conventional imaging for capturing scene reflectivity, or photography, uses

natural illumination and light sensing with focusing optics; variations of the light field with

time are not exploited.

A brief history of time in optical imaging: Figure 1-1 shows a progression of key events

which depict the increasing exploitation of temporal information contained in optical signals

to form 3D and reflectivity images of a scene. The use of time in conventional photography

is limited to the selection of a shutter speed (exposure time). The amount of light incident

on the sensor (or film) is proportional to the exposure time, so it is selected to match the

dynamic range of the input over which the sensor is most effective. If the scene is not static

during the exposure time, motion blur results. Motion blur can be reduced by having a

shorter exposure, with commensurate increase of the gain on the sensor (or film speed) to

match the reduced light collection. Light to the sensor can also be increased by employing

a larger aperture opening, at the expense of depth of field.

Moving away from conventional photography, the use of high-speed sensing in imaging
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is associated with stopping motion. Very short exposures or flash illuminations are used to

effectively “stop time” [4]. These methods, however, could still be called atemporal because

even a microsecond flash is long enough to combine light from a large range of transport

paths involving many possible reflections. No temporal variations are present at this time

scale (nor does one attempt to capture them), so no interesting inferences can be drawn.

Optical range imaging is one of the first applications that employed time-varying illu-

mination and time-resolved detection. Range measurement by detection of weak optical

echoes from the moon was reported more than half a century ago [1]. Time-of-flight range

measurement systems [9, 10] exploit the fact that the speed of light is finite. By measuring

the time-delay introduced by roundtrip propagation of light from the imager to the scene

and back, range can be accurately estimated. Various time-of-flight imagers exist today, and

differ in how they modulate their illumination and perform time-resolved photodetection.

In this thesis, we present a radical departure from both high speed photography and time-

of-flight systems. We develop computational imaging frameworks that are fundamentally

rooted in principled signal modeling of the temporal variations in the light signals in order to

solve challenging inverse problems and achieve accurate imaging for cases in which traditional

methods fail to form even degraded imagery. In addition, by conducting proof-of-concept

experiments, we have corroborated the advantages and demonstrated the practical feasibility

of the proposed approaches.

Active optical imaging: In this thesis we are primarily interested in acquiring the scene’s

3D structure (or scene depth) and reflectivity using an active imager—one that supplies its

own illumination. In such an imager, the traditional light source is replaced with a time-

varying illumination that induces time-dependent light transport between the scene and

sensor. The back-reflected light is sensed using a time-resolved detector instead of a conven-

tional detector, which lacks sufficient temporal resolution. For mathematical modeling, we

assume illumination with a pulsed light source and time-resolved sensing with a square-law

detector whose output is linearly proportional to intensity of incident light. Figure 1-2 shows

and discusses the various optoelectronic elements of an active optical imaging system used

in this thesis. In this thesis we will focus on three specific imaging scenarios to demonstrate
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Figure 1-2: Computational time-resolved imaging setup The illumination is a periodically pulsed light
source. The light from the source may also be spatially modulated. The scene of interest comprises life-size
objects at room-scale distances. The light incident on the time-resolved detector is a sum of the ambient
light flux and the back-reflected signal. The light source and detector are time-synchronized. The collected
data comprises time-samples of the photocurrent produced by the incident optical flux in response to the
scene illumination. The data is computationally processed using the appropriate signal models in order to
form reflectivity or depth maps of the scene, or both.

the computational time-resolved imaging framework and its benefits over existing methods.

These scenarios are described in the next section.

1.1 Summary of Main Contributions

This thesis introduces three imaging scenarios in which time-dependent illumination and

sensing combined with physically-accurate signal modeling and computational reconstruc-

tion play central roles in acquiring the scene parameters of interest. As demonstrated through

proof-of-concept experiments, traditional imaging methods can at best form degraded im-

agery in the scenarios considered in this thesis. These imaging scenarios are:

14



1. Looking around corners using pulsed illumination and time-resolved detection of dif-

fusely scattered light (Chapter 2).

2. Compressive depth acquisition, which is developed in two distinct imaging setups:

2a. One that uses a single bucket photodetector and a spatial light modulator to project

pulsed illumination patterns on to the scene (Chapter 3) and,

2b. a low-light imaging variant of compressive depth acquisition, which employs flood-

light illumination, a single-photon counting detector and a digital micro-mirror

device for spatial patterning (Chapter 4).

3. Photon-efficient active optical imaging, which is also developed in two different low-light

imaging configurations:

3a. The first-photon computational imager, which acquires scene reflectivity and depth

using the first detected photon at each sensor pixel (Chapter 5) and,

3b. an extension of the first-photon imaging framework for implementation with sensor

arrays (Chapter 6).

The imaging setups and problem statements for each of the above scenarios are shown

and discussed in Figs. 1-3-1-5. A brief overview and comparison of thesis contributions is

presented in Table 1.1. The rest of the thesis is organized into chapters corresponding to the

aforementioned scenarios. Within each section we discuss:

1. Overview of the problem.

2. Prior art and comparison with proposed computational imager.

3. Imaging setup, data acquisition, and measurement models.

4. Novel image formation algorithms.

5. Experimental setup and results.

6. Discussion of limitations and extensions.

15



Figure 1-3: Looking around corners using ultrashort pulsed illumination and picosecond-
accurate time-sampling of diffusely scattered light: Here the goal is to reconstruct the position
and reflectivity of an object that is occluded from the light source and the sensor. We achieve this chal-
lenging task by raster scanning a diffuser with ultrashort pulsed illumination and by time-sampling the
backscattered light with picosecond accuracy. The computational processing of this time-resolved data using
elliptical Radon-transform inversion reveals the hidden object’s 3D position and reflectivity.

Figure 1-4: Compressive depth acquisition using structured random illumination and a single
time-resolved sensor: Here, we are interested in compressively acquiring scene depth using structured
illumination and single time-resolved sensor. This problem may seem analogous to the single-pixel camera [11,
12], but unlike reflectivity, it is not possible to measure linear projections of scene depth. We solve this
problem for planar and fronto-parallel scenes using parametric signal modeling of the scene impulse response
and using finite rate of innovation methods to reconstruct the scene’s impulse responses using time-resolved
illumination and detection.
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Figure 1-5: 3D and reflectivity imaging using one detected photon per pixel: Here, we are interested
in reconstructing accurate 3D and reflectivity images of the scene using only one detected photon per pixel,
even in the presence of strong background light. We achieve this using physically accurate modeling of
single-photon photodetection statistics and exploitation of spatial correlations present in real-world scenes.

1.2 Key Publications

Most of the material presented in this thesis has previously appeared in the following pub-

lications and manuscripts listed below:

Looking Around Corners or Hidden-Plane Imaging

1. A. Kirmani, A. Velten, T. Hutchison, M. E. Lawson, V. K. Goyal, M. G. Bawendi,

and R. Raskar, Reconstructing an image on a hidden plane using ultrafast imaging of

diffuse reflections, submitted, May 2011.

2. A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, Diffuse imaging: Creat-

ing optical images with unfocused time-resolved illumination and sensing, IEEE Signal

Processing Letters, 19 (1), pp. 31-34, October 2011.

Compressive Depth Acquisition

1. A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal, Exploiting sparsity in time-

of-flight range acquisition using a single time-resolved sensor, Optics express 19 (22),

pp. 21485-21507, October 2011.
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2. A. Colaço, A. Kirmani, G. A. Howland, J. C. Howell, and V. K. Goyal, Compressive

depth map acquisition using a single photon-counting detector: Parametric signal pro-

cessing meets sparsity, In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pp. 96-102, June 2012.

Photon-efficient Active Optical Imaging

1. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and

V. K. Goyal, First-Photon Imaging, Science 343 (6166), pp. 58-61, January 2014.

2. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, Photon-Efficient Computational

3D and Reflectivity Imaging with Single-Photon Detectors, arXiv preprint arXiv:1406.1761,

June 2014.
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Chapter 2

Looking Around Corners

2.1 Overview

Conventional imaging involves direct line-of-sight light transport from the light source to

the scene, and from the scene back to the camera sensor. Thus, opaque occlusions make it

impossible to capture a conventional image or photograph of a hidden scene without the aid

of a view mirror to provide an alternate path for unoccluded light transport between the light

source, scene and the sensor. Also, the image of the reflectivity pattern on scene surfaces is

acquired by using a lens to focus the reflected light on a two-dimensional (2D) array of light

sensors. If the mirror in the aforementioned looking around corners scenario was replaced

with a Lambertian diffuser, such as a piece of white matte paper, then it becomes impossible

to capture the image of the hidden-scene using a traditional light source and camera sensor.

Lambertian scattering causes loss of the angle-of-incidence information and results in mixing

of reflectivity information before it reaches the camera sensor. This mixing is irreversible

using conventional optical imaging methods.

In this chapter we introduce a computational imager for constructing an image of a static

hidden-plane that is completely occluded from both the light source and the camera, using

only a Lambertian surface as a substitute for a view mirror. Our technique uses knowledge of

the orientation and position of a hidden-plane relative to an unoccluded (visible) Lambertian

diffuser, along with multiple short-pulsed illuminations of this visible diffuser and time-
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Figure 2-1: Looking around corners imaging setup for hidden-plane reflectivity construction.

resolved detection of the backscattered light, to computationally construct a black-and-white

image of the hidden-plane.

The setup for looking around corners to image a static hidden-plane is shown in Fig. 2-1.

A pulsed light source serially illuminates selected points, Si, on a static unoccluded Lamber-

tian diffuser. As shown, light transport from the illumination source to the hidden-scene and

back to the camera is indirect, possible only through scattering off the unoccluded Lamber-

tian diffuser. The light pulses undergo three diffuse reflections, diffuser → hidden-plane →

diffuser, after which they return to a camera co-located alongside the light source. The opti-

cal path differences introduced by the multipath propagation of the scattered light generates

a time profile that contains the unknown hidden-plane reflectivity (the spade). A time-

resolved camera that is focused at the visible diffuser and accurately time-synchronized with

the light source time-samples the light incident from observable points on the diffuser, Dj.

Given the knowledge of the complete scene geometry, including the hidden-plane orientation

and position, the time-sample data collected by interrogating several distinct source-detector

pairs, (Si, Dj), is computationally processed using a linear inversion framework (see Figs. 2-2

and 2-8) to construct an image of the hidden-plane (see Fig. 2-9).
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The remainder of this chapter is organized as follows. Prior art is discussed in Section 2.2.

Then Section 2.3 introduces the imaging setup and signal model for the proposed looking

around corners computational imager. Next, Section 2.4 presents the scene response model.

The measurement model and data acquisition pipeline are described in Section 2.5. These

models form the basis for the novel hidden-plane reflectivity estimation algorithm developed

in Section 2.6. The experimental setup and results are presented in Section 2.7 and finally

Section 2.8 provides additional discussion of limitations and extensions.

2.2 Prior Art and Challenge

Non line-of-sight imaging: Capturing images despite occlusions is a hard inverse imaging

problem for which several methods have been proposed. Techniques that use whatever light

passes through the occluder have been developed. With partial light transmission through

the occluder, time-gated imaging [17, 18] or the estimation and inversion of the mesoscopic

transmission matrix [13] enables image formation. While some occluding materials, such as

biological tissue, are sufficiently transmissive to allow light to pass through them [19,20], high

scattering or absorption coefficients make image recovery extremely challenging. There are

also numerous attempts to utilize light diffusely-scattered by tissue to reconstruct embedded

objects [13, 21]. Our proposed computational imager is based on the pulsed illumination

of the hidden-scene by reflecting off the visible diffuser followed by time-sampling of the

backscattered light, rather than on transmission through the occluder itself. As opposed to

prior work on non line-of-sight imaging [13,19–21] we image around the occluder rather than

through it, by exploiting the finite speed of light.

Illumination wavelengths may be altered to facilitate imaging through occluders, as in

X-ray tomography [22] or RADAR [23, 24]. However, such imaging techniques do not yield

images in the visible spectrum that are readily interpreted by a human observer.

Hidden-scene image capture has been demonstrated, provided there is direct line-of-sight

at least between the light source and the scene, when the scene is occluded with respect

to the sensor [14]. This was accomplished by raster scanning the scene by a light source

followed by computational processing that exploits Helmholtz reciprocity of light transport.

23



Looking around corners using diffuse reflections: The closest precedent to the meth-

ods proposed in this chapter experimentally demonstrated the recovery of hidden-scene struc-

ture for one-dimensional scenes, entirely using diffusely-scattered light [25–27]. Selected visi-

ble scene points were illuminated with directional short pulses of light using one-dimensional

femtosecond laser scanning. The diffuse, scattered light was time-sampled using a single-

pixel detector with picosecond resolution. The resulting two-dimensional dataset was pro-

cessed to compute the time-delay information corresponding to the different patches in the

hidden-scene. Then, standard triangulation algorithms were used to estimate the geomet-

ric parameters of a simple occluded scene. The geometry reconstructions were noted to be

highly susceptible to failure in the presence of noise and timing jitter. Also, the experimental

validation of these methods was limited to a very simple one-dimensional scene comprising

only three mirrors. While [25–27] used time-of-arrival measurements to enable estimation

of hidden-scene geometry, estimation of hidden-scene reflectivity, which is also contained in

the light signal, has not been accomplished previously.

Synthetic aperture radar: The central contribution in this chapter is to demonstrate the

use of temporal information contained in the scattered light, in conjunction with appropriate

post-measurement signal processing, to form images that could not have been captured using

a traditional camera, which employs focusing optics but does not possess high temporal

resolution. In this connection it is germane to compare our proposed computational imager

to synthetic aperture radar (SAR), which is a well-known microwave approach for using time-

domain information plus post-measurement signal processing to form high spatial-resolution

images [28–30]. In stripmap mode, an airborne radar transmits a sequence of high-bandwidth

pulses on a fixed slant angle toward the ground. Pulse-compression reception of individual

pulses provides across-track spatial resolution superior to that of the radar’s antenna pattern

as the range response of the compressed pulse sweeps across the ground plane. Coherent

integration over many pulses provides along-track spatial resolution by forming a synthetic

aperture whose diffraction limit is much smaller than that of the radar’s antenna pattern.

SAR differs from the proposed computational imager in two general ways. First, SAR

requires the radar to be in motion to scan the scene, whereas the proposed imager does

24



not require sensor motion because it relies on raster scanning the beam on the visible dif-

fuser. Second, SAR is primarily a microwave technique, and most real-world objects have a

strongly specular bidirectional reflectance distribution function [31] (BRDF) at microwave

wavelengths. With specular reflections, an object is directly visible only when the angle of il-

lumination and angle of observation satisfy the law of reflection. Multiple reflections—which

are not accounted for in first-order SAR models can then be strong and create spurious im-

ages. On the other hand, most objects are Lambertian at optical wavelengths, so our imager

operating at near-infrared wavelengths avoids these sources of difficulty.

Time-resolved imaging of natural scenes: Traditional imaging involves illumination

of the scene with a light source whose light output does not vary with time. The use of high-

speed sensing in photography is associated with stopping motion [4]. In this thesis, we use

time-resolved sensing differently: to differentiate among paths of different lengths from light

source to scene to sensor. Thus, as in time-of-flight depth cameras [9,10] that are covered in

detail in Chapter 3, we are exploiting the speed of light being finite. However, rather than

using the duration of delay to infer distances, we use temporal variations in the backreflected

light to infer scene reflectivity. This is achieved through a computational unmixing of the

reflectivity information that is linearly combined at the sensor because distinct optical paths

may have equal path lengths (see Fig. 2-2).

Some previous imagers, like light detection and ranging (LIDAR) [9], systems have em-

ployed pulsed illumination and highly sensitive single-photon counting time-resolved detec-

tors to more limited effect. Elapsed time from the pulsed illumination to the backreflected

light is proportional to target distance and is measured by constructing a histogram of the

photon-detection times. The operation of LIDAR systems is discussed in detail in Chapter 5.

In the context of LIDAR systems, time-based range gating has been used to reject unwanted

direct reflections in favor of the later-arriving light from the desired scene [32–34]. Captur-

ing multiple such time-gated images allows for construction of a three-dimensional model

of the scene [17, 18], as well as for imaging through dense scattering media, such as fog or

foliage [33,35]. As opposed to the methods proposed in this chapter, however, the aforemen-

tioned LIDAR-based techniques also rely on using temporal gating to separate the direct,
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unscattered component of the backreflected light from the diffusely-scattered component.

Challenge in Hidden-Plane Image Formation

To illustrate the challenge in recovering the reflectivity pattern on the hidden-scene using

only the backscattered diffuse light, we pick three sample points A, B, and C on the hidden-

plane. Suppose we illuminate the point S1 on the visible Lambertian diffuser with a very

short laser pulse (Fig. 2-2A), and assume that this laser impulse is scattered uniformly in a

hemisphere around S1 and propagates toward the hidden-plane (Fig. 2-2B). Since the hidden

points A, B, and C may be at different distances from S1, the scattered light reaches them at

different times. The light incident at A,B and C undergoes a second Lambertian scattering

and travels back towards the visible diffuser with attenuations that are directly proportional

to the unknown reflectivity values at these points (see Fig. 2-2C).

The visible diffuser is in sharp focus of the camera optics, so each sensor pixel is observing

a unique point on the diffuser. We pick a sample point D1 that functions as a bucket detector

collecting backscattered light from the hidden-plane without angular (directional) sensitivity

and reflecting a portion of it towards the camera. The hidden points A, B, and C may be

at different distances from D1 as well. Hence, light scattered from these points reaches the

camera at different times. The times-of-arrival of the light corresponding to the distinct

optical paths, light source→ S1 →(A, B, C)→ D1 →camera, depend on the scene geometry

(see Fig. 2-2D), which we assume to be known.

Diffuse scattering makes it impossible to recover the hidden-plane reflectivity using tradi-

tional optical imaging. An ordinary camera with poor temporal resolution records an image

using an exposure time that is at least several microseconds long. All of the scattered light,

which includes the distinct optical paths corresponding to A, B, and C, arrives at the sensor

pixel observing D1 during this exposure time and is summed into a single intensity value

(see Fig. 2-2E), making it impossible to recover the hidden-plane reflectivity.

We now discuss how temporal sampling of the backscattered light allows at least partial

recovery of hidden-plane reflectivity. Suppose now that the camera observing the scattered

light is precisely time-synchronized with the outgoing laser pulse, and possesses a very high
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Figure 2-2: Challenge in hidden-plane image formation. (A)-(D) Time-dependent light transport
diagrams showing diffuse scattering of the short-pulse illumination through the imaging setup and back to
the camera. The hidden point B has the shortest total path length, S1 → B → D1, and the points A and
C have equal total path lengths. (E) An ordinary camera with microsecond-long exposure integrates the
entire scattered light time-profile into a single pixel value that is proportional to the sum of all hidden-plane
reflectivity values. (F) Exploiting the differences in total path lengths allows partial recovery of hidden-plane
reflectivity. For example, reflectivity at B is easily distinguishable from that at points A and C via temporal
sampling of the scattered light. Several points on the hidden-plane, such as A and C, have equal total path
lengths and even using a time-resolved camera, we may only record a sum of their reflectivity values.

time-sampling resolution. As shown in Fig. 2-2(F), the measured time-samples can poten-

tially be used to estimate the reflectivity of the hidden points, A, B and C. However, there
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may be multiple points on the hidden-plane such that the light rays corresponding to these

points have equal optical path lengths and therefore have the same time-of-arrival at the

camera sensor. We call this phenomena multipath mixing: the summation of the hidden-

plane reflectivity information due to equal total optical path lengths. Although undesirable,

this mixing is reversible.

As described in Section 2.4, the hidden-plane reflectivity values that are added together

belong to a small set of points on the hidden-plane that lie within a known elliptical shell.

As shown in Section 2.6, spatio-temporal sampling followed by a linear inversion allows the

complete recovery of hidden-plane reflectivity from time-resolved measurements.

2.3 Imaging Setup

Our imaging setup (see Fig. 2-1) comprises a pulsed collimated light source serving as our

directional illumination source which is co-located with a time-resolved camera that time-

samples the backscattered light. The hidden-scene consists of a single occluded hidden-plane

composed of Lambertian material with an unknown reflectivity pattern. We assume that

the 3D orientation, position and dimensions of the hidden-plane are known a priori. If

these geometric quantities are unknown, then they may be first estimated using the hidden-

plane geometry estimation method described in [25–27]. We also assume that the reflectivity

pattern, 3D position, and orientation of the visible Lambertian diffuser relative to the cam-

era and light source are known. These quantities can be easily estimated using traditional

imaging techniques. The complete knowledge of 3D scene geometry allows us to formu-

late hidden-plane reflectivity estimation as a linear inversion problem. This formulation is

described next, but we first make a simplification.

Simplified illumination and sensing model: In our data acquisition setup the points

of interest on the visible diffuser, {Si}6i=1, are illuminated one at a time with a collimated

beam of pulsed light. Since the visible diffuser is assumed to be perfectly Lambertian, it

scatters the incident light uniformly in all directions. We assume that at least a part of this

scattered light illuminates the entire hidden-plane for each {Si}6i=1. Given this assumption,
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it is possible to abstract the combination of the pulsed light source and the chosen visible

diffuser points, {Si}, into six omnidirectional pulsed light sources whose illumination profiles

are computed using the surface normal at these points, the angle of incidence of the collimated

beam and the reflectivity at these points.

Similarly, each ray of backreflected light from the hidden-plane is incident at the visible

diffuser points, {Dj}3j=1, where it undergoes another Lambertian scattering and a portion

of this scattered light reaches the time-resolved camera optics. The points, {Dj}3j=1, are in

sharp focus relative to the time-resolved camera, which comprises of a horizontally oriented,

linear array of sensors that time-sample the incident light profile relative to the transmitted

laser pulse. Since all the orientations, distances and dimensions of the scene are assumed

to be known, it is possible to abstract the combination of the time-resolved camera and the

chosen visible diffuser points, {Dj}, into three time-resolved bucket detectors that are time-

synchronized with the omnidirectional light sources {Si}6i=1. The sensitivity profiles of these

bucket detectors are known functions of the reflectivity and surface normals at these points,

and their orientation relative to the hidden-plane that determines the angle of incidence of

backscattered light.

In order to further simplify our mathematical notation, we assume that each of the

omnidirectional light sources, {Si}6i=1, transmits equal light power in all directions and that

each of the bucket detectors, {Dj}3j=1, has a uniform angular sensitivity profile.

In effect, as shown in Fig. 2-3, we abstract the entire hidden plane imaging setup into a

set of six omnidirectional pulsed light sources illuminating the hidden-plane with a common

pulse shape s(t), and three time-resolved bucket detectors with a common impulse response

h(t) that time-sample the backscattered light with sampling interval, Ts. The 3D positions of

the (source, detector) pairs {Si, Dj}i=6,j=3
i=1,j=1 are known and they are assumed to be accurately

time-synchronized to enable time-of-arrival measurements. We also assume that there is no

background light and that the imager operates at single wavelength.

Hidden-plane scene setup: We have assumed that the position, orientation, and dimen-

sions (W -by-W ) of the hidden Lambertian plane are known or estimated a priori. Formation

of an ideal grayscale image therefore is tantamount to the recovery of the reflectivity pattern
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Figure 2-3: Simplified illumination and detection model. (left) Portion of the hidden-plane imaging
setup in Fig. 2-1 comprising the visible diffuser, the hidden plane, and the chosen points of illumination and
detection. (right) The simplified imaging setup, under the assumptions stated in Section 2.3, is equivalent
to the setup in the left sub-figure.

on the hidden-plane. As is usual in optics and photometry, reflectivity is defined as the

fraction of incident radiation reflected by a surface. Reflectivity is thus bounded between

0 and 1. Therefore, in this chapter, hidden-plane reflectivity is modeled as a 2D function

α : [0,W ]2 → [0, 1]. In general, the surface reflectivity must be treated as a directional

property that is a function of the reflected direction, the incident direction, and the incident

wavelength [36]. We assume, however, that the hidden-plane is Lambertian, so that its per-

ceived brightness is invariant to the angle of observation [31]; incorporation of any known

BRDF would not add insight.

2.4 Scene Response Modeling

The backreflected light incident at sensor Dj in response to hidden-scene illumination by

source Si is a combination of the time-delayed reflections from all points on the hidden-plane.

For any point x = (x, y) ∈ [0,W ]2, let zSi (x) denote the distance from illumination source Si

to x, and let zDj (x) denote the distance from x to sensor Dj. Then zSDij (x) = zSi (x) + zDj (x)
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(a) source S6 and sensor D2 (b) source S2 and sensor D2

Figure 2-4: Main plots: Time delay from source to scene to sensor is a continuous function, zSDij (x), of the

position in the scene. The range of zSDij (x) values shown in this figure corresponds to the scene geometry in
Fig. 2-1. Insets: The normalized geometric attenuation aij(x) of the light is also a continuous function of
the position in the scene (see Equation (2.1)).

is the total distance traveled by the contribution from x. This contribution is attenuated by

the reflectivity α(x), square-law radial fall-off, and cos(θ(x)) to account for foreshortening

of the hidden-plane with respect to the illumination, where θ(x) is the angle between the

surface normal at x and a vector from x to the illumination source. Thus, the backreflected

waveform from the hidden-scene point x is

aij(x)α(x) s(t− zSDij (x)/c),

where c is the speed of light and

aij(x) =
cos(θ(x))(

zSi (x) zDj (x)
)2 . (2.1)

Examples of distance functions and geometric attenuation factors are shown in Figure 2-4.

Combining contributions over the plane, the total light incident at detectorDj in response

to hidden-scene illumination by source Si is,
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rij(t) =

W∫
0

W∫
0

aij(x)α(x) s(t− zSDij (x)/c) dx dy.

(1)
=

 W∫
0

W∫
0

aij(x)α(x) δ(t− zSDij (x)/c) dx dy

 ∗ s(t).
where ∗ denotes continuous-time convolution, δ(.) is the Dirac delta function, and equality (1)

follows from the Dirac sifting property.

Putting aside for now the effect of the pulse waveform, s(t), we define the scene impulse

response function corresponding to the (source, detector) pair, (Si, Dj), as

pij(t) ,

W∫
0

W∫
0

aij(x)α(x) δ(t− zSDij (x)/c) dx dy. (2.2)

Thus, evaluating pij(t) at a fixed time t amounts to integrating over x ∈ [0,W ]2 with

t = zSDij (x)/c. Define the isochronal curve Ct
ij = {x : zSDij (x) = ct}. Then

pij(t) =

∫
Ctij

aij(x)α(x) ds =

∫ ∫
aij(x(k, u))α(x(k, u)) du dk (2.3)

where x(k, u) is a parameterization of Ct
ij ∩ [0,W ]2. The scene impulse response pij(t) thus

contains the contour integrals over Ct
ij’s of the desired function α. Each Ct

ij is a level curve

of zSDij (x); as illustrated in Figure 2-4, these are ellipses.

2.5 Measurement Model

A digital system can use only samples of rij(t) rather than the continuous-time function

itself. We now show how uniform sampling of rij(t) with a linear time-invariant (LTI)

prefilter relates to linear functional measurements of α. This establishes the foundation for

a Hilbert space view of our computational imaging formulation.
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At the detector the backreflected light signal, rij(t), is convolved with the sensor impulse

response filter, h(t), prior to discrete time-sampling with a sampling interval Ts in order to

produce time-samples denoted,

rij[n] =
(
rij(t) ∗ h(t)

)∣∣
t=nTs

, n = 0, 1, . . . , (N − 1).

The sample data length, N , is chosen sufficiently high so that NTs is slightly greater than

the time-domain support of the signal rij(t). Also, in this chapter we use the box -detector

impulse response to match the operation of the streak camera that was employed in our

experimental setup in Section 2-7, i.e.,

h(t) =

 1, for 0 ≤ t ≤ Ts;

0, otherwise,
(2.4)

corresponding to integrate-and-dump sampling in which the continuous signal value is first

integrated for duration Ts and sampled immediately thereafter. Also, note that by the

associativity of the convolution operator,

rij[n] =
(
pij(t) ∗ s(t) ∗ h(t)

)∣∣
t=nTs

, n = 0, 1, . . . , (N − 1).

Defining the combined impulse response of the source-detector pair, g(t) , s(t) ∗ h(t), we

obtain

rij[n] =
(
pij(t) ∗ g(t)

)∣∣
t=nTs

, n = 0, 1, . . . , (N − 1).

A time-sample rij[n] can be seen as a standard L2(R) inner product between pij(t) and a

time-reversed and shifted system impulse response, g(t) [37], i.e.,

rij[n] = 〈pij(t), g(nTs − t)〉. (2.5)

Using Equation (2.2), we can express Equation (2.5) in terms of α using the standard
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L2([0,W ]2) inner product:

rij[n] = 〈α, ϕi,j,n〉 where (2.6)

ϕi,j,n(x) = aij(x) g(nTs − zSDij (x)/c). (2.7)

Over a set of sensors and sample times, {ϕi,j,n} will span a subspace of L2([0,W ]2), and a

sensible goal is to form a good approximation of α in that subspace.

Now, since h(t) is nonzero only for t ∈ [0, Ts], by Equation (2.5), the time-sample rij[n] is

the integral of rij(t) over t ∈ [(n−1)Ts, nTs]. Thus, by Equation (2.3), rij[n] is an aij-weighted

integral of α between the contours C(n−1)Ts
ij and CnTs

ij . To interpret this as an inner product

with α, as in Equations (2.6) and (2.7), we note that ϕi,j,n(x) is aij(x) between C
(n−1)Ts
ij

and CnTs
ij and zero otherwise. Figure 2-5(a) shows a single representative ϕi,j,n. For the

case of the box-detector impulse response (see Equation (2.4)), the functions {ϕi,j,n}n∈Z for

a single sensor have disjoint supports; their partitioning of the domain [0,W ]2 is illustrated

in Figure 2-5(b).

Data acquisition: For each time-synchronized source-detector pair, (Si, Dj), N discrete

time-samples were collected as follows: the light sources were turned on one at a time,

and for each light source all the detectors were time-sampled simultaneously. The use of

the resulting dataset, {rij[n]}i=6, j=3, n=N−1
i=1, j=1, n=0 , in recovering the hidden-scene reflectivity, α, is

described next.

2.6 Image Recovery using Linear Backprojection

Piecewise-constant Model for Hidden Plane Reflectivity

To express an estimate α̂ of the reflectivity α, it is convenient to fix an orthonormal basis

for a subspace of L2([0,W ]2) and estimate the expansion coefficients in that basis. For an
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(a) source S6 and sensor D2 (b) source S2 and sensor D2

Figure 2-5: (a) A single measurement function ϕi,j,n(x) when h(t) is the box function defined in Equa-
tion (2.4). Inset is unchanged from Figure 2-4(a). (b) When h(t) is the box function defined in Equa-
tion (2.4), the measurement functions for a single sensor {ϕi,j,n(x)}Nn=1 partition the plane into elliptical
annuli. Coloring is by discretized delay using the colormap of Figure 2-4. Also overlaid is the discretization
of the plane of interest into an M -by-M pixel array.

M -by-M pixel representation, let

ψmx,my(x) =


M/W, for (mx − 1)W/M ≤ x < mxW/M,

(my − 1)W/M ≤ y < myW/M ;

0, otherwise

mx,my = 1, . . . ,M (2.8)

so that the hidden-plane reflectivity estimate has the following representation

α̂ =
M∑

mx=1

M∑
my=1

α̂ψ(mx,my)ψmx,my , (2.9)

which lies in the span of the vector space generated by the orthonormal basis vector collection,

{
ψmx,my ⊂ L2([0,W ]2)

}mx=M,my=M

mx=1,my=1

and is constant on patches of size (W/M)× (W/M).
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Linear System Formulation of Measurement Model

We will now form a system of linear equations to find the basis representation coefficients

{α̂ψ(mx,my)}mx=M,my=M
mx=1,my=1 . For α̂ to be consistent with the value measured by the detectorDj

in response to hidden scene illumination by source Sj at time t = nTs, we must have

rij[n] = 〈α̂, ϕi,j,n〉 =
M∑

mx=1

M∑
my=1

α̂ψ(mx,my)〈ψmx,my , ϕi,j,n〉. (2.10)

Note that the inner products {〈ψmx,my , ϕi,j,n〉} exclusively depend onM ,W , the positions of

illumination sources and detectors, {Si, Dj}i=6,j=3
i=1,j=1, the hidden-plane geometry, the combined

source-detector impulse response g(t), and the sampling intervals Ts—not on the unknown

reflectivity of interest α. Hence, we have a system of linear equations to solve for the basis

coefficients α̂ψ(mx,my). (In the case of orthonormal basis defined in Equation (2.8), these

coefficients are the pixel values multiplied by M/W .)

When we specialize to the box sensor impulse response defined in Equation (2.4) and the

orthonormal basis defined in Equation (2.8), many inner products 〈ψmx,my , ϕi,j,n〉 are zero, so

the linear system is sparse. The inner product 〈ψmx,my , ϕi,j,n〉 is nonzero when the reflection

from the pixel (mx,my) affects the light intensity at detector Dj in response to hidden-plane

illumination by light source Si within time interval [(n−1)Ts, nTs]. Thus, for a nonzero inner

product the pixel (mx,my) must intersect the elliptical annulus between C
(n−1)Ts
ij and CnTs

ij .

With reference to Figure 2-5(a), this occurs for a small fraction of (mx,my) pairs unless M

is small or Ts is large. The value of a nonzero inner product depends on the fraction of the

square pixel that overlaps with the elliptical annulus and the geometric attenuation factor.

To express Equation (2.10) as a vector-matrix multiplication, we replace double indices

with single indices (i.e., vectorize, or reshape) to get

y = Θ α̂ψ (2.11)

where y ∈ R18×N contains the data samples {rij[n]}, the first N from source-detector

pair (S1, D1), the next N from source-detector pair (S1, D2), etc.; and α̂ψ ∈ RM2
con-

tains the coefficients α̂ψ(mx,my), varying i first and then j. Then the inner product
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Figure 2-6: Visualizing linear system representation Θ in (2.11). Contribution from source-detector
pair (S1, D1) is shown. To generate this system matrix we choose M = 10 and therefore the Θ has 100
columns. Also we choose Ts such that Θ has 40 rows. All-zero rows arising from times prior to first arrival
of light and after the last arrival of light are omitted.

〈ψmx,my , ϕi,j,n〉 appears in row ((i− 1)× 6 + (j− 1)× 3)N +n, and column (mx− 1)M +my

of Θ ∈ R18×N×M2
. Figure 2-6 illustrates an example of the portion of Θ corresponding to

source-detector pair (S1, D1) for the scene in Figure 2-3.

Assuming that Θ has a left inverse (i.e., rank(Θ) = M2), one can form an image by

solving Equation (2.11). The portion of Θ from one source-detector pair cannot have full

column rank, because of the collapse of information along elliptical annuli depicted in Fig-

ure 2-5(a). Full rank and good matrix conditioning [38] are achieved with an adequate

number of source-detector pairs, noting that such pairs must differ significantly in their spa-

tial locations to increase rank and improve conditioning. As a rule of thumb, greater spatial

disparity between (source,detector) pair positions improves the conditioning of the inverse

problem. In this chapter, we use 18 well-separated (source, detector) pairs to satisfy the

full-rank condition and to achieve good matrix conditioning.

Hidden-Plane Reflectivity Estimation

The unconstrained least-squares estimate for the hidden-plane reflectivity under the piecewise

planar reflectivity model is [38]:

α̂ULSψ =
(
ΘTΘ

)−1
ΘT y.
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The M ×M pixel image is obtained after reshaping the solution vector back to an array.

Since reflectivity is constrained to lie within the interval [0, 1], the constrained least-squares

estimate that satisfies this bounded reflectivity condition is obtained by the pixelwise thresh-

olding of the unconstrained reflectivity estimate [38], i.e.,

α̂CLSψ (mx,my) =


1 , for α̂ULSψ (mx,my) ≥ 1;

0 , for α̂ULSψ (mx,my) ≤ 0;

α̂ULSψ (mx,my), otherwise.

mx,my = 1, . . . ,M

Mitigating the effect of measurement noise: We assume that the time samples, rij[n],

are corrupted with signal-independent, zero-mean, white Gaussian noise of a known variance,

σ2, which depends on the choice of the detector and time-sampling assembly.

We employ two main methods to reduce the effect of noise: First we reduced noise in

the time-samples by repeatedly illuminating the static scene and averaging the measured

time-samples. Second, we employed constrained Tikhonov regularization [38] to obtain the

following hidden-plane reflectivity estimate,

α̂C−TIKHψ (mx,my) =


1 , for α̂U−TIKHψ (mx,my) ≥ 1;

0 , for α̂U−TIKHψ (mx,my) ≤ 0;

α̂U−TIKHψ (mx,my), otherwise,

mx,my = 1, . . . ,M

(2.12)

where

α̂U−TIKHψ =
(
ΘTΘ + β ΦTΦ

)−1
ΘT y,

Φ is the discrete wavelet transform (DWT) matrix derived from Daubechies’s 2-tap filter [39]

([1,−1]/
√

2), and β ∈ [0, 1] is a weight parameter to control the degree of Tikhonov regular-

ization. A high value of the weight parameter, β, forces the reflectivity image to be overly

smooth while a low-value of β leads to noisy reflectivity estimates. Therefore, an optimal

value of β needs to be chosen. In this chapter, we selected this optimal β-value by con-

structing the reflectivity image for β = {0.1, 0.2, . . . , 0.9} and then choosing the one which

minimized the squared error ‖ y −Θ α̂U−TIKHψ ‖22.
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In the next section we describe the experimental setup and results obtained through

the use of the aforementioned scene response modeling and hidden-scene image construction

methods.

2.7 Experimental Setup and Results

The physical setup corresponding to Fig. 2-1 is shown in Fig. 2-7 (also see [5, 40, 41]). The

complete scene geometry, including all positions and orientations, was measured prior to

data collection.

The pulsed light source illuminating the visible Lambertian diffuser is a 795-nm-wavelength

femtosecond Ti:Sapphire laser operating at 75 MHz repetition rate. Its ultra-short laser

pulses were Gaussian-shaped (s(t)) with 50-ps full-width half-max (FWHM). For data ac-

quisition, we were only interested in time-sampling the backreflected light in response to

illumination by a single laser pulse, but as stated before we leveraged the high repetition

rate of the laser by repeating the same scene response measurement over a dwell time of

60 seconds and averaging the time-samples to mitigate noise.

Figure 2-7: Physical setup for looking around corners. The various components for hidden-plane
imaging are shown.
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Using a glass slide, about 5% of the laser beam light was split off to provide a time-

synchronization signal. The time-resolved sensor was a Hamamatsu streak camera imaging

along a horizontal line on the visible Lambertian diffuser. The streak camera comprised of a

charge coupled device (CCD) sensor with a gating interval of Ts = 2 picoseconds, and a cath-

ode ray tube with a 20 ps FWHM Gaussian-shaped impulse response. Time-samples of the

impulse response of the overall imaging system, {g[n]}N−1n=0 , which is the convolution of the

instrument response and the laser pulse shape was measured by illuminating a heavily atten-

uated laser beam directly into to the streak camera opening. This system impulse response

measurement also included the effect of timing jitter in the synchronization electronics.

In our experiment, we sampled the incident light signal for a 1 ns time window (NTs).

The total path lengths in our imaging setup, Si → hidden-plane→ Dj, ranged from 35.1 cm

to 41.2 cm corresponding to a maximum path difference of 6.1 cm or equivalently 204 ps

time-duration of the light signal of interest. Given these optical path lengths we obtained

between 100 to 200 time-samples for each source-detector pair.

The diffuser and hidden-plane’s shapes were cut-out acrylic, painted with Lambertian

white reflectivity coating (see Fig. 2-9(top row)). Given the different shapes and sizes of

the scene cut-outs, we modeled the hidden-plane based on the smallest bounding square

that enclosed all the scenes. The hidden reflectivity was modeled as piecewise-constant over

square patches of dimensions 2.8 mm-by-2.8 mm (W/M = 2.8 mm) arranged in a planar

50-by-50 grid (M = 50).

The experiment was laid out such that scattering from mounts and other equipment did

not contribute to the collected data. Also, by appropriate placement of occluders, it was

ensured that no reflected light from the hidden-scene reached the camera optics without

first reflecting off the visible diffuser. The same was ensured for the laser light, which could

reach the hidden-scene only after reflecting off the visible diffuser. Thus, there was no direct

line-of-sight between the hidden-scene and the co-located laser-camera setup. As a result,

each laser pulse underwent three diffuse scatterings before reaching the streak camera. To

make up for the resulting ∼ 90 dB attenuation, we used large collecting optics and low-noise

light intensification within the streak camera.

Data from a single source-detector pair did not provide enough observations to uniquely
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solve for the hidden-plane’s reflectivity. To resolve this problem, we illuminated six source

locations, S1 through S6, and simultaneously time-sampled the backscattered light incident

from three detector locations, D1 through D3. Each (Si, Dj) pair provided 100 to 200 non-

zero time samples, and we recorded a total of 2,849 streak camera samples using these 18

source-detector pairs (see Fig. 2-8).

As derived in Section 2.6, the measurement matrix, Θ is a linear mapping from the

2,500 unknown reflectivity values to the 2,849 measured time-samples. The measurement

matrix was constructed entirely in software, using the knowledge of scene geometry and the

various optoelectronic parameters associated with the experiment (see Fig. 2-8). Finally as

described in Section 2.6, we solved the resulting system of linear equations using Tikhonov

regularization [38] to construct the 50-by-50 pixel images of the various hidden scenes. (see

Fig. 2-9).

2.8 Discussion and Conclusion

In this chapter, we demonstrated hidden-plane image formation in the presence of occluding

and scattering objects using a Lambertian diffuser in lieu of a lateral view mirror. Lam-

bertian scattering makes it impossible to recover the hidden-plane image using an ordinary

camera. Scattered light traverses different optical paths within the scene and differences

in propagation path length introduce differences in the times-of-arrival at the sensor. We

developed a mathematical model for this time-dependent scattering of a light impulse from

the diffuse surfaces in the scene. Using femtosecond pulsed illumination of the Lambertian

diffuser and ultra-fast time-resolved sensing of the diffuse reflections, we computationally

constructed the hidden-plane image by solving a linear inversion problem. Understanding

the trade-offs and limitations of the theoretical framework and proof-of-concept experiments

presented in this chapter could lead to possibilities for further investigation.

The spatial resolution of the constructed image is a function of the signal-to-noise ratio

(SNR) of the camera, its temporal resolution, the scene geometry, and the spatial sampling

pattern on the Lambertian diffuser ({Si, Dj} locations). Even for the simplest case of imag-

ing a single hidden-plane, there are several open questions in relation to these parameters,
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A

B

C

10 cm

Figure 2-9: Hidden-plane image construction results using the experimental setup. (A) The
hidden planar scenes used in our experiments were black-and-white cut-out shapes. (B) Using an ordinary
lateral-view mirror instead of the Lambertian diffuser, the image of the hidden cut-out is easily captured
using a conventional camera. (C) Computational constructions of the hidden-plane cut-outs obtained by
processing the streak images recorded in response to the ultra-short pulse illumination of the Lambertian
diffuser at several distinct locations (see Fig. 2-8). Images have a pixelated appearance because of the
piecewise-constant reflectivity assumption. Using a finer grid would allow sharper edges and higher pixel-
resolution images, but would also requires spatial sampling of a larger number of disparate source-sensor
locations and faster temporal sampling.

for example, how many source-sensor locations are necessary to ensure high quality image

formation? What is optimal source-sensor geometry for hidden-scene imaging? What is the

interplay between time-sampling and source-sensor geometry?

The answers to the aforementioned questions lie in understanding how each of the key

system parameters affects the numerical conditioning of the linear transformation that relates

hidden-plane reflectivity data to the measured time-samples. This task may be too difficult to

characterize analytically, but a simulation-based approach may yield some key insights. For
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example, it intuitively seems that acquiring data using a large number of spatially-separated

source-sensor pairs, and the use of fine-temporal sampling generally result in higher quality

hidden-plane image formation.

The framework and results presented in this chapter have several limitations. The con-

structed black-and-white images are very low-resolution, although the object outlines are

clearly visible and one may recognize the object from its appearance in the constructed im-

age. It is also unclear how robust the imaging framework is, for example, do small errors in

the measured scene geometry have a significant effect on the image construction. Another

parameter that will have a significant impact is the accuracy of time-synchronization between

the laser and the streak camera. Although it was not attempted, gray-scale image capture

may not be possible due to the significant SNR loss and poor numerical conditioning of the

inverse imaging problem.

Overall, the computational imaging framework and the preliminary experimental results

presented in this chapter by themselves do not point towards the design of a practical imaging

system to look around corners. This chapter, however, serves as a powerful demonstration

of the use of computational time-resolved imaging to tackle inverse imaging problems that

cannot be solved using traditional imaging methods.
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Chapter 3

Compressive Depth Acquisition

3.1 Overview

Sensing 3D scene structure is an integral part of applications ranging from 3D microscopy [42,

43] to geographical surveying [44]. Humans perceive depth using both monocular cues,

such as motion parallax, and binocular cues, such as stereo disparity. Camera-based stereo

vision techniques [45], however, suffer from poor depth resolution and high sensitivity to

noise [46,47]. Computer vision techniques—including structured-light scanning, depth-from-

focus, depth-from-shape, and depth-from-motion [45, 48]—are computation intensive, and

the depth measurement using these methods is highly prone to errors from miscalibration,

absence of sufficient scene texture, and low signal-to-noise ratio (SNR) [46–48].

In comparison, active depth acquisition systems, such as medium-range light detection

and ranging (LIDAR) systems [9] and time-of-flight cameras [3,10], are more robust against

noise due to background light [47], capture depth data at video frame rates, only need a single

viewpoint, and have little dependence on scene reflectivity or object texture. Typically,

LIDAR systems consist of a pulsed illumination source such as a laser, a mechanical 2D

laser scanning unit, and a single time-resolved photodetector or avalanche photodiode [9,49].

Some non-commercial LIDAR systems [50] employ floodlight laser illumination and avalanche

photodiode arrays instead of raster scanned illumination and a single detector. The time-

of-flight camera illumination unit is composed of an array of omnidirectional, modulated,
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infrared light emitting diodes [3, 10, 51]. Light reflected from the scene—with time delay

proportional to distance—is focused on a 2D array of time-of-flight depth sensing pixels.

The detailed theory of operation of time-of-flight cameras and LIDAR systems is covered in

Sections 3.2 and Chapter 5 respectively.

While high quality 2D imaging is now a mature commercial off-the-shelf technology, 3D

acquisition techniques have room for significant improvements in spatial resolution, depth

accuracy, and cost effectiveness. State-of-the-art laser ranging systems such as ALIRT [2]

operate at kilometer range, but are limited to decimeter accuracy, expensive to build and

difficult to mass produce. Moreover, such airborne raster-scanning systems typically require

several passes over a region to collect data and are not effective in capturing fast moving ob-

jects. Commercial room-scale time-of-flight imagers capture real-time, centimeter-accurate

depth data but have significantly poorer spatial resolution (less than one-megapixel) com-

pared with the several megapixel RGB camera sensors in today’s smart devices.

As the use of 3D imaging in consumer and commercial applications continues to increase,

LIDAR systems and time-of-flight cameras with low spatial resolution are unable to sharply

resolve spatial features, such as small depth discontinuities, that are needed for some appli-

cations. Low-resolution sensor arrays (for e.g., 128 × 128 pixel avalanche detector arrays)

can be used to perform coarse tasks such as object segmentation. Upcoming applications,

such as 3D biometrics and skeletal tracking for motion control, demand much higher spatial

resolution. Due to limitations in the 2D time-of-flight sensor array fabrication process and

readout rates, the number of pixels in the state-of-the-art time-of-flight camera (Microsoft’s

Kinect sensor [52]) is currently limited to a maximum of 424 × 512 pixels. Consequently,

it is desirable to develop novel depth sensors that possess high spatial resolution without

increasing the device cost and complexity.

In this chapter we introduce a framework for compressively acquiring the depth map

of a piecewise-planar scene, with high depth and spatial resolution, using only a single

omnidirectionally collecting photodetector as the sensing element and a spatially-modulated

pulsed light source that produces patterned illumination (see Fig. 3-3).

In Chapter 4 we present the dual of this imaging configuration in a low-light level setting

by employing floodlight illumination with a pulsed source and spatial patterning the light
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that gets detected by using a digital micromirror device (DMD) in front of a single-photon

counting detector (see Fig. 4-1). Despite the differences in imaging configuration and the

employed sensing element, both computational imagers operate on the signal models and

depth map construction methods that are developed in this chapter.

The remainder of this chapter is organized as follows. Prior art and challenges in com-

pressive depth acquisition are discussed in Section 3.2. Then Section 3.3 introduces the

imaging setup and signal model for compressive depth acquisition. The measurement model

and data acquisition pipeline are described in Section 3.4. These models form the basis

for the novel depth map construction developed in Section 3.5. Experimental setup and

results are presented in Section 3.6, and finally Section 3.7 provides additional discussion of

limitations and extensions.

3.2 Prior Art and Challenges

Time-of-flight camera operation: There are two classes of time-of-flight cameras, ones

that operate using short-pulsed illumination [53] and others that use a continuously modu-

lated light source [3,10,54–57]. In this section, we only consider the operation of amplitude

modulated continuous wave (AMCW) homodyne time-of-flight cameras, which are now mass

produced and commercially available as Microsoft Kinect 2.0 [52]. Figure 3-1 shows a signal-

processing abstraction of an AMCW time-of-flight camera pixel; in the Microsoft Kinect, the

camera sensor is a collection of 424× 512 such AMCW time-of-flight measuring pixels. The

radiant power of transmitted light is temporally modulated using a non-negative sinusoidal

signal

s(t) = 1 + cos (2πf0t), (3.1)

with modulation frequency f0 and modulation period T0 = 1/f0. In the absence of multipath

interference, the reflected light from the scene is well modeled as

r(t) = α cos (2πf0(t− τ)) + (α + bλ). (3.2)

Here: α is the target reflectivity, τ = 2z/c is the time-delay due to roundtrip propagation of

light at speed c between camera and a scene point at distance z; and bλ is the time-invariant

47



× 
𝜙 

𝑠 𝑡 = 1 + cos 2𝜋𝑓𝑡 

× 

  ∫  

  ∫  

𝜙 +
𝑇

2
 

𝑥(𝑡) 

𝑥(𝑡) 

𝑥(𝑡) 𝑟(𝑡) 

𝑟(𝑡) 

𝑦𝑎(𝜙) 

𝑦𝑏(𝜙) 
− 𝑑−(𝜙) 

𝑟 𝑡 = α cos 2𝜋𝑓(𝑡 − 2𝑧/𝑐) + 𝑏λ 

𝑏 

𝛼 

𝑧 

𝑧 

Figure 3-1: Signal processing abstraction of a time-of-flight camera pixel.

background or ambient light contribution from the scene at the operating wavelength λ. Our

goal is to estimate the reflectivity α and the distance z under the assumption that there is

no depth aliasing, which can be ensured by choosing T0 such that the maximum scene depth

zmax < cT0/2.

In a homodyne time-of-flight camera, the light signal, r(t), incident at the sensor pixel

is correlated with a reference signal, x(t + φ) = x(t + φ + T0) and its time-shifted copy,

x(t + φ + T0/2). The role of the shift parameter, φ, will become clear below. In practice,

the reference signal, x(t), is typically chosen to be a periodic, unit-amplitude, non-negative

square wave with the following Fourier series representation:

x(t) = x(t+ T0) = 1 +
4

π

[
sin (2πf0t) +

1

3
sin (6πf0t) +

1

3
sin (6πf0t) + . . .

]
. (3.3)

Under the aforementioned assumption, the cross-correlation functions, denoted using ya and

yb are given by

ya(φ+ τ) =

∫ T0

0

r(t)x(t+ φ) dt =
2αT0
π

sin (2πf0(φ+ τ)) + (α + bλ)T0

yb(φ+ τ) =

∫ T0

0

r(t)x(t+ φ+ T0/2) dt = −2αT0
π

sin (2πf0(φ+ τ)) + (α + bλ)T0.

(3.4)

For a fixed value of φ, the following values are measured at the output of a time-of-flight
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sensor pixel,

d+(φ; τ) = [ya + yb]/2 = (α + bλ)T0

d−(φ; τ) = [ya − yb]/2 =
2αT0
π

sin (2πf0(φ+ τ)) .
(3.5)

Note d+(φ; τ) = d+ is a constant and provides an estimate of the total incident radiant

power. The function d−(φ; τ) is a sinusoid with no background component. To estimate α

and τ , we sample d−(φ; τ) at N ≥ 2 uniformly spaced values of φ. The n-th sample is

d−[n; τ ] =
2αT0
π

sin

(
2πf0

(
nT0
N

+ τ

))
for n = 0, . . . , N − 1.

For modulation frequency, f0, the amplitude estimate is

α̂ (f0) =
π

2T0

{
1

N

√
d−[0; τ ]2 + . . .+ d−[N − 1; τ ]2

}
. (3.6)

and an estimate of the wrapped or aliased distance is,

d̂ (f0) =
1

2π

(
c T0
2

)
arg

{
N−1∑
n=0

d−[n; τ ]e
−j 2πn/N

}
. (3.7)

Time-of-flight 3D cameras capture pixelwise depth information by focusing the back-

reflected time-shifted and attenuated light signal onto an array of sensor elements using

focusing optics identical to those found in traditional 2D cameras that capture scene reflec-

tivity as photographs. Neither the traditional image sensors nor the time-of-flight cameras

attempt to exploit the spatial correlations present in the reflectivity and depth of real-world

objects to reduce the various costs and complexities associated with acquiring these natural

scene characteristics. The next three sections discuss state-of-the art methods that were

recently introduced to compressively acquire scene reflectivity and depth information by

exploiting such spatial correlations.

Compressive acquisition of scene reflectivity: Many natural signals, including scene

reflectivity, can be represented or approximated well using a small number of non-zero pa-
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Figure 3-2: Sparsity of a signal (having a basis expansion or similar representation with a small number of
coefficients significantly different from zero) is widely exploited for signal estimation and compression [58].
An M ×M -pixel reflectivity image (shown in A) or depth map (shown in B) of a scene requires M2 pixel
values for representation in the spatial domain. As illustrated with the output of an edge-detection method,
the Laplacian of a depth map (shown in D) typically has fewer significant coefficients than the Laplacian
of the reflectivity image of the same scene (shown in C). This sparsity structure of natural scenes is also
reflected in discrete wavelet transform (DWT) coefficients sorted by magnitude: the reflectivity image has a
much slower decay of DWT coefficients and has more nonzero coefficients (shown in E blue, dashed line) as
compared to the corresponding depth map (shown in E green, solid line). We exploit this sparsity of depth
maps in our compressive depth acquisition framework.

rameters. This property, known as sparsity, has been widely exploited for signal estimation

and compression [58]. Making changes in signal acquisition architectures—often including

some form of randomization—inspired by the ability to effectively exploit sparsity in estima-

tion has been termed compressed sensing [59, 60]. Compressed sensing provides techniques

to estimate a signal vector α from linear measurements of the form y = Aα + n, where

n is additive noise and measurement vector y has significantly fewer entries than α. The

compressed sensing estimation methods [61] exploit there being a linear transformation Φ

such that Φ(α) is approximately sparse and that the measurement matrix A satisfies the

restricted isometry property [62].

An early instantiation of compressed sensing in an imaging context was the single-pixel

camera [11,12]. This single-pixel reflectivity imaging architecture employed a DMD to opti-

cally measure the linear projections of the scene reflectivity image onto pseudorandom binary

patterns. It demonstrated, through the use of compressed sensing reconstruction algorithms,

that it was possible to construct the scene reflectivity image using far fewer measurements

than the number of pixels in that image.
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Challenges in exploiting sparsity in depth map acquisition: The majority of depth

sensing techniques make time-of-flight measurements either through raster scanning every

point of interest in the field-of-view or by using focusing optics to establish a one-to-one

correspondence between each spatial location (or patch) in the scene and an element in

an array of sensors. The signal of interest—depth—in these cases is naturally sparse in a

wavelet domain or has sparse gradient or Laplacian. Furthermore, the depth map of a scene

is generally more compressible or sparse than its reflectivity image (see Fig. 3-2). In the

context of depth map compression, the work in [63,64] has exploited this transform domain

sparsity using pseudorandom projections in order to efficiently compress natural scene depth

maps. Thus, we expect a smaller number of measurements to suffice; as expounded in

Section 3.6, our number of measurements is 5% of the number of pixels as compared to 40%

for reflectivity imaging [11, 12]. However, compressive depth map acquisition is far more

challenging than depth map compression.

Compressively acquiring depth information using only a single detector poses a major

challenge. The quantity of interest—depth—is embedded in the reflected signal as a time

shift. The measured signal at the photodetector is a sum of all reflected returns and while

all the incident signal amplitudes containing reflectivity information add linearly, the cor-

responding time-shifts in these signals containing time-of-flight (and depth information) do

not add linearly. They add nonlinearly, and this nonlinearity worsens with the number of

time-shifted waveforms that are combined at the photodetector. Nonlinear mixing makes

compressive depth acquisition more challenging compared to compressive reflectivity acquisi-

tion discussed before. In particular, because it is not possible to obtain linear measurements

of the scene depth by simply combining the backreflected light at the detector the compres-

sive image formation pipeline employed in the single-pixel camera is useless for depth map

acquistion.

Compressive LIDAR: In a preliminary application of the compressed sensing framework

to LIDAR depth acquisition [15], a simple room-scale scene was flood illuminated with

a short-pulsed laser. Similar to the single-pixel camera, the reflected light was focused

onto a DMD that implemented a linear projection of the incident spatial signal with a
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pseudorandom binary-valued pattern. All of the light from the DMD was focused on a

photon-counting detector and gated to collect photons arriving from an a priori chosen depth

interval. Then, conventional compressed sensing reconstruction was applied to recover an

image of the objects within the selected depth interval. The use of range gating in this

setup makes it a conventional compressed sensing imager in that the quantities of interest

(reflectivity as a function of spatial position, within a depth range) are combined linearly in

the measurements.

Hence, while this approach unmixes spatial correspondences, it does not directly solve

the aforementioned challenge of resolving nonlinearly-embedded depth information. The

need for accurate range intervals of interest prior to reconstruction is one of the major

disadvantages of this system. It also follows that there is no method to distinguish between

objects at different depths within a chosen range interval. Moreover, acquiring a complete

scene depth map requires a full range sweep. The proof-of-concept system [15] had 60 cm

depth resolution and 64× 64 pixel resolution.

Next, we develop the theoretical framework that allows us to address the challenging

problem of nonlinear mixing of scene depth values in order to compressively reconstruct the

scene depth map.

3.3 Imaging Setup and Signal Modeling

In this chapter we restrict ourselves to the case of layered scenes comprised of planar objects,

all with the same reflectivity placed at K distinct depths, z1 < . . . < zK (see Fig. 3-3). The

case of scenes comprising inclined planar objects with uniform reflectivity was discussed in [6]

(also see [65, 65–70]). The depth map construction algorithm employed therein, however,

assumes that an inclined plane is composed of several smaller fronto-parallel facets placed at

uniformly spaced depths. Thus, the computational imager described in [6] is a special case

of the techniques developed in this chapter.

In our imaging setup, light from a pulsed illumination source (pulse shape s(t)) is modu-

lated with a spatial light modulator (SLM) before it illuminates the layered scene of interest.

The SLM pattern has M ×M pixels and each pixel’s opacity is denoted with p(x, y). We
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Figure 3-3: Compressive depth imaging of layered scenes The objects are placed at K distinct depths,
the SLM pixel resolution isM×M , and the scene is illuminated with L�M2 patterns. For each illumination
pattern, N digital-time samples of the photocurrent are recorded.

consider binary-valued SLM patterns, i.e., each SLM pixel is either completely transparent

(p(x, y) = 1) or opaque (p(x, y) = 0). Denote the scene reflectivity with α, which includes the

effects of object surface albedo, light propagation losses due to Lambertian scattering, radial

fall-off, and optoelectronic conversion using the experimental setup described in Section 3.6.

In our imaging formulation we assume that the number of distinct depths, K, and reflec-

tivity, α, are known a priori. The omnidirectional detector collecting the backscattered light

has an impulse response h(t). We assume that there is no background light. The detector

and the light source are precisely synchronized so that time-of-flight measurements are pos-

sible. The baseline between the detector and pulsed light source is assumed to be negligible.

We also assume that the scene is far enough from imaging system that the backreflected

light from different objects placed at depth zk arrives at the detector within a small time

interval centered at time tk = 2zk/c, where c is the speed of light.

The photocurrent, r(t), generated in response to scene illumination is sampled using

an analog-to-digital converter (ADC), which operates well above the Nyquist sampling rate
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determined by the system transfer function, g(t) = s(t)∗h(t). The root mean square duration

of the system transfer function is denoted by Tp and it includes the effect of the light pulse

duration as well as the detector response time. Denote the ADC sampling interval by Ts. A

total of N digital time-samples, {r[n]}N−1n=0 , are recorded for every transmitted pulse, where

r[n] = r(nTs), and N is chosen such that N >> 2K + 1 and NTs >> tK + Tp.

Figure 3-4: Depth-map representation for layered scene shown in Fig. 3-3. Also shown is a pictorial
representation of Equation (3.10).

Depth Map Representation

The constructed depth map has the same pixel resolution as the SLM. For the layered scenes

in consideration the M × M pixel depth map, z = {z(x, y)}Mx,y=1, can be expressed as a

sum of K index maps, with Ik = {i(x, y)}Mx,y=1 of pixel size M ×M , i.e., z =
∑K

k=1 z
k Ik

(see Fig. 3-4). In our setup we only consider opaque objects hence our index maps are

binary-valued. The index maps are defined as:

ik(x, y) =


1 if an object is present and visible at

pixel (x, y) and depth zk

0 otherwise.
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Given this depth map representation, we note that estimating z from digital time-samples

of the photocurrent is tantamount to estimation of the distinct depth values {z1, . . . , zK}

and the associated index maps, {I1, . . . , IK}.

We also introduce an additional index map, I0, to model the pixels at which there is no

object present in the scene, i.e.,

i0(x, y) =


0 if an object is present at pixel (x, y)

at any of the K depths

1 otherwise.

Note that (see Fig. 3-5),

i0(x, y) +
K∑
k=1

ik(x, y) = 1, x, y = 1, . . . ,M. (3.8)

Figure 3-5: Opacity constraint for the depth map of the layered scene shown in Fig. 3-3.

3.4 Measurement Model

Data Acquisition

The scene is illuminated with a pre-selected sequence of L binary-valued SLM patterns.

Each SLM pattern is denoted with P ` = {p`(x, y)}Mx,y=1. Except for the first SLM pattern,

all p`(x, y) values are chosen at random from a Bernoulli distribution with parameter 0.5.

The first SLM pattern is chosen to be all-ones, i.e., {p1(x, y) = 1}Mx,y=1. For each illumination

pattern we record N digital time-samples {r`[n]}N−1n=0 . In our experiments, we improve SNR

by repeatedly illuminating the scene with light pulses for a fixed SLM pattern and averaging

the digital time-samples. We assume that our scene is static during data acquisition.
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Figure 3-6: Parametric signal modeling of the scene-response. The figure shows the various parametric
waveforms and received signals when the scene shown in Fig. 3-3 is illuminated with an all-ones pattern.

Parametric Scene-response Model

Under the parametric signal model for the scene impulse response, the backreflected light

signal incident on the omnidirectional detector is a combination of K non-overlapping wave-

forms, each corresponding to a distinct scene depth. Additionally, we model the individual

waveforms as boxcar functions with unknown time duration, 2dk, unknown amplitude, ak,`,

and which are approximately centered around tk = 2zk/c. (see Fig. 3-6). This waveform

modeling is based on the assumption that for each object in the scene, the largest object

dimension, W k, is much smaller than the distance of the object from the imaging setup, zk.

As an example, assume that the object number 3 in Fig. 3-6 had a perfect square-shape,

and was placed fronto-parallel to the imaging setup in such a way that the geometric center of

the object was in perfect lateral alignment with the optical center of the imager. Using simple

Cartesian geometry it can be shown that the duration of the boxcar function corresponding

to object number 3 is, 2d3 = 2(
√

[z3]2 + [W 3]2/4 − z3)/c, and the temporal center of the

boxcar function is, t3 = 2 (
√

[z3]2 + [W 3]2/4 + z3)/c. Additionally, our assumption that
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W k � zk for k = 1, . . . , K implies that 2dk � tk and ensures that the boxcar waveforms

corresponding to the objects at different depth layers do not overlap with each other, i.e.,

(tk−1 + dk−1) < (tk − dk) for k = 1, . . . , K.

Note that conservation of total optical flux implies that the area under the k-th boxcar

function, which represents the total backreflected light corresponding to object number k,

must be equal to the product of object reflectivity, α, and the total surface area of object

number k that is illuminated by the light source. For example, the amplitudes of the boxcar

functions, ak,1, when the scene is illuminated with an all-ones illumination pattern are such

that,

ak,1 × 2 dk =
M∑
x=1

M∑
y=1

α ik(x, y) p1(x, y) =
M∑
x=1

M∑
y=1

α ik(x, y), for k = 1, . . . , K. (3.9)

We will assume that the temporal position, tk, and the time duration, 2dk, of each boxcar

function is independent of the choice of SLM pattern. Thus, because we have assumed

that 2dk � tk, there is negligible change in the waveform’s boxcar shape when the scene is

illuminated with different SLM patterns.

Given all the aforementioned assumptions, the photocurrent measured in response to the

illumination with SLM pattern P ` is,

r`(t) = s(t) ∗ h(t) ∗

(
K∑
k=1

ak,` [u(t− tk + dk)− u(t− tk − dk)]

)

= g(t) ∗ u(t) ∗

(
K∑
k=1

ak,` [δ(t− tk + dk)− δ(t− tk − dk)]

)
.

Here, u(t) is the Heaviside step function, and δ(t) is the Dirac delta function.

Note that similar to Equation (3.9), the conservation of optical flux implies that the

waveform amplitudes, {ak,`}Kk=1, are dependent on the SLM patterns. In more precise terms,

(ak,`× 2 dk) is equal to the standard inner product between the k-th index map, Ik, and the
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`-th SLM pattern, P `, i.e., (also see Fig. 3-4)

ak,` × 2 dk = α
M∑
x=1

M∑
y=1

ik(x, y) p`(x, y), for k = 1, . . . , K, ` = 1, . . . , L. (3.10)

3.5 Novel Image Formation

The scene depth map construction is a two-part algorithm that requires the following inputs:

1. SLM patterns, {P `}L`=1, and pixel resolution, M ×M ,

2. digital time-samples, {r`[n]}N−1n=0 , ` = 1, . . . , L,

3. number of distinct depths, K, and

4. digital time samples of the system transfer function {g[n] = g(nTs)}N−1n=0 .

Step 1 – Estimation of Distinct Depth Values

The first step in depth map formation is to estimate {tk = 2zk/c}Kk=1 using the digital time-

samples, {r1[n]}N−1n=0 , recorded in response to the first SLM pattern. In order to accomplish

this task we analyze the signals in the Fourier domain,

F{r1(t)} = F

{
g(t) ∗ u(t) ∗

(
K∑
k=1

ak,1 [δ(t− tk + dk)− δ(t− tk − dk)]

)}

where F{.} denotes the continuous-time Fourier transform (CTFT) operator, By deconvolv-

ing g(t)∗u(t) from r1(t), we see that it is possible to re-formulate our problem of estimating,

{ak,1, tk, dk}Kk=1 as a traditional line spectrum estimation problem [71], or the problem of

estimating the frequencies and weights that constitute a mixture of 2K sinusoidal signals.

In our case the 2K time-delays we are seeking act like pseudofrequencies, i.e.,

{f 1 = (t1 − d1), . . . , fK = (tK − dK), fK+1 = (t1 + d1), . . . , f 2K = (tK + dK)}.

Since we only have access to the digital time-samples, {r1[n]}N−1n=0 , it is necessary to formulate

the discrete-time line spectrum estimation problem. Since NTs >> tK +Tp we use the stan-
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dard digital signal processing trick of sampling the CTFT, R(jω), assuming a periodization

of the photocurrent signal, i.e., assuming that r1(t) = r1(t + NTs). In our experiments,

we accomplished this by setting the repetition rate of the laser equal to NTs. Denote the

discrete-time Fourier transform samples with R1[n]. It follows from Nyquist sampling theory

that R1[n] = R1(j 2πn/N)/Ts, n = 0, . . . , (N − 1). Then,

TsR
1[n]

G[n]U [n]
=

K∑
k=1

ak,1 e−j2πf
kn/N −

2K∑
k=K+1

ak,1 e−j2πf
kn/N , n = 0, . . . , (N − 1). (3.11)

The values {R1[n], G[n], U [n]}N−1n−0 are computed using the discrete Fourier Transform (DFT)

of the digital samples, {r1[n], g[n], u[n] = u(nTs)}N−1n=0 , obtained during the calibration and

data acquisition.

Estimation of pseudofrequencies, {fk}2Kk=1, using the model described in Equation (3.11)

is accomplished using standard parametric line spectral estimation methods [71]. Due to

noise in the acquisition pipeline, the samples {r1[n]}N−1n=0 are corrupted. In our experiments,

we reduce noise to inconsequential levels by averaging time-samples over multiple periodic

illuminations. Among the various available algorithms, such as Prony’s method [72], ES-

PRIT [71] etc., we found that the Matrix Pencil algorithm [73] achieves the best practical

performance for our application in the presence of noise.

It is worth mentioning that this procedure does not require the knowledge of the weight

parameters, {ak,1}Kk=1. The pseudofrequency estimates produced by the Matrix Pencil algo-

rithm are sorted in a descending order and labeled appropriately to obtain the pseudofre-

quency estimates denoted by {f̂k}2Kk=1. Then the parameters {tk, dk}Kk=1 are estimated as

follows:

t̂k =
f̂k + f̂K+k

2
, d̂k =

f̂K+k − f̂k

2
, k = 1, . . . , K.

The estimates for the K distinct depth values are {ẑk = ct̂k/2}Kk=1. The estimates for

{ak,1}Kk=1 are obtained by solving the following least-squares problem,
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arg min
{x1....,xK}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


TsR1[0]
G[0]U [0]

...
TsR1[N−1]

G[N−1]U [N−1]


︸ ︷︷ ︸

N×1

−


1 . . . 1
...

...

(e−j2πf̂
1(N−1)/N . . . (e−j2πf̂

K(N−1)/N

−e−j2πf̂K+1(N−1)/N) −e−j2πf̂2K(N−1)/N)


︸ ︷︷ ︸

N×K


x1

...

xK


︸ ︷︷ ︸

K×1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

,(3.12)

where ‖.‖2 denotes the `2-norm of a complex vector and {xk}Kk=1 are optimization variables.

Step 2 – Estimation of Index Maps

The second step in depth map construction is to compute the index maps {Ik}Kk=1. This

is accomplished using the inner product model from Equation (3.10). The time-samples,

{r`[n]}N−1n=0 recorded in response to SLM pattern, P `, are used to compute amplitudes esti-

mates, {âk,`}Kk=1, by employing the procedure outlined in step 1 (specifically Equation (3.12)).

The depth parameters, {tk, dk}Kk=1, are already estimated in step 1 and there is no need to

recompute them since these parameters do not depend on the SLM pattern. Once the

K×L amplitude estimates are computed, the optimal solution of the following optimization

problem can be used to estimate the K binary-valued index maps,

OPT1 : arg min
X0,X1,...,XK

(1− β)
K∑
k=1

L∑
`=1

[
âk,` − 〈X

k,P `〉
2αdk

]2
+ β

K∑
k=0

∥∥ΦIX
k
∥∥
1

subject to

C1 : X0(x, y) +
K∑
k=1

Xk(x, y) = 1, x, y = 1, . . . ,M

C2 : Xk(x, y) ∈ {0, 1}, k = 0, . . . , K, x, y = 1, . . . ,M.

Here, the first term of the cost function corresponds to model described by Equation (3.10),

{X0, . . . ,XK} are the optimization variables corresponding to the binary-valued index maps,
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and the inner product is defined as

〈Xk,P `〉 .=
M∑
x=1

M∑
y=1

Xk(x, y)P `(x, y).

The operator ΦI is the matrix representation of a sparsifying transform for the binary-valued

index maps (we use the discrete wavelet transform derived from the 2-tap Daubechies filter),

‖.‖1 is the `1-norm of a real-valued vector and the weight parameter β ∈ (0, 1) is introduced

to control the degree of spatial regularization.

The constraint C1 corresponds to Equation (3.8). The index map estimates are the op-

timal solutions of OPT1, however this optimization problem is computationally intractable

because of integer constraint C2. To make the index map estimation problem tractable and

solve it using standard optimization packages [74], we relax the binary constraint C2 and

solve the following convex optimization problem instead:

R-OPT1: arg min
X0,X1,...,XK

(1− β)
K∑
k=1

L∑
`=1

[
âk,` − 〈X

k,P `〉
2αdk

]2
+ β

K∑
k=0

∥∥ΦIX
k
∥∥
1

subject to

X0(x, y) +
K∑
k=1

Xk(x, y) = 1, x, y = 1, . . . ,M

Xk(x, y) ∈ [0, 1], k = 0, . . . , K, x, y = 1, . . . ,M.

Denote the optimal solutions of R-OPT1 with {X̂k}Kk=0. The index map estimates are

computed as follows:

Î
k
(x, y) =

 1 if X̂
k
(x, y) > X̂

k′

(x, y) k′ ∈ {0, . . . , K}\k

0 otherwise
x, y = 1, . . . ,M.

A high value of the weight parameter, β, enforces the index maps to be overly smooth while

a low-value of β leads to noisy index map estimates. Therefore, an optimal value of β needs

to be chosen. In this chapter, we selected this optimal β-value by solving the optimization

problem R-OPT1 for β = {0.1, 0.2, . . . , 0.9} and then choosing the one that minimized the

61



objective function defined in R-OPT1.

Finally the depth map estimate, ẑ, is computed by combining the estimates, {ẑk, Îk},

i.e., ẑ =
∑K

k=1 ẑ
k Î

k
.

In order to validate the proposed signal models and depth map construction technique,

we conduced proof-of-concept experiments whose results are described in the next section.

3.6 Experimental Setup and Results

The light source was a mode-locked Ti:Sapphire femtosecond laser with a pulse width of

100 fs and a repetition rate of 80 MHz operating at a wavelength of 790 nm. The average

power in an illumination pattern was about 50 mW.

The laser illuminated a MATLAB-controlled Boulder Nonlinear Systems liquid-crystal

SLM with 512×512 pixels, each 15×15 µm. Pixels were grouped in blocks of 8×8 and each

block phase-modulated the incident light The phase-modulated beam was passed through a

sequence of wave plates and polarizers to obtain the desired binary intensity pattern. At a

distance of 10 cm from the detector, the size of each SLM pixel was about 0.1 mm2. Each

SLM pattern in our experiment was randomly chosen and had about half of the 4096 SLM

blocks corresponding to zero intensity.

A total of L = 205 binary patterns of 64 × 64 block-pixel resolution (M = 64) were

used for illumination and construction of a sub-centimeter accurate depth map, implying a

measurement compression ratio of L/M2 ≈ 5% when compared with depth map acquisition

using raster-scanning in LIDAR and a sensor array in time-of-flight cameras, both of which

require M2 measurements.

The binary SLM patterns were serially projected onto a scene comprised of four Lam-

bertian planar shapes (see Fig. 3-7A) at different distances. Our piecewise-planar scene

consisted of 4 different objects at K = 3 distinct depths. The objects were placed at dis-

tances between 15 cm and 18 cm from the imaging setup. These planar objects were acrylic

cut-outs of various geometric shapes to which Edmund Optics NT83-889 white reflectivity

coating had been applied.

For each pattern, the light reflected from all the illuminated portions of the scene was
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focused on a ThorLabs DET10A Si PIN diode with a rise time of 0.7 ns and an active area of

0.8 mm2. A transparent glass slide was used to direct a small portion of the transmitted light

into a second photodetector to trigger a 20 GHz bandwidth oscilloscope and obtain the time

origin for all received signals. As per step 1, the scene was first illuminated with an all-ones

pattern. The time sampling interval, Ts, of the oscilloscope was set such that N = 1311

samples of the photocurrent signal were obtained for every transmitted laser pulse. Sensor

noise was reduced to inconsequential levels by averaging time-samples over 1000 repeated

illuminations for each SLM pattern.

Prior to data processing a simple calibration was performed to obtain the system impulse

response samples, {g[n]}N−1n=0 . This was achieved by illuminating a single point on a bright

diffuse reflector at 1 cm distance from the imaging setup and measuring the backreflected

waveform. The time-samples of this backreflected waveform after normalization to unity

peak amplitude were used as the system impulse response. In a separate calibration to

obtain object reflectivity, α, a single spot on a bright diffuse reflector at 15 cm range was

illuminated and time-samples of the backreflected waveform were obtained. The ratio of the

amplitudes of the photocurrents measured at the 15 cm range and at 1 cm range was used

as an estimate of the target reflectivity, α.

Figure 3-7(A) shows the relative positions and approximate distances between the SLM

focusing lens, the photodetector, and the layered scene. The dimensions of the planar facets

are about 10 times smaller than the separation between SLM/photodetector and scene. Thus,

there is little variation in the times-of-arrival of reflections from points on any single planar

facet, as evidenced by the three concentrated rectangular pulses in the estimated parametric

signal using step 1 (see Fig. 3-7(C)). The time delays correspond to the three distinct depths

(15 cm, 16 cm and 18 cm). Note that the depth-axis is appropriately scaled to account for

ADC sampling frequency and the factor of 2 introduced due to light going to the object

and back to the detector. Figure 3-7(D) shows the amplitudes recovered in the case of the

first patterned illumination for the scene. Figure 3-7(B) shows the 64× 64-pixel depth map

reconstructed using time-samples from all of the patterned binary illuminations of the scene.

The distinct depth values are rendered in gray scale with closest depth shown in white and

farthest depth value shown in dark gray; black is used to denote the scene portions from
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Figure 3-7: Experimental setup and results (A). Photograph of experimental setup. (B). Estimated
depth map. (C). Parametric signal estimate in response to first (all-ones) SLM illumination. (D). Parametric
signal estimate in response to second (pseudorandomly chosen) SLM illumination.

which no light was collected.

Our technique yielded accurate sub-cm resolution depth-maps with sharp edges. The

depth resolution of our acquisition method—the ability to resolve objects that are closely

separated in depth—depends on the pulse duration of the temporal light modulation, the

photodetector response time, and ADC sampling rate. The spatial resolution of our output

depth map is a function of the number of distinct patterned scene illuminations; a complex

scene with a large number of sharp features requires a larger number of SLM illuminations.

3.7 Discussion and Limitations

In this chapter, we presented a method for acquiring depth maps of fronto-parallel scenes

using time samples of backreflected light measured using a single photodetector in response to

a series of spatiotemporally-modulated scene illuminations. The two central novelties of our

work, relative to standard LIDAR systems and time-of-flight cameras, is our mechanism for
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obtaining spatial resolution through spatially-patterned illumination, and the exploitation

of spatial correlations present in real-world objects to reduce the number of measurements

required for accurate depth map acquisition.

In principle, the techniques proposed in this chapter may reduce data acquisition time

relative to a LIDAR system because an SLM pattern can be changed more quickly than a

laser position, and the number of acquisition cycles M is far fewer than the number of pixels

in the constructed depth map N2. The savings relative to a time-of-flight camera may be

in the number of sensors. For a fair comparison, however, we must consider several other

factors that govern the total acquisition time.

For example, consider a LIDAR system which employs point-by-point acquisition using

raster-scanned illumination and a single omnidirectional avalanche photodiode. The total

data acquisition time is equal to the product of the dwell time/pixel and the number of

pixels in the depth map. In the absence of background light, tens of detected photons at

each pixel, which can be acquired using a very short dwell time, are sufficient to form a high

quality depth map obtained by simply averaging the photon detection times measured at

each spatial location.

In contrast, compressive depth acquisition requires fewer illumination patterns but a long

dwell time/pattern may be necessary to capture the backreflected scene response. If the scene

comprises of several depth layers, then the total acquisition time for compressive depth ac-

quisition may exceed that of a raster-scanned LIDAR system. Also, the computational depth

map construction employed in this chapter is algorithmically complex and computationally

time consuming relative to the simpler processing used in LIDAR systems. A more detailed

analysis of such trade-offs is necessary to conclusively determine the imaging scenarios in

which compressive depth acquisition outperforms traditional active imagers.

Beyond the preceding considerations, there are several limitations of the imaging frame-

work presented in this chapter that should be mentioned. The first is the inapplicability of

the compressive depth acquisition framework to construct depth maps of scenes comprising

curvilinear objects. In this chapter, we restricted our attention to layered scenes comprised

of planar objects, all with the same reflectivity, placed at distinct depths. A slightly more

general case of scenes comprising inclined planar objects is discussed in [6]. Beyond this
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generalization, adapting the compressive depth acquisition framework to curvilinear objects

requires significant extensions of the current mathematical model, which could be the subject

of future work.

Another limitation is in relation to spatially-varying scene reflectivity. If the objects

in the scene have high reflectivity variations, then the measurements deviate significantly

from our model, which causes depth map construction errors. In [6], we presented a simple

solution to accommodate for known scene reflectivity at each SLM pixel position (such as

obtained through a reflectivity image). The proposed solution assumes an SLM capable of

performing grayscale light modulation (the experimental results in this chapter used a binary

light modulation SLM), and the basic idea is to attempt to compensate for varying scene

reflectivity by illuminating the scene with an inverse illumination pattern, i.e., by illuminat-

ing low reflectivity scene pixels with a proportionately more transparent SLM pattern and

high reflectivity scene pixels with a proportionately more blocking SLM pattern.

The framework presented in this chapter also assumes that the number of depth layers,

K, is known. This is a hard assumption to satisfy in practice. However, note that K is

the model order in the line spectrum estimation problem formulated in Equation (3.11). It

is theoretically – and given a good signal-to-noise ratio in the time-samples – practically

feasible to estimate the model order K using the data, {r1[n]}(N−1)n=0 . There is well developed

literature around this topic [71, 75–77].

In the next chapter, we present an implementation of the compressive depth acquisition

framework in a low-light level imaging setting.
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Chapter 4

Low-light Level Compressive Depth

Acquisition

4.1 Overview

In this chapter we describe the extension of the compressive depth acquisition framework,

developed in Chapter 3, to low-light imaging applications. The depth map construction in

this chapter will rely on parametric signal modeling and processing to recover the set of

distinct depths present in the scene (Section 3.3). As before, using a convex program that

exploits the transform-domain sparsity of the depth map, we recover the spatial content at

the estimated depths (Section 3.4).

One key difference here is that instead of using a light source which is spatially modulated

by an SLM, we achieve spatial resolution through patterned sensing of the scene using a

digital micromirror device (DMD) (see Fig. 4-1). In essence, the imaging configuration in

this chapter is the dual of the imaging setup described in Chapter 3. The experimental results

in Section 4.3 describe the acquisition of 64× 64-pixel depth maps of fronto-parallel scenes

at ranges up to 2.1 m using a pulsed laser, a DMD and a single photon-counting detector.

These room-scale experimental results are in contrast with the near-range scenes (less than

0.2 m away) comprised of opaque objects that were imaged in Chapter 3. Additionally, we

also experimentally demonstrate imaging in the presence of unknown partially-transmissive
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occluders. The compressive depth acquisition prototype and experimental results presented

here provide a potential directions for non-scanning, low-complexity depth acquisition devices

for various practical imaging applications (also see [8]).

4.2 Experimental Setup

DMD 
(MxM 

pixels) 

2ns pulsed, periodic 

laser source 
correlator 

reconstructed 

M-by-M pixel 

depth map 

parametric signal 

processing U R 

avalanche 

photodiode 

s(t) 

lens,  

filter  

{H1[n]} {HL[n]} 

Figure 4-1: Imaging setup for low-light level compressive depth acquisition. Shown is a pulsed
light source with pulse shape, s(t), a DMD array withM ×M -pixel resolution, and a single photon-counting
detector (APD). For each sensing pattern, P ` the scene is repeatedly illuminated with light pulses and the
photon detections are used to generate a photon-count histogram with N time bins. This process is repeated
for L pseudorandomly-chosen binary patterns and the N × L histogram samples are processed using the
computational framework outlined in Section 3.5 to construct an M ×M -pixel scene depth map.

Active illumination: The schematic imaging setup, shown in Fig. 4-1, and the corre-

sponding physical setup, shown in Fig. 4-2, consist of an illumination unit and a single

detector. The illumination unit comprises a function generator that produces 2 ns square

pulses that drive a near-infrared (780 nm) laser diode to illuminate the scene with 2 ns

Gaussian-shaped pulses with 50 mW peak power and a repetition rate of 10 MHz implying
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Figure 4-2: Experimental setup for low-light level compressive depth acquisition. (a) Close-up of
the sensing unit showing the optical path of backreflected light from the scene. (b) The complete imaging
setup showing the pulsed source and the sensing unit.

a pulse repetition interval, Tr = 100 ns.

Details of the scene setup: Scenes are set up so that objects are placed fronto-parallel

to the data acquisition setup. Objects are 30 cm-by-30 cm cardboard cut-outs of the letters

U and R placed at distances z1 = 1.75 m and z2 = 2.1 m respectively. The two objects were

painted with a white Lambertian coating of known reflectivity, α.

Detector-side spatial patterning: Backreflected light from the scene is imaged onto a

DMD through a 10 nm filter centered at 780 nm with a 38 mm lens focused at infinity

with respect to the DMD. We use a D4100 Texas Instruments DMD that has 1024 × 768

individually-addressable micromirrors. Each mirror can either be “ON”, where it reflects the

backreflected light into the detector (p(x, y) = 1), or “OFF”, where it reflects light away from

the detector (p(x, y) = 0). For the experiment we used only 64×64 block-pixels of the DMD

to collect backreflected light. For each scene we recorded photon-arrival data for L = 2000

patterns in total. Each of the DMD patterns were pseudorandomly-chosen as described in

Section 3.3. The pattern values are chosen uniformly at random to be either 0 or 1.

Low-light level detection: The detector is a cooled avalanche photodiode (APD) op-

erating in Geiger mode. Upon photon detection, the detector outputs a TTL pulse about
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10 ns in width, with edge timing resolution of about 300 ps. After a photon is detected, the

detector then enters a dead time of about 30 ns during which it is unable to detect photons.

To measure the time-of-arrival of a detected photon relative to the transmitted pulse, we

use a correlating device (Picoquant Timeharp) designed for time-correlated single-photon

counting. The correlator has two inputs: start and stop. The output of the laser pulse

generator is wired to start, and the APD output is wired to stop. Whenever an impinging

photon causes the APD to generate an electrical impulse, the correlator outputs a time-of-

arrival value that is accurate within a time-bin. In our experimental setup the duration of

this time-bin, denoted by ∆, was 38 ps. In the low-light level formulation of compressive

depth acquisition, this time-bin width is equivalent to the sampling period, Ts, defined in

Section 3.3. Note that a photon arrival time cannot exceed the pulse repetition interval Tr.

The theory of operation of APDs and the Poisson statistics of low-light detection are

described in the next chapter. The APD used in our experiment is not a number-resolving

detector, so it can only detect one photon arrival per illumination pulse. Therefore it was

important that in our experiment we maintained a low optical flux level (see Section 5.4).

This assumption is perfectly aligned with our goal of imaging in low-light level scenarios.

Under the low optical flux assumption it is possible to repeatedly illuminate the scene

with light pulses to build up a histogram of the arrival times of the detected photons,

also referred to as a photon-count histogram [78, 79]. For pattern `, denote this histogram

with {H`[n]}N−1n=0 where N = Tr/∆. In the low-light level formulation of compressive depth

acquisition, this histogram is the equivalent of the discrete time-samples {r`[n] = r(n∆)}N−1n−0

with the appropriate normalization. The photon counting mechanism and the process of

measuring the timing histogram are illustrated in Fig. 4-3. In our experiment, we used a

dwell time of 1 second per DMD pattern in order to build the photon-count histogram.

Despite this long acquisition time, in which approximately 107 illumination pulses were

transmitted toward the scene, the backreflected light levels were low enough that the effect

of Poisson or shot noise [80, 81] was prominent in our histogram’s bin values. Poisson noise

and its effects are described in more detail in Section 5.3.

Prior to data processing a simple calibration was performed to obtain the photon-count

histogram of the system impulse response, denoted by {G[n]}N−1n=0 . This was achieved by
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Figure 4-3: Generating a photon-count histogram. For a fixed DMD pattern, the scene is repeatedly
illuminated with light pulses. The APD + time-correlator device combination records the time-of-arrival of
single photons with a 38 ps accuracy. Under our low-optical flux assumption, for each illumination pulse
at most one photon is detected. The build-up of photon counts in the different time-bins of the histogram,
{H`[n]}N−1

n=0 , in response to an increasing number of pulsed illuminations is shown.

illuminating a single point on a bright diffuse reflector at 5 cm range and building the his-

togram of photon counts. This histogram, after normalization to unity peak amplitude, was

used as the system impulse response. In a separate calibration to obtain object reflectivity,

α, a single spot on a bright diffuse reflector at 2 m range was illuminated and the histogram

of photon counts was constructed. The amplitude of the histogram was used as an estimate

of the target reflectivity, α.

4.3 Data Processing and Experimental Results

In this section we discuss depth map constructions for two scenes using varying number of

measurements, L. The first scene (see Fig. 4-5) has cardboard cut-outs of the letters U,

R placed at 1.75 m and 2.1 m respectively from the imaging setup. The depth values and
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Figure 4-4: Depth map construction algorithm. The photon-count histogram values for the first DMD
pattern {H1[n]}N−1

n=0 , along with the photon-count histogram of the system impulse response, {G[n]}N−1
n=0 are

processed using step 1 to recover scene depth estimates, ẑ1 and ẑ2, which along with the knowledge of the
DMD patterns, and the photon-count histograms for the remaining DMD patterns, are further employed
in step 2 processing to compute the inner product estimates {âk,`}K,Lk=1,`=1. Finally the convex optimization

program R-OPT1 is used to reconstruct the index maps Î
1
, Î

2
and Î

0
.

corresponding time-shifts are identified from the histogram samples per step 1 processing (see

Section 3.5, also see Fig. 4-4). The recovered values for scene depths were, ẑ1 = 1.747 m and

ẑ2 = 2.108 m, which correspond to approximately 1 cm depth accuracy. In our experiment,

only one dataset corresponding to the all-ones illumination pattern was used to compute

these depth estimates, the standard deviation or error bias could not be calculated.

Recovery of spatial correspondences through index maps proceeds as described in step

2 processing (Section 3.5). In Fig. 4-5 we see index maps for our first experimental scene

(Fig. 4-5 (a)) for two different numbers of total patterns used. At L = 500 patterns (12%

of the total number of pixels), we can clearly identify the objects in index maps Î
1
and Î

2

with some distortions due to shot noise in photon-count histogram measurement; we also

see the background index map, Î
0
, corresponding to scene regions that do not contribute

any reflected returns. Using L = 2000 patterns (48.8% of the total number of pixels) the

proposed method reduces the noise level further, providing even more accurate index maps.

Imaging scenes with unknown transmissive occluders. In a second scene we con-

sidered a combination of transmissive and opaque objects and attempted to recover a depth

map. The scene is shown in Fig. 4-6(a). Note that the burlap placed at 1.4 m from the
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Figure 4-5: Depth map construction results. Scene layout is shown in (a) (the U and R cut-outs are

at different distances per Fig. 4-2). The index masks recovered using L = 500 patterns, Î
1
, Î

2
and Î

0
are

shown in (b), (c) and (d) respectively. The index masks Î
1
, Î

2
, recovered using L = 2000 patterns are shown

in (e) and (f) respectively.

imaging device completely fills the field of view. A 2D photograph of the scene would reveal

only the burlap. However, located at 2.1 m from the imaging device are cardboard cut-outs

of U and R—both at the same depth. These objects would be completely occluded in a 2D

reflectivity image. Also seen in Fig. 4-6 is a photon-count histogram acquired with a longer

dwell time of 4 seconds per DMD pattern. The histogram shows that the burlap contributes

a much larger reflected signal (approximately 12 times stronger) than the contribution of the

occluded scene. Figure 4-6 shows depth masks Î
1
, Î

2
for the burlap and occluded objects

respectively for L = 500 and L = 2000 patterns.

Note that in this depth map construction, we did not assume the presence of a partially

transmissive occluder. This is in contrast with the imaging methods which rely on range-

gating to look through foliage [17,82]. In our case, the presence of the burlap and its shape

and position are revealed entirely through the depth map construction step.

Achieving high depth resolution with slower response systems. Consider the un-

occluded imaging setup shown in Fig. 4-5. When the planar facets are separated by distances
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Figure 4-6: Occluded scene imaging. (a) Setup for the scene occluded with a partially-transmissive burlap
occluder; the shapes U and R are at the same depth. (b) and (c) Reconstructed depth maps for burlap and
scene using L = 500 patterns; (d) and (e) using L = 2000 patterns. Note that no prior knowledge about the
occluder was required for these reconstructions.
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Figure 4-7: Depth map reconstruction with simulated scene response to longer source pulse
width. We simulated poor temporal resolution by low-pass filtering the captured photon-count histograms
so that the waveform corresponding to the two depth layers have significant overlap which perturbs the
true peak values. The knowledge of the pulse shape, together with the parametric deconvolution framework
proposed in step 1 of our computational imager allows accurate recovery of the two distinct depth values
from the low-pass filtered histogram profiles. These accurate depth values further enable accurate depth
map construction using step 2 processing.

that correspond to time differences greater than the pulse width of the source, the time shift

information can be trivially separated. The more challenging case is when the objects are
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placed closed enough in depth, such that the backreflected pulses corresponding to distinct

objects overlap. Depending on the object separation, the waveforms corresponding to the

objects at different depths overlap with varying degree. In an extreme case, the waveform

peaks may no longer be distinctly visible, or in a moderate case the overlap causes the ob-

served peak positions to shift away from their accurate values. In both these cases, it is

difficult to estimate the true depth values from simply observing the peak positions.

In the case of fronto-parallel scenes, the use of a parametric signal modeling and recovery

framework (step 1) outlined in Section 3.5 may enable us to achieve high depth resolution

relative to the overall system’s temporal response. As an example, we demonstrate accurate

depth map construction for the scene shown in Fig. 4-5, through simulating slower system

response time by convolving the photon-count histograms with a Gaussian to correspond to a

time-resolved system that has a four times slower rise time when compared to the system used

in our experiments. These filtered histogram samples were processed through the compressive

depth map construction steps 1 and 2 and the results corresponding to L = 2000 patterns

is shown in Fig. 4-7. Note that in the absence of well-separated waveforms, techniques such

as those implemented in [15] fail to resolve the two depth layers clearly and result in depth

map construction errors. Despite our method’s improved performance for scenes composed of

fronto-parallel objects, the proposed techniques fail for scenes comprising curvilinear objects.

4.4 Discussion and Conclusions

The experimental setup and results presented in this chapter are a step towards practical

compressive depth acquisition at low-light levels such as will be the case of standoff (long-

distance) applications. A key practical shortcoming of the framework developed in Chapter 3

lies in the projection of the binary patterns on to the scene with an SLM. When the object

ranges exceed a couple of decimeters, the SLM patterns suffer significant distortions that lead

to severe reconstruction artifacts due to model mismatch. The experimental setup described

in this chapter uses flood illumination of the scene followed by spatial patterning at the

detector end, thereby implicitly resolving the aforementioned challenge with using an SLM

for compressive depth acquisition.
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Performance analysis for our depth acquisition technique entails analysis of the depen-

dence of accuracy of depth recovery and spatial resolution on the number of patterns, scene

complexity and temporal bandwidth. While the optimization problems introduced in our

paper bear some similarity to standard compressed sensing problems, existing theory does

not apply directly. This is because the amplitude data for spatial recovery is obtained after

the scene depths are estimated in step 1, which is a nonlinear estimation step. The behavior

of this nonlinear step in presence of noise is an open question even in the signal processing

community. Moreover, quantifying the relationship between the scene complexity and the

number of patterns needed for accurate depth map formation is a challenging problem.

Analogous problems in the compressed sensing literature are addressed without taking

into account the dependence on acquisition parameters, whereas in our active acquisition

system, illumination levels certainly influence the spatial reconstruction quality as a function

of the number of measurements. Analysis of trade-offs between acquisition time involved with

multiple spatial patterns for the single-sensor architecture and parallel capture using a 2D

array of sensors (as in time-of-flight cameras) is a question for future investigation. The main

potential advantage of the compressive depth mapping systems proposed in Chapter 3 and

Chapter 4 lies in exploiting sparsity of natural scene depth to reduce the acquisition time,

hardware cost, and hardware complexity without sacrificing depth accuracy and resolution.
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Chapter 5

First-photon Imaging

5.1 Overview

Acquisition of three-dimensional (3D) structure and reflectivity of objects using active im-

agers that employ their own illumination, such as the Microsoft Kinect [52], typically requires

millions of detected photons at each sensor pixel. Low-light level active imagers that em-

ploy photon-counting detectors, such as Geiger-mode avalanche photodiodes (APDs) [83],

can acquire 3D and reflectivity images at extremely low photon fluxes. For example, in 3D

light detection and ranging (LIDAR) systems [9, 84], the scene is illuminated with a stream

of laser pulses, the backreflected light is detected with a Geiger-mode APD, pixel-by-pixel

range information is obtained from histograms of the time delays between transmitted and

detected pulses [79], and pixel-by-pixel relative reflectivity is found from the number of

photons detected in a fixed dwell time.

Despite the use of highly sensitive photodetectors, hundreds of photon detections per

pixel are still required for accurate range and reflectivity imaging, because photon-counting

detectors are limited by Poisson noise, including that generated by ambient (background)

light [80, 85].

We introduce first-photon imaging, a framework which allows us to capture—accurately

and simultaneously—3D spatial structure and reflectivity using only the first photon detec-

tion at each pixel (see Fig. 5-1). It is a new computational paradigm for low-flux imaging
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Figure 5-1: First-photon imaging setup: A pulsed light source illuminates the scene in a raster scan
pattern. An incandescent lamp injects background light that corrupts the information-bearing signal. The
incident light is collected by a time-resolved single-photon detector. Each spatial location is repeatedly
pulse-illuminated until the first photon is detected. The photon’s arrival time relative to the most recent
transmitted pulse and the number of elapsed illumination pulses prior to first detection are recorded. This
dataset is used to computationally reconstruct 3D structure and reflectivity.

that produces high-quality range images, despite the presence of high background noise, and

high-quality reflectivity images, when a conventional reflectivity image built from one photon

detection per pixel would be featureless. These surprising results derive from exploiting the

spatial correlations present in real-world scenes within a computational framework that is

matched to the physics of low-flux measurements.

For each pixel our computational imager uses the number of illumination pulses prior to

the first photon detection as an initial reflectivity estimate. Poisson noise precludes these

pixel-by-pixel estimates from providing a high-quality reflectivity image. So we suppress that

noise by exploiting the high degree of spatial correlation present in real-world scenes, i.e.,

that neighboring pixels have strong distance and reflectivity correlations punctuated by sharp

boundaries. Such correlations are captured through sparsity in the scene’s discrete wavelet

transform (DWT) coefficients [86, 87]. Thus we suppress Poisson noise in the reflectivity
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image by means of a DWT-based regularization that does not sacrifice transverse spatial

resolution. We also exploit spatial correlations to censor background-generated (anomalous)

range values from an initial pixel-by-pixel range image.

By forming high quality images using far fewer detected photons (see Fig. 5-2), our

method dramatically broadens the applicability of imaging techniques, for example to situa-

tions involving active imagers with very low optical output power, or to imaging applications

where little backreflected light reaches the detector [79,84,88–90].

A B C

Figure 5-2: Processing the first-photon experimental data. A. A color photograph of the mannequin
used in our experiments. For sub-figures B and C, 3D estimates are rendered as point clouds and overlaid
with reflectivity estimates, with no additional post processing applied. B. Reconstruction using traditional
maximum-likelihood estimation (notice the grainy appearance and low image contrast due to Poisson noise
from the signal and background light). C. Our first-photon imaging method recovers a great amount of
detail (specular highlights, text and facial structure) that is heavily obscured in B.

The rest of this chapter is organized as follows. In Section 5.2 we review state-of-the-

art methods in active optical imaging and low-light level sensing. In Sections 5.3 and 5.4

we introduce the first-photon imaging image acquisition setup, notation and signal models.

Section 5.5 describes image formation using conventional maximum-likelihood estimation,

and Section 5.6 introduces the 3D and reflectivity image formation methods based on first-

photon data. Finally Sections 5.7 and 5.8 discuss the experimental setup and results, ending

with a short discussion of the limitations of the first-photon imaging framework in Section 5.9.

Note that in this chapter we use the terms scene depth map and scene 3D structure

interchangeably, since they are in one-to-one correspondence with each other, related by a

linear transformation which depends on the optical parameters of the system [91] (also see
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Section 5.7, which describes the relation between 3D scene geometry and depth map data).

5.2 Comparison with Prior Art

Photon Efficiency of active optical 3D imagers: Active optical 3D imaging systems

differ in how they modulate their transmitted power, leading to a variety of trade-offs in ac-

curacy, modulation frequency, optical power, and photon efficiency; see Figure 5-3 for a qual-

itative summary. The ordering of time-of-flight sensors by increasing modulation bandwidth

(decreasing pulse duration) is: homodyne time-of-flight cameras [3], pulsed time-of-flight

cameras [53, 92], and picosecond laser radar systems [24, 90]. Compared with time-of-flight

sensors, active imagers employing spatial modulation [45,52,55,93] have low photon efficien-

cies because they use an always-on optical source. Additionally, the systems using temporal

modulation typically have better depth accuracy and resolution than those using spatial

modulation. The advantage of spatial modulation tends to be cheaper sensing hardware,

since high-speed sampling is not required.

A. Accuracy vs. power trade-offs. B. Photon efficiency vs. modulation

bandwidth trade-offs.

Figure 5-3: Qualitative comparison of state-of-the-art active optical 3D sensing technologies. Photon effi-
ciency is defined as photons per pixel (ppp) necessary for centimeter-accurate depth imaging.

The most photon-efficient time-of-flight imagers—those requiring the fewest photons for

accurate imaging—use single-photon avalanche diode (SPAD) detectors [94]. Earlier efforts

in SPAD-based 3D imaging from on the order of 1 detected photon/pixel are reported in [95–
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99]. The framework presented here improves upon these works in part due to the use of

estimated reflectivity.

Optoelectronic techniques for low light level sensing: In low light-level scenarios,

a variety of optoelectronic techniques are employed for robust imaging. Active imagers use

lasers with narrow spectral bandwidths and spectral filters to suppress background light and

minimize the Poisson noise it creates. However, optical filtering alone cannot completely

eliminate background light, and it also causes signal attenuation. Range-gated imaging [17]

is another common technique, but this method requires a priori knowledge of object loca-

tion. Furthermore, a SPAD may be replaced with a superconducting nanowire single-photon

detector (SNSPD) [100], which is much faster, has lower timing jitter, and has lower dark-

count rate than a SPAD. However, SNSPDs have much smaller active areas and hence have

narrower fields of view than SPAD-based systems with the same optics.

Reflectivity inference: Under a continuous model of integrating light intensity, the time

to reach a fixed threshold is inversely proportional to the intensity, and this principle has

been employed previously for imaging under bright lighting conditions [101]. Our reflectivity

imaging for the first time pushes this concept to the extreme of inferring reflectivity from

the detection of a single photon.

Image denoising: For depth imaging using SPAD data, it is typical to first find a pixelwise

or pointwise maximum likelihood (ML) estimate of scene depth using a time-inhomogeneous

Poisson process model for photon detection times [78,80] and then apply a denoising method.

The ML estimate is obtained independently at each pixel, and the denoising is able to exploit

the scene’s spatial correlations. This two-step approach commonly assumes a Gaussian noise

model, which is befitting because of the optimal behavior of ML with large numbers of data

samples [102]. At low light levels, however, performing denoising well is more challenging due

to the signal-dependent nature of Poisson noise. In Section 5.8, we compare our technique

with the state-of-the-art denoising methods that use sparsity-promoting regularization. Our

superior performance is due in part to our novel method for classifying detection events as
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being due to signal (backscattered light) or noise (background light and dark counts).

5.3 Imaging Setup and Signal Modeling

Figure 5-1 shows the imaging setup. Scene patches and the corresponding image pixels

are indexed with (x, y). Distance to scene patch (x, y) is denoted by z(x, y) ≥ 0. Scene

patch reflectivity is denoted by α(x, y) ≥ 0 and it includes the effect of radial fall-off, view

angle, and material properties. Our goal is to form an M × M pixel reflectivity image

α = {α(x, y)}Mx,y=1 ∈ RM×M
+ and an M ×M pixel depth map z = {z(x, y)}Mx,y=1 ∈ RM×M

+ of

the scene. Our imaging setup uses 2D raster scanning, however our models and algorithms

also apply a 2D SPAD array with floodlight illumination as described in Chapter 6.

Active illumination: We use an intensity-modulated light source with pulse shape s(t)

and repetition interval Tr seconds. Optically, s(t) is the photon-flux waveform of the laser

pulse emitted at t = 0 and is measured in counts/sec (cps). We assume Tr > 2 zmax/c, where

zmax is the maximum scene depth and c is the speed of light, to avoid distance aliasing. With

conventional processing, the pulse width Tp (the root mean square (RMS) pulse duration)

governs the achievable depth resolution [80, 103]. As typically done in depth imaging, we

assume that Tp � 2 zmax/c < Tr.

Background noise: An incandescent lamp pointed toward the detector injects ambient

light with flux approximately as strong as the backreflected signal averaged over the scene.

Therefore, each photon detection is due to noise with probability approximately 0.5. In

Section 5.9, as well as in Section 6.6, we investigate the effect of signal-to-background ratio

(SBR) on the performance of the computational imager.

Detection: A SPAD detector provides time-resolved single-photon detections [94], called

clicks. Its quantum efficiency η is the fraction of photons passing through the pre-detection

optical filter that are detected. Each detected photon is time stamped within a time bin of

duration ∆, measuring a few picoseconds, that is much shorter than Tp. For mathematical
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modeling in this chapter we assume that the exact photon arrival time is available at each

pixel. In Chapter 6 (Section 6.3) we include the effect of time bin width, ∆, in our derivations.

Data acquisition: Each spatial location (patch), (x, y), is illuminated with a periodic

stream of light pulses until the first photon is detected. We record the first detected photon’s

arrival time, t(x, y), relative to the most recently transmitted pulse, along with the number

of light pulses, n(x, y), that were transmitted prior to the first detection (see Fig. 5-4). Also,

we do not employ range gating [17]. The result of the data acquisition process is the dataset

{t(x, y), n(x, y)}Mx,y=1 (see Fig. 5-5).

The first-photon data t(x, y) and n(x, y) are outcomes or realizations of the random

variables T (x, y) and N(x, y), respectively.

Figure 5-4: First-photon data acquisition: Rate function of inhomogeneous Poisson process combining
desired scene response and noise sources is shown. The time origin is reset after every pulse. Here, a photon
was detected in response to the third illumination pulse (n(x, y) = 3) with arrival time t(x, y). Since the
photon detections are modeled as arrivals in a merged Poisson process, it is not possible to determine whether
the detected photon was generated due to the backreflected signal or background light.
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Figure 5-5: First-photon data: (A) Photon times-of-arrival {t(x, y)}. (B) Elapsed pulse counts {n(x, y)}
(scene patches with higher reflectivity result in smaller n(x, y) values; see Fig. 5-4 and 5-6(B)). Zooming
into a high quality PDF reveals that in the portion of the image corresponding to the back wall (see Fig. 5-
2(A)), there are approximately equal regions of black and white pixels in sub-figure (B). This is empirically
consistent with the fact that averaged over the scene the photon detections due to signal and background
light were approximately equal.

Noise sources: Measurement uncertainty results from:

• Dark counts : Dark counts are detections that are not due to light incident on the

detector. They are generated by inherent detector characteristics.

• Background light : Ambient light at the operating wavelength causes photon detections

unrelated to the scene.

In addition to the noise sources listed above, certain characteristics of the data acquisition

system add uncertainity to the photodetection process. Two such key characteristics are:

• Pulse width: The timing of a detected photon could correspond to the leading edge of

the pulse, the trailing edge, or anywhere in between. This uncertainty translates to

error in depth estimation.

• Optical loss and detector efficiency : The light from the illumination source undergoes

diffuse scattering at the quasi-Lambertian object. As a result, only a small fraction of
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the transmitted photons are backreflected toward the detector. Moreover, not every

photon incident on the sensor’s active area is detected by the SPAD. Because of these

optical losses, a target pixel must be repeatedly illuminated with laser pulses until the

first photon is detected. In our work, we show that the number of elapsed pulses prior

to first photon detection contain reflectivity information.

Accounting for these characteristics is central to our contribution, as described in the fol-

lowing section.

5.4 Measurement Model

Illuminating scene patch (x, y) with intensity-modulated light pulse s(t) results in a backre-

flected light signal which is incident at the detector along with the background light. This

total photon flux is denoted by rx,y(t) = α(x, y) s(t− 2z(x, y)/c) + bλ, where bλ denotes the

time-invariant background light flux at the operating wavelength. This is only the incident

light-field; the detection model must account for the quantum nature of photodetection.

Poisson photodetection statistics: The photodetections produced by the SPAD in re-

sponse to the backreflected light from the scene is an inhomogeneous Poisson process whose

time-varying rate function is η rx,y(t), where η is the detection efficiency. It is also necessary

to add the detector dark counts, which are modeled as an independent homogeneous Pois-

son process with rate d. The observed inhomogeneous Poisson process thus has rate (see

Fig. 5-4):

λx,y(t) = η rx,y(t) + d = η α(x, y) s(t− 2z(x, y)/c) + (ηbλ + d). (5.1)

Define S ,
∫ Tr
0
ηs(t) dt (units: counts) as the average counts from perfectly-reflecting pixel;

and B , (ηbλ + d)Tr (units: counts) as the average background counts per pulse-repetition

period, where we have used—and will use in all that follows—background counts to include

dark counts as well as counts arising from ambient light. We assume that both S and B are

known, since it is straightforward to measure these physical quantities before we begin data

acquisition (see Section 5.7).
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Low-rate flux assumption: The derivations that follow assume that the total photon

flux incident at the detector from each scene patch is low, i.e., α(x, y)S + B � 1, as would

be the case in low-light imaging, where photon efficiency is important.

Signal vs. noise photons: A detected photon could originate from the backreflected light

signal or noise (ambient light and dark counts). The arrival statistics observed at the detector

result from the merging of the Poisson processes corresponding to these two sources [104].

Estimates of following probabilities are used in our framework to censor detections that are

generated due to background light and dark counts.

Pr[detected photon is due to background light] =
B

α(x, y)S +B
, (5.2)

Pr[detected photon is due to backreflected signal ] =
α(x, y)S

α(x, y)S +B
. (5.3)

Model for number of elapsed pulses N(x, y): Novel to this work, we exploit the fact

that the reflectivity of patch (x, y) is encoded in the number of pulses, N(x, y), transmitted

prior to first photon detection. The probability of not detecting a photon when pixel (x, y)

is illuminated by a single laser pulse,

P0(x, y) = e−(α(x,y)S+B), (5.4)

follows from Equation (5.1) and elementary Poisson statistics. Because each transmitted

pulse gives rise to independent Poisson noise, n(x, y) has the geometric distribution with

parameter P0(x, y), i.e.,

Pr[N(x, y) = n(x, y)] = P0(x, y)n(x,y)−1
(
1− P0(x, y)

)
, n(x, y) = 1, 2, . . . . (5.5)

As suggested by this reflectivity model, scene patches with lower reflectivity, α(x, y), on

average result in higher n(x, y) values, compared with brighter scene patches (see Fig. 5-

5(B)).

86



Model for photon detection time T (x, y): The distribution of the first detection time

for patch (x, y) depends on whether the detection is due to signal or background noise.

The time of a photon detection originating from backreflected signal is characterized by the

normalized time-shifted pulse shape. The time of a detection due to background noise is

uniformly distributed over the pulse repetition period. The conditional probability density

functions for the first photon’s arrival time t(x, y) given our low optical flux assumption that

α(x, y)S +B � 1, are

fT (x,y)|signal(t(x, y)) = η s(t(x, y)− 2 z(x, y)/c)/S, for t(x, y) ∈ [0, Tr), (5.6a)

fT (x,y)|background(t(x, y)) = 1/Tr, for t(x, y) ∈ [0, Tr). (5.6b)

The detailed derivations are included in Appendix A. As a consequence of the low optical

flux assumption, Equation (5.6)(a) has no dependence on scene patch reflectivity, α(x, y).

Also note that for ease of theoretical derivations, we assume that the transmitted pulse is

centered at 0 and that 3Tp < 2z(x, y)/c < zmax < Tr − 3Tp,∀(x, y). Since we assume a

zero-centered light pulse, this assumption ensures that the backscattered pulses lies entirely

within the repetition intervals as shown in Fig. 5-4. In practice, the time-delay is computed

relative to the mode of the measured pulse shape (see Section 5.7).

5.5 Conventional Image Formation

In the limit of large sample size or high signal-to-noise ratio (SNR), ML estimation converges

to the true parameter value [102]. However, when the SNR is low—such as in our problem—

pointwise or pixelwise ML processing yields inaccurate estimates. Given the first-photon

data, {t(x, y), n(x, y)}Mx,y=1, the pointwise estimates for scene reflectivity and depth based on

the models described by Equations (5.5) and (5.6) are:

α̂CML
geo (x, y) = max

{
1

(n(x, y)− 1)S
− B

S
, 0

}
ẑ(x, y) =

c (t(x, y)− Tm)

2
(5.7)
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where the reflectivity estimate has been constrained to be non-negative and Tm = arg maxt s(t)

is the mode of the normalized pulse shape. The detailed derivations for these estimate ex-

pressions are included in Appendix A.

In the absence of background light and dark counts, the pointwise ML reflectivity esti-

mate, α̂ML(x, y), is proportional to 1/n(x, y) for n(x, y)� 1, and the depth estimation error

is governed by the pulse duration. However, in the presence of background illumination these

pointwise estimates are extremely noisy as shown in Fig. 5-6(A-C) and through derivations

in Appendix A.

5.6 Novel Image Formation

In the proposed approach we use the first-photon detection statistics derived in Section 5.4

along with the spatial correlation present in real-world objects, in order to construct high

quality reflectivity and depth images. We accomplish this through regularized ML estimation—

incorporating regularization by transform-domain sparsity within the ML framework. Our

computational reconstruction proceeds in three steps.

Step 1: Computational Reconstruction of Object Reflectivity

As seen from Equation (5.5), the negative of the log-likelihood function, Lα(α(x, y);n(x, y)) =

− log Pr[N(x, y) = n(x, y)], relating the pulse count data, n(x, y), to the reflectivity param-

eter, α(x, y), at each transverse location is

Lα(α(x, y);n(x, y)) = [α(x, y)S +B] [n(x, y)− 1]− log[(α(x, y)S +B)].

This likelihood is a strictly convex function of α(x, y) (see Appendix A for derivation).

Spatial correlations present in the object reflectivity are captured by wavelet-domain spar-

sity. For this work we used the discrete wavelet transform (DWT) derived from Daubechies’s

4-tap filters [39]. This transform Φ(·) is implemented as a matrix multiplication. Let

Φ
(
{α(x, y)}Mx,y=1

)
= Φ(α) denote the collection of DWT coefficients, {wα(x, y)}, of the

reflectivity image. A standard measure of sparsity used in image processing is the sum of
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absolute values of DWT coefficients, denoted here using the `1-norm:

‖Φ(α)‖1 =
M∑
x=1

M∑
y=1

|wα(x, y)|. (5.8)

It is well known that ‖Φ(α)‖1 is a strictly convex function of the reflectivity image α [105].

The first-photon imaging reflectivity estimate, denoted by α̂fpi, is computed by minimizing—

over the set of all possible images—the sum of negative log-likelihood functions over all trans-

verse locations and the sparsity measuring function. A weight parameter, βα ∈ [0.1, 0.9],

needs to be introduced to trade-off between the likelihood and sparsity terms in the objec-

tive function. For a fixed value of βα, the reflectivity reconstruction problem is the following

convex optimization program:

minimize
α

(1− βα)
M∑
x=1

M∑
y=1

Lα(α(x, y);n(x, y)) + βα ‖Φ(α)‖1. (OPT-1)

subject to α(x, y) ≥ 0, for all x, y.

OPT-1 is a strictly convex optimization program, because it is the nonnegative weighted

sum of individually convex functions. It is solved using standard numerical methods de-

scribed in [74] and the initial solution point for OPT-1 is chosen to be the pointwise con-

strained ML estimate (from Equation (5.7)),

α̂CML
geo (x, y) = max

{
1

(n(x, y)− 1)S
− B

S
, 0

}
, (5.9)

where the constraint α(x, y) ≥ 0 captures the fact that reflectivity is nonnegative. Each

βα value produces a candidate reflectivity image. We selected a βα value by solving the

optimization problem OPT-1 for βα = {0.1, 0.2, . . . , 0.9} and then choosing the one that

minimized the objective function defined in OPT-1.

As seen in Fig. 5-6(D-F), step 1 processing yields a considerable improvement in reflec-

tivity estimation over pointwise ML estimates (Fig. 5-6(A-C)). As discussed in Section 5.8,

our proposed reflectivity reconstruction method shows significant improvement over state-

of-the-art denoising methods as well.
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The pointwise range estimate from a first-photon detection is ẑ(x, y) = c (t(x, y)−Tm)/2

for a transmitted pulse whose peak is at time t = Tm, where c is the speed of light. Its root

mean square (RMS) estimation error is (c/2)
√

(T 2
p + T 2

r /12)/2 in the presence of background

light, where Tp � Tr is the laser pulse’s RMS time duration (see Appendix A for complete

derivation). Direct application of a spatial-correlation regularization to maximizing time-of-

arrival likelihoods is infeasible, because background light makes the optimization objective

function multimodal. Background light also causes pointwise methods to fail (see Fig. 5-6(A-

C)), so we use spatial correlations to censor t(x, y) values that are range anomalies. This

censoring constitutes step 2 of our proposed computational imager.

Step 2: Background Noise Censoring

Anomalous detections have arrival times that are uniformly distributed over the time interval

[0, Tr] and mutually independent over spatial locations, so that they have high variance

(T 2
r /12) relative to that of signal (backreflected laser pulse) detections, which are temporally

concentrated and spatially correlated. As shown in Appendix A, under the low optical flux

assumption, i.e., when (α(x, y)S +B)� 1, if the first photon detected from location (x, y)

is a signal photon, then the probability density function for T (x, y) is:

fT (x,y)(t(x, y)) = η s(t(x, y)− 2z(x, y)/c) / S, 0 ≤ t(x, y) < Tr, (5.10)

which has variance T 2
p � T 2

r /12, regardless of the reflectivity at (x, y). The high degree

of spatial correlation in the scene’s 3D structure then implies that signal-generated photon

arrival times have much smaller conditional variance, given data from neighboring locations,

than do anomalous detections.

Step 2 of the computational imager uses this statistical separation to censor background-

generated arrival times from an initial pixel-by-pixel range image. At each pixel location,

(x, y), the rank-ordered absolute difference (ROAD) statistic [106, 107] is first computed

using the time-of-arrival measurements of the eight nearest transverse neighbors, denoted by
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(x1, y1), . . . , (x8, y8). Except at the boundaries, these neighbors are

(x−1, y−1), (x−1, y), (x−1, y+1), (x, y−1), (x, y+1), (x+1, y−1), (x+1, y), (x+1, y+1).

The eight absolute time-of-arrival differences

|t(x1, y1)− t(x, y)|, . . . , |t(x8, y8)− t(x, y)|

are sorted in ascending order, and the ROAD statistic, ROAD(x, y), is the sum of the first

four absolute differences from this sorted collection.

Then, a binary hypothesis test is applied to classify the photon detection at (x, y) as signal

or background noise. To apply this test, we require an accurate reflectivity estimate, α̂fpi =

{α̂fpi(x, y)}Mx,y=1, which we obtained in step 1. The probabilities defined in Equation (5.3)

are estimated, using α̂fpi, via

Pr[detected photon is due to background light] =
B

α̂fpi(x, y)S +B
,

Pr[detected photon is due to backreflected signal ] =
α̂fpi(x, y)S

α̂fpi(x, y)S +B
.

These estimated probabilities are used to generate thresholds for the following binary hy-

pothesis test based on the computed ROAD statistic:

if ROAD(x, y) ≥ 4Tp
B

α̂fpi(x, y)S +B
, then the detected photon is censored;

if ROAD(x, y) < 4Tp
B

α̂fpi(x, y)S +B
, then the detected photon is not censored.

Once background detections have been rejected, depth map estimation using photon ar-

rival times, {t(x, y)}Mx,y=1 becomes tractable. Our final processing step is thus to compute the

regularized ML depth map estimate by maximizing the product of data likelihoods (Equa-

tion (5.10)), over the uncensored spatial locations, combined with a DWT-based penalty

function that exploits spatial correlations present in a scene’s 3D structure. This is de-

scribed in the next section.

92



Step 3: Computational Reconstruction of 3D structure:

From Equation (5.6) and the knowledge fitted pulse shape (see Section 5.7), the negative of

the log-likelihood function relating the signal photon’s arrival time, t(x, y), to the distance,

z(x, y), at each uncensored spatial location is

Lz(z(x, y); t(x, y)) = − log

[
s

(
t(x, y)− 2 z(x, y)

c

)]
.

Our framework allows the use of arbitrary pulse shapes, but many practical pulse shapes

(including Gaussian and lopsided pulses) are well approximated as s(t) ∝ exp[−v(t)], where

v(t) is a convex function in t. In such cases, Lz(z(x, y); t(x, y)) = v(t(x, y)− 2z(x, y)/c) is a

convex function in z(x, y).

As was done for reflectivity estimation in step 1, spatial correlations present in the depth

map are captured by wavelet-domain sparsity. The first-photon imaging depth map estimate,

denoted by ẑfpi is computed by minimizing—over the set of all possible depth maps—the

sum of negative likelihood functions over the uncensored spatial locations and the sparsity

measuring function. As before, a weight parameter, βz ∈ [0.1, 0.9], needs to be introduced.

For a fixed βz, the 3D reconstruction problem is the following optimization program:

minimize
z

(1− βz)
∑

uncensored (x,y)

∑
Lz(z(x, y); t(x, y)) + βz ‖Φ(z)‖1 (OPT-2)

subject to 0 ≤ z(x, y) ≤ zmax, for all x, y.

The constraint 0 ≤ z(x, y) ≤ zmax captures the fact that distance is always nonnegative, and

within the scope of our problem formulation it is bounded as well. The starting points for

optimization problem OPT-2 is chosen to be the pointwise estimate,

ẑ(x, y) =
c (t(x, y)− Tm)

2
, for uncensored spatial locations

ẑ(x, y) = 0, for censored spatial locations,

In our case, the signal photons’ detection times serve as excellent starting points for numerical
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optimization because of their proximity to the true depth. Also note that Φ(z) is a function

of the entire depth map, i.e., depth values are also assigned to (x, y) locations whose arrival

times were censored because they were predicted to originate from background light. As

was done for the reflectivity estimates, we solve the optimization problem OPT-2 for βz =

{0.1, 0.2, . . . , 0.9}, and the final depth map construction is chosen to be the one whose βz

value minimized the objective function in OPT-2.

Baseline Estimates using Many Photons per Pixel:

Given a large number, Nbaseline, of photon detections at each pixel in the absence of back-

ground noise, yielding dataset {t`(x, y), n`(x, y)}Nbaseline
`=1 , the pointwise ML estimates for scene

depth and reflectivity are

zbaseline(x, y) = arg max
z∈[0,zmax]

Nbaseline∑
`=1

log s

(
t`(x, y)− 2z

c

)
(5.11)

αbaseline(x, y) =
Nbaseline/S∑Nbaseline

`=1 n`(x, y)−Nbaseline

. (5.12)

Detailed derivations of these expressions are available in Section 6.4 in the context of sensor

array imaging. It is well known that when Nbaseline is large, these estimates converge to

the true parameter values [102]. We used this method to generate ground truth data for

comparison. The baseline reflectivity image and depth map are denoted using αbaseline =

{αbaseline(x, y)}Mx,y=1 and zbaseline = {zbaseline(x, y)}Mx,y=1 respectively.

5.7 Experimental Setup

Our experimental setup follows Fig. 5-1 and is shown in Fig. 5-7.

Equipment details: The active illumination source was a 640 nm wavelength, 0.6 mW

average power, pulsed laser diode that produced Tp = 226 ps RMS duration pulses at a 10

MHz repetition rate. An incandescent lamp illuminated the detector to create background
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Figure 5-7: Experimental setup: Physical setup indicating the optical paths.

noise from extraneous photon detections. A two-axis scanning galvo (maximum scan angle

±20◦) was used to raster scan a room-scale scene consisting of life-size objects. The laser spot

size at 2 m distance was measured to be 1.5 mm. Prior to detection, the light was filtered

using a 2 nm bandwidth free-space interference filter centered at 640 nm wavelength whose

peak transmission was 49%. The Geiger-mode APD was a Micro Photon Devices PDM series

detector with 100 µm × 100 µm active area, 35% quantum efficiency, less than 50 ps timing

jitter, and less than 2 × 104 dark counts per second. The photon detection events were

time stamped relative to the laser pulse with 8 ps resolution using a PicoQuant HydraHarp

TCSPC module. The objects to be imaged were placed between 1.25 m to 1.75 m distance

from the optical setup. The laser and the single-photon detector were placed in the same

horizontal plane, at a separation of 7 cm, making our imaging setup effectively monostatic.

Radiometric calibration: The detection efficiency is the product of the interference fil-

ter’s transmission and the detector’s quantum efficiency, η = 0.49× 0.35 = 0.17. A reference

calibration for S, the average photon number in the backreflected signal from a unity reflectiv-
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ity pixel received from a single laser pulse, was obtained as follows. All sources of background

light were turned off, and the laser was used to illuminate a transverse location (xref , yref)

on a reflective Lambertian surface at a distance of 2 m. In our experiment, this reference

target was a point on the white wall behind our scene setup (see Fig. 5-2)(A)). The average

number of transmitted pulses before a photon detection was found to be 〈n(xref , yref)〉 = 65.

Using Equation (5.4), with α(xref , yref) = 1 and B = 0, we find

〈n(xref , yref)〉 =
1

1− P0(xref , yref)
=

1

1− exp(−S)
,

from which 〈n(xref , yref)〉 = 65 results in S =
∫ Tr
0
ηs(t)dt = 0.09.

For adjusting background illumination power, the laser was first turned off and all objects

were removed from the scene. Then the incandescent lamp’s optical power was adjusted such

that the average number of background photons reaching the detector in a pulse repetition

period was B = 0.1 ≈ S.

We used a reference point on the white wall in the background to set the signal-to-

background ratio, S/B ≈ 0.5, in a scene-independent manner. Upon data collection, how-

ever, we also noticed that for the mannequin dataset, B ≈ ᾱS, where ᾱ was the average

scene reflectivity. This relationship was partly due to the fact that the reference white wall

was at a 2 m distance from the imaging setup and radial fall-off played a significant role in

weakening the backreflected signal incident at the photodiode. In contrast, the mannequin

was set closer at approximately 1.25 m and contained both high and low reflectivity surfaces,

averaging out the overall scene reflectivity to a moderate value.

Transverse optical calibration: A geometric calibration is necessary to relate the recon-

structed depth map to the actual 3D scene patches. This was accomplished by first capturing

high-quality images (using the baseline methods described above) of three different views of

a planar checkerboard. Then a standard computer vision package1 was used to compute

the optical center coordinates, (cx, cy), and the perspective projection matrix containing the

effective focal lengths, fx and fy. Also, at each pixel location (x, y), the estimate z(x, y) is a

1OpenCV: Open Source Computer Vision Library. http://opencv.org/
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measurement of the radial distance to the object from the optical center. For visualization

with a 3D graphics package, we convert the depth map data, [x, y, z(x, y)], to a 3D point cloud

comprising the 3D real-world Cartesian coordinates of the scene patches, [x, y, z(x, y)]. This

type of coordinate transformation is standard practice in computer vision, but we describe

it next for the sake of completeness.

Extraction of 3D scene geometry from depth map data: The perspective projection

camera model [91] relates the desired 3D point cloud data to the constructed 2D depth map

by the following linear transformation expressed in homogeneous coordinates:

z(x, y)


x

y

1

 =


fx 0 cx 0

0 fy cy 0

0 0 1 0




x

y

z(x, y)

1

 =


fx x + cxz(x, y)

fy y + cyz(x, y)

z(x, y)



The left hand side of this equation is obtained from the depth map data, and the intrinsic

camera parameters, (cx, cy, fx, fy), are obtained from transverse optical calibration. Thus,

the unknown 3D point cloud coordinates are readily computed by comparing the correspond-

ing matrix entries, i.e.,

x =
(x− cx) z(x, y)

fx
, and y =

(y − cy) z(x, y)

fy

First-photon data acquisition: To generate one complete data set, we raster scan over

(M = 1000) × (M = 1000) pixels with the two-axis galvo. For transverse location (x, y),

only two values are used for constructing first-photon images: n(x, y), the number of laser

pulses transmitted prior to the first detection event; and t(x, y) the timing of the detection

relative to the pulse that immediately preceded it. (Because our entire scene was contained

within a few meters of the imaging setup, our 100 ns pulse repetition period guaranteed that

each non-background photon detection came from the immediately preceding laser pulse.)

We collected data to generate our reference images by averaging over N0 = 1000 photon

detections at every pixel, the first-photon imager reads only the first detection recorded
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Figure 5-8: Pulse shape measurement. Plot of photon-count histogram overlaid with the fitted pulse
shape. The histogram and the fitted pulse shape have been normalized to have unity maximum values.

at every pixel, ignoring the rest of the data in the file. If we did not need to acquire a

reference image for comparison, it would be possible to acquire a megapixel first-photon

scan in approximately 20 minutes using our current equipment. This time estimate was

limited only by the mechanical speed of our two-axis galvo; our photon flux is high enough

to permit much faster acquisition.

Photon-flux waveform measurement: For range estimation, our computational imager

requires knowledge of the laser pulse’s photon-flux waveform, s(t), launched at t = 0 . This

pulse shape was measured by directly illuminating the detector with highly attenuated laser

pulses and binning the photon detection times to generate a histogram of photon counts.

Fitting a skewed Gamma function to this histogram yielded

s(t) ∝ (t− Tγ)4 exp

(
−(t− Tγ)

Tc

)
, (5.13)

where Tγ = 80 ps and Tc = 40 ps (see Fig. 5-8). The RMS pulse duration is defined as

Tp =

√√√√∫ Tr0
(t− T̄ )2 s(t) dt∫ Tr
0

s(t) dt
,
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where

T̄ =

∫ Tr
0
t s(t) dt∫ Tr

0
s(t) dt

,

and Tr is the pulse repetition period. Note that the fitted pulse shape, s(t), is not zero-

centered. This implies that the estimated depth value at each pixel was uniformly offset by

approximately 6.3 cm corresponding to T̄ ≈ 210 ps. This systematic bias uniformly affects

both the baseline and first-photon depth estimation algorithms. Thus, the stated depth

resolution results and depth reconstruction error values remain unchanged.

Numerical details and image formation time: For a one-megapixel reflectivity and

3D reconstruction, the total run time required by the 9 instances of OPT-1 followed by

ROAD filtering and 9 instances of OPT-2 was less than 3 minutes for each of the processed

datasets. The convex optimization solver reached the desired precision and terminated after

4 or 5 iterations. The computation was carried out on a standard desktop computer with 4

GB memory and Intel Core 2 Duo processor (2.7 GHz).

5.8 Experimental Results

After calibration, we tested our first-photon computational imager on scenes with both

geometric and reflectivity complexity. Experiments were conducted with real-world scenes

as well as with resolution charts to evaluate 3D and reflectivity imaging using our framework.

For comparison, we also processed the corrupted pointwise ML estimates (Equation (5.7))

with a state-of-the-art nonlinear denoising method that uses spatial correlations to mitigate

Poisson noise called BM3D with Anscombe transform [108]. We also investigated the per-

formance of a well known and standard image filtering method called median filtering to

mitigate impulsive noise.

For studying the reconstruction error, we compared the reconstructed reflectivity images

and depth maps with the ground truth (baseline reconstruction) using absolute difference

images. We quantified the performance of reflectivity estimation, α̂fpi = {α̂fpi(x, y)}Mx,y=1,

relative to the baseline, αbaseline = {αbaseline(x, y)}Mx,y=1, (see Equation (5.12)) using peak
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signal-to-noise ratio (PSNR):

PSNR(αbaseline, α̂fpi) = 10 log10


(
max(x,y) {αbaseline(x, y)}

)2
M∑
x=1

M∑
y=1

{αbaseline(x, y)− α̂fpi(x, y)}2/M2

 . (5.14)

We quantified the performance of a depth map estimation, ẑfpi, relative to the baseline depth

map, zbaseline using root mean-square error (RMSE):

RMSE(zbaseline, ẑfpi) =

√√√√ 1

M2

M∑
x=1

M∑
y=1

{zbaseline(x, y)− ẑfpi(x, y)}2. (5.15)

The first target object that we investigated was a life-sized mannequin with white poly-

styrene head and torso donned with a black cotton shirt imprinted with white text (see

Fig. 5-4). The approximate height × width × depth dimensions of the head were 20 cm ×

16.5 cm × 24 cm, while those of the torso were 102 cm × 42 cm × 29 cm. The mannequin

was placed at a range of 1.25 m from the imaging setup. Using the first-photon data, we es-

timated the object reflectivity and 3D spatial form as described above. A standard graphics

package was then used to visualize the object’s 3D profile, overlaid with reflectivity data,

after each processing step (see Fig. 5-6).

Our computational first-photon imager recovers a great deal of object detail. Figure 5-

6(J-L) and Fig. 5-9 show recovery of reflectivity information—including text, facial features,

surface reflectivity variations, and specular highlights—that are heavily obscured in pointwise

maximum-likelihood estimates. As shown in Fig. 5-6(G-I), background-detection censoring

affords significant improvement in range estimation, so that the reconstructed 3D form re-

veals fine structural features such as the nose, eyes, and lips (Fig. 5-10(A-C)).

To quantify the reconstruction error of our approach, we compared the 3D reconstruction

of the mannequin head with a 3D image captured using our imaging setup operating as a

direct detection LIDAR. For this reference capture, background light was first reduced to
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Figure 5-9: Reflectivity reconstruction from first-photon detections: The scale quantifies reflectivity
relative to that of a high-reflectivity calibration point, α(xref , yref), on a 0 to 1 scale.

negligible levels, after which ∼1000 photon detections were recorded at each spatial location.

Pointwise 3D estimates were then obtained using baseline methods (see Equation (5.12)).

This data-intensive baseline technique allows sub-mm accuracy 3D reconstruction for our

Tp = 226 ps value [16].

Figure 5-10(D-F) shows superimposed facial profiles from the two methods. Both 3D

forms were measured using the same imaging setup, obviating the need for registration or

scaling. The root mean square (RMS) error of our computational imager was slightly lower

than 3.5 mm, with higher values near the edge of the mannequin and around the sides of

the nose and the face. These locations have surface normals that are nearly perpendicular

to the line of sight, which dramatically reduces their backreflected signal strength relative to

background light. Consequently, they incur more anomalous detections than do the rest of

the pixels. Although our method censors range anomalies near edges, it estimates the missing

ranges using spatial correlations, leading to loss of subtle range details at these edges.
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Figure 5-10: Comparison between computational first-photon 3D imager and LIDAR system:
Rendered views of the facial surfaces reconstructed with computational imaging (gray) and 3D LIDAR
(green) are shown in frontal (B) and lateral (A) and (C) profiles. Color-coded absolute pointwise differences
between the two surfaces, overlaid on the LIDAR reconstruction, are shown in (D) to (F).

Depth Resolution Test:

To test depth resolution, we created a resolution chart with 5 cm × 5 cm square plates

mounted on a flat board to present our imager with targets of varying heights from that

board (see Fig. 5-11). This test target was placed at a distance of 3 m and first-photon data

was acquired. The depth map was then constructed using the computational imager. For

comparison, the pointwise ML 3D estimate based on first-photon arrivals was computed, and

the photon-count histogram method using 115 photons at each pixel was also implemented.

The smallest resolvable plate height is an indicator of achievable depth resolution. As

shown in Fig. 5-12, our method achieves a depth resolution slightly better than 4 mm using

only first-photon detections. In contrast, the pointwise maximum-likelihood 3D estimates

are extremely noisy, and the pointwise photon-count histogram method requires 115 photons
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Figure 5-11: Photograph of the depth-resolution test target. The height of the squares (in millimeters)
relative to the flat surface is overlaid in red in this image. Each square has dimensions 5 cm × 5 cm (marked
in black).

detection at each transverse location to achieve ∼4 mm depth resolution under identical

imaging conditions.

Given a single signal-photon detection time, the RMS pulse duration of 226 ps cor-

responds to c Tp/2 = 34 mm depth uncertainty. At the background level in our experi-

ment, the theoretical value of RMS error in the first-photon pointwise estimate is equal to

(c/2)
√

(T 2
p + T 2

r /12)/2 = 3.06 m (see Appendix A for derivation). In comparison, the 4 mm

depth resolution achieved by our computational imager is 8.5 times smaller than the RMS

pulse duration and 765 times smaller than the RMS depth error of the first-photon pointwise

estimate.

Statistical analysis of depth resolution test

We used a histogram-based analysis to quantify the achievable depth resolution, which in our

test corresponds to the the height of the square plate of least height that is distinguishable

from the flat board. To quantify this distinguishability, we plot a histogram of the recon-

structed depth values in the neighborhood of an edge of the square plates (see Figs. 5-13

and 5-14).
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pointwise ML estimate side view

our computational imaging side view

pointwise photon-count histogram side view
method using 115 detections/pixel

Figure 5-12: Depth resolution test. The color bar indicates the height of the squares above the flat
surface. The first-photon pointwise ML estimate is noisy. With our computational imager and the photon-
count histogram method, the square in the bottom left (3 mm above the surface) is barely visible, but the
other squares are clearly distinguishable. Histogram analysis in Fig. 5-13 indicates ∼ 4 mm depth resolution
for our computational imager.
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As demonstrated in Fig. 5-13, the depth histograms generated using the proposed com-

putational imager have two clearly distinguishable components in the edge region B: one

corresponding to the flat board and the other centered around the height of the square (6

mm). In edge regions A and D, both of which correspond to squares of height 6 mm, the

components are also readily distinguishable although some overlap exists. Finally, in the

edge region C corresponding to a square of height 2 mm, it is not possible to resolve the

different depth components and identify a depth edge.

Figure 5-13: Statistical analysis of depth resolution test for First-photon imaging method. To
quantify the achievable 4 mm depth resolution of our computational imager we histogram the reconstructed
pixel heights in the neighborhoods of depth edges (A-D). The height of a pixel is the difference of its
reconstructed depth value and the depth of the bottom-left most corner of the flat board. The difference in
the mean values of clearly separated histogram components in the edge regions A and D is ∼ 4 mm, which
is also the depth resolution of the first-photon imager.

Similar histogram analysis was conducted for the pointwise photon-counting histogram

method which uses 115 photon detections/pixel. As demonstrated in Fig. 5-14, the histogram-

based analysis yields similar resolvability of depth components when compared with our pro-

posed first-photon imager. However, the variances of the resolvable histogram components

are smaller than those of the first-photon computational imager.

Reflectivity Resolution Test

To test the reflectivity resolution achievable with our computational imager, we printed a

linear gray-scale chart on matte paper. (see Fig. 5-15). This test target was placed at a

range of 2 m and a reference image was acquired with a 1 msec dwell time at each pixel.
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Figure 5-14: Statistical analysis of depth resolution test for photon-counting histogram method
using 115 photons/pixel. Using the same analysis as in Fig. 5-13, we conclude that the pointwise photon-
counting method also achieves a 4 mm depth resolution. We note that the depth value histogram in Fig. 5-
13(C) appears to be smooth and concentrated around one value. This is because the first-photon computa-
tional imager employs spatial regularization which has the effect of blurring neighboring depth values which
are too close to one another. In contrast, the depth histogram shown in sub-figure (C) is formed using
the pointwise photon-counting histogram method, and it seemingly has well-separated peaks. These peaks,
however, are concentrated around incorrect depth values.

We then used our computational imager to reconstruct the reflectivity using only the first

photon detections at each pixel, ignoring the rest of the data. For comparison, pointwise

maximum-likelihood estimates based on first-photon data were also computed.

The number of distinguishable gray levels is an indicator of the reflectivity resolution

achieved by the imager. As shown in Fig. 5-17, our method is able to discriminate 16 gray

levels, which implies a reflectivity resolution of at least 4 bits using only first-photon detec-

tions. In comparison, the pointwise maximum-likelihood estimation allows visual discrimi-

nation of about 3 gray levels. Our computational imager achieves a reflectivity resolution

similar to that of the baseline measurement, which required at least 900 photon detections

per pixel.

Statistical analysis of reflectivity resolution test:

Similar to the histogram-based analysis of depth resolution, we plot the histogram of re-

constructed reflectivity values in the image regions corresponding to the different linear

grayscales (highlighted in red) on the reflectivity test chart as shown in Fig. 5-18. These his-
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Figure 5-15: Photograph of the reflectivity-resolution test target. The text describes the reflectivity
resolution achievable by distinguishing the linear gray-scales.

A B C D

Figure 5-16: Reflectivity resolution test. A. Pointwise ML estimate. B. First-photon Imaging. C.
Baseline reflectivity estimate with at least 900 photons/pixel. D. Reflectivity scale. No postprocessing has
been applied to the images.

tograms and cumulative distribution plots are generated for each of the following methods:

pointwise ML estimation, first-photon computational imager and the baseline reflectivity

measurement requiring at least 900 photons/pixel.

As demonstrated in Fig. 5-17, pointwise ML estimation fails to clearly identify beyond 3
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Figure 5-17: Histogram-based analysis of reflectivity resolution.

gray levels, and in comparison first-photon imaging has 16 different histogram features with

clearly resolvable modes, each of which has a low-variance (also shown in Fig. 5-18).

The baseline reflectivity estimation method, which uses at least 900 photons/pixel, gives

slightly worse performance than our method because of the high variance in the histogram

components due to Poisson noise. The use of spatial correlations in our technique mitigates

this Poisson noise and results in clearly resolvable reflectivity modes.

Imaging of Natural Scenes

Three additional scenes, consisting of real-world objects, were imaged. For each dataset,

the pointwise maximum-likelihood estimate and the computationally reconstructed images
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Figure 5-18: Cumulative distribution plots showing 16 steps corresponding to the reflectivity
modes in Fig. 5-17.

are shown in Fig. 5-19, Fig. 5-20, and Fig. 5-21. In each of these figures 3D estimates are

rendered as point clouds and overlaid with reflectivity estimates, with no additional post

processing applied.

A B C D

Figure 5-19: Sunflower reconstruction. Pointwise ML estimate (A. front view and B. right profile).
First-photon Imaging (C. front view and D. right profile). The lateral dimensions of the sunflower were 20
cm × 20 cm. The depth variation of the petals and the flower center was approximately 7 cm.

A B C D

Figure 5-20: Basketball + Can dataset reconstruction. Pointwise ML estimate (A. front view and C.
left profile). First-photon Imaging (B. front view and D. left profile). The basketball diameter was 40 cm.
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A B C D

Figure 5-21: Reconstruction of a layered scene with two life-sized objects. Pointwise ML estimate
(A. front view and C. left profile). First-photon Imaging(B. front view and D. left profile).

Performance of ROAD Filtering in Step 2

In order to demonstrate the efficacy of the ROAD statistic-based noise rejection in Step

2, we obtained ground truth noisy photon labels by first computing the pixelwise absolute

difference between ground truth depth profiles and the pointwise ML estimate computed

using the first-photon data. All pixels at which this absolute depth difference was higher

than cTp, where Tp is the pulse-width in seconds, were labeled as noisy pixels. The ground

truth noisy pixel labels were then compared with the labels produced by the noise censoring

algorithm employed in Step 2 of our computational imager.

A pixelwise XOR of the two label images yielded the pixels at which there were discrep-

ancies. These are pixels that were either classified wrongly as noise pixels (false-positives) or

noisy pixels that our noise censoring algorithm failed to identify (false-negatives). Figure 5-22

shows that our proposed noise-censoring algorithm is successful at identifying the majority

of noisy pixels while retaining the signal photon data for Step 3 depth reconstruction.

Comparison with Other Denoising Methods

For comparison, we processed the corrupted pointwise ML estimates (Equation (5.7)) with

state-of-the-art nonlinear denoising methods that use spatial correlations to mitigate high

Poisson noise (BM3D with Anscombe transform [108]) as well as high levels of impulsive noise

(median filtering). We observed that BM3D achieved better PSNR than median filtering for

reflectivity reconstruction, whereas median filtering with a 9 × 9 window achieved lower
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A B C

Figure 5-22: Performance analysis of ROAD statistic-based filtering on sunflower dataset. A.
Ground truth for noise pixels. B. First-photon imaging step 2 noise pixels. C. Pixelwise XOR of label images
A and B.

RMSE than BM3D for depth reconstruction. First-photon imaging performs significantly

better than both BM3D and median filtering and is able to recover reflectivity and structural

details that are heavily obscured in images denoised using these two methods. (see Figures 5-

23 – 5-30). For all processing methods used, the parameters were chosen to minimize RMSE

for depth maps and maximize PSNR for reflectivity reconstruction. Table 5.1 summarizes

the PSNR and RMSE results for the three different natural scenes for the various processing

methods employed in this chapter.

A B C D

Figure 5-23: Depth resolution test chart comparison. A. Pointwise ML estimate. B. First-photon
imaging. C. Ground truth. D. Median filtering (lower RMSE than BM3D).
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A B C D

Figure 5-24: Reflectivity resolution test chart comparison: A. Pointwise ML estimate. B. First-
photon imaging. C. Ground truth. D. BM3D (higher PSNR than median filtering).

A B C D

Figure 5-25: Layered scene dataset reflectivity reconstruction comparison: A. Ground truth. B.
Pointwise ML estimate. C. First-photon imaging D. BM3D with Anscombe transformation.

A B C D

Figure 5-26: Layered scene dataset depth reconstruction comparison: A. Ground truth. B. Pointwise
ML estimate. C. First-photon imaging D. Median filtering.
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A B C D

Figure 5-27: Sunflower dataset reflectivity reconstruction comparison: A. Ground truth. B. Point-
wise ML estimate. C. First-photon imagingD. BM3D with Anscombe transformation. First-photon imaging
rejects background and increases image contrast while retaining fine spatial features like flower petals. In
comparison, BM3D reduces errors at the expense of over-smoothing and losing spatial features.

A B C D

Figure 5-28: Sunflower scene dataset depth reconstruction comparison: A. Ground truth. B.
Pointwise ML estimate. C. First-photon imaging D. Median filtering. Our method rejects background and
denoises while retaining fine spatial features like flower petals.

A B C D

Figure 5-29: Mannequin dataset reflectivity reconstruction comparison: A. Ground truth. B.
Pointwise ML estimate. C. First-photon imaging D. BM3D with Anscombe transformation.
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A B C D

Figure 5-30: Mannequin dataset depth reconstruction comparison: A. Ground truth. B. Pointwise
ML estimate. C. First-photon imaging D. Median filtering.

Pointwise

ML

First-

photon

Imaging

BM3D
Median

Filtering

Mannequin
PSNR 11 dB 35 dB 18 dB 11.5 dB
RMSE 212 cm 2.4 cm 27.3 cm 14.7 cm

Sunflower
PSNR 10 dB 35 dB 19 dB 15 dB
RMSE 135 cm 5.3 cm 21.3 cm 10.6 cm

Basketball and can
PSNR 8dB 44 dB 20 dB 17 dB
RMSE 157 cm 6.8 cm 19.4 cm 11.8 cm

Reflectivity chart PSNR 15 dB 54 dB 25 dB 18 dB

Depth chart RMSE 240 cm 0.4 cm 15.7 cm 12.9 cm

Table 5.1: Performance comparison of the various data processing methods proposed in this chapter using
the natural scene datasets.

Repeatability analysis

For testing the repeatability performance of the first-photon computational imager, 500

independent first-photon datasets for the layered scene were collected and processed using

a fixed set of numerical and optical parameters. As an example, the pixelwise standard

deviations of the reconstructed scene depth using pointwise ML estimation, first-photon
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imager and median filtering are shown in Fig. 5-31. The first-photon computational imager

achieves a low standard deviation (4 − 6 mm) throughout the image, which is consistent

with its depth resolution discussed earlier. This indicates that our proposed computational

imager is robust and consistently improves estimation performance across independent trials.

The SNR at object edges and in low-reflectivity regions is low and therefore the estimation

quality is poorer in these regions. Both pointwise ML estimation and median-filtering have

high standard deviations throughout the image, indicating that these denoising methods

fail due to a mismatch in signal modeling. For repeatability tests conducted with all other

datasets as well, the first-photon computational imager consistently outperformed BM3D

and median filtering for both depth and reflectivity reconstruction.

A B C

Figure 5-31: Repeatability analysis for depth reconstruction. Pixelwise standard deviation of depth
estimates computed by processing 500 first-photon data trials processed using: A. Pointwise ML estimate.
B. First-photon imaging. C. Median filtering (which performed better than BM3D).

5.9 Discussion and Limitations

As shown in Fig. 5-10, our method incurs the highest depth error near edges. The surface

normals at these locations are nearly perpendicular to the line of sight, which dramatically

reduces SNR. Consequently, these regions incur more noisy detections than do the rest of the

pixels. Although our method censors depth anomalies near edges, it estimates the missing

depth values using spatial correlations, leading to loss of subtle depth details.

A detected photon may have originated from an indirect bounce, causing estimation inac-

curacy. However, for quasi-Lambertian scenes, diffuse scattering causes the light multipath
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bounces to be considerably weaker than the direct reflection. The objects used in our exper-

iments were quasi-concave so there were no noticeable depth estimation errors that could be

attributed to light multipath.

The reflectivity estimation step of the first-photon computational imager fails if back-

ground noise is sufficient to provide a detection in each pulse repetition period with high

probability. Hence we employed a suitably narrowband spectral filter to hold background

noise level to B ≈ ᾱS, where ᾱ is the average scene reflectivity. Figure 5-32 visually demon-

strates the effect of increasing background light levels on depth and reflectivity reconstruc-

tion. As shown, doubling the background light level increases its shot noise contribution

significantly and degrades the imaging quality of the first-photon computational imager.

A B C D

E F G H

Figure 5-32: Effect of increasing ambient noise. Reflectivity reconstruction using A. Pointwise ML
estimation and B. First-photon computational imager with B ≈ ᾱS. Reflectivity reconstruction using C.
Pointwise ML estimation and D. First-photon computational imager with B ≈ 2ᾱS. Depth reconstruc-
tion using E. Pointwise ML estimation and F. First-photon computational imager with B ≈ ᾱS. Depth
reconstruction usingG. Pointwise ML estimation and H. First-photon computational imager with B ≈ 2ᾱS.

The first-photon computational imager assumes that average background photon counts,

B, is spatially invariant, i.e., it is constant across the scene patches. This may not be true

in practice, so achieving accurate imaging would require the estimation of B at each pixel
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separately. Finally, the first-photon imager has a variable dwell time per pixel, since the time

to first-photon detection is a random variable. This makes first-photon imaging unsuitable

for implementation with sensor arrays because they typically have a fixed dwell time for each

acquired image. The next chapter focuses on adapting the first-photon imaging principles

to sensor arrays with fixed dwell times.

Another limitation of the first-photon computational imager presented in this chapter is

its inability to resolve spatial features that are comparable in size to the illumination beam.

Sub-pixel raster-scanning may potentially be used resolve object features that are smaller

than the laser beam spot-size. Also, the first-photon imager requires direct line-of-sight

for its operation. It is not possible to image scenes that are occluded from either the light

source or the sensor. A potentially interesting possibility is to combine the low-light detection

framework proposed in this chapter with the hidden-scene imaging framework outlined in

Chapter 2. After all, one of the major limitations of the hidden-plane imaging setup is the

SNR loss due to Lambertian scattering resulting in extremely low-light levels of backreflected

signal light reaching the detector. Thus wedding our hidden plane imager to photon-efficient

first-photon imaging could be quite beneficial.
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Chapter 6

Photon Efficient Imaging with Sensor

Arrays

6.1 Overview

In this chapter, we describe and demonstrate another active optical imaging framework that

recovers accurate reflectivity and 3D images simultaneously using on the order of one de-

tected photon per pixel averaged over the scene. Similar to the first-photon imaging method

described in Chapter 5, the proposed computational imager avoids the use of a photon-count

histogram to infer time delay and amplitude relative to the transmitted pulse’s temporal pro-

file [78,79,84]. Instead it combines probabilistic modeling at the level of individual detected

photons with exploitation of the spatial correlations present in real-world scenes to achieve

accurate 3D and reflectivity imaging when very little backreflected light reaches the detector,

as will be the case with low optical-power active imagers [90].

First-photon imaging data acquisition involves a variable dwell time per pixel, i.e., the

raster scanning pulsed light source continues to illuminate a scene patch with light pulses until

the SPAD detector records a photon arrival in response to that illumination. Since low-light

photodetection is governed by Poisson statistics [80, 81], the number of pulses transmitted

prior to the first photon detection is a random variable (see Section 5.4). In the absence

of background light, scene patches with low reflectivity will require on average, a longer
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Figure 6-1: Fixed dwell time imaging setup. A pulsed light source illuminates the scene in a raster scan
pattern. The backscattered light is collected by a time-resolved single-photon detector. Each spatial location
is illuminated with exactly N light pulses (fixed dwell time). An incandescent lamp injects background light
which corrupts the information-bearing signal. The photon detection times and the total photon count are
recorded at every image pixel. This dataset is used to estimate the 3D structure and reflectivity. The setup
is analogous to having a floodlight illumination source and an array of single-photon counting detectors
operating at a fixed dwell time.

dwell time when compared with high reflectivity scene patches. Thus, first-photon imaging

does not extend naturally to operation using SPAD arrays—since simultaneous measurement

implies equal dwell times—thus precluding the dramatic speedup in image acquisition that

such arrays enable.

The image reconstruction methods and statistical models that we develop in this chapter

are analogous to first-photon imaging but are applicable to the case of fixed dwell time at

each pixel. The use of deterministic dwell times is both more convenient for raster scanning

and amenable to parallelization through the use of a detector array (see [109–111]).

Using the imaging setup described in Fig. 6-1, we demonstrate that the performance

of the proposed computational imager is similar to or slightly better than the first-photon

computational imager when compared for equal total acquisition time in raster-scanned

operation. The main challenge with such a small but fixed dwell time is that there may

not be any photons detected from some scene patches. As a result, at pixels observing such

scene patches there is no available data from which to infer scene depth and reflectivity.
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Despite this lack of data, the proposed computational imager exploits spatial correlations to

accurately estimate scene depth and reflectivity at each image pixel.

In addition to the comparison with first-photon imaging, it is experimentally demon-

strated in Section 6.6 that the proposed computational imager is able to accurately recover

scene depth and reflectivity, while traditional maximum-likelihood based fixed dwell time

imaging methods lead to estimates that are highly noisy. Furthermore, with an increase in

illumination power and the number of pixels in the sensor array, the proposed computational

imager achieves a proportional speed-up in acquisition time compared to a single-detector

raster-scanned system.

The remainder of this chapter is organized as follows. Section 6.2 introduces the LIDAR-

like imaging configuration that we consider. The key probabilistic models for the measured

data are derived in Section 6.3. These models are related to conventional image formation

in Section 6.4, and they are the basis for the novel image formation method in Section 6.5.

Section 6.6 presents experimental results for the novel method, and Section 6.7 provides

additional discussion and conclusions. Appendix B presents performance bounds for the

proposed imaging framework.

6.2 Imaging Setup and Signal Modeling

The imaging setup comprising scene parameters, active illumination and single-photon detec-

tor specifications for the fixed dwell time configuration considered in this chapter is identical

to the one described in Section 5.3. Also identical is the signal model for backreflected

light and the background light, and the measurement model as well as the low-rate flux

assumption described in Section 5.4. The main differences between the imaging framework

described in this chapter and first-photon imaging lie in the data acquisition, modeling and

processing. These topics are discussed next.

Data Acquisition: Each scene patch (x, y) is illuminated with N laser pulses. The total

acquisition time (dwell time) is thus Ta = NTr. We record the total number of photon

detections k(x, y), along with their detection times {t(x, y)(`)}k(x,y)`=1 , where the latter are
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Figure 6-2: Summary of data acquisition and observation model. Rate function of inhomogeneous
Poisson process combining desired scene response and noise sources is shown. Here, N = 3 and k(x, y) = 2. A
background count (red) occurred after the second pulse was transmitted, and a signal count (blue) occurred
after the third pulse was transmitted.

measured relative to the immediately-preceding transmitted pulse. We also note that the

fixed dwell time data {k(x, y)}Mx,y=1 and
{
{t(x, y)(`)}k(x,y)`=1

}M
x,y=1

are outcomes or realizations

of the random variables K(x, y) and T `(x, y) respectively. For a fixed (x, y) location, the

random variables T `(x, y) are independent and identically distributed since they are photon

time-of-arrival observations in response to distinct light pulses. Thus to simplify the notation,

we use the random variable T (x, y) without the superscript `.

6.3 Measurement Model

Model for the numbers of detected photons K(x, y): A SPAD detector is not number-

resolving, meaning that it reports at most one click from detection of a signal pulse. As

derived in Equation (5.4) the probability of the SPAD detector not recording a detection at

pixel (x, y) from one illumination trial is P0(x, y) = e−(α(x,y)S+B). Because we illuminate

with a total of N pulses, and the low-flux condition ensures that multiple detections per

repetition interval can be neglected, the number of detected photons K(x, y) is binomially

122



distributed with probability mass function

Pr [K(x, y) = k(x, y);α(x, y)]

=

(
N

k(x, y)

)
P0(x, y)N−k(x,y) [1− P0(x, y)]k(x,y) ,

for k(x, y) = 0, 1, . . . , N and where
(
.
.

)
is the binomial coefficient.

In the ultimate low-flux limit in which α(x, y)S+B → 0+ with N →∞ such that N{1−

P0(x, y)} = C(x, y) is held constant, K(x, y) converges to a Poisson random variable [104]

with probability mass function

Pr[K(x, y) = k(x, y); α(x, y)] =
C(x, y)k

k !
exp[−C(x, y)].

Model for the photon arrival time T (x, y): At pixel (x, y), the single-photon detection

time T (x, y) recorded by the SPAD detector is localized to a time bin of duration ∆. Because

the SPAD detector only provides timing information for the first (and, in the low-flux regime,

only) detected photon in a single pulse-repetition interval, the probability of a SPAD click

in [t(x, y), t(x, y) + ∆), given there was a click in that repetition interval, is

Pr[no click in [0, t(x, y)), click in [t(x, y), t(x, y) + ∆) | click in [0, Tr)]

(a)
=

Pr[no click in [0, t(x, y))]Pr[click in [t(x, y), t(x, y) + ∆)]

Pr[click in [0, Tr)]

(b)
=

1

1− exp[−(α(x, y)S +B)]
×{

exp

[
−
∫ t(x,y)

0

(
α(x, y)s

(
τ − 2z(x, y)

c

)
+
B

Tr

)
dτ

]

− exp

[
−
∫ t(x,y)+Δ

0

(
α(x, y)s

(
τ − 2z(x, y)

c

)
+
B

Tr

)
dτ

]}
,

where (a) uses the independent increments property of the Poisson process and (b) uses

Equation (5.4). The probability density function of T (x, y) ∈ [0, Tr), the continuous time-

of-detection random variable, is then obtained by evaluating the preceding probability on a

per unit time basis as ∆→ 0+:
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fT (x,y)(t(x, y); α(x, y), z(x, y))

=
1

1− exp[−(α(x, y)S +B)]
×

lim
Δ→0+

1

∆

{
exp

[
−
∫ t(x,y)

0

(
α(x, y)s

(
τ − 2z(x, y)

c

)
+
B

Tr

)
dτ

]

− exp

[
−
∫ t(x,y)+Δ

0

(
α(x, y)s

(
τ − 2z(x, y)

c

)
+
B

Tr

)
dτ

]}

=
α(x, y)s(t(x, y)− 2z(x, y)/c) +B/Tr

1− exp[−(α(x, y)S +B)]

× exp

[
−
∫ t(x,y)

0

(
α(x, y)s(τ − 2z(x, y)/c) +

B

Tr

)
dτ

]
(a)
=

α(x, y)s(t(x, y)− 2z(x, y)/c) +B/Tr∫ Tr
0

[α(x, y)s(t(x, y)− 2z(x, y)/c) +B/Tr] dt

=
α(x, y)S

α(x, y)S +B

(
s(t(x, y)− 2z(x, y)/c)

S

)
+

B

α(x, y)S +B

(
1

Tr

)
, (6.1)

where (a) follows from α(x, y)S + B � 1. As discussed in Section 5.4, a photon detection

could be generated due to the backreflected signal or due to background light. In this

computational imager, we will make use the probabilities described in Equation (5.3) during

the background censoring step.

6.4 Conventional Image Formation

Pointwise ML reflectivity estimation: Given the total observed photon count k(x, y)

at pixel (x, y), the constrained ML (CML) reflectivity estimate is

α̂(x, y)CML = arg max
α(x,y)≥0

Pr[K(x, y) = k(x, y);α(x, y) ]

= max
{

1

S

[
log

(
N

N − k(x, y)

)
−B

]
, 0

}
.

where log is the natural logarithm. Traditionally, the normalized photon-count value is used

as the reflectivity estimate [79],

α̃(x, y) =
k(x, y)

NS
. (6.2)
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Note that the normalized count value estimate is equal to the CML estimate under the

Poisson approximation to the binomial distribution when B = 0.

Pointwise ML depth estimation: Using the photon detection-time dataset {t(x, y)(`)}k(x,y)`=1 ,

the pixelwise or pointwise constrained ML depth estimate is

ẑ(x, y)CML = arg max
z(x,y)∈[0,cTr/2)

k(x,y)∏
`=1

fT (x,y)(t(x, y)(`); α(x, y), z(x, y))

= arg max
z(x,y)∈[0,cTr/2)

k(x,y)∑
`=1

log

[
α(x, y)s

(
t(x, y)(`) − 2z(x, y)

c

)
+
B

Tr

]
,

assuming that k(x, y) ≥ 1. If B > 0, then the ML depth estimate is obtained by solving

a non-convex optimization problem. Moreover, ML estimation when B > 0 requires the

knowledge of the true reflectivity α(x, y), which is not typically available. Thus, the log-

matched filter [80] is instead traditionally used for estimating depth:

z̃(x, y) = arg max
z(x,y)∈[0,cTr/2)

k(x,y)∑
`=1

log
[
s
(
t(x, y)(`) − 2z(x, y)/c

)]
. (6.3)

The log-matched filter solution is equal to the CML estimate when B = 0.

6.5 Novel Image Formation

Similar to first-photon imaging our computational image formation proceeds in three steps.

Step 1: Reflectivity Estimation

The negative log-likelihood of scene reflectivity α(x, y) given count data k(x, y) is

Lα(α(x, y); k(x, y)) , − logPr[K(x, y) = k(x, y);α(x, y) ] =

(N − k(x, y))Sα(x, y)− k(x, y) log{1− exp[−(α(x, y)S +B)]}, (6.4)
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after constants independent of α(x, y) are dropped. Since Lα(α(x, y); k(x, y)) is a strictly

convex function in α(x, y), it is amenable to global minimization using convex optimization,

with or without the inclusion of sparsity-based regularization [112]. The penalized ML

(PML) estimate for scene reflectivity is obtained from noisy data {k(x, y)}Mx,y=1 by solving

the following convex program:

α̂PML = arg min
α:α(x,y)≥0

(1− βα)
M∑
x=1

M∑
y=1

Lα(α(x, y); k(x, y)) + βα penα(α),

where penα(·) is a convex function that penalizes the non-smoothness of the reflectivity esti-

mate, and βα controls the degree of penalization. We used the total variation seminorm [39]

as the penalty function in our experiments in this chapter.

Step 2: Rejection of Background Detections

As in first-photon imaging, direct application of a similar regularized-ML approach to depth

estimation using time-of-detection data is infeasible. This is because the background con-

tribution to the likelihood function creates a non-convex cost function with locally-optimal

solutions that are far from the global optimum. Hence, before estimating depth, a second

processing step attempts to identify and censor the detections that are due to background.

Our method to censor a noisy detection at transverse location (x, y) based on the photon

arrival data is as follows:

1. Compute the rank-ordered mean (ROM) tROM(x, y) for each pixel, which is the median

value of the detection times at the 8 neighboring pixels of (x, y) [107]. If tROM(x, y)

cannot be computed due to missing data, then set tROM(x, y) =∞.

2. Estimate the set of uncensored detections, U(x, y), i.e., those presumed to be signal

detections, as follows:

{
` : |t(x, y)(`) − tROM(x, y)| < 2Tp

(
B

α̂PML(x, y)S +B

)
, 1 ≤ ` ≤ k(x, y)

}
.

If k(x, y) = 0, then set U(x, y) = ∅.
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It is demonstrated in [107] that the ROM image tROM is a good approximation of the

true image when the true image is corrupted by high-variance impulse noise at every pixel.

In our imaging setup, the background photon detections are uniformly distributed with high

variance. Also, the variances of signal photon detections depend on the duration of the

transmitted pulse. Thus, the quality of ROM approximation at pixel (x, y) deteriorates as

the probability of detecting a background photon B/(α(x, y)S+B) increases or RMS pulse-

width Tp increases. Because the condition for censoring photon detections must be relaxed

for an unreliable ROM estimate at every pixel, we set the censoring threshold parameter

to be linearly dependent on both the RMS pulse-width and our estimate of the background

detection probability. We have found that removing dependence on α̂PML(x, y) from the

censoring rule results in significantly worse performance; this link between estimation of

reflectance and depth is a feature common to this work and first-photon imaging but not

seen in earlier methods for photon-efficient imaging.

Step 3: Depth Estimation

With background detections rejected, the negative log-likelihood function of depth z(x, y),

given uncensored data {t(`)(x, y)}`∈U(x,y), is

Lz
(
z(x, y); {t(x, y)(`)}`∈U(x,y)

)
= −

∑
`∈U(x,y)

log
[
s
(
t(x, y)(`) − 2z(x, y)/c

)]
.

If |U(x, y)| = 0, then set Lz(z(x, y); {t(x, y)(`)}`∈U(x,y)) = 0, so that it has no contribution to

the scene’s negative log-likelihood cost function.

Many practical pulse shapes, including the pulse shape employed in our experiments,

are well approximated as s(t) ∝ exp[−v(t)], where v(t) is a convex function in t. Then,

Lz(z(x, y); {t(x, y)(`)}`∈U(x,y)) =
∑

`∈U(x,y) v(t(x, y)(`) − 2z(x, y)/c) is a convex function in

z(x, y). Our penalized ML estimate for the scene depth image is thus obtained using uncen-

sored data and solving the following convex optimization problem:

ẑPML = arg min
z:z(x,y)∈[0,cTr/2)

(1− βz)
M∑
x=1

M∑
y=1

Lz
(
z(x, y); {t(x, y)(`)}`∈U(x,y)

)
+ βz penz(z),
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where penz(·) is a convex function that penalizes non-smoothness of the depth estimate,

and βz > 0 controls the degree of penalization. Similar to regularized reflectivity estimation

in step 1, we used the total variation seminorm as the penalty function for the depth map

construction experiments in this chapter.

6.6 Experimental Results

Using the experimental setup and performance metrics described in Sections 5.7 and 5.8

we evaluated the performance of our proposed fixed dwell time depth map and reflectivity

reconstruction method.

(A) Ground truth (B) Pixelwise ML (C) Denoising of (B) (D) this chapter

PSNR = 38.0dB PSNR = 51.3dB PSNR = 54.6dB

RMSE = 322.8 cm RMSE = 305.3 cm RMSE = 0.4 cm

Figure 6-3: Resolution test experiments. Reflectivity chart imaging (top) was done using Ta = 300µs
and had a mean count per pixel of 0.48. They were scaled to fill the reflectivity interval [0, 1]. Depth chart
imaging (bottom) was done using Ta = 6.2µs and had a mean count per pixel of 1.1 with 33% of the pixels
having missing data, i.e., no detections. For (d), bilateral and median filtering were used to denoise ML
reflectivity and depth estimates, respectively.
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Reflectivity Resolution Test

Reflectivity estimation was tested using the linear grayscale reflectivity chart shown in Fig. 5-

15. Figure 6-3(D) shows that our method resolves 16 gray levels, performance similar to that

of the ground-truth image from Fig. 6-3(A), which required about 1000 photon detections per

pixel. We quantified the performance of a reflectivity estimator α̂ of a true scene reflectivity

α using peak signal-to-noise ratio (PSNR) (see Equation (5.14) for definition) Figure 6-3(B)

and (C) show that our method’s PSNR exceeds that of pointwise ML (Equation (6.2)) by

16 dB, and it exceeds that of the bilateral-filtered [113] pointwise ML estimate by 3 dB.

Depth Resolution Test

Depth resolution was evaluated using the same test target and procedure used in first-

photon imaging. Fig. 6-3(D) shows that our method achieves 4mm depth resolution, which

is comparable to that of the ground truth image (Fig. 6-3(A)), which required 100 detections

per pixel, and far superior to the very noisy pointwise ML estimate (Equation (6.3)), and

its median-filtered [114] version, which appear in Figures 6-3(B) and (C), respectively.

We quantified the performance of a depth estimator ẑ of a true scene depth z using root

mean-square error (RMSE) metric defined in Equation (5.15). At the background level in

our experiment, the pointwise ML estimates have an RMSE of at least 3m. Because many

pixels are missing photon detection-time observations, in order to denoise the pointwise ML

estimate, we first perform bicubic interpolation and then apply median filtering, which is

typically effective in eliminating moderate levels of impulse noise. The depth resolution of

our method (4mm) corresponds to 760-fold depth error reduction, compared to the denoised

estimate. Due to the high levels of background noise the photon detection times have a

variance that is much higher than what median filtering can mitigate.

Imaging of Natural Scenes

Reflectivity and depth images of two natural scenes—a life-size mannequin, and a basketball

next to a can—are shown in Fig. 6-4. Ground-truth images, obtained using ML estimation

from 200 detections at each pixel, appear in Fig. 6-4(a). The mannequin dataset for pointwise
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ML estimation and for our method was generated using acquisition time Ta = 100µs. This

dataset had 1.21 detections per pixel averaged over the entire scene with 54% of the pixels

having no detections. The basketball-plus-can dataset for pointwise ML imaging and for our

method also had Ta = 100µs, but its mean number of detections per pixel was 2.1, and 32%

of its pixels had no detections. All reflectivity images were scaled to fill the interval [0, 1].

Figure 6-3(b) shows that the pointwise ML estimation approach gives reflectivity and

3D estimates with low PSNR and high RMSE due to background-count shot noise at low

light-levels. Pixels with missing data were imputed with the average of their neighboring

8 pointwise ML estimate values. Denoising the ML reflectivity estimate using bilateral

filtering [113] and the ML depth estimate using median filtering [114] improves the image

qualities (Fig. 6-3(c)). However, denoising the 3D structure of the mannequin shirt fails,

because this region has very low reflectivity so that many of its pixels have missing data. On

the other hand, our framework, which combines accurate photon-detection statistics with

spatial prior information, constructs reflectivity and 3D images with 30.6 dB PSNR and

0.8 cm RMSE, respectively (Fig. 6-3(d)). We used the total variation semi-norm [115] as the

penalty function in our method, and the penalty parameters were chosen to maximize PSNR

for reflectivity imaging and minimize RMSE for 3D imaging.

Figure 6-5 shows how much photon efficiency we gain over traditional LIDAR systems

that use the photon-count histogram approach. The photon-count histogram approach is a

pixelwise or pointwise depth-estimation method that simply searches for the location of the

peak in the photon-count histogram of the backreflected pulse. Whereas the log-matched

filter is asymptotically ML as B → 0+, the photon-count histogram depth estimation method

is asymptotically ML as N →∞. Thus, when Ta is long enough, as is the case in traditional

LIDAR, it is effective to use the photon-count histogram depth estimation method. Based

on PSNR and RMSE values, we see that our framework can allow more than 30× speed-up

in acquisition, while constructing the same high-quality 3D and reflectivity images that a

traditional LIDAR system would have formed using long acquisition times.
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(a) Ground truth (b) Pixelwise ML (c) Denoising of (b) (d) Our method
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Figure 6-4: Experimental results for reflectivity and 3D imaging of natural scenes. We compare
the reflectivity and depth images from our proposed method with those from pointwise ML estimation (see
Section 6.4). For each method, the PSNR and RMSE values for the reconstructed reflectivity and 3D images
are given. For the mannequin dataset (top), the mean per-pixel count was 1.21 and 54% of the pixels were
missing data. For the basketball-plus-can dataset (bottom), the mean per-pixel count was 2.1 and 32% of
the pixels were missing data. For (c), bilateral and median filtering were used to denoise ML reflectivity and
depth estimates, respectively.

131



LIDAR (Ta = 1000µs) Our method (Ta = 30µs)
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Figure 6-5: Comparison between our framework and conventional LIDAR approach.

Repeatability Test

For each scene, we processed 100 independent datasets and computed the sample RMSE

images that approximate
√

E[(α(x, y)− α̂(x, y)PML)2] and
√

E[(z(x, y)− ẑ(x, y)PML)2]. The

pixelwise RMSE images, provided in Fig. 6-6, corroborate the consistent accuracy and high

resolution of our computational reflectivity and 3D imager.

Effect of System Parameters

Figure 6-7 shows how the performance of traditional ML and our image-formation methods

are affected by changing the acquisition time Ta and the signal-to-background ratio (SBR),

defined to be

SBR =
1

M2

M∑
x=1

M∑
y=1

α(x, y)S

B
.
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Figure 6-6: Repeatability test results. Pixelwise RMSEs for the reflectivity images and depth maps using
our method were generated from 100 trials of the experiments.

In our experiment, SBR was modified by changing Tr such that B = (η bλ + d)Tr is varied

at constant S. To obtain the results reported in Fig. 6-7, SBR was modified by simulat-

ing increases in B through the addition of pseudorandom detections at times uniformly

distributed over [0, Tr]. Figure 6-8 provides additional evidence that our method’s RMSE

decreases monotonically with increasing Ta and SBR, as one would expect. More impor-

tantly, it demonstrates that the fixed dwell time 3D imaging method is robust under strong

background noise and short acquisition times.

Comparison with First-Photon Imaging

First-photon imaging [7] requires a single detection at each pixel, hence its dwell time on

each pixel is a random variable. The method in this chapter requires a fixed dwell time on

each pixel, hence its number of detections on each pixel is a random variable. So, to compare

the performance of first-photon imaging with that of the fixed dwell time method, we set the

average per pixel dwell time of the former equal to the fixed per pixel dwell time of the latter.

That comparison, shown in Table 6.1, between the PSNRs of their reflectivity images and
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Figure 6-7: RMSE results for 3D imaging. Signal-to-background ratio (SBR) was varied by simulating
background levels on the ground-truth mannequin dataset. Note the differences in the colorbar scales.
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(RMSE = 0.51 cm) (RMSE = 0.88 cm)
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(c) Ta = 50µs, SBR = 7 (d) Ta = 50µs, SBR = 1
(RMSE = 5.80 cm) (RMSE = 11.91 cm)

Figure 6-8: Effect of acquisition time Ta and signal-to-background ratio (SBR) on our 3D re-
covery method. For acquisition times of 100µs and 50µs, we calculated the mean photon count k(x, y)
over all pixels to be 1.4 and 0.6, respectively.
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first-photon

imaging
Ours

Mannequin

Mean Ta 244µs 244µs
Mean k(x, y) 1 ppp 2.7 ppp
Pixels missing data 0% 33%
PSNR 35 dB 37 dB
RMSE 0.4 cm 0.3 cm

Sunflower

Mean Ta 15µs 15µs
Mean k(x, y) 1 ppp 8.7 ppp
Pixels missing data 0% 18%
PSNR 47 dB 47 dB
RMSE 0.8 cm 0.5 cm

Basketball and can

Mean Ta 181µs 181µs
Mean k(x, y) 1 ppp 1.7 ppp
Pixels missing data 0% 24%
PSNR 44 dB 45 dB
RMSE 1.1 cm 1.1 cm

Reflectivity chart

Mean Ta 120µs 120µs
Mean k(x, y) 1 ppp 1.7 ppp
Pixels missing data 0% 27%
PSNR 54 dB 56 dB

Depth chart

Mean Ta 6.2µs 6.2µs
Mean k(x, y) 1 ppp 1.1 ppp
Pixels missing data 0% 35%
RMSE 0.4 cm 0.4 cm

Table 6.1: Comparison between first-photon imaging and fixed dwell time imaging framework.
Note that k(x, y) is fixed and Ta per pixel is a random variable for first-photon imaging, whereas k(x, y) is
a random variable and Ta per pixel is fixed for the fixed dwell time imaging framework.

the RMSEs of their depth images, reveals several interesting characteristics. In particular,

when the fixed dwell time method’s image-acquisition time is matched to that of first-photon

imaging, a substantial fraction of its pixels have missing data (no detections). Nevertheless,

the fixed dwell time method successfully deals with this problem and yields performance

similar to, or slightly better than, that of first-photon imaging for the five different scenes

we have measured.
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6.7 Discussion and Limitations

We have extended the first-photon imaging framework from [7]—which has a random per-

pixel dwell time, because it records exactly one detection for each pixel in the scene—to

one that has a fixed dwell time per pixel, but records a random number of detections for

each pixel in the scene. Both systems combine physically accurate single-photon detection

statistics with exploitation of the spatial correlations found in natural scenes. The new fixed

dwell time method, unlike first-photon imaging, is compatible with detector arrays. Hence

it is significant that we demonstrated its ability to produce accurate reflectivity and depth

images using on the order of 1 detected photon per pixel averaged over the scene, even with

significant background light and a substantial fraction of the pixels having no detections.

This highly photon-efficient performance motivates the development of accurate and low-

power SPAD array-based 3D and reflectivity imagers. Current commercial CMOS-based

depth imagers, for example Kinect and TOF cameras, have significantly impacted research

in 3D imaging. These sensors offer high depth resolution, but their use is limited due to

poor spatial resolution and high power consumption. Our approach offers a potential route

to solving these problems.

More generally, the fixed dwell time imaging framework can be used in a variety of low

light-level imaging applications using photon-counting detectors, such as spatially-resolved

fluorescence lifetime imaging (FLIM) [116] and high-resolution LIDAR [94]. It naturally

extends to imaging at a variety of wavelengths, making it suitable for practical implemen-

tations. Furthermore, future advances in optoelectronic methods can improve the accuracy

of this 3D and reflectivity imager. In particular, it can benefit from improved background

suppression techniques [90] and range-gating methods [17].

The fixed dwell time computational imager inherits most of the limitations from the first-

photon computational imager. These limitations include, errors due to light multipath, high

reconstruction error around object boundaries and in regions of low-reflectivity, potential

degradation in imaging quality due to spatially-varying background light, and the inability

to resolve object features that are comparable to a pixel size.

In addition to the aforementioned limitations, several considerations need to be addressed
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in order for the fixed dwell time imager to be useful in practical imaging scenarios. In the

implementation of the proposed imager using a 2D SPAD array and floodlight illumination,

the system would have to deal with optical non-idealities such as non-uniform illumination,

lens vignetting and radial distortion.

Also, the performance of the fixed dwell time computational imager will also be affected

by sensor non-idealities such as, long sensor reset-time or dead time which follows each photon

detection, variations in quantum efficiency across the SPAD array, dead pixels, optoelectronic

cross-talk between the elements of the SPAD array. These effects did not exist in the first-

photon computational imaging framework since we were employing a single omnidirectional

sensor and raster-scanned illumination to only detect the first photon.

With proper optoelectronic characterization of the SPAD array using careful calibration

procedures, it may be possible to include the aforementioned effects in the theoretical models

proposed in this chapter and improve the practical performance of the fixed dwell time

computational imager.
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Chapter 7

Closing Discussion

This thesis introduced three different computational imaging frameworks in which 3D and re-

flectivity images of a scene were obtained through computational processing of time-samples

measured in response to time-varying illumination. Existing high speed cameras employ fast

shutter speeds to capture fast moving objects, and time-of-flight sensors use time-resolved

techniques to estimate scene depth by measuring the time delay due to roundtrip light prop-

agation. In contrast to these existing imagers, the key contribution of this thesis is to use

the temporal information contained in light signals to create new sensing modalities and

form images in challenging scenarios in which traditional methods would fail to form even

degraded imagery.

As described in Chapter 2, the first demonstration of the computational imaging frame-

work outlined in Fig. 1-2 was to form images of hidden scenes that were completely occluded

from the light source and the sensor, using only the time-resolved detection of light scattered

by a Lambertian diffuser. Although this looking around corners framework required a priori

knowledge of the complete scene geometry, the constructed hidden-plane images produced

the seemingly-magical effect of using a Lambertian surface as if it were a mirror. Another

challenging problem was to form a depth map of a fronto-planar scene in an unknown con-

figuration, only using a small number of measurements obtained using a single time-resolved

bucket detector. As discussed in Chapter 3, this was achieved using spatially-patterned pulse

illumination of the scene combined with parametric signal modeling and estimation of the
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scene response. In Chapter 5, we demonstrated that it is possible to form high quality scene

3D and reflectivity images from just one detected photon at each sensor pixel. This was

accomplished by combining the physics of low-light level photodetection with the exploita-

tion of spatial correlations present in real-world objects. Chapter 6 extended the overarching

principles from Chapter 5’s first-photon imager to produce similar high-quality 3D and re-

flectivity images using a fixed per-pixel dwell time and an average of ∼ 1 detected photon

per pixel. Such an approach makes high-photon efficiency imaging possible with detector

arrays.

Computational time-resolved imaging is a rich area for both exploration of theoretical

foundations and development of practical optical imaging systems and applications. Both

theory and practice should incorporate key optophysical details such as diffraction, lens

distortion, and device realities such as limitations on illumination source power and pulse

width constraints, sensor non-idealities such as reset time in avalanche detectors, sensor

speed and jitter, thermal noise and dark counts, and shot noise due to background light.

The mathematical frameworks and proof-of-concept experiments introduced in this thesis

show radically new capabilities, but they are far from the end of the story. Rather, they

motivate us to work toward a complete theory while they also demonstrate that computa-

tional time-resolved imaging can have practical technological impact. Of course, this thesis

does not suggest that standard, inexpensive cameras will be displaced, but in the area of

active optical 3D acquisition, in which sensor cost and optical power are two key trade-offs,

computational time-resolved imaging may become part of competitive solutions.
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Appendix A

Derivations: First Photon Imaging

A.1 Pointwise Maximum Likelihood Reflectivity Estimate

At each pixel, the maximum-likelihood estimate for that location’s reflectivity, α(x, y), is

obtained by finding the reflectivity value that maximizes the likelihood (Equation (5.5))—

or, equivalently, the logarithm of the likelihood—given the pulse count data n(x, y), i.e.,

α̂CML
geo (x, y) = arg max

α:α≥0
log
{
e− (αS+B) [n(x,y)−1] [1− e− (αS+B)]

}
≈ arg max

α:α≥0
log
{
e− (αS+B) [n(x,y)−1] [ (αS +B)]

}
(A.1)

= arg max
α:α≥0

−αS [n(x, y)− 1] + log(αS +B)

= arg min
α:α≥0

αS [n(x, y)− 1]− log(αS +B) (A.2)

Equation (A.1) uses the leading term in its Taylor series to approximate 1− e−(αS+B), which

is valid because (αS +B)� 1. The objective function defined in (A.2) will be shown below

to be strictly convex. The solution to the optimization problem is the α(x, y) value at which

the objective function’s derivative vanishes, unless that stationary-point value is negative.

In the latter eventuality we set α̂CML
geo (x, y) = 0, because of the non-negativity constraint.
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This computation yields

α̂ML(x, y) = max

{
1

(n(x, y)− 1)S
− B

S
, 0

}
.

A.2 Derivation of Depth Estimation Error

The pointwise depth estimate is ẑ(x, y) = c (t(x, y) − Tm)/2, where Tm is the mode of

the normalized pulse shape. In our experiments, each photon detection is either due to

backreflected laser light (the signal) or to background light. The conditional probability

density functions for the first-photon’s arrival time, t(x, y), are

fT (x,y)|signal(t(x, y)) = η s(t(x, y)− 2 z(x, y)/c)/S, for 0 ≤ t(x, y) < Tr

fT (x,y)|background(t(x, y)) = 1/Tr, for 0 ≤ t(x, y) < Tr.

The variance of the pointwise estimate ẑ(x, y) is at least as large as the conditional variance

of ẑ(x, y) given knowledge of whether a detected photon is due to signal or background.

Using the distribution of t(x, y) for detection of signal photons, we get

var (ẑ(x, y) | signal) =
c2

4
var(t(x, y)) =

c2T 2
p

4
,

where we have used Tp � Tr. Using the distribution of t(x, y) for detection of background

photons, we get

var (ẑ(x, y) | background) =
1

12

(
cTr
2

)2

.

Because in our experiments detections that are due to signal and background occur with

approximately equal probability, the unconditional variance of ẑ(x, y) is

1

2

c2T 2
p

4
+

1

2

c2T 2
r

48
.

Taking the square root gives the unconditional standard deviation, which is the RMS
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error of pointwise range estimation because the estimator is approximately unbiased.

c

2

√
1

2

(
T 2
p +

T 2
r

12

)
.

A.3 Derivation of Signal Photon Time-of-arrival Proba-

bility Distribution

Suppose that the laser pulse launched at t = 0 interrogates spatial location (x, y) and that the

resulting backreflected laser light leads to a first-photon detection in the interval 0 ≤ t < Tr.

Consider an incremental time interval of duration δt starting at time τ ∈ [0, Tr). Using

time-inhomogeneous Poisson photon-counting statistics, we obtain the following probability:

Pr[first photon was detected at t ∈ [τ, τ + δ) and was due to signal]

= Pr[no photons detected in t ∈ [0, τ)]× Pr[signal photon detected in t ∈ [τ, τ + δt)]

×Pr[no background photon detected in t ∈ [τ, τ + δt)]

=

[∫ τ+δt

τ

η α(x, y) s(t− 2z(x, y)/c) dt

]
exp

[
−
∫ τ+δt

0

[η α(x, y) s(t− 2z(x, y)/c) +B/Tr] dt

]
,

where we used the fact that Poisson processes have at most one count in an incremental time

interval. Defining

j(τ) = lim
δt→0

Pr[first photon was detected at t ∈ [τ, τ + δ) and was due to signal]
δt

,

and noticing that τ is a dummy variable and can be interchanged with t(x, y), we obtain the

desired conditional probability density as follows,
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fT (x,y)|signal(t(x, y)) =
j(t(x, y))∫ Tr
0
j(t) dt

=

s(t(x, y)− 2z(x, y)/c) exp

[
−

t(x,y)∫
0

[η α(x, y) s(τ − 2z(x, y)/c) +B/Tr] dτ

]
Tr∫
0

s(t− 2z(x, y)/c) exp

[
−

t∫
0

[η α(x, y) s(τ − 2z(x, y)/c) +B/Tr] dτ

]
dt

= η s(t(x, y)− 2z(x, y)/c)/S, for 0 ≤ t(x, y) < Tr,

where the approximation is valid under the low-flux condition, (α(x, y)S + B) � 1. Our

computational imager’s censoring process (step 2) is sufficiently good that it is safe to process

uncensored arrival times as though they were due to signal-photon detections.

A.4 Derivation of Background Photon Time-of-arrival Prob-

ability Distribution

Suppose that the laser pulse launched at t = 0 interrogates spatial location (x, y) but

background light is responsible for the first-photon detection in the interval 0 ≤ t < Tr.

Consider an incremental time interval of duration δt starting at time τ ∈ [0, Tr). Using

time-inhomogeneous Poisson photon-counting statistics, we obtain the following probability:

Pr[first photon was detected at t ∈ [τ, τ + δ) and was due to background]

= Pr[no photons detected in t ∈ [0, τ)]× Pr[background photon detected in t ∈ [τ, τ + δt)]

×Pr[no signal photon detected in t ∈ [τ, τ + δt)]

=
B

Tr
δt exp

[
−
∫ τ+δt

0

[η α(x, y) s(t− 2z(x, y)/c) +B/Tr] dt

]
,

where we used the fact that Poisson processes have at most one count in an incremental time

interval. Defining

j′(τ) = lim
δt→0

Pr[first photon was detected at t ∈ [τ, τ + δ) and was due to background]

δt
,
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the desired conditional probability density then follows from

fT (x,y)|background(t(x, y)) =
j′(t(x, y))∫ Tr
0
j′(t) dt

=

exp

[
−

t(x,y)∫
0

[η α(x, y) s(τ − 2z(x, y)/c) +B/Tr] dτ

]
Tr∫
0

exp

[
−

t∫
0

[η α(x, y) s(τ − 2z(x, y)/c) +B/Tr] dτ

]
dt

=
1

Tr
, for 0 ≤ t(x, y) < Tr,

where the approximation is valid under the low-flux condition, (α(x, y)S +B)� 1.

A.5 Proof of Convexity of Negative Log-likelihoods

The negative log-likelihood function for reflectivity estimation, Lα(α(x, y);n(x, y)), is the

objective function in Equation (A.2):

L(α(x, y);n(x, y)) = [α(x, y)S +B] [n(x, y)− 1]− log[(α(x, y)S +B)]

The second derivative of the likelihood function Lα(α(x, y);n(x, y)) with respect to the reflec-

tivity α(x, y) is, S2/(α(x, y)S+B)2 > 0, confirming the strict convexity of Lα(α(x, y);n(x, y))

with respect to reflectivity. Figure A-1 shows how the negative log-likelihood function

changes as the background illumination power B is varied.

The negative log-likelihood function for range estimation, Lz(z(x, y); t(x, y)), is derived

using Equations (5.6) and (5.13):

Lz(z(x, y); t(x, y)) = − log fT (x,y)|signal(t(x, y))

= − log [η s(t(x, y)− 2z(x, y)/c)/S]

=
(τ − Ts − 2z(x, y)/c)

Tc
− 4 log(t(x, y)− Ts − 2z(x, y)/c).

The second derivative of Lz(z(x, y); t(x, y)) with respect to scene depth z(x, y) is, 4/c2(τ −
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Figure A-1: Lα(α(x, y);n(x, y)) vs. α(x, y) when nij = 10 and S = 1 for several values of B. B ranges from
0.01 (blue) to 0.05 (red). Note that the global minimum of negative log-likelihood shifts as B changes.

Ts − 2z(x, y)/c)2 > 0, for all values of z(x, y). This fact confirms the strict convexity of

Lz(z(x, y); t(x, y)) with respect to range.

We additionally note that in general if the illumination waveform s(t) is log-concave.

then the negative log-likelihood function for range estimation is a convex function as well.

For example, choosing the pulse to be in the family of generalized Gaussian distributions

such that s(t) ∝ e−(|t|/a)
p

, where p > 1 and a > 0, leads to a convex optimization problem for

regularized maximum likelihood estimation. Figure A-2 shows the negative log-likelihood

functions of generalized Gaussian distributions, which are log-concave, and the resulting

negative log-likelihood functions which are convex.

Figure A-2: Left: Plot of generalized Gaussian functions with p = 2 (red), 3 (green), 4 (black), 5 (blue)
with fixed a = 1 and amplitude 1. The generalized Gaussian function includes the Gaussian function (p = 2)
and the square function (p→∞). Right: Plot of negative log generalized Gaussian functions for the same
p, a values.
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Appendix B

Derivations: Photon Efficient Imaging

with Sensor Arrays

This appendix provides performance analyses for pixelwise estimation. The Cramér-Rao

lower bound (CRLB) sets the limit on the mean-square error (MSE) of an unbiased estimator

of a parameter. Let x be a scalar continuous parameter in the probability density function

fY (y;x) of random variable Y . The CRLB for an unbiased estimator, x̂, of the parameter x

based on observation of Y is the inverse of the Fisher information J(x) [102]:

E[(x− x̂)2] ≥ CRLB(x) = J−1(x)

=

{
E
[
d2

d2x
(− log fY (y;x))

]}−1
. (B.1)

An unbiased estimator x̂ is efficient if E[(x− x̂)2] = CRLB(x).
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B.1 Mean-square Error of Reflectivity Estimation

With some algebra, the CRLB for estimating the reflectivity, α(x, y), at pixel (x, y) can be

shown to be

CRLB (α(x, y)) =

{
E
[

d2

d2α(x, y)
(− logPr[K(x, y) = k;α(x, y)])

]}−1
=

{
E
[
kη2S2 exp [ηα(x, y)S +B]

(exp [ηα(x, y)S +B]− 1)2

]}−1
=

exp [ηα(x, y)S +B]− 1

Nη2S2

≈ ηα(x, y)S +B

Nη2S2
, (B.2)

where the approximation makes use of the low-flux condition. As could easily be expected,

increasing the number of pulse repetitions, N , collects more photons and hence decreases

the CRLB.

Note, however, that we cannot directly use the CRLB result to lower bound the mean-

square error of the unconstrained ML reflectivity estimate α̂(x, y)ML given by

α̂(x, y)ML =
1

ηS

[
log

(
N

N − k(x, y)

)
−B

]
.

This is because the ML estimate is biased, (E[α̂ML(x, y)] 6= α(x, y)):

E
[
α̂ML(x, y)

]
= E

[
1

ηS
log

(
N

N − k(x, y)

)
− B

ηS

]
=

1

ηS
logN − 1

ηS
E [log (N −K(x, y))]− B

ηS

>
1

ηS
logN − 1

ηS
log (N − E[K(x, y)])− B

ηS

= α(x, y),

where the strict inequality comes from Jensen’s inequality and the fact that the logarithm

function is strictly concave.

When N → ∞ and ηα(x, y)S + B → 0+ with N [1 − exp(ηα(x, y)S + B)] equal to a
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constant C(α(x, y)), the ML reflectivity estimate is

α̂(x, y)ML =
k

NηS
− B

ηS
. (B.3)

In this case, the CRLB equals the MSE of the ML reflectivity estimate,

CRLB(α(x, y)) = E
[(
α(x, y)− α̂(x, y)ML

)2]
=

1

N

(
α(x, y)

ηS
+

B

η2S2

)
,

We see that the CRLB expression from the Poisson likelihood is equal to the first-order Taylor

expansion of the CRLB expression of the exact binomial likelihood given by Equation (B.2).

Knowing that the ML solution for the limiting Poisson distribution is unbiased and

efficient, we conclude that the ML reflectivity estimate α̂(x, y)ML is efficient asymptotically

as (ηα(x, y)S +B)→ 0+ and N →∞, with N [1− exp(−(ηα(x, y)S +B))] held constant.

B.2 Mean-Square Error of Depth Estimation

We again assume that ηα(x, y)S+B → 0+ and N →∞ such that N [1− exp(−(ηα(x, y)S+

B))] is a constant C(α(x, y)). The CRLB for estimating the depth z(x, y) is then

CRLB(z(x, y)) =

{
E
[

d2

d2z(x, y)

(
− log fT (x,y)({t(x, y)(`)}k(x,y)`=1 ; z(x, y))

)]}−1

=

E

− k(x,y)∑
`=1

d2

d2z(x, y)
log fT (x,y)(t(x, y)(`); z(x, y))


−1

=
1

C(α(x, y))

(∫ Tr

0

ṗ(t; z(x, y))2

p(t; z(x, y))
dt

)−1
, (B.4)

where

p(t; z(x, y)) =
λ(x, y)(t)∫ Tr

0
λ(x, y)(τ) dτ

with λ(x, y)(t) being the single-pulse rate from Equation (5.1), and ṗ(t; z(x, y)) the derivative

of p(t; z(x, y)) with respect to time.
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We can exactly compute the MSE expression for certain pulse waveforms. For exam-

ple, if the illumination waveform is a Gaussian pulse s(t) ∝ exp
[
−t2/2T 2

p

]
, then using the

unconstrained log-matched filter expression, we get

ẑML(x, y) = arg max
z(x,y)

k(x,y)∑
`=1

log
[
s(t(`)(x, y)− 2z(x, y)/c)

]
=
c

2

(∑k(x,y)
`=1 t(x, y)(`)

k(x, y)

)
,

given k(x, y) ≥ 1. If k(x, y) = 0, then a standard pixelwise data imputation is done by

making a uniformly random guess over the interval [0, cTr/2). Assuming B = 0, the MSE

expression can be written as

E[(z(x, y)− ẑ(x, y)ML)2] = EK(x,y){E[(z(x, y)− ẑ(x, y)ML)2 |K(x, y)]}

=
∞∑
k=0

Ck(α(x, y))e−C(α(x,y))

k!
E[(z(x, y)− ẑ(x, y)ML)2 |K(x, y) = k]

= e−C(α(x,y))

[(
cTr
2

)2

+

(
z(x, y)− cTr

4

)2

+
∞∑
k=1

Ck(α(x, y))

k!

1

k

(
cTp
2

)2
]

= e−C(α(x,y))


(
cTr
2

)2

+

(
z(x, y)− cTr

4

)2

︸ ︷︷ ︸
random guess error

+

(
cTp
2

)2 ∫ C(α(x,y))

0

exp[τ ]− 1

τ
dτ︸ ︷︷ ︸

pulse-width error

. (B.5)

As C(α(x, y)) → ∞, the pulse-width error term in MSE dominates and ẑML(x, y) becomes

an efficient estimator.
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