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Concentric Permutation Source Codes
Ha Q. Nguyen, Lav R. Varshney, Member, IEEE, and Vivek K Goyal, Senior Member, IEEE

Abstract—Permutation codes are a class of structured vector
quantizers with a computationally-simple encoding procedure
based on sorting the scalar components. Using a codebook
comprising several permutation codes as subcodes preserves
the simplicity of encoding while increasing the number of
rate–distortion operating points, improving the convex hull of
operating points, and increasing design complexity. We show that
when the subcodes are designed with the same composition, opti-
mization of the codebook reduces to a lower-dimensional vector
quantizer design within a single cone. Heuristics for reducing
design complexity are presented, including an optimization of
the rate allocation in a shape–gain vector quantizer with gain-
dependent wrapped spherical shape codebook.

Index Terms—Gaussian source, group codes, integer partitions,
order statistics, permutation codes, rate allocation, source coding,
spherical codes, vector quantization.

I. INTRODUCTION

APERMUTATION source code [1], [2] places all code-
words on a single sphere by using the permutations of

an initial codeword. The size of the codebook is determined
by multiplicities of repeated entries in the initial codeword,
and the complexity of optimal encoding is low. In the limit
of large vector dimension, an optimal permutation code for
a memoryless source performs as well as entropy-constrained
scalar quantization [3]. This could be deemed a disappoint-
ment because the constraint of placing all codewords on a
single sphere does not preclude performance approaching the
rate–distortion bound when coding a memoryless Gaussian
source [4]. An advantage that remains is that the fixed-rate
output of the permutation source code avoids the possibility
of buffer overflow associated with entropy coding highly non-
equiprobable outputs of a quantizer [5].

The performance gap between permutation codes and opti-
mal spherical codes, along with the knowledge that the perfor-
mance of permutation codes does not improve monotonically
with increasing vector dimension [6], motivates the present
paper. We consider generalizing permutation source codes
to have more than one initial codeword. While adding very
little to the encoding complexity, this makes the codebook
of the vector quantizer (VQ) lie in the union of concentric
spheres rather than in a single sphere. Our use of multiple

Paper approved by Z. Xiong, the Editor for Distributed Coding and Pro-
cessing of the IEEE Communications Society. Manuscript received September
19, 2009; revised April 13, 2010.

The authors are with the Department of Electrical Engineering and Com-
puter Science and the Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail: {hanguyen,
lrv, vgoyal}@mit.edu).

This work was presented in part at the IEEE International Symposium
on Information Theory, June–July 2009. This material is based upon work
supported by the National Science Foundation under Grant No. 0729069.
This work was also supported in part by a Vietnam Education Foundation
Fellowship.

Digital Object Identifier 10.1109/TCOMM.2010.101210.090535

spheres is similar to the wrapped spherical shape–gain vector
quantization of Hamkins and Zeger [7]; one of our results,
which may be of independent of interest, is an optimal rate
allocation for that technique. Our use of permutations could
be replaced by the action of other groups to obtain further
generalizations [8].

Design of a permutation source code includes selection of
the multiplicities in the initial codeword; these multiplicities
form a composition of the vector dimension [9, Ch. 5].
The generalization makes the design problem more difficult
because there is a composition associated with each initial
codeword. Our primary focus is on methods for reducing the
design complexity. We demonstrate the effectiveness of these
methods and improvements over ordinary permutation source
codes through simulations.

The use of multiple initial codewords was introduced as
“composite permutation coding” by Lu et al. [10], [11] and
applied to speech/audio coding by Abe et al. [12]. These pre-
vious works restrict the constituent permutation source codes
to have the same number of codewords, neglect the design of
compositions, and use an iterative VQ design algorithm at the
full vector dimension. In contrast, we allow the compositions
to be identical or different, thus allowing the sizes of subcodes
to differ. In the case of a single, common composition, we
show that a reduced-dimension VQ design problem arises. For
the general case, we provide a rate allocation across subcodes.

The generalization that we study maintains the low
𝑂(𝑛 log 𝑛) encoding complexity for vectors of dimension 𝑛
that permutation source codes achieve. Vector permutation
codes are a different generalization with improved perfor-
mance [13]. Their encoding procedure, however, requires
solving the assignment problem in combinatorial optimization
[14] and has complexity 𝑂(𝑛2√𝑛 log𝑛).

The paper is organized as follows: We review the attainment
of the rate–distortion bound by spherical source codes and the
basic formulation of permutation coding in Section II. Sec-
tion III introduces concentric permutation codes and discusses
the difficulty of their optimization. One simplification that
reduces the design complexity—the use of a single common
composition for all initial codewords—is discussed in Sec-
tion IV. The use of a common composition obviates the issue
of allocating rate amongst concentric spheres of codewords.
Section V returns to the general case, with compositions that
are not necessarily identical. We develop fixed- and variable-
rate generalizations of wrapped spherical shape–gain vector
quantization for the purpose of guiding the rate allocation
problem. Concluding comments appear in Section VI.

II. BACKGROUND

Let 𝑋 ∈ ℝ𝑛 be a random vector with independent 𝒩 (0, 𝜎2)
components. We wish to approximate 𝑋 with a codeword �̂�
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drawn from a finite codebook 𝒞. We want small per-component
mean-squared error (MSE) distortion 𝐷 = 𝑛−1𝐸[∥𝑋 − �̂�∥2]
when the approximation �̂� is represented with 𝑛𝑅 bits. In the
absence of entropy coding, this means the codebook has size
2𝑛𝑅. For a given codebook, the distortion is minimized when
�̂� is the codeword closest to 𝑋 .

A. Spherical Codes

In a spherical (source) code, all codewords lie on a sin-
gle sphere in ℝ𝑛. Nearest-neighbor encoding with such a
codebook partitions ℝ𝑛 into 2𝑛𝑅 cells that are (unbounded)
convex cones with apexes at the origin. In other words, the
representations of 𝑋 and 𝛼𝑋 are the same for any scalar
𝛼 > 0. Thus a spherical code essentially ignores ∥𝑋∥, placing
all codewords at radius

𝐸 [∥𝑋∥] =
√
2𝜋𝜎2

𝛽(𝑛/2, 1/2)
≈ 𝜎

√
𝑛− 1/2,

where 𝛽(⋅, ⋅) is the beta function, while representing 𝑋/∥𝑋∥
with 𝑛𝑅 bits.

Sakrison [4] first analyzed the performance of spherical
codes for memoryless Gaussian sources. Following [4], [7],
the distortion can be decomposed as

𝐷 =
1

𝑛
𝐸

[∥∥∥∥𝐸[∥𝑋∥]
∥𝑋∥ 𝑋 − �̂�

∥∥∥∥2
]
+

1

𝑛
var(∥𝑋∥). (1)

The first term is the distortion between the projection of 𝑋 to
the code sphere and its representation on the sphere, and the
second term is the distortion incurred from the projection. The
second term vanishes as 𝑛 increases even though no bits are
spent to convey the norm of 𝑋 . Placing codewords uniformly
at random on the sphere controls the first term sufficiently for
achieving the rate–distortion bound as 𝑛 → ∞.

B. Permutation Codes

1) Definition and Encoding: A permutation code (PC) is a
special spherical code in which all the codewords are related
by permutation. Permutation channel codes were introduced
by Slepian [15] and modified through the duality between
source encoding and channel decoding by Dunn [1]. They
were then developed by Berger et al. [2], [3], [16].

There are two variants of permutation codes:
Variant I: Let 𝜇1 > 𝜇2 > ⋅ ⋅ ⋅ > 𝜇𝐾 be real numbers, and

let 𝑛1, 𝑛2, . . . , 𝑛𝐾 be positive integers with sum equal to 𝑛
(an (ordered) composition of 𝑛). The initial codeword of the
codebook 𝒞 has the form

𝑥init = (𝜇1, . . . , 𝜇1
←−𝑛1−→

, 𝜇2, . . . , 𝜇2
←−𝑛2−→

, . . . , 𝜇𝐾 , . . . , 𝜇𝐾
←−𝑛𝐾−→

), (2)

where each 𝜇𝑖 appears 𝑛𝑖 times. The codebook is the set of
all distinct permutations of 𝑥init. The number of codewords
in 𝒞 is thus given by the multinomial coefficient

𝑀 =
𝑛!

𝑛1!𝑛2! ⋅ ⋅ ⋅𝑛𝐾 !
. (3)

The permutation structure of the codebook enables low-
complexity nearest-neighbor encoding [2]: map 𝑋 to the
codeword �̂� whose components have the same order as 𝑋 ;

in other words, replace the 𝑛1 largest components of 𝑋 with
𝜇1, the 𝑛2 next-largest components of 𝑋 with 𝜇2, and so on.

Variant II: The initial codeword 𝑥init still has the form (2),
but now all its entries are nonnegative; i.e., 𝜇1 > 𝜇2> ⋅ ⋅ ⋅ >
𝜇𝐾 ≥ 0. The codebook now consists of all possible permu-
tations of �̂�init in which each nonzero component is possibly
negated. The number of codewords is thus given by

𝑀 = 2ℎ ⋅ 𝑛!

𝑛1!𝑛2! . . . 𝑛𝐾 !
, (4)

where ℎ is the number of positive components in 𝑥init.
Optimal encoding is again simple [2]: map 𝑋 to the codeword
�̂� whose components have the same order in absolute value
and match the signs of corresponding components of 𝑋 .

Since the complexity of sorting is 𝑂(𝑛 log𝑛) operations, the
encoding complexity is much lower than with an unstructured
VQ and only 𝑂(log 𝑛) times higher than scalar quantization.

2) Performance and Optimization: For i.i.d. sources, each
codeword is chosen with equal probability. Consequently,
there is no improvement from entropy coding and the per-
letter rate is simply 𝑅 = 𝑛−1 log𝑀 .

Let 𝜉1 ≥ 𝜉2 ≥ ⋅ ⋅ ⋅ ≥ 𝜉𝑛 denote the order statistics
of random vector 𝑋 = (𝑋1, . . . , 𝑋𝑛), and 𝜂1 ≥ 𝜂2 ≥
⋅ ⋅ ⋅ ≥ 𝜂𝑛 denote the order statistics of random vector
∣𝑋 ∣ Δ

= (∣𝑋1∣, . . . , ∣𝑋𝑛∣).1 With these notations and an initial
codeword given by (2), the per-letter distortion of optimally-
encoded Variant I and Variant II codes can be deduced simply
by realizing which order statistics are mapped to each element
of �̂�init:

𝐷I = 𝑛−1𝐸
[∑𝐾

𝑖=1

∑
ℓ∈𝐼𝑖 (𝜉ℓ − 𝜇𝑖)

2
]

and (5)

𝐷II = 𝑛−1𝐸
[∑𝐾

𝑖=1

∑
ℓ∈𝐼𝑖 (𝜂ℓ − 𝜇𝑖)

2
]
, (6)

where 𝐼𝑖s are the groups of indices generated by the compo-
sition, i.e.,

𝐼1 = {1, 2, . . . , 𝑛1},
𝐼𝑖 =

{(∑𝑖−1
𝑚=1 𝑛𝑚

)
+ 1, . . . ,

(∑𝑖
𝑚=1 𝑛𝑚

)}
, 𝑖 ≥ 2.

Given a composition (𝑛1, 𝑛2, . . . , 𝑛𝐾), minimization of 𝐷I

or 𝐷II can be done separately for each 𝜇𝑖, yielding optimal
values

𝜇𝑖 = 𝑛−1𝑖

∑
ℓ∈𝐼𝑖 𝐸 [𝜉ℓ] , for Variant I, and (7)

𝜇𝑖 = 𝑛−1𝑖

∑
ℓ∈𝐼𝑖 𝐸 [𝜂ℓ] , for Variant II. (8)

Overall minimization of 𝐷I or 𝐷II over the choice of 𝐾 ,
{𝑛𝑖}𝐾𝑖=1, and {𝜇𝑖}𝐾𝑖=1 subject to a rate constraint is difficult
because of the integer constraint of the composition.

The analysis of [3] shows that as 𝑛 grows large, the
composition can be designed to give performance equal to
optimal entropy-constrained scalar quantization (ECSQ) of 𝑋 .
Heuristically, it seems that for large block lengths, PCs suffer
because there are too many permutations (𝑛−1 log2 𝑛! grows)
and the vanishing fraction that are chosen to meet a rate
constraint do not form a good code. The technique we study

1Because of the convention 𝜇𝑖 > 𝜇𝑖+1 established by Berger et al. [2], it
is natural to index the order statistics in descending order as shown, which
is opposite to the ascending convention in the order statistics literature [17].
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in this paper is for moderate values of 𝑛, for which the second
term of (1) is not negligible; thus, it is not adequate to place
all codewords on a single sphere.

III. PERMUTATION CODES WITH MULTIPLE INITIAL

CODEWORDS

In this paper, we generalize ordinary PCs by allowing mul-
tiple initial codewords. The resulting codebook is contained
in a set of concentric spheres.

A. Basic Construction

Let 𝐽 be a positive integer. We will define a concentric
permutation (source) code (CPC) with 𝐽 initial codewords.
This is equivalent to having a codebook that is the union of
𝐽 PCs. Each notation from Section II-B is extended with a
superscript or subscript 𝑗 ∈ {1, 2, . . . , 𝐽} that indexes the
constituent PC. Thus, 𝒞𝑗 is the subcodebook of full codebook
𝒞 = ∪𝐽

𝑗=1𝒞𝑗 consisting of all 𝑀𝑗 distinct permutations of
initial vector

�̂�𝑗init =
(
𝜇𝑗
1, . . . , 𝜇

𝑗
1, . . . , 𝜇

𝑗
𝐾𝑗

, . . . , 𝜇𝑗
𝐾𝑗

)
, (9)

where each 𝜇𝑗
𝑖 appears 𝑛𝑗

𝑖 times, 𝜇𝑗
1 > 𝜇𝑗

2 > ⋅ ⋅ ⋅ > 𝜇𝑗
𝐾𝑗

(all of

which are nonnegative for Variant II), and
∑𝐾𝑗

𝑖=1 𝑛
𝑗
𝑖 = 𝑛. Also,

{𝐼𝑗𝑖 }𝐾𝑗

𝑖=1 are sets of indices generated by the 𝑗th composition.
Proposition 1: Nearest-neighbor encoding of 𝑋 with code-

book 𝒞 can be accomplished with the following procedure:
1) For each 𝑗, find �̂�𝑗 ∈ 𝒞𝑗 whose components have the

same order as 𝑋 .
2) Encode 𝑋 with �̂� , the nearest codeword amongst

{�̂�𝑗}𝐽𝑗=1.

Proof: Suppose 𝑋 ′ ∈ 𝒞 is an arbitrary codeword. Since
𝒞 = ∪𝐽

𝑗=1𝒞𝑗 , there must exist 𝑗0 ∈ {1, 2, . . . , 𝐽} such that
𝑋 ′ ∈ 𝒞𝑗0 . We have

∥𝑋 − �̂�∥
(𝑎)

≤ ∥𝑋 − �̂�𝑗0∥
(𝑏)

≤ ∥𝑋 −𝑋 ′∥,
where (a) follows from the second step of the algorithm,
and (b) follows from the first step and the optimality of the
encoding for ordinary PCs.

The first step of the algorithm requires 𝑂(𝑛 log 𝑛)+𝑂(𝐽𝑛)
operations (sorting components of 𝑋 and reordering each �̂�𝑗init
according to the index matrix obtained from the sorting); the
second step requires 𝑂(𝐽𝑛) operations. The total complexity
of encoding is therefore 𝑂(𝑛 log𝑛), provided that we keep
𝐽 = 𝑂(log 𝑛). In fact, in this rough accounting, the encoding
with 𝐽 = 𝑂(log 𝑛) is as cheap as the encoding for ordinary
PCs.

For i.i.d. sources, codewords within a subcodebook are
approximately equally likely to be chosen, but codewords in
different subcodebooks may have very different probabilities.
Using entropy coding yields

𝑅 ≈ 𝑛−1
[
𝐻

({𝑝𝑗}𝐽𝑗=1

)
+

∑𝐽
𝑗=1 𝑝𝑗 log𝑀𝑗

]
, (10)

where 𝐻(⋅) denotes the entropy of a distribution, 𝑝𝑗 is
the probability of choosing subcodebook 𝒞𝑗 , and 𝑀𝑗 is the
number of codewords in 𝒞𝑗 . Note that (10) is suggestive of a
two-stage encoding scheme with a variable-rate code for the

index of the chosen subcodebook and a fixed-rate code for
the index of the chosen codeword within the subcodebook.
Without entropy coding, the rate is

𝑅 = 𝑛−1 log
(∑𝐽

𝑗=1 𝑀𝑗

)
. (11)

The per-letter distortion for Variant I codes is now given by

𝐷 = 𝑛−1𝐸
[
min

1≤𝑗≤𝐽
∥𝑋 − �̂�𝑗∥2

]
= 𝑛−1𝐸

[
min

1≤𝑗≤𝐽
∑𝐾𝑗

𝑖=1

∑
ℓ∈𝐼𝑗

𝑖

(
𝜉ℓ − 𝜇𝑗

𝑖

)2
]
, (12)

where (12) is obtained by rearranging the components of 𝑋
and �̂�𝑗 in descending order. The distortion for Variant II codes
has the same form as (12) with {𝜉ℓ} replaced by {𝜂ℓ}.

B. Optimization

In general, finding the best ordinary PC requires an exhaus-
tive search over all compositions of 𝑛. (Assuming a precompu-
tation of all the order statistic means, the computation of the
distortion for a given composition through either (5) or (6)
is simple [2].) The search space can be reduced for certain
distributions of 𝑋 using [2, Thm. 3], but seeking the optimal
code still quickly becomes intractable as 𝑛 increases.

Our generalization makes the design problem considerably
more difficult. Not only do we need 𝐽 compositions, but the
distortion for a given composition is not as easy to compute.
Because of the minimization over 𝑗 in (12), we lack a simple
expression for 𝜇𝑗

𝑖 s in terms of the composition and the order
statistic means as given in (7). The relevant means are of
conditional order statistics, conditioned on which subcodebook
is selected; this depends on all 𝐽 compositions.

In the remainder of the paper, we consider two ways
to reduce the design complexity. In Section IV, we fix all
subcodebooks to have a common composition. Along with
reducing the design space, this restriction induces a structure
in the full codebook that enables the joint design of {𝜇𝑗

𝑖}𝐽𝑗=1

for any 𝑖. In Section V, we take a brief detour into the
optimal rate allocations in a wrapped spherical shape–gain
vector quantizer with gain-dependent shape codebook. We
use these rate allocations to pick the sizes of subcodebooks
{𝒞𝑗}𝐽𝑗=1.

The simplifications presented here still leave high de-
sign complexity for large 𝑛. Thus, some simulations use
complexity-reducing heuristics including our conjecture that
an analogue to [2, Thm. 3] holds. Since our numerical designs
are not provably optimal, the improvements from allowing
multiple initial codewords could be somewhat larger than we
demonstrate.

IV. DESIGN WITH COMMON COMPOSITION

In this section, assume that the 𝐽 compositions are identical,
i.e., the 𝑛𝑗

𝑖 s have no dependence on 𝑗. The subcodebook sizes
are equal, and dropping unnecessary sub- and superscripts we
write the common composition as {𝑛𝑖}𝐾𝑖=1 and the size of a
single subcodebook as 𝑀 .
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A. Common Compositions Give Common Conic Partitions

The Voronoi regions of the code now have a special geomet-
ric structure. Recall that any spherical code partitions ℝ𝑛 into
(unbounded) convex cones. Having a common composition
implies that each subcodebook induces the same conic Voronoi
structure on ℝ𝑛. The full code divides each of the 𝑀 cones
into 𝐽 Voronoi regions.

The following theorem precisely maps the encoding of a
CPC to a vector quantization problem. For compositions other
than (1, 1, . . . , 1), the VQ design problem is in a dimension
strictly lower than 𝑛.

Theorem 1: For fixed common composition
(𝑛1, 𝑛2, . . . , 𝑛𝐾), the initial codewords
{(𝜇𝑗

1, . . . , 𝜇
𝑗
1, . . . , 𝜇

𝑗
𝐾 , . . . , 𝜇𝑗

𝐾)}𝐽𝑗=1 of a Variant I CPC are
optimal if and only if {𝜇1, . . . , 𝜇𝐽} are representation points
of the optimal 𝐽-point vector quantization of 𝜉 ∈ ℝ𝐾 , where

𝜇𝑗 =
(√

𝑛1 𝜇
𝑗
1,

√
𝑛2 𝜇

𝑗
2, . . . ,

√
𝑛𝐾 𝜇𝑗

𝐾

)
, 1 ≤ 𝑗 ≤ 𝐽,

𝜉 =

(
1√
𝑛1

∑
ℓ∈𝐼1 𝜉ℓ,

1√
𝑛2

∑
ℓ∈𝐼2 𝜉ℓ, . . . ,

1√
𝑛𝐾

∑
ℓ∈𝐼𝐾 𝜉ℓ

)
.

Proof: Rewrite the distortion as follows:

𝑛𝐷 = 𝐸

[
min

1≤𝑗≤𝐽

𝐾∑
𝑖=1

∑
ℓ∈𝐼𝑖

(𝜉ℓ − 𝜇𝑗
𝑖 )

2

]

= 𝐸

[
min

1≤𝑗≤𝐽

𝐾∑
𝑖=1

(∑
ℓ∈𝐼𝑖

(𝜉ℓ)
2 − 2𝜇𝑗

𝑖

∑
ℓ∈𝐼𝑖

𝜉ℓ + 𝑛𝑖(𝜇
𝑗
𝑖 )

2

)]

= 𝐸

⎡
⎣ min
1≤𝑗≤𝐽

𝐾∑
𝑖=1

(
1√
𝑛𝑖

∑
ℓ∈𝐼𝑖

𝜉ℓ −√
𝑛𝑖𝜇

𝑗
𝑖

)2
⎤
⎦

+ 𝐸

[
𝐾∑
𝑖=1

∑
ℓ∈𝐼𝑖

(𝜉ℓ)
2

]
− 𝐸

⎡
⎣ 𝐾∑
𝑖=1

(
1√
𝑛𝑖

∑
ℓ∈𝐼𝑖

𝜉ℓ

)2
⎤
⎦

= 𝐸

[
min

1≤𝑗≤𝐽
∥𝜉 − 𝜇𝑗∥2

]
+ 𝐸

[∥𝑋∥2]
− 𝐸

⎡
⎣ 𝐾∑
𝑖=1

(
1√
𝑛𝑖

∑
ℓ∈𝐼𝑖

𝜉ℓ

)2
⎤
⎦ . (13)

Since the second and third terms of (13) do not depend on
{�̂�𝑗init}𝐽𝑗=1, minimizing 𝐷 is equivalent to minimizing the
first term of (13). By definition of a 𝐾-dimensional VQ, that
term is minimized if and only if {𝜇1, . . . , 𝜇𝐽} are optimal
representation points of the 𝐽-point VQ of random vector 𝜉,
completing the proof.

For any fixed composition, one can implement the 𝐽-point
VQ design inspired by Theorem 1, using the Lloyd-Max
algorithm [18], [19], to obtain {𝜇1, . . . , 𝜇𝐽} ⊂ ℝ𝐾 and then
apply the mapping stated in the theorem to obtain the 𝐽 desired
initial codewords in ℝ𝑛. Theorem 1 can be trivially extended
for Variant II codes by simply replacing {𝜉ℓ} with {𝜂ℓ}.

Figure 1 compares the performance of an ordinary Variant I
PC (𝐽 = 1) with variable-rate CPCs with 𝐽 = 3 initial vectors.
For a given composition, the distortion of the optimal ordinary
PC is computed using (7) and variances of the order statistics
(see [2, Eq. (13)]), whereas that of the optimal CPC is esti-
mated empirically from 500000 samples generated according
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Fig. 1. Rate–distortion performance for variable-rate coding of i.i.d. 𝒩 (0, 1)
source with block length 𝑛 = 7. Ordinary Variant I PCs (𝐽 = 1) are compared
with CPCs with 𝐽 = 3. Codes with common compositions are designed
according to Theorem 1. Codes with different compositions are designed with
heuristic selection of compositions guided by Conjecture 2 and Algorithm 1.
For clarity, amongst approximately-equal rates, only operational points with
the lowest distortion are plotted.

to the 𝒩 (0, 1) distribution. Figure 1 and several subsequent
figures include for comparison the rate–distortion bound and
the performances of two types of entropy-constrained scalar
quantization: uniform thresholds with uniform codewords (la-
beled ECUSQ) and uniform thresholds with optimal code-
words (labeled ECSQ). At all rates, the latter is a very close
approximation to optimal ECSQ; in particular, it has optimal
rate–distortion slope at rate zero [20].

B. Optimization of Composition

Although the optimization of compositions is not easy even
for ordinary PCs, for a certain class of distributions, there is
a useful necessary condition for the optimal composition [2,
Thm. 3]. The following conjecture is an analogue of that
condition.

Conjecture 1: Suppose that 𝐽 > 1 and that 𝐸[𝜂ℓ] is a
convex function of ℓ, i.e.

𝐸 [𝜂ℓ+2]− 2𝐸 [𝜂ℓ+1] +𝐸 [𝜂ℓ] ≥ 0, 1 ≤ ℓ ≤ 𝑛− 2. (14)

Then the optimum 𝑛𝑖 for Variant II CPCs increases monoton-
ically with 𝑖.

The convexity of 𝐸[𝜂ℓ] holds for a large class of source
distributions (see [2, Thm. 4]), including Gaussian ones.
Conjecture 1 greatly reduces the search space for optimal
compositions for such sources.

The conjecture is proven if one can show that the distortion
associated with the composition (𝑛1, . . . , 𝑛𝑚, 𝑛𝑚+1, . . . , 𝑛𝐾),
where 𝑛𝑚 > 𝑛𝑚+1, can be decreased by reversing the roles of
𝑛𝑚 and 𝑛𝑚+1. As a plausibility argument for the conjecture,
we will show that the reversing has the desired property when
an additional constraint is imposed on the codewords. With
the composition fixed, let

𝜁
Δ
=

1

𝑟

𝐿+𝑟∑
𝐿+1

𝜂ℓ − 2

𝑞 − 𝑟

𝐿+𝑞∑
𝐿+𝑟+1

𝜂ℓ +
1

𝑟

𝐿+𝑞+𝑟∑
𝐿+𝑞+1

𝜂ℓ, (15)
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where 𝐿 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑚−1. The convexity of 𝐸[𝜂ℓ]
implies the nonnegativity of 𝐸[𝜁] (see [2, Thm. 2]). Using the
total expectation theorem, 𝐸[𝜁] can be written as the difference
of two nonnegative terms,

𝜁+
Δ
= Pr(𝜁 ≥ 0)𝐸[𝜁 ∣ 𝜁 ≥ 0], 𝜁−

Δ
= −Pr(𝜁 < 0)𝐸[𝜁 ∣ 𝜁 < 0].

Since 𝐸[𝜁] ≥ 0 and probabilities are nonnegative, it is clear
that 𝜁+ ≥ 𝜁−. Therefore, the following set is non-empty:

Ω𝑚 =

{{
𝜇𝑗
𝑖

}
𝑖,𝑗

s.t.
min𝑗 (𝜇

𝑗
𝑚 − 𝜇𝑗

𝑚+1)

max𝑗 (𝜇
𝑗
𝑚 − 𝜇𝑗

𝑚+1)
≥ 𝜁−

𝜁+

}
. (16)

With the notations above, we are now ready to state the
proposition. If the restriction of the codewords were known to
not preclude optimality, then Conjecture 1 would be proven.

Proposition 2: Suppose that 𝐽 > 1 and 𝐸[𝜂ℓ] is a con-
vex function of ℓ. If 𝑛𝑚 > 𝑛𝑚+1 for some 𝑚, and
the constraint Ω𝑚 given in (16) is imposed on the code-
words, then the distortion associated with the composition
(𝑛1, . . . , 𝑛𝑚, 𝑛𝑚+1, . . . , 𝑛𝐾) can be decreased by reversing
the roles of 𝑛𝑚 and 𝑛𝑚+1.

Proof: See Appendix A.
A straightforward extension of Conjecture 1 for Variant I

codes is the following:
Conjecture 2: Suppose that 𝐽 > 1, and that 𝐸[𝜉ℓ] is

convex over 𝒮1 ≜ {1, 2, . . . , ⌊𝐾/2⌋} and concave over
𝒮2 ≜ {⌊𝐾/2⌋ + 1, ⌊𝐾/2⌋ + 2, . . . ,𝐾}. Then the optimum
𝑛𝑖 for Variant I CPCs increases monotonically with 𝑖 ∈ 𝒮1

and decreases monotonically with 𝑖 ∈ 𝒮2.
The convexity of 𝐸[𝜉ℓ] holds for a large class of source

distributions (see [2, Thm. 5]). We will later restrict the
compositions, while doing simulations for Variant I codes and
Gaussian sources, to satisfy Conjecture 2.

V. DESIGN WITH DIFFERENT COMPOSITIONS

Suppose now that the compositions of subcodebooks can
be different. The Voronoi partitioning of ℝ𝑛 is much more
complicated, lacking the separability discussed in the previous
section.2 Furthermore, the apparent design complexity for the
compositions is increased greatly to equal the number of
compositions raised to the 𝐽 th power, namely 2𝐽(𝑛−1).

In this section we first outline an algorithm for local
optimization of initial vectors with all the compositions fixed.
Then we address a portion of the composition design problem
which is the sizing of the subcodebooks. For this, we extend
the high-resolution analysis of [7]. For brevity, we limit our
discussion to Variant I CPCs; Variant II could be generalized
similarly.

A. Local Optimization of Initial Vectors

Let 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑛) denote the ordered vector of 𝑋 .
Given 𝐽 initial codewords {�̂�𝑗init}𝐽𝑗=1, for each 𝑗, let 𝑅𝑗 ⊂ ℝ𝑛

denote the quantization region of 𝜉 corresponding to codeword
�̂�𝑗init, and let 𝐸𝑗 [⋅] denote the expectation conditioned on 𝜉 ∈

2For a related two-dimensional visualization, compare [21, Fig. 3] against
[21, Figs. 7–13].

Algorithm 1 Lloyd Algorithm for Initial Codeword Optimiza-
tion from Given Composition

1) Order vector 𝑋 to get 𝜉
2) Choose an arbitrary initial set of 𝐽 representation

vectors �̂�1
init, 𝑥

2
init, . . . , �̂�

𝐽
init.

3) For each 𝑗, determine the corresponding quantization
region 𝑅𝑗 of 𝜉.

4) For each 𝑗, set 𝑥𝑗init to the new value given by (18).
5) Repeat steps 3 and 4 until further improvement in MSE

is negligible.

𝑅𝑗 . If 𝑅𝑗 is fixed, consider the distortion conditioned on 𝜉 ∈
𝑅𝑗

𝐷𝑗 = 𝑛−1𝐸
[∑𝐾𝑗

𝑖=1

∑
ℓ∈𝐼𝑗

𝑖

(
𝜉ℓ − 𝜇𝑗

𝑖

)2

∣ 𝜉 ∈ 𝑅𝑗

]
. (17)

By extension of an argument in [2], 𝐷𝑗 is minimized with

𝜇𝑗
𝑖 =

1

𝑛𝑗
𝑖

∑
ℓ∈𝐼𝑗

𝑖
𝐸𝑗 [𝜉ℓ], 1 ≤ 𝑖 ≤ 𝐾𝑗 . (18)

For a given set {𝑅𝑗}𝐽𝑗=1, since the total distortion is deter-
mined by

𝐷 =
∑𝐽

𝑗=1 Pr(𝜉 ∈ 𝑅𝑗)𝐷𝑗 ,

it will decrease if 𝜇𝑗
𝑖 s are set to the new values given by (18)

for all 1 ≤ 𝑗 ≤ 𝐽 and for all 1 ≤ 𝑖 ≤ 𝐾𝑗 .
From the above analysis, a Lloyd algorithm can be devel-

oped to design initial codewords as given in Algorithm 1.
This algorithm is similar to the algorithm in [10], but here
the compositions can be arbitrary. Algorithm 1 was used to
produce the operating points shown in Figure 1 for CPCs
with different compositions in which the distortion of a
locally-optimal code was computed empirically from 500000
samples generated according to 𝒩 (0, 1) distribution. We can
see through the figure that common compositions can produce
almost the same distortion as possibly-different compositions
for the same rate. However, allowing the compositions to
be different yields many more rates. The number of rates is
explored in Appendix B.

B. Wrapped Spherical Shape–Gain Vector Quantization

Hamkins and Zeger [7] introduced a type of spherical code
for ℝ𝑛 where a lattice in ℝ𝑛−1 is “wrapped” around the code
sphere. They applied the wrapped spherical code (WSC) to
the shape component in a shape–gain vector quantizer.

We generalize this construction to allow the size of the
shape codebook to depend on the gain. Along this line of
thinking, Hamkins [22, pp. 102–104] provided an algorithm to
optimize the number of codewords on each sphere. However,
neither analytic nor experimental improvement was demon-
strated. In contrast, our approach based on high-resolution
optimization gives an explicit expression for the improvement
in signal-to-noise ratio (SNR). While our results may be
of independent interest, our present purpose is to guide the
selection of {𝑀𝑗}𝐽𝑗=1 in CPCs.



NGUYEN et al.: CONCENTRIC PERMUTATION SOURCE CODES 3159

A shape–gain vector quantizer (VQ) decomposes a source
vector 𝑋 into a gain 𝑔 = ∥𝑋∥ and a shape 𝑆 = 𝑋/𝑔, which
are quantized to 𝑔 and 𝑆, respectively, and the approximation
is �̂� = 𝑔 ⋅ 𝑆. We optimize here a wrapped spherical VQ
with gain-dependent shape codebook. The gain codebook,
{𝑔1, 𝑔2, . . . , 𝑔𝐽}, is optimized for the gain pdf, e.g., using
the scalar Lloyd-Max algorithm [18], [19]. For each gain
codeword 𝑔𝑗 , a shape subcodebook is generated by wrapping
the sphere packing Λ ⊂ ℝ𝑛−1 on to the unit sphere in ℝ𝑛.
The same Λ is used for each 𝑗, but the density (or scaling)
of the packing may vary with 𝑗. Thus the normalized second
moment 𝐺(Λ) applies for each 𝑗 while minimum distance 𝑑𝑗Λ
depends on the quantized gain 𝑔𝑗 . We denote such a sphere
packing as (Λ, 𝑑𝑗Λ).

The per-letter MSE distortion will be

𝐷 = 1
𝑛𝐸

[
∥𝑋 − 𝑔 𝑆∥2

]
= 1

𝑛𝐸
[∥𝑋 − 𝑔 𝑆∥2]+ 2

𝑛𝐸
[
(𝑋 − 𝑔 𝑆)𝑇 (𝑔 𝑆 − 𝑔 𝑆)

]
+ 1

𝑛𝐸
[
∥𝑔 𝑆 − 𝑔 𝑆∥2

]
= 1

𝑛𝐸
[∥𝑋 − 𝑔 𝑆∥2]︸ ︷︷ ︸

𝐷𝑔

+ 1
𝑛𝐸

[
∥𝑔 𝑆 − 𝑔 𝑆∥2

]
︸ ︷︷ ︸

𝐷𝑠

,

where the omitted cross term is zero due to the independence
of 𝑔 and 𝑔 from 𝑆 [7]. The gain distortion, 𝐷𝑔, is given by

𝐷𝑔 =
1

𝑛

∫ ∞
0

(𝑟 − 𝑔(𝑟))2𝑓𝑔(𝑟) 𝑑𝑟,

where 𝑔(⋅) is the quantized gain and 𝑓𝑔(⋅) is the pdf of 𝑔.
Conditioned on the gain codeword 𝑔𝑗 chosen, the shape 𝑆

is distributed uniformly on the unit sphere in ℝ
𝑛, which has

surface area 𝑆𝑛 = 2𝜋𝑛/2/Γ(𝑛/2). Thus, as shown in [7], for
asymptotically high shape rate 𝑅𝑠, the conditional distortion
𝐸[∥𝑆 − 𝑆∥2 ∣ 𝑔𝑗] is equal to the distortion of the lattice
quantizer with codebook (Λ, 𝑑𝑗Λ) for a uniform source in
ℝ𝑛−1. Thus,

𝐸
[
∥𝑆 − 𝑆∥2 ∣ 𝑔𝑗

]
= (𝑛− 1)𝐺(Λ)𝑉𝑗(Λ)

2/(𝑛−1), (19)

where 𝑉𝑗(Λ) is the volume of a Voronoi region of the
(𝑛 − 1)-dimensional lattice (Λ, 𝑑𝑗Λ). Therefore, for a given
gain codebook {𝑔1, 𝑔2, . . . , 𝑔𝐽}, the shape distortion 𝐷𝑠 can
be approximated by

𝐷𝑠 =
1

𝑛
𝐸
[
∥𝑔 𝑆 − 𝑔 𝑆∥2

]
=

1

𝑛

𝐽∑
𝑗=1

𝑝𝑗 𝑔
2
𝑗𝐸

[
∥𝑆 − 𝑆∥2 ∣ 𝑔 = 𝑔𝑗

]

(𝑎)≈ 1

𝑛

𝐽∑
𝑗=1

𝑝𝑗 𝑔
2
𝑗 (𝑛− 1)𝐺(Λ)𝑉𝑗(Λ)

2/(𝑛−1)

(𝑏)≈ 1

𝑛

𝐽∑
𝑗=1

𝑝𝑗 𝑔
2
𝑗 (𝑛− 1)𝐺(Λ) (𝑆𝑛/𝑀𝑗)

2/(𝑛−1)

=
𝑛− 1

𝑛
𝐺(Λ)𝑆2/(𝑛−1)

𝑛

𝐽∑
𝑗=1

𝑝𝑗 𝑔
2
𝑗𝑀

−2/(𝑛−1)
𝑗

= 𝐶 ⋅
𝐽∑

𝑗=1

𝑝𝑗 𝑔
2
𝑗𝑀

−2
𝑛−1
𝑗 ,

where 𝑝𝑗 is the probability of 𝑔𝑗 being chosen; (a) follows
from (19); (b) follows from the high-rate assumption and

neglecting the overlapping regions, with 𝑀𝑗 representing the
number of codewords in the shape subcodebook associated
with 𝑔𝑗 ; and

𝐶
Δ
=

𝑛− 1

𝑛
𝐺(Λ)

(
2𝜋𝑛/2/Γ(𝑛/2)

)2/(𝑛−1)
. (20)

C. Rate Allocations

The optimal rate allocation for high-resolution approxima-
tion to WSC given below will be used as the rate allocation
across subcodebooks in our CPCs.

1) Variable-Rate Coding: Before stating the theorem, we
need the following lemma.

Lemma 1: If there exist constants 𝐶𝑠 and 𝐶𝑔 such that

lim
𝑅𝑠→∞

𝐷𝑠 ⋅ 22(𝑛/(𝑛−1))𝑅𝑠 = 𝐶𝑠 and lim
𝑅𝑔→∞

𝐷𝑔 ⋅ 22𝑛𝑅𝑔 = 𝐶𝑔,

then the minimum of 𝐷 = 𝐷𝑠 +𝐷𝑔 subject to the constraint
𝑅 = 𝑅𝑠 +𝑅𝑔 satisfies

lim
𝑅→∞

𝐷22𝑅 =
𝑛

(𝑛− 1)1−1/𝑛
⋅ 𝐶1/𝑛

𝑔 𝐶1−1/𝑛
𝑠

and is achieved by 𝑅𝑠 = 𝑅∗𝑠 and 𝑅𝑔 = 𝑅∗𝑔 , where

𝑅∗𝑠 =

(
𝑛− 1

𝑛

)[
𝑅+

1

2𝑛
log

(
𝐶𝑠

𝐶𝑔
⋅ 1

𝑛− 1

)]
, (21)

𝑅∗𝑔 =

(
1

𝑛

)[
𝑅− 𝑛− 1

2𝑛
log

(
𝐶𝑠

𝐶𝑔
⋅ 1

𝑛− 1

)]
. (22)

Proof: See [7, Thm. 1].
Theorem 2: Let 𝑋 ∈ ℝ𝑛 be an i.i.d. 𝒩 (0, 𝜎2) vector,

and let Λ be a lattice in ℝ𝑛−1 with normalized second
moment 𝐺(Λ). Suppose 𝑋 is quantized by an 𝑛-dimensional
shape–gain VQ at rate 𝑅 = 𝑅𝑔 + 𝑅𝑠 with gain-dependent
shape codebook constructed from Λ with different minimum
distances. Also, assume that a variable-rate coding follows
the quantization. Then, the asymptotic decay of the minimum
mean-squared error 𝐷 is given by

lim
𝑅→∞

𝐷22𝑅 =
𝑛

(𝑛− 1)1−1/𝑛
⋅ 𝐶1/𝑛

𝑔 𝐶1−1/𝑛
𝑠 (23)

and is achieved by 𝑅𝑠 = 𝑅∗𝑠 and 𝑅𝑔 = 𝑅∗𝑔 , where 𝑅∗𝑠 and
𝑅𝑔 = 𝑅∗𝑔 are given in (21) and (22),

𝐶𝑠 =
𝑛− 1

𝑛
𝐺(Λ)

(
2𝜋𝑛/2/Γ(𝑛/2)

)2/(𝑛−1)
⋅ 2𝜎2𝑒𝜓(𝑛/2),

𝐶𝑔 = 𝜎2 ⋅ 3
𝑛/2Γ3(𝑛+2

6 )

8𝑛Γ(𝑛/2)
,

and 𝜓(⋅) is the digamma function.
Proof: We first minimize 𝐷𝑠 for a given gain codebook

{𝑔𝑗}𝐽𝑗=1. From (20), ignoring the constant 𝐶, we must perform
the minimization

min
𝑀1,...,𝑀𝐽

∑𝐽
𝑗=1 𝑝𝑗 𝑔

2
𝑗 𝑀

2/(1−𝑛)
𝑗

subject to
∑𝐽

𝑗=1 𝑝𝑗 log𝑀𝑗 = 𝑛𝑅𝑠. (24)

Using a Lagrange multiplier to get an unconstrained problem,
we obtain the objective function

𝑓 =
∑𝐽

𝑗=1 𝑝𝑗 𝑔
2
𝑗 𝑀

2/(1−𝑛)
𝑗 − 𝜆

∑𝐽
𝑗=1 𝑝𝑗 log𝑀𝑗.
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Neglecting the integer constraint, we can take the partial
derivatives

∂𝑓

∂𝑀𝑗
=

2

1− 𝑛
𝑝𝑗 𝑔

2
𝑗𝑀

(𝑛+1)/(1−𝑛)
𝑗 −𝜆𝑝𝑗𝑀

−1
𝑗 , 1 ≤ 𝑗 ≤ 𝐽.

Setting ∂𝑓
∂𝑀𝑗

= 0, 1 ≤ 𝑗 ≤ 𝐽 , yields

𝑀𝑗 =
[
𝜆(1 − 𝑛)/(2𝑔2𝑗 )

](1−𝑛)/2
. (25)

Substituting into the constraint (24), we get∑𝐽
𝑗=1 𝑝𝑗 log

[
𝜆(1− 𝑛)/(2𝑔2𝑗 )

](1−𝑛)/2
= 𝑛𝑅𝑠.

Thus,

[𝜆(1− 𝑛)/2]
(1−𝑛)/2

= 2𝑛𝑅𝑠−(𝑛−1)
∑𝐽

𝑘=1 𝑝𝑘 log 𝑔𝑘

= 2𝑛𝑅𝑠−(𝑛−1)𝐸[log 𝑔].

Therefore, it follows from (25) that the optimal size for the
𝑗th shape subcodebook for a given gain codebook is

𝑀𝑗 = 𝑔𝑛−1𝑗 ⋅ 2𝑛𝑅∗
𝑠−(𝑛−1)𝐸[log 𝑔], 1 ≤ 𝑗 ≤ 𝐽. (26)

The resulting shape distortion is

𝐷𝑠 ≈ 𝐶 ⋅
𝐽∑

𝑗=1

𝑝𝑗 𝑔
2
𝑗

(
𝑔𝑛−1𝑗 2𝑛𝑅

∗
𝑠−(𝑛−1)𝐸[log 𝑔]

)2/(1−𝑛)

= 𝐶 ⋅ 22𝐸[log 𝑔] ⋅ 2−2(𝑛/(𝑛−1))𝑅∗
𝑠 ,

where 𝐶 is the same constant as specified in (20). Hence,

lim
𝑅→∞

𝐷𝑠 ⋅ 22(𝑛/(𝑛−1))𝑅∗
𝑠 = 𝐶 ⋅ lim

𝑅∗
𝑔→∞

22𝐸[log 𝑔] (27)

(𝑎)
= 𝐶 ⋅ 22𝐸[log 𝑔] (𝑏)

= 𝐶 ⋅ 2𝜎2𝑒𝜓(𝑛/2) = 𝐶𝑠,

where (a) follows from the high-rate assumption; and (b)
follows from computing the expectation 𝐸[log 𝑔]. On the other
hand, it is shown in [7, Thm. 1] that

lim
𝑅→∞

𝐷𝑔 ⋅ 22𝑛(𝑅−𝑅∗
𝑠) = lim

𝑅→∞
𝐷𝑔 ⋅ 22𝑛𝑅∗

𝑔 = 𝐶𝑔⋅ (28)

The limits (27) and (28) now allow us to apply Lemma 1 to
obtain the desired result.

Through this theorem we can verify the rate–distortion im-
provement as compared to independent shape–gain encoding
by comparing 𝐶𝑔 and 𝐶𝑠 in the distortion formula to the anal-
ogous quantities in [7, Thm. 1]. 𝐶𝑔 remains the same whereas
𝐶𝑠, which plays a more significant role in the distortion
formula, is scaled by a factor of 2𝑒𝜓(𝑛/2)/𝑛 < 1. In particular,
the improvement in signal-to-quantization noise ratio achieved
by the WSC with gain-dependent shape codebook is given by

ΔSNR (in dB) = −10(1− 1/𝑛) log10(2𝑒
𝜓(𝑛/2)/𝑛). (29)

From the theory of the gamma function [23, Eq. 29], we know
that, for 𝑠 ∈ ℂ,

lim
∣𝑠∣→∞

[𝜓(𝑠)− ln(𝑠)] = 0.

It follows that [𝜓(𝑛/2)− ln(𝑛/2)] → 0, and thus ΔSNR(𝑛) →
0, as 𝑛 → ∞; this is not surprising because of the “sphere
hardening” effect. This improvement is plotted in Figure 2 as
a function of block length 𝑛 in the range between 5 and 50.
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Fig. 2. Improvement in signal-to-quantization noise ratio of WSC with gain-
dependent shape quantizer specified in (29), as compared to the asymptotic
rate–distortion performance given in [7, Thm. 1].

2) Fixed-Rate Coding: A similar optimal rate allocation is
possible for fixed-rate coding.

Theorem 3: Let 𝑋 ∈ ℝ𝑛 be an i.i.d. 𝒩 (0, 𝜎2) vector, and
let Λ be a lattice in ℝ𝑛−1 with normalized second moment
𝐺(Λ). Suppose 𝑋 is quantized by an 𝑛-dimensional shape–
gain VQ at rate 𝑅 with gain-dependent shape codebook
constructed from Λ with different minimum distances. Also,
assume that 𝐽 gain codewords are used and that a fixed-rate
coding follows the quantization. Then, the optimal number of
codewords in each subcodebook is

𝑀𝑗 = 2𝑛𝑅 ⋅
(
𝑝𝑗𝑔

2
𝑗

)(𝑛−1)/(𝑛+1)∑𝐽
𝑘=1 (𝑝𝑘𝑔

2
𝑘)

(𝑛−1)/(𝑛+1)
, 1 ≤ 𝑗 ≤ 𝐽, (30)

where {𝑔1, 𝑔2, . . . , 𝑔𝐽} is the optimal gain codebook. The
resulting asymptotic decay of the shape distortion 𝐷𝑠 is given
by

lim
𝑅→∞

𝐷𝑠2
2(𝑛/(𝑛−1))𝑅 = 𝐶 ⋅

⎡
⎣ 𝐽∑
𝑗=1

(𝑝𝑗𝑔
2
𝑗 )

𝑛−1
𝑛+1

⎤
⎦

𝑛+1
𝑛−1

, (31)

where 𝑝𝑗 is probability of 𝑔𝑗 being chosen and 𝐶 is the same
constant as given in (20).

Proof: For a given gain codebook {𝑔𝑗}𝐽𝑗=1, the optimal
subcodebook sizes are given by the optimization

min
𝑀1,...,𝑀𝐽

∑𝐽
𝑗=1 𝑝𝑗 𝑔

2
𝑗 𝑀

2/(1−𝑛)
𝑗 subject to

∑𝐽
𝑗=1 𝑀𝑗 = 2𝑛𝑅.

(32)
Similarly to the variable-rate case, we can use a Lagrange
multiplier to obtain an unconstrained optimization with the
objective function

ℎ =
∑𝐽

𝑗=1 𝑝𝑗𝑔
2
𝑗𝑀

2/(1−𝑛)
𝑗 − 𝜆

∑𝐽
𝑗=1 𝑀𝑗 .

Again, assuming high rate, we can ignore the integer con-
straints on 𝑀𝑗 to take partial derivatives. Setting them equal
to zero, one can obtain

𝑀𝑗 =
[
𝜆(1 − 𝑛)/(2𝑝𝑗𝑔

2
𝑗 )
](1−𝑛)/(𝑛+1)

. (33)
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Fig. 3. High-resolution approximation of the rate–distortion performance of
WSC with gain-dependent shape codebooks and fixed-rate coding for an i.i.d.
𝒩 (0, 1) source with block length 𝑛 = 25.

Substituting into the constraint (32) yields∑𝐽
𝑗=1

[
𝜆(1 − 𝑛)/(2𝑝𝑗𝑔

2
𝑗 )
](1−𝑛)/(𝑛+1)

= 2𝑛𝑅.

Hence,

𝜆(𝑛−1)/(𝑛+1) = 2−𝑛𝑅
𝐽∑

𝑘=1

(
1− 𝑛

2𝑝𝑘𝑔2𝑘

)(1−𝑛)/(𝑛+1)

. (34)

Combining (34) and (33) give us

𝑀𝑗 = 𝜆(1−𝑛)/(𝑛+1)

(
1− 𝑛

2𝑝𝑗𝑔2𝑗

)(1−𝑛)/(𝑛+1)

= 2𝑛𝑅
(
𝑝𝑗𝑔

2
𝑗

)(𝑛−1)/(𝑛+1)∑𝐽
𝑘=1 (𝑝𝑘𝑔

2
𝑘)

(𝑛−1)/(𝑛+1)
, 1 ≤ 𝑗 ≤ 𝐽.

With the high-rate assumption, the resulting shape distortion
will be

𝐷𝑠 = 𝐶
𝐽∑

𝑗=1

𝑝𝑗𝑔𝑗𝑀
2/(1−𝑛)
𝑗

= 𝐶

𝐽∑
𝑗=1

𝑝𝑗𝑔𝑗

[
2𝑛𝑅(𝑝𝑗𝑔𝑗)

(𝑛−1)/(𝑛+1)∑𝐽
𝑘=1(𝑝𝑘𝑔

2
𝑘)

(𝑛−1)/(𝑛+1)

]2/(1−𝑛)

= 𝐶 ⋅ 2−2(𝑛/(𝑛−1))𝑅
⎡
⎣ 𝐽∑
𝑗=1

(𝑝𝑗𝑔
2
𝑗 )

(𝑛−1)/(𝑛+1)

⎤
⎦

𝑛+1
𝑛−1

where

𝐶 =
𝑛− 1

𝑛
𝐺(Λ)

(
2𝜋𝑛/2/Γ(𝑛/2)

)2/(𝑛−1)
,

completing the proof.
Figure 3 illustrates the resulting performance as a function

of the rate for several values of 𝐽 . As expected, for a fixed
block size 𝑛, higher rates require higher values of 𝐽 (more
concentric spheres) to attain good performance, and the best
performance is improved by increasing the maximum value
for 𝐽 .

Algorithm 2 Design Algorithm for Variable-Rate Case

1) Compute 𝑅∗𝑠 and 𝑅∗𝑔 from (21) and (22), respectively.
2) For 1 ≤ 𝑗 ≤ 𝐽 , compute 𝑀𝑗 from (26).
3) For 1 ≤ 𝑗 ≤ 𝐽 , search through all possible composi-

tions of 𝑛 that satisfy Conjecture 2, choosing the one
that produces the number of codewords closest to 𝑀𝑗 .

4) Run Algorithm 1 for the 𝐽 compositions chosen in step
4 to generate the initial codewords and to compute the
actual rate and distortion.

Algorithm 3 Design Algorithm for Fixed-Rate Case

1) Use the scalar Lloyd-Max algorithm to optimize 𝐽 gain
codewords.

2) For 1 ≤ 𝑗 ≤ 𝐽 , compute 𝑀𝑗 from (30)
3) Repeat steps 3 and 4 of Algorithm 2.

D. Using WSC Rate Allocation for Permutation Codes

In this section we use the optimal rate allocations for
WSC to guide the design of CPCs at a given rate. The rate
allocations are used to set target sizes for each subcodebook.
Then for each subcodebook 𝒞𝑗 , a composition meeting the
constraint on 𝑀𝑗 is selected (using heuristics inspired by
Conjecture 2). Algorithm 1 of Section V-A is then used for
those compositions to compute the actual rate and distortion.

For the variable-rate case, Theorem 2 provides the key rate
allocation step in the design procedure given in Algorithm 2.
Similarly, Theorem 3 leads to the design procedure for the
fixed-rate case given in Algorithm 3. Each case requires as
input not only the rate 𝑅 but also the number of initial
codewords 𝐽 .

Results for the fixed-rate case are plotted in Figure 4. This
demonstrates that using the rate allocation of WSC with gain-
dependent shape codebook actually yields good CPCs for
most of the rates. Figure 5 demonstrates the improvement that
comes with allowing more initial codewords. The distortion is
again computed empirically from Gaussian samples. It has a
qualitative similarity with Figure 3.

VI. CONCLUSIONS

We have studied a generalization of permutation codes
in which more than one initial codeword is allowed. This
improves rate–distortion performance while adding very little
to encoding complexity. However, the design complexity is
increased considerably. To reduce the design complexity, we
explore a method introduced by Lu et al. of restricting
the subcodebooks to share a common composition; and we
introduce a method of allocating rates across subcodebooks
using high-resolution analysis of wrapped spherical codes.
Simulations suggest that these heuristics are effective, but
obtaining theoretical guarantees remains an open problem.
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Fig. 5. Rate–distortion performance for variable-rate coding of i.i.d. 𝒩 (0, 1)
source with block length 𝑛 = 25. CPCs with different compositions
are designed using rate allocations from Theorem 3 and initial codewords
locally optimized by Algorithm 1. The rate allocation computation assumes
𝐺(Λ24) ≈ 0.065771 [28, p. 61].

APPENDIX A
PROOF OF PROPOSITION 2

Consider a new composition {𝑛′1, 𝑛′2, . . . , 𝑛′𝐾} obtained by
swapping 𝑛𝑚 and 𝑛𝑚+1, i.e.,

𝑛′𝑖 =

⎧⎨
⎩

𝑛𝑖, 𝑖 ∕= 𝑚 or 𝑚+ 1;
𝑛𝑚+1, 𝑖 = 𝑚;
𝑛𝑚, 𝑖 = 𝑚+ 1.

Let {𝐼 ′𝑖} denote groups of indices generated by composition
{𝑛′𝑖}. Suppose that 𝐷 is the optimal distortion associated with
{𝑛𝑖},

𝐷 = 𝑛−1𝐸
[
min

1≤𝑗≤𝐽
∑𝐾

𝑖=1

∑
ℓ∈𝐼𝑖

(
𝜂ℓ − 𝜇𝑗

𝑖

)2
]
,

where {𝜇𝑗
𝑖} is the optimum of the minimization of the right

side over Ω𝑚. Consider a suboptimal distortion 𝐷′ associated

with {𝑛′𝑖},

𝐷′ = 𝑛−1𝐸
[
min

1≤𝑗≤𝐽
∑𝐾

𝑖=1

∑
ℓ∈𝐼′

𝑖

(
𝜂ℓ − �̃�𝑗

𝑖

)2
]
,

where {�̃�𝑗
𝑖} is constructed from {𝜇𝑗

𝑖} as follows: for each 𝑗,

�̃�𝑗
𝑖 =

⎧⎨
⎩

𝜇𝑗
𝑖 , 𝑖 ∕= 𝑚 or 𝑚+ 1;

2𝑛𝑚𝜇𝑗
𝑚+(𝑛𝑚+1−𝑛𝑚)𝜇𝑗

𝑚+1

𝑛𝑚+𝑛𝑚+1
, 𝑖 = 𝑚;

(𝑛𝑚−𝑛𝑚+1)𝜇
𝑗
𝑚+2𝑛𝑚+1𝜇

𝑗
𝑚+1

𝑛𝑚+𝑛𝑚+1
, 𝑖 = 𝑚+ 1.

(35)
Note that, for the above construction, we have �̃�𝑗

𝑚−�̃�𝑗
𝑚+1 =

𝜇𝑗
𝑚 − 𝜇𝑗

𝑚+1, for all 𝑗 ∈ {1, 2, . . . , 𝐽}. Therefore {�̃�𝑗
𝑖} also

satisfies Ω𝑚, and so forms a valid codebook corresponding to
composition {𝑛′𝑖}. Thus, it will be sufficient if we can show
𝐷 > 𝐷′. On the other hand, it is easy to verify that, for all 𝑗,

𝑛𝑚+1(�̃�
𝑗
𝑚)2 + 𝑛𝑚(�̃�𝑗

𝑚+1)
2 = 𝑛𝑚(𝜇𝑗

𝑚)2 + 𝑛𝑚+1(𝜇
𝑗
𝑚+1)

2.

Hence,

𝐾∑
𝑖=1

𝑛′𝑖(�̃�
𝑗
𝑖 )

2 =

𝐾∑
𝑖=1

𝑛𝑖(𝜇
𝑗
𝑖 )

2 , for all 𝑗. (36)

Now consider the difference between 𝐷 and 𝐷′:

Δ = 𝑛(𝐷 −𝐷′)

= 𝐸

⎡
⎣min

𝑗

𝐾∑
𝑖=1

∑
ℓ∈𝐼𝑖

(
𝜂ℓ − 𝜇𝑗

𝑖

)2

−min
𝑗

𝐾∑
𝑖=1

∑
ℓ∈𝐼′

𝑖

(
𝜂ℓ − �̃�𝑗

𝑖

)2

⎤
⎦

(𝑎)

≥ 𝐸

[
min
𝑗

{
𝐾∑
𝑖=1

(
𝑛𝑖(𝜇

𝑗
𝑖 )

2 − 2𝜇𝑗
𝑖

∑
ℓ∈𝐼𝑖

𝜂ℓ

)

−
𝐾∑
𝑖=1

⎛
⎝𝑛′𝑖(�̃�

𝑗
𝑖 )

2 − 2�̃�𝑗
𝑖

∑
ℓ∈𝐼′

𝑖

𝜂ℓ

⎞
⎠
⎫⎬
⎭
⎤
⎦

(𝑏)
= 2𝐸

[
min
𝑗

{
�̃�𝑗
𝑚

𝐿+𝑟∑
ℓ=𝐿+1

𝜂ℓ + �̃�𝑗
𝑚+1

𝐿+𝑟+𝑞∑
ℓ=𝐿+𝑟+1

𝜂ℓ

−𝜇𝑗
𝑚

𝐿+𝑞∑
ℓ=𝐿+1

𝜂ℓ − 𝜇𝑗
𝑚+1

𝐿+𝑞+𝑟∑
ℓ=𝐿+𝑞+1

𝜂ℓ

⎫⎬
⎭
⎤
⎦ ,

where (a) uses the fact that min 𝑓 −min 𝑔 ≥ min(𝑓 − 𝑔), for
arbitrary functions 𝑓, 𝑔; and (b) follows from (36) in which
𝑞 = 𝑛𝑚, 𝑟 = 𝑛𝑚+1, and 𝐿 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑚−1. Now
using the formulae of �̃�𝑗

𝑚 and �̃�𝑗
𝑚+1 in (35), we obtain

Δ ≥ 2𝐸

[
min
𝑗

{
(𝑞 − 𝑟)(𝜇𝑗

𝑚 − 𝜇𝑗
𝑚+1)

𝑞 + 𝑟

𝐿+𝑟∑
ℓ=𝐿+1

𝜂ℓ

− 2𝑟(𝜇𝑗
𝑚 − 𝜇𝑗

𝑚+1)

𝑞 + 𝑟

𝐿+𝑞∑
ℓ=𝐿+𝑟+1

𝜂ℓ

+
(𝑞 − 𝑟)(𝜇𝑗

𝑚 − 𝜇𝑗
𝑚+1)

𝑞 + 𝑟

𝐿+𝑞+𝑟∑
ℓ=𝐿+𝑞+1

𝜂ℓ

⎫⎬
⎭
⎤
⎦

=
2𝑟(𝑞 − 𝑟)

𝑞 + 𝑟
𝐸

[
min
𝑗

{
(𝜇𝑗

𝑚 − 𝜇𝑗
𝑚+1)𝜁

}]
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(𝑎)
=

2𝑟(𝑞 − 𝑟)

𝑞 + 𝑟

[
𝜁+ ⋅min

𝑗

{
𝜇𝑗
𝑚 − 𝜇𝑗

𝑚+1

}
−𝜁− ⋅max

𝑗

{
𝜇𝑗
𝑚 − 𝜇𝑗

𝑚+1

}] (𝑏)

≥ 0,

where 𝜁 is the random variable specified in (15); (a) follows
from the total expectation theorem; and (b) follows from
constraint Ω𝑚 and that 𝑞 > 𝑟. The nonnegativity of Δ has
proved the proposition.

APPENDIX B
THE NUMBER AND DENSITY OF DISTINCT RATES

In this appendix, we discuss the distinct rate points at which
fixed-rate ordinary PCs, CPCs with common compositions,
and CPCs with possibly-different compositions may operate.
For brevity, we restrict attention to Variant I codes.

The number of codewords (and therefore the rate) for an
ordinary PC is determined by the multinomial coefficient (3).
The multinomial coefficient is invariant to the order of the
𝑛𝑖s, and so we are interested in the number of unordered
compositions (or integer partitions) of 𝑛, 𝑃 (𝑛). Hardy and
Ramanujan [24] gave the asymptotic formula:

𝑃 (𝑛) ∼ 𝑒𝜋
√

2𝑛/3

4𝑛
√
3

.

One might think that the number of possible distinct rate
points is 𝑃 (𝑛), but different sets of {𝑛𝑖} can yield the same
multinomial coefficient. For example, at 𝑛 = 7 both (3, 2, 2)
and (4, 1, 1, 1) yield 𝑀 = 210. Thus we are instead interested
in the number of distinct multinomial coefficients, 𝑁mult(𝑛)
[25], [26, A070289]. Clearly 𝑃 (𝑛) ≥ 𝑁mult(𝑛). A lower
bound to 𝑁mult(𝑛) is the number of unordered partitions of
𝑛 into parts that are prime, 𝑃ℙ(𝑛), with asymptotic formula:

𝑃ℙ(𝑛) ∼ exp

{
2𝜋

√
𝑛√

3 log𝑛

}
.

Thus the number of distinct rate points for ordinary PCs grows
exponentially with block length.

It follows easily that the average density of distinct rate
points on the interval of possible rates grows without bound.
Denote this average density by 𝛿(𝑛). The interval of possible
rates is [0, log𝑛!/𝑛], so applying the upper and lower bounds
gives the asymptotic expression

𝑛 exp
{

2𝜋√
3

√
𝑛

log𝑛

}
log𝑛!

≲ 𝛿(𝑛) ≲ 𝑒𝜋
√

2𝑛/3

4
√
3 log𝑛!

.

Taking the limits of the bounds yields lim𝑛→∞ 𝛿(𝑛) = +∞.
The following proposition addresses the maximum gap

between rate points, giving a result stronger than the statement
on average density.

Proposition 3: The maximum spacing between any pair of
rate points goes to 0 as 𝑛 → ∞.

Proof: First note that there are rate points at
0, 𝑛−1 log[𝑛], 𝑛−1 log[(𝑛)(𝑛 − 1)], 𝑛−1 log[(𝑛)(𝑛 − 1)(𝑛 −
2)], . . . induced by integer partitions (𝑛), (𝑛 − 1, 1), (𝑛 −
2, 1, 1), (𝑛 − 3, 1, 1, 1), . . . . The lengths of the intervals
between these rate points is 𝑛−1 log[𝑛], 𝑛−1 log[(𝑛)(𝑛 −
1)], 𝑛−1 log[(𝑛)(𝑛 − 1)(𝑛 − 2)], . . . which decreases as one
moves to larger rate points, so the first one is the largest.

TABLE I
NUMBER OF RATE POINTS

𝑛 𝐽 = 1 𝐽 = 2 𝐽 = 3 𝐽 = 4
2 2 3 4 5
3 3 6 10 15
4 5 15 33 56
5 7 27 68 132
6 11 60 207 517
7 14 97 415 1202
8 20 186 1038 3888
9 27 335 2440 11911

If there are other achievable rates between 𝑛−1 log[𝑛] and
𝑛−1 log(𝑛 − 1) and so on, they only act to decrease the size
of the intervals between successive rate points. So the interval
between 0 and 𝑛−1 log[𝑛] is the largest.

Taking 𝑛 → ∞ for the largest interval gives
lim𝑛→∞ 𝑛−1 log[𝑛] = 0, so the maximum distance between
any rate points goes to zero.

𝑁mult(𝑛) is the number of distinct rate points for ordinary
PCs. If fixed-rate CPCs are restricted to have common com-
positions, then they too have the same number of distinct rate
points. If different compositions are allowed, the number of
distinct rate points may increase dramatically.

Recall the rate expression (11), and notice that distinct
values of

∑
𝑀𝑗 will yield distinct rate points. Somewhat

similarly to the distinct subset sum problem [27, pp. 174–
175], we want to see how many distinct sums are obtainable
from subsets of size 𝐽 selected with replacement from the
possible multinomial coefficients of a given block length 𝑛.
This set is denoted ℳ(𝑛) and satisfies ∣ℳ(𝑛)∣ = 𝑁mult(𝑛);
for example, ℳ(4) = {1, 4, 6, 12, 24}.

For a general set of integers of size 𝑁mult(𝑛), the
number of distinct subset sums is upper-bounded by(
𝑁mult(𝑛)+𝐽−1

𝐽

)
. This is achieved, for example, by the set

{11, 22, . . . , 𝑁mult(𝑛)
𝑁mult(𝑛)}. The number of distinct subset

sums, however, can be much smaller. For example, for the set
{1, 2, . . . , 𝑁mult(𝑛)}, this number is 𝐽 𝑁mult(𝑛)− 𝐽 +1. We
have been unable to obtain a general expression for the set
ℳ(𝑛); this seems to be a difficult number theoretic problem.
It can be noted, however, that this number may be much larger
than 𝑁mult(𝑛).

Exact computations for the number of distinct rate points
at small values of 𝑛 and 𝐽 are provided in Table I.
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