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Abstract—Gaussian and quadratic approximations of message
passing algorithms on graphs have attracted considerable atten-
tion due to their computational simplicity, analytic tractability,
and wide applicability in optimization and statistical inference
problems. This paper summarizes a systematic framework for
incorporating such approximate message passing (AMP) methods
in general graphical models. The key concept is a partition of
dependencies of a general graphical model into strong and weak
edges, with each weak edge representing a small, linearizable
coupling of variables. AMP approximations based on the central
limit theorem can be applied to the weak edges and integrated
with standard message passing updates on the strong edges. The
resulting algorithm, which we call hybrid generalized approx-
imate message passing (Hybrid-GAMP), can yield significantly
simpler implementations of sum-product and max-sum loopy
belief propagation. By varying the partition between strong and
weak edges, a performance–complexity trade-off can be achieved.
Structured sparsity problems are studied as an example of this
general methodology where there is a natural partition of edges.

I. INTRODUCTION

Message passing algorithms on graphical models have be-

come widely-used in high-dimensional optimization and infer-

ence problems in a range of fields [1], [2]. The fundamental

principle of graphical models is to factor high-dimensional

problems into sets of problems of lower dimension. The

factorization is represented via a graph where the problem

variables and factors are represented by the graph vertices,

and the dependencies between them represented by edges.

Message passing methods such as loopy belief propagation

(BP) use this graphical structure to perform approximate

inference or optimization in an iterative manner. In each

iteration, inference or optimization is performed “locally” on

the sub-problems associated with each factor, and “messages”

are passed between the variables and factors to account for

the coupling between the local problems.

Although effective in a range of problems, loopy BP is only

as simple as the problems in the constituent factors; if the fac-

tors themselves are of high dimensions, exact implementation

of loopy BP will be computationally intractable.

To reduce the complexity of loopy BP, this paper presents

a hybrid generalized approximate message passing (Hybrid-

GAMP) algorithm for what we call graphical models with
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linear mixing. The basic idea is that when factors depend

on large numbers of variables, the dependencies are often

through aggregates of small, linearizable contributions. In

the proposed framework, these weak, linear interactions are

identified by partitioning the graph edges into weak and

strong edges, with the dependencies on the weak edges being

described by a linear transform. Under the assumption that the

components of the linear transform are small, it is argued that

the computations for the messages of standard loopy BP along

the weak edges can be significantly simplified. Approximate

messages along the weak edges are integrated with standard

messages on the strong edges.

The Hybrid-GAMP methodology can be applied to any

variant of loopy BP, including the sum-product algorithm for

inference (e.g., computation of a posterior mean) and the

max-sum algorithm for optimization (e.g., computation of a

posterior mode). For the sum-product loopy BP algorithm, we

show that the messages along the weak edges can be approxi-

mated as Gaussian random variables and the computations for

these messages can be simplified via the central limit theorem.

For max-sum loopy BP, we argue that one can use quadratic

approximations of the messages and perform the computations

via a simple least-squares solution.

These approximations can dramatically simplify the com-

putations. The complexity of standard loopy BP generically

grows exponentially with the maximum degree of the factor

nodes. With the GAMP approximation, however, the com-

plexity is exponential only in the maximum degree from the

strong edges, while it is linear in the number of weak edges.

As a result, Hybrid-GAMP algorithms on a graphical model

with linear mixing can remain tractable even with very large

numbers of weak, linearizable interactions.

Gaussian and quadratic approximations for message passing

algorithms with linear dependencies are not new. The purpose

of this paper is to provide a systematic and general framework

for these approximations that incorporates and extends many

earlier algorithms. Many previous works have considered

Gaussian approximations of loopy BP for the problem of

estimating vectors with independent components observed

through noisy, linear measurements [3]–[9]. In the terminology

of this paper, these algorithms apply to graphs where all

the non-trivial edges are weak. By enabling graphs that have

mixes of both strong and weak edges, the framework of this

paper significantly generalizes these methods. For example,

instead of the unknown vector simply having independent

components, the presence of strong edges can enable the vector

to have any prior describable with a graphical model.
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The approach here of combining approximate message

passing methods and standard graphical models with linear

mixing is closest to the methods developed in [10]–[13]

for wavelet image denoising and turbo equalization. These

works also considered graphical models that had both linear

and nonlinear components, and applied approximate message

passing techniques along the lines of [7], [8] to the lineariz-

able portions while maintaining standard BP updates in the

remainder of the graph. The use of approximate message

passing methods on portions of a factor graph has also been

applied with joint parameter estimation and decoding for

CDMA multiuser detection in [14]; in a wireless interference

coordination problem in [15], and proposed in [16, Section 7]

in the context of compressed sensing. The framework pre-

sented here unifies and extends all of these examples and thus

provides a systematic procedure for incorporating Gaussian

approximations of message passing in a modular manner in

general graphical models.

The remainder of this paper develops only the sum-product

case; the reader is referred to [17] for parallel development of

the max-sum case as well as proofs omitted for brevity and

more examples and details.

II. GRAPHICAL MODEL PROBLEMS WITH LINEAR MIXING

Let x and z be real-valued block column vectors

x = (x∗1, . . . ,x
∗
n)
∗, z = (z∗1, . . . , z

∗
m)∗, (1)

and consider a function of these vectors of the form

F (x, z) :=
∑m

i=1 fi(xα(i), zi), (2)

where, for each i, fi(·) is a real-valued function; α(i) is a sub-

set of the indices {1, . . . , n}; and xα(i) is the concatenation of

the vectors {xj , j ∈ α(i)}. We are interested in computations

subject to linear constraints of the form

zi =
∑n

j=1 Aijxj = Aix, (3)

where each Aij is a real-valued matrix and Ai is the block

column matrix with components Aij . We will also let A be

the block matrix with components Aij so that we can write

the linear constraints as z = Ax.

The function F (x, z) is naturally described via a graphical

model as shown in Fig. 1. Specifically, we associate with

F (x, z) a bipartite factor graph G = (V,E) whose vertices

V consist of n variable nodes corresponding to the (vector-

valued) variables xj , and m factor nodes corresponding to the

factors fi(·) in (2). There is an edge (i, j) ∈ E in the graph

if and only if the variable xj has some influence on the factor

fi(xα(i), zi). This influence can occur in one of two mutually

exclusive ways:

• The index j is in α(i), so that the variable xj directly

appears in the sub-vector xα(i) in the factor fi(xα(i), zi).
In this case, (i, j) will be called a strong edge, since xj

can have an arbitrary and potentially-large influence on

the factor.

• The matrix Aij is nonzero, so xj affects fi(xα(i), zi)
through its linear influence on zi in (3). In this case, (i, j)
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Fig. 1. Factor graph representation of the linear mixing estimation and
optimization problems. The variable nodes (circles) are connected to the factor
nodes (squares) either directly (strong edges) or via the output of the linear
mixing matrix A (weak edges).

will be called a weak edge, since the approximations we

will make in the algorithms below assume that Aij is

small. The set of weak edges into the factor node i will

be denoted β(i).

Together α(i) and β(i) comprise the set of all indices j
such that the variable node xj is connected to the factor node

fi(·) in the graph G. The union ∂(i) = α(i) ∪ β(i) is thus

the neighbor set of fi(·). Similarly, for any variable node xj ,

we let α(j) be the set of indices i such that that the factor

node fi(·) is connected to xj via a strong edge, and let β(j)
be the set of indices i such that there is a weak edge. We let

∂(j) = α(j) ∪ β(j) be the union of these sets, which is the

neighbor set of xj .

Given these definitions, we are interested in the Expectation

problem P-EXP: Given a function F (x, z) of the form (2), a

matrix A, and scale factor u > 0, define the joint distribution

p(x) := (1/Z(u)) exp [uF (x, z)] , z = Ax, (4)

where Z(u) is a normalization constant called the partition

function (it is a function of u). For this distribution, compute

the expectations

x̂ = E[x], ẑ = E[z]. (5)

Also, for each j, compute the log marginal

∆j(xj) := (1/u) log
∫
exp [uF (x, z)] dx\j , (6)

where the integral is over all variables xr for r 6= j.

P-EXP arises naturally in statistical inference: Suppose we

are given a probability distribution p(x) of the form (4) for

some function F (x, z). The function F (x, z) may depend

implicitly on some observed vector y, so that p(x) represents

the posterior distribution of x given y. In this context, the

solution (x̂, ẑ) to the problem P-EXP is precisely the minimum

mean squared error (MMSE) estimate when u = 1. The

function ∆j(xj) is the log marginal distribution of xj .
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In the analysis below, we will assume that, for all factor

nodes fi(·), the strong and weak neighbors, α(i) and β(i),
are disjoint. This assumption introduces no loss of generality:

If an edge (i, j) is both weak and strong, we can modify the

function fi(xα(i), zi) to move the influence of xj from the

term zi into the direct term xα(i) [17].

Even when the dependence of a factor fi(xα(i), zi) on a

variable xj is only through the linear term zi, we may still

wish to move the dependence to a strong edge to improve

accuracy at the expense of greater computation.

Since Aij 6= 0 only when j ∈ β(i), we may sometimes

write the summation (3) as

zi =
∑

j∈β(i) Aijxj = Ai,β(i)xβ(i), (7)

where xβ(i) is the sub-vector of x with components j ∈ β(i)
and Ai,β(i) is the corresponding portion of the ith block-row

of A.

III. REVIEW OF LOOPY BELIEF PROPAGATION

The sum-product loopy BP algorithm is based on iteratively

passing estimates of the log marginals ∆j(xj) in (6). We

index the iterations by t = 0, 1, . . ., and denote the estimate

“message” from the factor node fi to the variable node xj

in the tth iteration by ∆i→j(t,xj) and the reverse message

by ∆i←j(t,xj). The messages in loopy BP are equivalent up

to a constant factor. That is, adding any constant term that

does not depend on xj to either the message ∆i→j(t,xj) or

∆i←j(t,xj) has no effect on the algorithm. We will thus use

the notation

∆(x) ≡ g(x) ⇐⇒ ∆(x) = g(x) + C,

for some constant C that does not depend on x. Similarly, we

write p(x) ∝ q(x) when p(x) = Cq(x) for some constant

C. We fix the scale factor u > 0 and, for any function ∆(·),
we will write E[g(x) ; ∆(·)] to denote the expectation of g(x)
with respect to a distribution specified indirectly by ∆(·):

E[g(x) ; ∆(·)] =
∫
g(x)p(x) dx, (8)

where p(x) is the probability distribution

p(x) = (1/Z(u)) exp [u∆(x)]

and Z(u) is a normalization constant.

For each edge (i, j) ∈ E, the factor node update is a

computation of ∆i→j(t,xj) by integration over variables xr

with r ∈ ∂(i) and r 6= j. The variable node update is a

computation of ∆i←j(t+1,xj) by combining influences of

∆ℓ→j(t,xj) for ℓ ∈ ∂(j) \ i followed by computation of a

point estimate x̂j(t+1) as a scalar expectation.

When the graph G is acyclic, the sum-product loopy BP

algorithm converges to the exact solution of P-EXP. For graphs

with cycles, the loopy BP algorithm is, in general, only

approximate; see, for example, [2], [18], [19].

Brute force solutions to P-EXP involve an expectation over

all n variables xj . Loopy BP reduces this “global” problem

to a sequence of “local” problems associated with each of

the factors fi(·). The local expectation problems may be

significantly lower in dimension than the global problem. In

particular, the factor fi(xα(i), zi) is a function of di = |∂(i)|
variables xj , either through one of the |α(i)| strong edges or

|β(i)| weak edges. For each j ∈ ∂(i), the factor node update

involves an integration over di − 1 variables. The complexity

in general grows exponentially in di. Thus, standard loopy BP

is only typically tractable when the degrees di of the factor

nodes are small or the factors have some convenient form.

IV. HYBRID-GAMP

The Hybrid-GAMP algorithm reduces the cost of loopy

BP by exploiting complexity-reducing approximations of the

cumulative effect of the weak edges. We saw in the previous

section that the loopy BP update at each factor node fi(·)
has a cost that may be exponential in the degree d of the

node, which consists of |α(i)| strong edges and |β(i)| weak

edges. The Hybrid-GAMP algorithm with edge partitioning

uses the linear mixing property to eliminate the exponential

dependence on the |β(i)| weak edges, so the only exponential

dependence is on the |α(i)| strong edges. Thus, the edge

partitioning makes Hybrid-GAMP computationally tractable

as long as the number of strong edges is small. The number

of weak edges can be arbitrary. In particular, the mixing matrix

A can be dense.

The basis of the Hybrid-GAMP approximation is to assume

that the matrix Aij is small along any weak edge (i, j). Under

this assumption, one can apply a Gaussian approximation of

the weak edge messages and use the central limit theorem at

the factor nodes. A heuristic derivation of the Hybrid-GAMP

approximations is given in [17, App. B].

We need additional notation: The Hybrid-GAMP algorithm

produces a sequence of estimates x̂j(t) and ẑi(t) for the

variables xj and zi. Several other intermediate variables p̂i(t),
ŝi(t) and r̂j(t) are also produced. Associated with each of the

variables are matrices Qx
j (t), Q

z
i (t), . . ., that represent certain

covariances. When we need to take the inverse of the matrices,

we will use the notation Q−xj (t) to mean (Qx
j (t))

−1. Finally,

for any positive definite matrix Q and vector a, we will let

‖a‖2Q = a∗Q−1a, which is a weighted two norm.

Algorithm 1: Hybrid-GAMP: Consider the problem

P-EXP for some function F (x, z) of the form (2), matrix A,

and scale factor u > 0.

1) Initialization: Set t = 0 and select some initial values

∆i→j(t−1,xj) for all strong edges (i, j) and values

r̂j(t−1) and Qr
j(t−1) for all variable node indices j.

2) Variable node update, strong edges: For all strong edges

(i, j), compute

∆i←j(t,xj) ≡
∑

ℓ∈α(j) 6=i ∆ℓ→j(t−1,xj)

− 1
2‖r̂j(t−1)− xj‖

2
Qr

j
(t−1). (9)

3) Variable node update, weak edges: For all variable nodes

j, compute

∆j(t,xj) ≡ Hx
j (t,xj , r̂j(t−1),Qr

j(t−1)), (10)
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Hx
j (t,xj , r̂j ,Q

r
j)

=
∑

i∈α(j) ∆i→j(t−1,xj)−
1
2‖r̂j − xj‖

2
Qr

j
, (11)

x̂j(t) = E (xj ; ∆j(t, ·)) , (12)

Qx
j (t) = u var (xj ; ∆j(t, ·)) . (13)

4) Factor node update, linear step: For all factor nodes i,
compute

ẑi(t) =
∑

j∈β(i) Aijx̂j(t), (14a)

p̂i(t) = ẑi(t)−Q
p
i (t)ŝi(t−1), (14b)

Q
p
i (t) =

∑
j∈β(i) AijQ

x
j (t)A

∗
ij , (14c)

where, initially, we set ŝi(−1) = 0.

5) Factor node update, strong edges: For all strong edges

(i, j), compute:

∆i→j(t,xj) ≡
1
u
log

∫
pi→j(t,xα(i), zi)dxα(i)\jdzi

(15)

where the integral is over zi and all components xr

with r ∈ α(i) \ j, and pi→j(0,xj) is the probability

distribution function

pi→j(t,xα(i), zi) ∝

exp
(
uHz

i→j(t,xα(i).zi, p̂i(t),Q
p
i (t))

)
. (16)

6) Factor node update, weak edges: For all factor nodes i,
compute

Hz
i (t,xα(i), zi, p̂i,Q

p
i ) := fi(xα(i), zi)

+
∑

r∈α(i) ∆i←r(t,xr)−
1
2‖zi − p̂i‖

2
Q

p

i

. (17)

Then, let

ẑ0i (t) = E(zi), Qz
i (t) = u var(zi), (18)

where zi is the component of the pair (xα(i), zi) with

the joint distribution

pi(t,xα(i), zi) ∝

exp
(
uHz

i (t,xα(i), zi, p̂i(t),Q
p
i (t))

)
. (19)

Then, compute

ŝi(t) = Q
−p
i (t)

[
ẑ0i (t)− p̂i(t)

]
, (20a)

Qs
i (t) = Q

−p
i (t)−Q

−p
i (t)D−zi (t)Q−pi (t). (20b)

7) Variable node update, linear step: For all variables nodes

j compute

Q−rj (t) =
∑

i∈β(j) A
∗
ijQ

s
i (t)Aij , (21a)

r̂j(t) = x̂(t) +Qr
j(t)

∑
i∈β(j) A

∗
ij ŝi(t). (21b)

Increment t and return to step 2 for some number of

iterations.

Although the Hybrid-GAMP algorithm above appears more

complicated than standard loopy BP, Hybrid-GAMP can be

computationally dramatically cheaper. The main computa-

tional difficulty of loopy BP is the factor update; this involves

an expectation over |∂(i)| variables, where ∂(i) is the set of

Fig. 2. Graphical model for the group sparsity problem with overlapping
groups. The group dependencies between components of the vector x are
modeled via a set of binary latent variables ξ.

Method Complexity

Group-OMP [24] O(ρmn2)
Group-Lasso [20], [21], [25] O(mn) per iteration

Relaxed BP with vector components [26] O(mn2) per iteration

Hybrid-GAMP with vector components O(mnd) per iteration

Hybrid-GAMP with scalar components O(mn) per iteration

TABLE I
COMPLEXITY COMPARISON FOR GROUP SPARSITY ESTIMATION OF A

SPARSE VECTOR WITH K GROUPS, EACH GROUP OF DIMENSION d. THE

NUMBER OF MEASUREMENTS IS m AND THE SPARSITY RATIO IS ρ.

all variables connected to the factor node i. In the Hybrid-

GAMP algorithm, these computations are replaced by (15),

where the expectation is over the strong edge variables α(i). If

the number of edges is large, the computational savings can be

dramatic. The other steps of the Hybrid-GAMP algorithms are

all linear least-squares operations, or componentwise nonlinear

functions on the individual variables.

For illustration, we have only presented one form of the

Hybrid-GAMP procedure. Variants with discrete distributions

and other message scheduling are possible.

V. APPLICATION TO STRUCTURED SPARSITY

Hybrid-GAMP is a flexible and general methodology. To

enable comparisons against existing algorithms, we consider

the group sparse estimation problem [20], [21]. This is a

highly-structured problem in which dependencies beyond lin-

ear mixing are captured by binary latent variables ξk as shown

in Fig. 2. The setting and the specialization of Algorithm 1 to

this case are described in detail in [17].

In addition to its generality, the Hybrid-GAMP procedure is

among the most computationally efficient. Consider the special

case when there are K non-overlapping groups of d elements

each; that is, each ξk is connected to d variables xj , and the

sets are disjoint. In this case, the total vector dimension for

x is n = Kd. We consider the non-overlapping case since

there are many algorithms that apply to this case that we

can compare against. For non-overlapping uniform groups,

Table I compares the computational cost of the Hybrid-GAMP

algorithm to other methods. Because of the block separability

of this special case, the analysis in [22] applies. For d = 2,

correlated variables can be considered the real and imaginary

parts of a complex variable, enabling the methods of [23].

Of course, a complete comparison requires that we consider

the number of iterations, not just the computation per iteration.
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Fig. 3. Comparison of performances of various estimation algorithms for
group sparsity with n = 100 groups of dimension d = 4 with a sparsity
fraction of ρ = 0.1.

This comparison requires further study beyond the scope of

this paper. However, it is possible that the Hybrid-GAMP

procedure will be favorable in this regard. Our simulations

below show good convergence after only 10–20 iterations.

Fig. 3 shows the results of a simple simulation comparison

of algorithms. The simulation used a vector x with n = 100
groups of size d = 4 and i.i.d. Bernoulli variables ξk with

ρ = Pr(ξk = 1) = 0.1. The matrix was i.i.d. Gaussian and the

observations were with AWGN noise at an SNR of 20 dB. The

number of measurements m was varied from 50 to 200, and

the plot shows the MSE for each of the methods. The Hybrid-

GAMP method was run with 20 iterations. In group LASSO,

at each value of m, the algorithm was simulated with several

values of the regularization parameter and the plot shows the

minimum MSE. In Group-OMP, the algorithm was run with

the true value of the number of nonzero coefficients. It can be

seen that the Hybrid-GAMP method is consistently as good

or better than the other methods. All code for the simulations

can be found in the SourceForge open website [27].

VI. CONCLUSIONS

A general model for optimization and statistical inference

based on graphical models with linear mixing was presented.

The linear mixing components of the graphical model account

for interactions through aggregates of large numbers of small,

linearizable contributions. Gaussian and second-order approx-

imations are shown to greatly simplify the implementation

of loopy BP for these interactions, and the Hybrid-GAMP

framework presented here enables systematic incorporation of

these approximations in general graphical models. Simulations

were presented for group sparsity where the Hybrid-GAMP

method has equal or superior performance to existing methods.

However, the generality of the method will enable Hybrid-

GAMP to be applied to much more complex models where

few algorithms are available. In addition to experimenting with

such models, future work will focus on establishing rigorous

theoretical analyses along the lines of [9], [28].
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