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Abstract—The replica method is a nonrigorous but well-known
technique from statistical physics used in the asymptotic analysis
of large, random, nonlinear problems. This paper applies the
replica method, under the assumption of replica symmetry, to
study estimators that are maximum a posteriori (MAP) under a
postulated prior distribution. It is shown that with random linear
measurements and Gaussian noise, the replica-symmetric predic-
tion of the asymptotic behavior of the postulated MAP estimate of
an -dimensional vector “decouples” as scalar postulated MAP
estimators. The result is based on applying a hardening argument
to the replica analysis of postulated posterior mean estimators of
Tanaka and of Guo and Verdú. The replica-symmetric postulated
MAP analysis can be readily applied to many estimators used
in compressed sensing, including basis pursuit, least absolute
shrinkage and selection operator (LASSO), linear estimation with
thresholding, and zero norm-regularized estimation. In the case of
LASSO estimation, the scalar estimator reduces to a soft-thresh-
olding operator, and for zero norm-regularized estimation, it
reduces to a hard threshold. Among other benefits, the replica
method provides a computationally tractable method for precisely
predicting various performance metrics including mean-squared
error and sparsity pattern recovery probability.

Index Terms—Compressed sensing, Laplace’s method, large de-
viations, least absolute shrinkage and selection operator (LASSO),
non-Gaussian estimation, nonlinear estimation, random matrices,
sparsity, spin glasses, statistical mechanics, thresholding.

I. INTRODUCTION

E STIMATING a vector from measurements of the
form

(1)

Manuscript received August 26, 2009; revised October 01, 2011; accepted
October 02, 2011. Date of current version February 29, 2012. This work was
supported in part by a University of California President’s Postdoctoral Fellow-
ship and by the National Science Foundation under CAREER Grant 0643836.
The material in this paper was presented in part at the 23rd Annual Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, Dec. 2009.

S. Rangan is with the Department of Electrical and Computer Engineering,
Polytechnic Institute of New York University, Brooklyn, NY 11201 USA
(e-mail: srangan@poly.edu).

A. K. Fletcher is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94709 USA (e-mail:
alyson@eecs.berkeley.edu).

V. K. Goyal is with the Department of Electrical Engineering and Computer
Science and the Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: vgoyal@mit.edu).

Communicated by A. L. Moustakas, Associate Editor for Communications.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2177575

where represents a known measurement matrix and
represents measurement errors or noise, is a generic

problem that arises in a range of circumstances. When the noise
is i.i.d. zero-mean Gaussian with variance and is i.i.d.

with components having a probability distribution function
, the maximum a posteriori (MAP) estimate is given by

(2)

where . Estimators of the form (2) are also
used with the regularization function or noise level pa-
rameter not matching the true prior or noise level, either since
those quantities are not known or since the optimization in (2)
using the true values is too difficult to compute. In such cases,
the estimator (2) can be interpreted as a MAP estimate for a
postulated distribution and noise level, and we will thus call es-
timators of the form (2) postulated MAP (PMAP) estimators.

Due to their prevalence, characterizing the behavior of PMAP
estimators is of interest in a wide range of applications. How-
ever, for most regularization functions , the PMAP estimator
(2) is nonlinear and not easy to analyze. Even if, for the purpose
of analysis, one assumes separable priors on and , the anal-
ysis of the PMAP estimate may be difficult since the matrix
couples the unknown components of with the measure-
ments in the vector .

This paper provides a general analysis of PMAP estimators
based on the replica method—a non-rigorous but widely used
method from statistical physics for analyzing large random sys-
tems. It is shown that, under a key assumption of replica sym-
metry described later in the text, the replica method predicts that
with certain large random and Gaussian , there is an asymp-
totic decoupling of the vector PMAP estimate (2) into scalar
PMAP estimators. Specifically, the replica method predicts that
the joint distribution of each component of and its cor-
responding component in the estimate vector is
asymptotically identical to the outputs of a simple system where

is a PMAP estimate of the scalar random variable ob-
served in Gaussian noise. Using this scalar equivalent model,
one can then readily compute the asymptotic joint distribution
of for any component .

The replica method’s nonrigorous but simple prescription for
computing the asymptotic joint componentwise distributions
has three key, attractive features.
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1) Sharp predictions: Most importantly, the replica method
provides—under the assumption of the replica hy-
potheses—not just bounds, but sharp predictions of
the asymptotic behavior of PMAP estimators. From the
joint distribution, various further computations can be
made, to provide precise predictions of quantities such as
the mean-squared error (MSE) and the error probability
of any componentwise hypothesis test computed from a
PMAP estimate.

2) Computational tractability: Since the scalar equivalent
model involves only a scalar random variable , scalar
Gaussian noise, and scalar PMAP estimate , any quan-
tity derived from the joint distribution can be computed
numerically from one- or two-dimensional integrals.

3) Generality: The replica analysis can incorporate arbitrary
separable distributions on and regularization functions

. It thus applies to a large class of estimators and test
scenarios.

A. Replica Method and Contributions of This Study

The replica method was originally developed in [1] to study
the statistical mechanics of spin glasses. Although not fully rig-
orous from the perspective of probability theory, the technique
was able to provide explicit solutions for a range of complex
problems where many other methods had previously failed. In-
deed, the replica method and related ideas from statistical me-
chanics have found success in a number of classic NP-hard
problems including the traveling salesman problem [2], graph
partitioning [3], -SAT [4], and others [5]. Statistical physics
methods have also been applied to the study of error correcting
codes [6], [7]. There are now several general texts on the replica
method [8]–[11].

The replica method was first applied to the study of nonlinear
MAP estimation problems by Tanaka [12]. This study applied
what is called a replica symmetric (RS) analysis to multiuser
detection for large CDMA systems with random spreading se-
quences. In [13], Müller considered a mathematically similar
problem for MIMO communication systems. In the context of
the estimation problem considered here, Tanaka’s and Müller’s
papers essentially characterized the behavior of the MAP es-
timator of a vector with i.i.d. binary components observed
through linear measurements of the form (1) with a large random

and Gaussian .
Tanaka’s results were then generalized in a remarkable paper

by Guo and Verdú [14] to vectors with arbitrary separable dis-
tributions. Guo and Verdú’s result was also able to incorporate a
large class of postulated minimum MSE (PMMSE) estimators,
where the estimator may assume a prior that is different from
the actual prior. Replica analyses have also been applied to re-
lated communication problems such as lattice precoding for the
Gaussian broadcast channel [15]. A brief review of the replica
method analysis in [12] and [14] is provided in Appendix A.

The result in this paper is derived from [14] by a standard
hardening argument. Specifically, the PMAP estimator (2) is
first expressed as a limit of the PMMSE estimators analyzed in
[14]. Then, the behavior of the PMAP estimator can be derived

by taking appropriate limits of the results in [14] on PMMSE
estimators. This hardening technique is well-known and is used
in Tanaka’s original work [12] in the analysis of MAP estima-
tors with binary and Gaussian priors.

Through the limiting analysis via hardening, the PMAP re-
sults here follow from the PMMSE results in [14]. Thus, the cen-
tral contribution of this study is to work out these limits to pro-
vide a set of equations for a general class of PMAP estimators.
In particular, while Tanaka has derived the equations for replica
predictions of MAP estimates for binary and Gaussian priors,
the results here provide explicit equations for general priors and
regularization functions.

B. Replica Assumptions

The nonrigorous aspect of the replica method involves a set
of assumptions that include a self-averaging property, the va-
lidity of a “replica trick,” and the ability to exchange certain
limits. Importantly, this study is based on an additional strong
assumption of replica symmetry. As described in Appendix A,
the replica method reduces the calculation of a certain free en-
ergy to an optimization problem over covariance matrices. The
RS assumption is that the maxima in this optimization satisfy
certain symmetry properties. This RS assumption is not always
valid, and indeed Appendix A provides several examples from
other applications of the replica method where replica symmetry
breaking (RSB) solutions are known to be needed to provide
correct predictions.

For the analysis of PMMSE estimators, in [12] and [14], the
authors derive analytic conditions for the validity of the RS as-
sumption only in some limited cases. Our analysis of PMAP
estimators depends on [14], and unfortunately, we have not pro-
vided a general analytic test for the validity of the RS assump-
tion in this study. Following [14], our approach instead is to
compare, where possible, the predictions under the RS assump-
tion to numerical simulations of the PMAP estimator. As we
will see in Section VI, the RS predictions appear to be accu-
rate, at least for many common estimators arising in compressed
sensing. That being said, the RS analysis can also provide pre-
dictions for the optimal MMSE and zero norm-regularized esti-
mators that cannot be simulated tractably. Extra caution must be
applied in assuming the validity of the RS predictions for these
estimators.

To emphasize our dependence on these unproven assump-
tions—notably replica symmetry—we will refer to the general
MMSE analysis in [14] as the RS PMMSE decoupling prop-
erty. Our main result will be called the RS PMAP decoupling
property.

C. Connections to Belief Propagation

Although not explored in this study, it is important to point
out that the results of the replica analysis of postulated MMSE
and MAP estimation are similar to those derived for belief prop-
agation (BP) estimation. Specifically, there is now a large body
of work analyzing BP and approximate BP algorithms for esti-
mation of vectors observed through linear measurements of
the form (1) with large random . For both certain large sparse
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random matrices [16]–[22], and more recently for certain large
dense random matrices [23]–[26], several results now show that
BP estimates exhibit an asymptotic decoupling property similar
to RS predictions for postulated MMSE and MAP estimators.
Graphical model arguments have also been used to establish a
decoupling property under a very general, random sparse obser-
vation model [27].

The effective noise level in the scalar equivalent model for
BP and approximate BP methods can be predicted by certain
state evolution equations similar to density evolution analysis
of BP decoding of LDPC codes [28], [29]. It turns out that in
several cases, the fixed-point equations for state evolution are
identical to the equations for the effective noise level predicted
by the RS analysis of postulated MMSE and MAP estimators.
In particular, the equations in [23] and [24] agree exactly with
the RS predictions for least absolute shrinkage and selection
operator (LASSO) estimation given in this study.

These connections are significant in several regards. First, the
state evolution analysis of BP algorithms can be made fully rig-
orous under suitable assumptions and, thus, provides an inde-
pendent, rigorous justification for some of the RS claims.

Second, the replica method provides only an analysis of esti-
mators, but no method to actually compute those estimators. In
contrast, the BP and approximate BP algorithms provide a pos-
sible tractable method for achieving the performance predicted
by the replica method.

Finally, the BP analysis provides an algorithmic intuition as to
why decoupling may occur (and hence when replica symmetry
may be valid). As described in [30], BP and approximate BP al-
gorithms can be seen as iterative procedures where the vector
estimation problem is reduced to a sequence of “decoupled”
scalar estimation problems. This decoupling is based essentially
on the principle that in each iteration, when estimating one com-
ponent , the uncertainty in the other components
can be aggregated as Gaussian noise. Based on the state evolu-
tion analysis of BP algorithms, we know that this central limit
theorem-based approximation is asymptotically valid when the
components of the mixing matrix are sufficiently dense and
independent. Thus, the validity of replica symmetry is possibly
connected to validity of this Gaussian approximation.

D. Applications to Compressed Sensing

As an application of our main result, we will develop a
few analyses of estimation problems that arise in compressed
sensing [31]–[33]. In compressed sensing, one estimates a
sparse vector from random linear measurements. A vector

is sparse when its number of nonzero entries is smaller
than its length . Generically, optimal estimation of with a
sparse prior is NP-hard [34]. Thus, most attention has focused
on greedy heuristics such as matching pursuit [35]–[38] and
convex relaxations such as basis pursuit [39] or LASSO [40].
While successful in practice, these algorithms are difficult to
analyze precisely.

Compressed sensing of sparse through (1) (using inner
products with rows of ) is mathematically identical to sparse
approximation of with respect to columns of . An important

set of results for both sparse approximation and compressed
sensing are the deterministic conditions on the coherence of
that are sufficient to guarantee good performance of the subop-
timal methods mentioned earlier [41]–[43]. These conditions
can be satisfied with high probability for certain large random
measurement matrices. Compressed sensing has provided many
sufficient conditions that are easier to satisfy than the initial
coherence-based conditions. However, despite this progress,
the exact performance of most sparse estimators is still not
known precisely, even in the asymptotic case of large random
measurement matrices. Most results describe the estimation
performance via bounds, and the tightness of these bounds is
generally not known.

There are, of course, notable exceptions including [44] and
[45], which provide matching necessary and sufficient condi-
tions for recovery of strictly sparse vectors with basis pursuit
and LASSO. However, even these results only consider exact
recovery and are limited to measurements that are noise-free or
measurements with a signal-to-noise ratio (SNR) that scales to
infinity.

Many common sparse estimators can be seen as MAP
estimators with certain postulated priors. Most importantly,
LASSO and basis pursuit are MAP estimators assuming a
Laplacian prior. Other commonly used sparse estimation
algorithms, including linear estimation with and without
thresholding and zero norm-regularized estimators, can also
be seen as PMAP-based estimators. For these PMAP-based
sparse estimation algorithms, the replica method can provide
nonrigorous but sharp, easily-computable predictions for the
asymptotic behavior. In the context of compressed sensing, this
analysis can predict various performance metrics such as MSE
or fraction of support recovery. The expressions can apply to
arbitrary ratios , , and . Due to the generality
of the replica analysis, the methodology can also incorporate
arbitrary distributions on including several sparsity models,
such as Laplacian, generalized Gaussian, and Gaussian mixture
priors. Discrete distributions can also be studied.

It should be pointed out that this study is not the first to use
ideas from statistical physics for the study of sparse estima-
tion. In [46], the authors have provided a replica analysis of
compressed sensing that characterizes not just the PMAP or
PMMSE estimate, but the asymptotic posterior marginal distri-
bution. This work also shows an independence property across
finite sets of components. In [47], the authors consider, among
other applications, the estimation of a sparse vector from mea-
surements of the form . In their model, there is no
measurement matrix such as in (1), but the components of
are possibly correlated. This work derives explicit expressions
for the MMSE as a function of the probability distribution on
the number of nonzero components. The analysis does not rely
on replica assumptions and is fully rigorous. More recently, in
[48], the authors have used the replica method to derive pre-
cise conditions on which sparse signals can be recovered with

-based relaxations such as LASSO. Their analysis does not
consider noise, but can find conditions on recovery of the en-
tire vector , not just individual components. Also, using free
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probability theory [49], [50], a recent analysis [51] extends the
replica analysis of compressed sensing to larger classes of ma-
trices, including matrices that are possibly not i.i.d.

E. Outline

The remainder of the paper is organized as follows. The
precise estimation problem is described in Section II. We
review the RS PMMSE decoupling property of Guo and Verdú
in Section III. We then present our main result, an RS PMAP
decoupling property, in Section IV. The results are applied to
the analysis of compressed sensing algorithms in Section V,
which is followed by numerical simulations in Section VI.
Conclusions and possible avenues for future work are given in
Section VII. The proof of the main result is somewhat long and
given in a set of appendices. Appendix B provides an overview
of the proof and a guide through the appendices with detailed
arguments.

II. ESTIMATION PROBLEM AND ASSUMPTIONS

Consider the estimation of a random vector from
linear measurements of the form

(3)

where is a vector of observations; , with
, is a measurement matrix; is a diagonal matrix of

positive scale factors,

(4)

and is zero-mean, white Gaussian noise. We consider
a sequence of such problems indexed by , with . For
each , the problem is to determine an estimate of from the
observations knowing the measurement matrix and scale
factor matrix .

The components of are modeled as zero mean and i.i.d.
with some prior probability distribution . The per-compo-
nent variance of the Gaussian noise is . We use the
subscript “0” on the prior and noise level to differentiate these
quantities from certain “postulated” values to be defined later.
When we develop applications in Section V, the prior
will incorporate presumed sparsity of .

In (3), we have factored so that even with the
i.i.d. assumption on earlier and an i.i.d. assumption
on entries of , the model can capture variations in powers of
the components of that are known a priori at the estimator.
Specifically, multiplication by scales the variance of the
th component of by a factor . Variations in the power of
that are not known to the estimator should be captured in the

distribution of .
We summarize the situation and make additional assumptions

to specify the problem precisely as follows:
(a) The number of measurements is a determin-

istic quantity that varies with and satisfies

for some . (The dependence of on is usually
omitted for brevity.)

(b) The components of are i.i.d. with the probability
distribution . All moments of are finite.

(c) The noise is Gaussian with .
(d) The components of the matrix are i.i.d. and distributed

as for some random variable with
zero mean, unit variance, and all other moments of
finite.

(e) The scale factors are i.i.d., satisfy almost surely,
and all moments of are finite.

(f) The scale factor matrix , measurement matrix , vector
, and noise are all independent.

III. REVIEW OF THE REPLICA SYMMETRIC PMMSE
DECOUPLING PROPERTY

We begin by reviewing the RS PMMSE decoupling property
of Guo and Verdú [14].

A. Postulated MMSE Estimators

To define the concept of a postulated MMSE estimator, sup-
pose one is given a “postulated” prior distribution and a
postulated noise level that may be different from the true
values and . We define the PMMSE estimate of as

(5)

where is the conditional distribution of
given under the distribution and noise variance speci-
fied as parameters after the semicolon. We will use this sort of
notation throughout the rest of the paper, including the use of
without a subscript for the p.d.f. of the scalar or vector quantity
understood from context. In this case, due to the Gaussianity of
the noise, we have

(6)

where the normalization constant is

and is the joint p.d.f.

In the case when and so that the
postulated and true values agree, the PMMSE estimate reduces
to the true MMSE estimate.

B. Decoupling Under RS Assumption

The essence of the RS PMMSE decoupling property is that
the asymptotic behavior of the PMMSE estimator is described
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by an equivalent scalar estimator. Let be a probability dis-
tribution defined on some set . Given , let

be the conditional distribution

(7)

where is the Gaussian distribution

(8)

The distribution is the conditional distribution
of the scalar random variable given an observation of
the form

(9)

where . Using this distribution, we can define the
scalar conditional MMSE estimate

(10)

Also, given two distributions, and , and two noise
levels, and , define

(11)

which is the MSE in estimating the scalar from the variable
in (9) when has a true distribution and the noise
level is , but the estimator assumes a distribution

and noise level .
RS PMMSE Decoupling Property [14]: Consider the estima-

tion problem in Section II. Let be the PMMSE es-
timator based on a postulated prior and postulated noise
level . For each , let be some deterministic
component index with . Then, under replica
symmetry, there exist effective noise levels and such
that:

(a) As , the random vectors con-
verge in distribution to the random vector consis-
tent with the block diagram in Fig. 1. Here, , , and are
independent with , , ,
and

(12a)

(12b)

where and .
(b) The effective noise levels satisfy the equations

(13a)

(13b)

Fig. 1. Equivalent scalar model for the estimator behavior predicted by the RS
PMMSE decoupling property.

where the expectations are taken over and is
generated by (12b).

This result asserts that the asymptotic behavior of the joint
estimation of the -dimensional vector can be described by
equivalent scalar estimators. In the scalar estimation problem, a
component is corrupted by additive Gaussian noise
yielding a noisy measurement . The additive noise variance is

, which is the effective noise divided by the scale
factor . The estimate of that component is then described by the
(generally nonlinear) scalar estimator .

The effective noise levels and are described by
the solutions to fixed-point equations (13). Note that and

appear implicitly on the left- and right-hand sides of these
equations via the terms and . In general, there is no closed-
form solution to these equations. However, the expectations can
be evaluated via (one-dimensional) numerical integration.

It is important to point out that there may, in general, be mul-
tiple solutions to the fixed-point equations (13). In this case,
it turns out that the true solution is the minimizer of a certain
Gibbs’ function described in [14].

C. Effective Noise and Multiuser Efficiency

To understand the significance of the effective noise level ,
it is useful to consider the following estimation problem with
side information. Suppose that when estimating the component

, an estimator is given as side information the values of all
the other components . Then, this hypothetical esti-
mator with side information can “subtract out” the effect of all
the known components and compute

where is the th column of the measurement matrix . It is
easily checked that

(14)

where

Thus, (14) shows that with side information, estimation of
reduces to a scalar estimation problem where is corrupted by
additive noise . Since is Gaussian with mean zero and
per-component variance , is Gaussian with mean zero and
variance . Also, since is an -dimensional vector
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whose components are i.i.d. with variance ,
as . Therefore, for large , will approach

.
Comparing (14) with (12b), we see that the equivalent scalar

model predicted by the RS PMMSE decoupling property (12b)
is identical to the estimation with perfect side information (14),
except that the noise level is increased by a factor

(15)

In multiuser detection, the factor is called the multiuser effi-
ciency [52], [53].

The multiuser efficiency can be interpreted as degradation in
the effective SNR: with perfect side-information, an estimator
using in (14) can estimate with an effective SNR of

(16)

In CDMA multiuser detection, the factor is called the
post-despreading SNR with no multiple access interference. The
RS PMMSE decoupling property shows that without side infor-
mation, the effective SNR is given by

(17)

Therefore, the multiuser efficiency in (15) is the ratio of the
effective SNR with and without perfect side information.

IV. ANALYSIS OF POSTULATED MAP ESTIMATORS

VIA HARDENING

The main result of the paper is developed in this section.

A. Postulated MAP Estimators

Let be some (measurable) set and consider an esti-
mator of the form

(18)

where is an algorithm parameter and is some
scalar-valued, nonnegative cost function. We will assume that
the objective function in (18) has a unique essential minimizer
for almost all .

The estimator (18) can be interpreted as a MAP estimator. To
see this, suppose that for sufficiently large,

(19)

where we have extended the notation to vector arguments
such that

(20)

When (19) is satisfied, we can define a prior probability distri-
bution depending on :

(21)

Also, let

(22)

Substituting (21) and (22) into (6), we see that

(23)

for some constant that does not depend on . [The scaling
of the noise variance along with enables the factorization in
the exponent of (23).] Comparing to (18), we see that

Thus, for all sufficiently large , we indeed have a MAP esti-
mate—assuming the prior and noise level .

B. Decoupling Under RS Assumption

To analyze the PMAP estimator, we consider a sequence of
PMMSE estimators indexed by . For each , let

(24)

which is the MMSE estimator of under the postulated prior
in (21) and noise level in (22). Using a standard large de-

viations argument, one can show that under suitable conditions

for all . A formal proof is given in Appendix D (see Lemma 4).
Under the assumption that the behaviors of the PMMSE estima-
tors are described by the RS PMMSE decoupling property, we
can then extrapolate the behavior of the PMAP estimator. This
will yield our main result.

In statistical physics, the parameter has the interpretation of
inverse temperature (see a general discussion in [54]). Thus, the
limit as can be interpreted as a cooling or “hardening”
of the system.

In preparation for the main result, define the scalar MAP
estimator

(25)

where

(26)

The estimator (25) plays a similar role as the scalar MMSE
estimator (10).



1908 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

The main result pertains to the estimator (18) applied to the
sequence of estimation problems defined in Section II. Our as-
sumptions are as follows.

Assumption 1: For all sufficiently large, assume that
the PMMSE estimator (5) with the postulated prior in (21)
and postulated noise level in (22) satisfy the RS PMMSE
decoupling property in Section III-B.

Assumption 2: Let and be the effective
noise levels when using the postulated prior and noise level

. Assume the following limits exist:

Assumption 3: Suppose for each , is the MMSE esti-
mate of the component for some index based
on the postulated prior and postulated noise level . Then,
assume that limits can be interchanged to give the following
equality:

where the limits are in distribution.

Assumption 4: For every , , and , assume that for al-
most all , the minimization in (18) achieves a unique essential
minimum. Here, essential should be understood in the standard
measure-theoretic sense in that the minimum and essential in-
fimum agree.

Assumption 5: Assume that is nonnegative and satisfies

where the limit must hold over all sequences in with
. If is compact, this limit is automatically satisfied (since

there are no sequences in with ).

Assumption 6: For all and almost all , the minimiza-
tion in (25) has a unique, essential minimum. Moreover, for all

and almost all , there exists such that

(27)

where .
Assumption 1 is simply stated to again point out that we are

assuming the validity of replica symmetry for the PMMSE es-
timates. We make the additional Assumptions 2 and 3, which
are also difficult to verify but similar in spirit. Taken together,
Assumptions 1–3 reflect the main limitations of the RS anal-
ysis and precisely state the manner in which the analysis is
nonrigorous.

Assumptions 4–6 are technical conditions on the existence
and uniqueness of the MAP estimate. Assumption 4 will be true
for any strictly convex regularization , although it is dif-
ficult to verify in the nonconvex case. The other two assump-
tions, Assumptions 5 and 6, will be verified for the problems of
interest. In fact, we will explicitly calculate .

Fig. 2. Equivalent scalar model for the estimator behavior predicted by the
RS-postulated MAP decoupling property.

We can now state our extension of the RS PMMSE decou-
pling property.

RS PMAP Decoupling Property: Consider the estimation
problem in Section II. Let be the PMAP estimator
(18) defined for some and satisfying Assumptions
1–6. For each , let be some deterministic component
index with . Then, under replica symmetry
(as part of Assumption 1):

(a) As , the random vectors converge
in distribution to the random vector consistent
with the block diagram in Fig. 2 for the limiting effective
noise levels and in Assumption 2. Here, , , and

are independent with , ,
, and

(28a)

(28b)

where and .
(b) The limiting effective noise levels and satisfy

the equations

(29a)

(29b)

where the expectations are taken over ,
, and , with and defined in (28).

Proof: See Appendixes B–F.

Analogously to the RS PMMSE decoupling property, the RS
PMAP decoupling property asserts that asymptotic behavior of
the PMAP estimate of any single component of is described
by a simple equivalent scalar estimator. In the equivalent scalar
model, the component of the true vector is corrupted by
Gaussian noise and the estimate of that component is given by
a scalar PMAP estimate of the component from the noise-cor-
rupted version.

V. ANALYSIS OF COMPRESSED SENSING

Our results thus far hold for any separable distribution for
(see Section II) and under mild conditions on the cost function

(see especially Assumption 5, but other assumptions also im-
plicitly constrain ). In this section, we provide additional de-
tails on replica analysis for choices of that yield PMAP esti-
mators relevant to compressed sensing. Since the role of is to
determine the estimator, this is not the same as choosing sparse
priors for . Numerical evaluations of asymptotic performance
with sparse priors for are given in Section VI.
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A. Linear Estimation

We first apply the RS PMAP decoupling property to the
simple case of linear estimation. Linear estimators only use
second-order statistics and generally do not directly exploit
sparsity or other aspects of the distribution of the unknown
vector . Nonetheless, for sparse estimation problems, linear
estimators can be used as a first step in estimation, followed by
thresholding or other nonlinear operations [55], [56]. It is there-
fore worthwhile to analyze the behavior of linear estimators
even in the context of sparse priors.

The asymptotic behavior of linear estimators with large
random measurement matrices is well known. For example,
using the Marčenko–Pastur theorem [57], in [58], the authors
characterized the behavior of linear estimators with large i.i.d.
matrices and constant scale factors . In [59], the
authors extended the analysis to general . In [14], the authors
showed that both of these results can be recovered as special
cases of the general RS PMMSE decoupling property. We show
here that the RS PMAP decoupling property can also recover
these results. Although the calculations are very similar to [14],
and indeed we arrive at precisely the same results, walking
through the computations will illustrate how the RS PMAP
decoupling property is used.

To simplify the notation, suppose that the true prior on
is such that each component has zero mean and unit variance.
Choose the cost function

which corresponds to the negative log of a Gaussian prior also
with zero mean and unit variance. With this cost function, the
PMAP estimator (18) reduces to the linear estimator

(30)

When , the true noise variance, the estimator (30) is the
linear MMSE estimate.

Now, let us compute the effective noise levels from the RS
PMAP decoupling property. First note that in (26) is
given by

and therefore, the scalar MAP estimator in (25) is given by

(31)

A simple calculation also shows that in (27) is given by

(32)

As part (a) of the RS PMAP decoupling property, let
and . Observe that

(33)

where follows from (31); follows from (28b); and
follows from the fact that and are uncorrelated with zero
mean and unit variance. Substituting (32) and (33) into the fixed-
point (29), we see that the limiting noise levels and
must satisfy

where the expectation is over . In the case when
, it can be verified that a solution to these fixed-point

equations is , which results in and

(34)

Expression (34) is precisely the Tse–Hanly formula [59] for the
effective interference. Given a distribution on , this expression
can be solved numerically for . In the special case of
constant , (34) reduces to Verdú and Shamai’s result in [60]
and can be solved via a quadratic equation.

The RS PMAP decoupling property now states that for
any component index , the asymptotic joint distribution of

is described by corrupted by additive Gaussian
noise with variance followed by a scalar linear
estimator.

As described in [14], the previous analysis can also be applied
to other linear estimators including the matched filter (where

) or the decorrelating receiver ( ).

B. LASSO Estimation

We next consider LASSO estimation, which is widely used
for estimation of sparse vectors. The LASSO estimate [40]
(sometimes referred to as basis pursuit denoising [39]) is given
by

(35)

where is an algorithm parameter. The estimator is essen-
tially a least-squares estimator with an additional regular-
ization term to encourage sparsity in the solution. The parameter

is selected to trade off the sparsity of the estimate with the pre-
diction error. An appealing feature of LASSO estimation is that
the minimization in (35) is convex; LASSO, thus, enables com-
putationally tractable algorithms for finding sparse estimates.

The LASSO estimator (35) is identical to the PMAP estimator
(18) with the cost function
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With this cost function, in (26) is given by

and therefore, the scalar MAP estimator in (25) is given by

(36)

where is the soft-thresholding operator

if ,
if ,
if .

(37)

The RS PMAP decoupling property now states that there ex-
ists effective noise levels and such that for any com-
ponent index , the random vector converges in dis-
tribution to the vector , where , ,
and is given by

(38)

where , , and . Hence,
the asymptotic behavior of LASSO has a remarkably simple
description: the asymptotic distribution of the LASSO estimate

of the component is identical to being corrupted by
Gaussian noise and then soft-thresholded to yield the estimate

.
This soft-threshold description has an appealing interpreta-

tion. Consider the case when the measurement matrix .
In this case, the LASSO estimator (35) reduces to scalar esti-
mates:

(39)

where , , and . Comparing (38)
and (39), we see that the asymptotic distribution of
with large random is identical to the distribution in the trivial
case, where , except that the noise levels and are
replaced by effective noise levels and .

To calculate the effective noise levels, one can perform a
simple calculation to show that in (27) is given by

if ,
if .

(40)

Hence

(41)

where we have used the fact that . Substituting (36)
and (41) into (29), we obtain the fixed-point equations

(42a)

(42b)

where the expectations are taken with respect to ,
, and in (38). Again, while these fixed-point equations

do not have a closed-form solution, they can be relatively easily
solved numerically given distributions of and .

C. Zero Norm-Regularized Estimation

LASSO can be regarded as a convex relaxation of zero norm-
regularized estimator

(43)

where is the number of nonzero components of . For
certain strictly sparse priors, zero norm-regularized estimation
may provide better performance than LASSO. While computing
the zero norm-regularized estimate is generally very difficult,
we can use the replica analysis to provide a simple prediction
of its performance. This analysis can provide a bound on the
performance achievable by practical algorithms.

To apply the RS PMAP decoupling property to the zero norm-
regularized estimator (43), we observe that the zero norm-reg-
ularized estimator is identical to the PMAP estimator (18) with
the cost function

if ,
if .

(44)

Technically, this cost function does not satisfy the conditions
of the RS PMAP decoupling property. For one thing, without
bounding the range of , the bound (19) is not satisfied. Also,
the minimum of (25) does not agree with the essential infimum.
To avoid these problems, we can consider an approximation of
(44):

if ,
if

which is defined on the set . We can then
take the limits and . For space considerations
and to simplify the presentation, we will just apply the decou-
pling property with in (44) and omit the details of taking
the appropriate limits.

With given by (44), the scalar MAP estimator in (25) is
given by

(45)

where is the hard thresholding operator:

if ,
if .

(46)

Now, similar to the case of LASSO estimation, the RS PMAP
decoupling property states that there exists effective noise
levels and such that for any component index ,
the random vector converges in distribution to the
vector , where , , and is given by

(47)

where , , , and

(48)

Thus, the zero norm-regularized estimation of a vector is
equivalent to scalar components corrupted by some effective
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noise level and hard-thresholded based on an effective
noise level .

The fixed-point equations for the effective noise levels
and can be computed similarly to the case of

LASSO. Specifically, one can verify that (40) and (41) are both
satisfied for the hard-thresholding operator as well. Substituting
(41) and (45) into (29), we obtain the fixed-point equations

(49a)

(49b)

where the expectations are taken with respect to ,
, in (47), and given by (48). These fixed-point

equations can be solved numerically.

D. Optimal Regularization

The LASSO estimator (35) and zero norm-regularized esti-
mator (43) require the setting of a regularization parameter .
Qualitatively, the parameter provides a mechanism to trade off
the sparsity level of the estimate with the fitting error. One of the
benefits of the replica analysis is that it provides a simple mech-
anism for optimizing the parameter level given the problem sta-
tistics.

Consider first the LASSO estimator (35) with some
and distributions and . Observe that there
exists a solution to (42b) with if and only if

(50)

This leads to a natural optimization: we consider an optimiza-
tion over two variables and , where we minimize

subject to (42a) and (50).
One simple procedure for performing this minimization

is as follows. Start with and some initial value of
. For any iteration , we update with

the minimization

(51)

where, on the right-hand side, the expectation is taken over
, , in (38), , and .

The minimization in (51) is over subject to (50). One can
show that with a sufficiently high initial condition, the sequence

monotonically decreases to a local minimum of the
objective function. Given the final value for , one can then
recover from (42b). A similar procedure can be used for the
zero norm-regularized estimator.

VI. NUMERICAL SIMULATIONS

A. Bernoulli–Gaussian Mixture Distribution

As discussed earlier, the replica method is based on certain
unproven assumptions and even then the decoupling results
under replica symmetry are only asymptotic for the large
dimension limit. To validate the predictive power of the RS
PMAP decoupling property for finite dimensions, we first
performed numerical simulations where the components of
are a zero-mean Bernoulli–Gaussian process, or equivalently
a two-component, zero-mean Gaussian mixture, where one
component has zero variance. Specifically

Fig. 3. MSE performance prediction with the RS PMAP decoupling property.
Plotted is the median normalized SE for various sparse recovery algorithms:
linear MMSE estimation, LASSO, zero norm-regularized estimation, and op-
timal MMSE estimation. Solid lines show the asymptotic predicted MSE from
the replica method. For the linear and LASSO estimators, the circles and trian-
gles show the actual median SE over 1000 Monte Carlo simulations. The un-
known vector has i.i.d. Bernoulli–Gaussian components with a 90% probability
of being zero. The noise level is set so that � �� ��. See the text for
details.

with prob. ,
with prob.

where represents a sparsity ratio. In the experiments, .
This is one of many possible sparse priors.

We took the vector to have i.i.d. components with
this prior, and we varied for ten different values of
from 0.5 to 3. For the measurements (3), we took a measurement
matrix with i.i.d. Gaussian components and a constant scale
factor matrix . The noise level was set so that

, where is the SNR with perfect side information
defined in (16).

We simulated various estimators and compared their perfor-
mances against the asymptotic values predicted by the replica
analysis. For each value of , we performed 1000 Monte Carlo
trials of each estimator. For each trial, we measured the normal-
ized squared error (SE) in dB:

where is the estimate of . The results are shown in Fig. 3, with
each set of 1000 trials represented by the median normalized SE
in dB.

The top curve shows the performance of the linear MMSE
estimator (30). As discussed in Section V-A, the RS PMAP de-
coupling property applied to the case of a constant scale matrix

reduces to Verdú and Shamai’s result in [60]. As can be
seen in Fig. 3, the result predicts the simulated performance of
the linear estimator extremely well.

The next curve shows the LASSO estimator (35) with
the factor selected to minimize the MSE as described in
Section V-D. To compute the predicted value of the MSE from
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the RS PMAP decoupling property, we numerically solve the
fixed-point equations (42) to obtain the effective noise levels

and . We then use the scalar MAP model with the
estimator (36) to predict the MSE. We see from Fig. 3 that the
predicted MSE matches the median SE within 0.3 dB over a
range of values. At the time of initial dissemination of this
study [61], precise prediction of LASSO’s performance given
a specific noise variance and prior was not achievable with any
other method. Now, as discussed in Section I-C, such asymp-
totic performance predictions can also be proven rigorously
through connections with approximate belief propagation.

Fig. 3 also shows the theoretical minimum MSE (as computed
with the RS PMMSE decoupling property) and the theoretical
MSE from the zero norm-regularized estimator as computed in
Section V-C. For these two cases, the estimators cannot be simu-
lated since they involve NP-hard computations. But we have de-
picted the curves to show that the replica method can be used to
calculate the gap between practical and impractical algorithms.
Interestingly, we see that there is about a 2 to 2.5 dB gap between
LASSO and zero norm-regularized estimation, and another 1 to
2 dB gap between zero norm-regularized estimation and optimal
MMSE.

It is, of course, not surprising that zero norm-regularized esti-
mation performs better than LASSO for the strictly sparse prior
considered in this simulation and that optimal MMSE performs
better yet. However, what is valuable is that replica analysis can
quantify the precise performance differences.

In Fig. 3, we plotted the median SE since there is actually con-
siderable variation in the SE over the random realizations of the
problem parameters. To illustrate the degree of variability, Fig. 4
shows the CDF of the SE values over the 1000 Monte Carlo
trials. Each trial has different noise and measurement matrix re-
alizations, and both contribute to SE variations. We see that the
variation of the SE is especially large at the smaller dimension

. While the median value agrees well with the theo-
retical replica limit, any particular instance of the problem can
vary considerably from that limit. This is a significant drawback
of the replica method: at lower dimensions, the replica method
may provide accurate predictions of the median behavior, but it
does not bound the variations from the median.

As one might expect, at the higher dimension of ,
the level of variability is reduced and the observed SE begins to
concentrate around the replica limit. In [12], the author assumes
that concentration of the SE will occur; he calls this the self-
averaging assumption. Fig. 4 provides some empirical evidence
that self-averaging does indeed occur. However, even at

, the variation is not insignificant. As a result, caution should
be exercised in using the replica predictions on particular low-
dimensional instances.

B. Discrete Distribution With a Dynamic Range

The RS PMAP decoupling property can also be used to study
the effects of dynamic range in power levels. To validate the
replica analysis with power variations, we ran the following ex-
periment: the vector was generated with i.i.d. components

(52)

Fig. 4. Convergence to the asymptotic limit from the RS PMAP decoupling
property. The CDFs of the SE over 1000 Monte Carlo trials of the LASSO
method for the Gaussian mixture distribution are plotted. Details are given in
the text. The CDF is shown for dimensions � � ��� and � � ��� and � � �

and 2. As vector dimension increases, the performance begins to concentrate
around the limit predicted by the RS PMAP decoupling property.

where is a random power level and is a discrete three-
valued random variable with the probability mass function

with ,
with ,
with .

(53)

As before, the parameter represents the sparsity ratio and we
chose a value of . The measurements were generated by

where is an i.i.d. Gaussian measurement matrix and is
Gaussian noise. As in the previous section, the post-despreading
SNR with side information was normalized to 10 dB.

The factor in (52) accounts for power variations in . We
considered two random distributions for : (a) so that
the power level is constant and (b) is uniform (in dB scale)
over a 10 dB range with unit average power.

In case (b), when there is variation in the power levels, we
can analyze two different scenarios for the LASSO estimator:

1) Power variations unknown: If the power level in (52) is
unknown to the estimator, then we can apply the standard
LASSO estimator:

(54)

which does not need knowledge of the power levels .
To analyze the behavior of this estimator with the replica
method, we simply incorporate variations of both and

into the prior of and assume a constant scale factor
in the replica equations.
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Fig. 5. MSE performance prediction by the replica method of the LASSO esti-
mator with power variations in the components. The median SE of the LASSO
method in estimating a discrete-valued distribution is plotted. Three scenarios
are considered: (a) all components have the same power; (b) the components
have a 10 dB range in power that is unknown to the estimator; and (c) the power
range is known to the estimator and incorporated into the measurement matrix.
Solid lines represent the asymptotic prediction from the RS PMAP decoupling
property, and the circles, triangles, and squares show the median SE over 1000
Monte Carlo simulation. See the text for details.

2) Power variations known: If the power levels are known,
the estimator can compute

(55)

and then take . This can be analyzed with the
replica method by incorporating the distribution of into
the scale factors.

Fig. 5 shows the performance of the LASSO estimator for
the different power range scenarios. As before, for each , the
figure plots the median SE over 1000 Monte Carlo simulation
trials. Fig. 5 also shows the theoretical asymptotic performance
as predicted with the RS PMAP decoupling property. Simulated
values are based on a vector dimension of and optimal
selection of as described in Section V-D.

We see that in all three cases (constant power and power vari-
ations unknown and known to the estimator), the replica predic-
tion is in excellent agreement with the simulated performance.
With one exception, the replica method matches the simulated
performance within 0.2 dB. The one exception is for
with constant power, where the replica method underpredicts
the median SE by about 1 dB. A simulation at a higher dimen-
sion of (not shown here) reduced this discrepancy to
0.2 dB, suggesting that the replica method is still asymptotically
correct.

We can also observe two interesting phenomena in Fig. 5.
First, the LASSO method’s performance with constant power is
almost identical to the performance with unknown power vari-
ations for values of . However, at higher values of ,
the power variations actually improve the performance of the
LASSO method, even though the average power is the same in

both cases. Wainwright’s analysis [44] demonstrated the signif-
icance of the minimum component power in dictating LASSO’s
performance. The previous simulation and the corresponding
replica predictions suggest that the dynamic range may also
play a role in the performance of LASSO. That increased dy-
namic range can improve the performance of sparse estimation
has been observed for other estimators [62], [63].

A second phenomenon we see in Fig. 5 is that knowing the
power variations and incorporating them into the measurement
matrix can actually degrade the performance of LASSO. Indeed,
knowing the power variations appears to result in a 1–2 dB loss
in MSE performance.

Of course, one cannot conclude from this one simulation that
these effects of dynamic range hold more generally. The study
of the effect of dynamic range is interesting and beyond the
scope of this paper. The point is that the replica method provides
a simple analytic method for quantifying the effect of dynamic
range that appears to match actual performance well.

C. Support Recovery With Thresholding

In estimating vectors with strictly sparse priors, one important
problem is to detect the locations of the nonzero components in
the vector . This problem, sometimes called support recovery,
arises for example in subset selection in linear regression [64],
where finding the support of the vector corresponds to deter-
mining a subset of features with strong linear influence on some
observed data . Several works have attempted to find condi-
tions under which the support of a sparse vector can be fully
detected [44], [56], [65] or partially detected [66]–[68]. Unfor-
tunately, with the exception of [44], the only available results
are bounds that are not tight.

One of the uses of the RS PMAP decoupling property is to
exactly predict the fraction of support that can be detected cor-
rectly. To see how to predict the support recovery performance,
observe that the decoupling property provides the asymptotic
joint distribution for the vector , where is the com-
ponent of the unknown vector, is the corresponding scale
factor, and is the component estimate. Now, in support re-
covery, we want to estimate , the indicator function that is
nonzero

if ,
if .

One natural estimate for is to compare the magnitude of
the component estimate to some scale-dependent threshold

:

if ,
if .

This idea of using thresholding for sparsity detection has
been proposed in [55] and [69]. Using the joint distribution

, one can then compute the probability of sparsity
misdetection

The probability of error can be minimized over the threshold
levels .
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Fig. 6. Support recovery performance prediction with the replica method. The
solid lines denote the theoretical probability of error in sparsity misdetection
using linear and LASSO estimation followed by optimal thresholding. The cir-
cles and triangles denote the corresponding mean probabilities of misdetection
over 1000 Monte Carlo trials.

To verify this calculation, we generated random vectors
with i.i.d. components given by (52) and (53). We
used a constant power ( ) and a sparsity fraction of

. As before, the observations were generated with an i.i.d.
Gaussian matrix with .

Fig. 6 compares the theoretical probability of sparsity misde-
tection predicted by the replica method against the actual prob-
ability of misdetection based on the average of 1000 Monte
Carlo trials. We tested two algorithms: linear MMSE estima-
tion and LASSO estimation. For LASSO, the regularization pa-
rameter was selected for the minimum MMSE as described in
Section V-D. The results show a good match.

VII. CONCLUSION AND FUTURE WORK

We have applied the replica method from statistical physics
for computing the asymptotic performance of PMAP estima-
tors of non-Gaussian vectors with large random linear measure-
ments, under an RS assumption. The method can be readily ap-
plied to problems in compressed sensing. While the method is
not theoretically rigorous, simulations show an excellent ability
to predict the performance for a range of algorithms, perfor-
mance metrics, and input distributions. Indeed, we believe that
the replica method provides the only method to date for asymp-
totically exact prediction of performance of compressed sensing
algorithms that can apply in a large range of circumstances.

Moreover, we believe that the availability of a simple scalar
model that exactly characterizes certain sparse estimators opens
up numerous avenues for analysis. For one thing, it would be
useful to see if the replica analysis of LASSO can be used to
recover the scaling laws of Wainwright [44] and Donoho and
Tanner [45] for support recovery and to extend the latter to the
noisy setting. Also, the best known bounds for MSE perfor-
mance in sparse estimation are given in [70] and [71]. Since the
replica analysis is asymptotically exact (subject to various as-
sumptions), we may be able to obtain much tighter analytic ex-
pressions. In a similar vein, several researchers have attempted

to find information-theoretic lower bounds with optimal estima-
tion [56], [65], [72]. Using the replica analysis of optimal esti-
mators, one may be able to improve these scaling laws as well.

Finally, there is a well-understood connection between statis-
tical mechanics and belief propagation-based decoding of error-
correcting codes [6], [7]. These connections may suggest im-
proved iterative algorithms for sparse estimation as well.

APPENDIX A
REVIEW OF THE REPLICA METHOD

We provide a brief summary of the replica method, with a
focus on some of the details of the replica symmetric analysis of
PMMSE estimation in [12] and [14]. This review will elucidate
some of the key assumptions, notably the assumption of replica
symmetry. General descriptions of the replica method can be
found in the literature; see, e.g., [8]–[11].

The replica method is based on evaluating variants of the
so-called asymptotic free energy

(56)

where is the postulated partition function

and the expectation in (56) is with respect to the true distribu-
tion on . For the replica PMMSE and PMAP analyses in [12]
and [14], various joint moments of the variables and are
computed from certain variants of the free energy, and the con-
vergence of the joint distribution of is then analyzed
based on these moments.

To evaluate the asymptotic free energy, the replica method
uses the identity that for any random variable ,

Therefore, the asymptotic free energy (56) can be rewritten as

(57)

The “replica trick” involves evaluating the expectation
for positive integer values of and then as-

suming an analytic continuation so that the resulting expression
is valid for real in the vicinity of zero. For positive integer
values of , the quantity can be written as

(58)

where the expectation is over independent copies of the vectors
, , with i.i.d. components . The

motivation for the replica trick is that the quantity in
(58) can be thought of as a partition function of a new system
with “replicated” copies of the variables , .
The parameter is called the replica number.

The replicated system is relatively easy to analyze. Specifi-
cally, to evaluate , the replica analysis in [12] and
[14] first assumes a self-averaging property that essentially as-
sumes that the variations in due to randomness of
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the measurement matrix vanish in the limit as . Al-
though a large number of statistical physics quantities exhibit
such self-averaging, the self-averaging of the relevant quanti-
ties for the general PMMSE and PMAP analyses has not been
rigorously established. Following [12] and [14], self-averaging
in this study is thus simply assumed.

Under the self-averaging assumption, the expectation in (58)
is evaluated in [14] by first conditioning on the -by-
correlation matrix , where is the -by-

matrix

with having i.i.d. components according to the true distribu-
tion and the vectors being independent with
i.i.d. components following the postulated distribution

. The conditioning on reduces the expectation in
(58) to an integral of the form

(59)

where is some function of the correlation matrix
and is a probability measure on . It is then argued
that the measures satisfy a large deviations property with
some rate function . Then, using standard large deviations
arguments as in [73], the asymptotic value of the expectation in
(59) reduces to a maximization of the form

(60)

where the supremum is over the set of covariance matrices .
The correlation matrix plays a similar role as the so-called
overlap matrix in replica analyses of systems with discrete en-
ergy states [10].

The maximization in (60) over all covariance matrices is, in
general, difficult to perform. The key replica symmetry assump-
tion used in [12] and [14], and hence implicitly used in this
paper, is that the maxima are achieved with matrices that are
symmetric with respect to permutations of the replica indices.
Under this symmetry assumption, the space of covariance ma-
trices is greatly reduced and the maxima (60) can be explicitly
evaluated.

The RS assumption is not always valid, even though the
system itself is symmetric across the replica indices. For ex-
ample, it is well known that even in the simple random energy
model, the corresponding maximization may not satisfy the
RS assumption, particularly at low temperatures [10]; see, also
[74]. More recently, it has been shown that replica symmetry
may also be broken when analyzing lattice precoding for the
Gaussian broadcast channel [15].

In the absence of replica symmetry, one must search through
a larger class of overlap or covariance matrices . One such
hierarchy of classes of matrices that is often used is described by
the so-called -step replica symmetry breaking (RSB) matrices,
a description of which can be found in various works [8]–[11].
In this regard, the analysis in this paper, which assumes replica

symmetry, is thus only a zero-step RSB analysis or zeroth-level
prediction.

It is difficult to derive general tests for whether the RS as-
sumption is rigorously valid. In [12], the author derived an ex-
plicit condition for the validity of the RS assumption based
on the Almeida–Thouless (AT) test [75] that considers asym-
metric perturbations around the RS saddle points of the maxi-
mization(60). For the case of binary signals, the condition has
a simple formula with the SNR and measurement ratio . In
[48], an AT condition was also derived for RS analysis of re-
construction with Bernoulli–Gaussian priors. Unfortunately, no
equivalent condition has been derived for the general scenario
considered in Guo and Verdú’s extension in [14].

In this study, we simply assume replica symmetry for all
values of the scale factor . Since is analogous to in-
verse temperature [54] and validity of the RS assumption is
more problematic at low temperatures, one must be cautious in
interpreting our results. As stated in Section I, where possible
we have confirmed the replica predictions by comparison to nu-
merical experiments. However, such experiments are limited to
computable estimators, such as LASSO and linear estimators.
For other estimators, such as the true MMSE or zero norm-reg-
ularized estimator, the RS assumption may very well not hold.

APPENDIX B
PROOF OVERVIEW

Fix a deterministic sequence of indices with
. For each , define the random vector triples

(61a)

(61b)

where , , and are the th components of
the random vectors , , and , and is the
th diagonal entry of the matrix .

For each , we will use the notation

(62)

where is defined in (21) and is defined in
(10). Also, for every and define the random vectors

(63a)

(63b)

where and are independent with , , and

(64)

with .
Now, to prove the RS PMAP decoupling property, we need

to show that (under the stated assumptions)

(65)

where the limit is in distribution and the noise levels
and satisfy part (b) of the claim. This desired equivalence is
depicted in the right column of Fig. 7.
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Fig. 7. The RS PMAP decoupling property of this paper relates �� ��� to
�� �� � ���� through an � � � limit. We establish the equivalence of its
validity to the validity of the RS PMMSE decoupling property [14] through two
��� limits. Appendix D relates �� ��� and �� ���. Appendix E relates
�� �� � ���� and �� �� � ����.

To show this limit we first observe that under Assumption 1,
for sufficiently large, the postulated prior distribution
in (21) and noise level in (22) are assumed to satisfy the RS
PMMSE decoupling property. This implies that

(66)

where the limit is in distribution, , , and

Using the previous notation, we can rewrite this limit as

(67)

where all the limits are in distribution and follows from the
definition of in (61a); follows from (66); follows
from (62); and follows from (63a). This equivalence is de-
picted in the left column of Fig. 7.

The key part of the proof is to use a large deviations argument
to show that for almost all ,

This limit in turn shows (see Lemma 5 of Appendix D) that for
every ,

(68)

almost surely and in distribution. A large deviation argument is
also used to show that for every and almost all ,

Combining this with the limits in Assumption 2, we will see (see
Lemma 7 of Appendix E) that

(69)

almost surely and in distribution.
The equivalences (68) and (69) are shown as rows in Fig. 7.

As shown, they combine with the RS PMMSE decoupling prop-
erty to prove the RS PMAP decoupling property. In equations
instead of diagrammatic form, the combination of limits is

where all the limits are in distribution and follows from (68);
follows from Assumption 3; follows from (67); and

follows from (69). This proves (65) and part of the claim.
Therefore, to prove the claim we prove the limit (68) in

Appendix D and the limit (69) in Appendix E and show that
the limiting noise levels and satisfy the fixed-point
equations in part of the claim in Appendix F. Before these
results are given, we review in Appendix C some requisite
results from large deviations theory.

APPENDIX C
LARGE DEVIATIONS RESULTS

The previous proof overview shows that the RS predictions
for the PMAP estimate are calculated by taking the limit as

of the RS predictions of the PMMSE estimates. These limits
are evaluated with large deviations theory and we begin, in this
appendix, by deriving some simple modifications of standard
large deviation results. The main result we need is Laplace’s
principle as described in [73]:

Lemma 1 (Laplace’s Principle): Let be any measurable
function defined on some measurable subset such that

(70)

Then,

Given as in Lemma 1, define the probability distribution

(71)

We want to evaluate expectations of the form

for some real-valued measurable function . The fol-
lowing lemma shows that this integral is described by the
behavior of in a neighborhood of the minimizer of

.

Lemma 2: Suppose that and are real-valued
measurable functions such that the following holds.
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(a) The function satisfies (70) and has a unique essential
minimizer such that for every open neighborhood

of ,

(b) The function is positive and satisfies

for every open neighborhood of .
(c) There exists a constant such that for every , there

exists a neighborhood of such that

Then,

Proof: Due to item (c), we simply have to show that for
any open neighborhood of ,

To this end, let

It suffices to show that as . Using the
definition of in (71), it is easy to check that

(72)

where

Now, let

By item (a), . Therefore, we can find a such that

(73)

Now, from item (b), there exists a such that for all ,

By Laplace’s principle, we can find such that for all ,

(74)

Also, since is an essential minimizer of ,

Therefore, by Laplace’s principle, there exists a such that for
,

(75)

Substituting (74) and (75) into (72) we see that for sufficiently
large,

where the last inequality follows from (73). This shows
as and the proof is complete.

One simple application of this lemma is as follows.

Lemma 3: Let and be real-valued measurable
functions satisfying the following.

(a) The function has a unique essential minimizer
such that for every open neighborhood of :

(b) The function is continuous at .
(c) There exists a and compact set such that for all

,

(76)

Then,

Proof: We will apply Lemma 2 with
and . Item (a) of this lemma shows that

satisfies item (a) in Lemma 2.
To verify that item (b) of Lemma 2 holds, we first claim there

exists a constant such that for all ,

(77)

We find a valid constant for three regions. First, let be the
set of , such that . Since is continuous
in , is an open neighborhood of . Also, for , the
right-hand side of (77) is negative. Since the left-hand side of
(77) is positive, the inequality will be satisfied in for any

.
Next, consider the set , where is the compact

set in item (c) of this lemma. Since is compact and is
continuous, there exists a such that

for all . Also, since is an open neighborhood of , by
item (a), there exists a , such that for
all . Hence, inequality (77) is satisfied with
in the set .

Finally, consider the set . In this set, (76) is satisfied for
some . Combining this inequality with the fact that
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for some , one can show that (77) also holds
for some . Hence, for each of the regions , and

, (77) is satisfied for some . Taking the maximum of
the three values of , one can assume (77) for all .

Applying (77), we obtain

Hence, for any open neighborhood of ,

Now let us verify that item (c) of Lemma 2 holds. Let .
Since is continuous at , there exists an open neighbor-
hood of , such that for all and . This
implies that for all ,

which shows that satisfies item (c) of Lemma 2. Thus,

where the last limit is as and follows from Lemma 2.

APPENDIX D
EVALUATION OF

We can now apply Laplace’s principle in the previous sec-
tion to prove (68). We begin by examining the pointwise con-
vergence of the PMMSE estimator .

Lemma 4: For every , , and and almost all ,

where is the PMMSE estimator in (24) and is
the PMAP estimator in (18).

Proof: The lemma is a direct application of Lemma 3. Fix
, , , and and let

(78)

The definition of in (18) shows that

Assumption 4 shows that this minimizer is unique for almost all
. Also (23) shows that

where is given in (71) with . Therefore, using
(24),

(79)

Now, to prove the lemma, we need to show that

for every component . To this end, fix a component
index . Using (79), we can write the th component of
as

where . The function is continuous. To verify
item (c) of Lemma 3, using Assumption 5, we first find a com-
pact set such that implies that

(80)

Then, for ,

where follows from the definition of in (78); fol-
lows from (20) and the assumption that the cost functions
are nonnegative; and follows from (80). Therefore, item (c)
of Lemma 3 follows since . Thus, all the hypotheses
of Lemma 3 are satisfied and we have the limit

This proves the lemma.

Lemma 5: Consider the random vectors and
defined in (61a) and (61b), respectively. Then, for all ,

(81)

almost surely and in distribution.
Proof: The vectors and are deterministic

functions of , , , and . Lemma 4 shows that the
limit (81) holds for any values of , , and , and
almost all . Since has a continuous probability distribution
[due to the additive noise in (3)], the set of values where this
limit does not hold must have probability zero. Thus, the limit
(81) holds almost surely and, therefore, also in distribution.
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APPENDIX E
EVALUATION OF

We first show the pointwise convergence of the scalar MMSE
estimator .

Lemma 6: Consider the scalar estimators de-
fined in (62) and defined in (25). For all
and almost all , we have the deterministic limit

Proof: The proof is similar to that of Lemma 4. Fix and
and consider the conditional distribution .
Using (7) along with the definition of in (21) and an argu-
ment similar to the proof of Lemma 4, it is easily checked that

(82)

where is given by (71) with , and

(83)

where is defined in (26). Using (62) and (10),

with .
We can now apply Lemma 3. The definition of

in (25) shows that

(84)

Assumption 6 shows that for all and almost all , this
minimization is unique so

for all . Also, using (26),

(85)

where follows from (83); follows from (26); and
follows from Assumption 5. Equations (84) and (85) show that
item (a) of Lemma 3 is satisfied. Item (b) of Lemma 3 is also
clearly satisfied since is continuous.

Also, similar to the proof of Lemma 4, one can show using
Assumption 5 that item (c) of Lemma 3 is satisfied for some

. Thus, all the hypotheses of Lemma 3 are satisfied and
we have the limit

This proves the lemma.

We now turn to convergence of the random variable
.

Lemma 7: Consider the random vectors de-
fined in (63a) and in (63b). Let , ,

, and be as defined in Assumption 2. Then, the fol-
lowing limit holds:

(86)
almost surely and in distribution.

Proof: The proof is similar to that of Lemma 5. For any
and , the vectors and are

the deterministic functions of the random variables ,
, and given (64) with . Lemma 6 shows

that the limit

(87)

holds for any values of , , , and and almost all . Also, if
we fix , , and , by Assumption 6, the function

is continuous in and for almost all values of . Therefore,
we can combine (87) with the limits in Assumption 2 to show
that

for almost all and and almost all . Since has a continuous
probability distribution (due to the additive noise in (64)), the
set of values where this limit does not hold must have probability
zero. Thus, the limit (86) holds almost surely, and therefore, also
in distribution.

APPENDIX F
PROOF OF THE FIXED-POINT EQUATIONS

For the final part of the proof, we need to show that the limits
and in Assumption 2 satisfy the fixed-point equa-

tions (29). The proof is straightforward, but we just need to keep
track of the notation properly. We begin with the following limit.

Lemma 8: The following limit holds:

where the expectations are taken over and ,
and and are the random variables

(88a)

(88b)

with and , ,
, and .
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Proof: Using the definitions of in (11) and
in (62),

Therefore, fixing (and hence and ), we obtain the con-
ditional expectation

(89)

where the expectation on the right is over and
given by (88a).

Also, observe that the definitions and
and along with the limit in Assumption 2 show that

(90)

Similarly, since and , Assumption
2 shows that

(91)

Taking the limit as :

where follows from (89); follows from (91); follows
from (90), which implies that ; and follows from
Lemma 6.

The previous lemma enables us to evaluate the limit of the
MSE in (29a). To evaluate the limit of the MSE in (29b), we
need the following lemma.

Lemma 9: Fix and , and let

(92)

Also, let be given by (83) and be given by (71) with
. Then, for any , there exists an open neighborhood
of such that

where is given in Assumption 6.
Proof: The proof is straightforward but somewhat tedious.

We will just outline the main steps. Let . Using Assump-
tion 5, one can find an open neighborhood of such
that for all and ,

(93)

where is the unnormalized Gaussian distribution

and

Combining the bounds in (93) with the definition of in
(71) and the fact that shows that for all and

,

Therefore

(94)

Now, it can be verified that

(95)

and

(96)

Substituting (95) and (96) into (94) shows that

A similar calculation shows that

Therefore, with appropriate selection of , one can find a neigh-
borhood of such that

and this proves the lemma.

Using the previous result, we can evaluate the scalar MSE.
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Lemma 10: Using the notation of Lemma 8,

Proof: This is an application of Lemma 2. Fix and
and define as in (92). As in the proof of Lemma 6, the
conditional distribution is given by (82)
with given by (83). The definition of in (25)
shows that minimizes . Similar to the proof
of Lemma 6, one can show that items (a) and (b) of Lemma 2 are
satisfied. Also, Lemma 9 shows that item (c) of Lemma 2 holds
with . Therefore, all the hypotheses of Lemma 2
are satisfied and

(97)

for all and almost all .
Now

(98)

where is the definition of in (11); follows from (82);
and follows from (62). Taking the limit of this expression

(99)

where follows from (98); follows from Lemma 6; and
follows from (97).

The variables and in (88a) and (88b) as well as and
are the deterministic functions of , , , and . Fixing ,

, and and taking the limit with respect to we obtain the
deterministic limit

(100)

where follows from the definitions of and in Lemma
8; follows from (99); follows from the limit (proved in
Lemma 8) that as ; and follows from the
limit in Assumption 2.

Finally, observe that for any prior and noise level ,

since the MSE error must be smaller than the additive noise level
. Therefore, for any and ,

where we have used the definition . Since
converges, there must exists a constant such

that

for all , and . The lemma now follows from applying the
dominated convergence theorem and taking expectations of both
sides of (100).

We can now show that the limiting noise values satisfy the
fixed-point equations.

Lemma 11: The limiting effective noise levels and
in Assumption 2 satisfy the fixed-point equations (29a) and

(29b).
Proof: The noise levels and satisfy the

fixed-point (13a) and (13b) of the RS PMMSE decoupling prop-
erty with the postulated prior and noise level

. Therefore, using the notation in Lemma 8,

(101a)

(101b)

where (as defined in Lemma 8) and
and the expectations are taken over ,

, and in (88a).
Therefore

where follows from the limit in Assumption 2; follows
from (101a); and follows from Lemma 8. This shows that
(29a) is satisfied.

Similarly

where follows from the limit in Assumption 2; follows
from (101b); and follows from Lemma 10. This shows that
(29b) is satisfied.
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