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Abstract

The effect of quantization of prior probabilities in a collection of distributed
Bayesian binary hypothesis testing problems over which the priors themselves
vary is studied. In a setting with fusion of local binary decisions by majority
rule, optimal local decision rules are discussed. Quantization is first considered
under the constraint that agents employ identical quantizers. A method for
design is presented that exploits an equivalence to a single-agent problem with
a different likelihood function; the optimal quantizers are thus different than
in the single-agent case. Removing the constraint of identical quantizers is
demonstrated to improve performance. A method for design is presented that
exploits an equivalence between agents having diverse K-level quantizers and
agents having identical (3K − 2)-level quantizers.

1 Introduction

In many settings, agents collaborate to make decisions under various uncertainties
and information constraints. As an example, consider three physicians consulted by
a patient for advice on whether to be treated for a disease. Each physician runs in-
dependent and identical diagnostic tests that are not in themselves conclusive. Each
physician thus combines the test results with an assessment of the patient’s suscep-
tibility to the disease to determine whether to recommend treatment. Note that rec-
ommendations naturally incorporate judgments on the relative detriments of leaving
the disease untreated and treating despite lack of disease. The patient will undergo
treatment if a majority of the physicians recommend it.

In this scenario, the performance of the collaborating physicians is affected by the
efficacies of their tests and by their limitation of communicating only binary decisions
to the patient; these are well-studied aspects of multi-agent decision making. The
focus in this paper is on a different limitation that each physician faces and on the
resultant effects on collaborative performance: In interpreting test results, a physician
cannot use a decision rule that is perfectly personalized to the patient; instead, the
physician must assign the patient to a category and use a decision rule designed
for that category. This categorization is justified both by cognitive limitations of
the physician [1] and by limitations in rates of learning from data [2, Ch. 5.3]. We
study the formation of categories, which may be different for different physicians. We
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assume that the judgments on relative detriments of the two types of misdiagnosis
are the same for all physicians; a companion paper removes this assumption [3].

Abstracting from this example, we study Bayesian distributed binary hypothesis
testing under an observation model specified by likelihood functions fYi|H(y |h0) and
fYi|H(y |h1), where i indexes the agents. To formalize having an ensemble of problems,
we consider the prior probability distribution over hypotheses {h0, h1} to itself be
random with a known distribution. Since P(H = h1) = 1 − P(H = h0), the pmf of
H is described by a single scalar p0 = P(H = h0). We model p0 as a realization of
random variable P0 with a known pdf fP0 . Categorization of the ensemble of problems
is equated with quantization of P0 to one of K levels. Our focus is on the design of
quantizers for P0 that minimize Bayes risk, which here is a single quantity for the
system of agents. It is computed using a single set of Bayes costs and the probabilities
of Type I and Type II errors of the collaborative decision made by majority voting.

Related work. Varshney and Varshney [4] recently introduced the precise study
of quantization of prior probabilities in Bayesian hypothesis testing. They focus on
binary hypothesis testing by a single agent and also briefly discuss M -ary hypothesis
testing for M > 2. This paper applies and extends results of [4] to collaborative
decision making by multiple agents. The introduction of multiple agents highlights
the role of the information fusion strategy of agents and introduces a new quantizer
design problem with a perhaps-surprising solution.

Most previous work on the effect of quantization in Bayesian distributed detection
is focused on the quantization of observations [5–7] or the communication topology
and rates among agents [8] and/or to the fusion center [9, 10]. We do not consider
quantization of observations here, though it may be noted that quantization outside of
the system designer’s control could be incorporated into the likelihood functions. We
will comment on the impact of simple majority voting based on one-bit communication
from agents to the fusion center in Sec. 3.

The use of a single set of Bayes costs is an element of making the agents a team
in the sense of Marschak and Radner [11], i.e. having a common goal. An alternative
is for each agent to have potentially-different Bayes costs. This introduces game-
theoretic considerations as described in a companion paper [3].

Paper organization and preview of main results. Sec. 2 formalizes our setting
and defines notation; in particular, it defines the Bayes risk objective function of
interest and the function that takes its place when the prior probability is quantized.
Sec. 3 considers the case in which agents use identical quantizers and identical decision
thresholds. It is shown that when the agents observe H corrupted by independent
and identically-distributed additive noises, the team performance is equivalent to a
single agent with noise given by the median of the noises. This enables optimal design
through extension of results from [4]. Sec. 4 considers the case in which agents may
use different quantizers. The main result is that optimizing the performance of three
agents using K-level quantizers matches the best performance attainable with three
agents using (3K − 2)-level quantizers that are constrained to be identical. This is
dramatic improvement from diversity, and it enables a design methodology relying
on the results of Sec. 3.
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Fig. 1: A schematic diagram depicting the problem information pattern. The environment
B generates a Bernoulli signal H. Its prior probability p0 is quantized by three separate
quantizers; the results are used by local agents Di. Each agent also has access toH corrupted
by i.i.d. noise Wi. The fusion center F determines Ĥ from the local decisions Ĥi.

2 Bayesian Binary Hypothesis Testing Problem

Formulation with p0 given. Consider a group of agents deciding between H = h0

and H = h1 when P(H = h0 |P0 = p0) = p0 is given. The scenario of interest is
shown in Fig. 1 (ignoring the qi(·) blocks) for the case of three agents and additive
observation noise. For each i, Agent i (marked Di) observes Yi satisfying likelihood

function fYi|H and sends a local decision Ĥi ∈ {h0, h1} to a fusion center. The
observations are assumed to be conditionally independent given H. The fusion center
determines Ĥ ∈ {h0, h1} by majority rule.

Agent i has (local) Type I and Type II error probabilities given by

P I
e,i = P(Ĥi = h1 |H = h0) and P II

e,i = P(Ĥi = h0 |H = h1).

The Type I and Type II error probabilities of the collaborative (global) decision are

P I
E = P(Ĥ = h1 |H = h0) and P II

E = P(Ĥ = h0 |H = h1).

All four of these quantities depend on p0 and on the decision rules used by the agents.
This dependence will sometimes be shown explicitly. Since global errors occur exactly
when the majority of agents make local errors, the global error probabilities can be
expressed in terms of the local error probabilities; for example, with three agents

P I
E = P(Ĥ = h1 |H = h0) = P I

e,1P
I
e,2 + P I

e,2P
I
e,3 + P I

e,3P
I
e,1 − 2P I

e,1P
I
e,2P

I
e,3, (1)

P II
E = P(Ĥ = h0 |H = h1) = P II

e,1P
II
e,2 + P II

e,2P
II
e,3 + P II

e,3P
II
e,1 − 2P II

e,1P
II
e,2P

II
e,3. (2)

The goal of each agent is to minimize the expected value of the Bayes risk

R = c10p0P
I
E + c01(1− p0)P

II
E ,

where c10 and c01 are positive constants. Type I and Type II errors incur Bayes costs
of c10 and c01, while correct decisions incur no cost; through the definitions of P I

E and
P II

E , it is clear that R is the conditional mean of the Bayes cost given P0 = p0.
Some of the results and all of the numerical examples are based on the additive

white Gaussian noise (AWGN) observation model depicted in Fig. 1, with the noise
variables {Wi}3i=1 independent Gaussian random variables with mean zero and vari-
ance σ2. In other words, the likelihood functions fYi|H(· |h) are Gaussian pdfs with
mean h and variance σ2.
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Optimal decision rules. For notational simplicity, consider the decision rule for
Agent 1 in a setting with three agents. The optimal decision for Agent 1 minimizes
Bayes risk (4) with i = 1. Suppose that Agents 2 and 3 have some fixed decision
rules. By rewriting (1) and (2), we have

P I
E =

(
P I

e,2 + P I
e,3 − 2P I

e,2P
I
e,3

)
P I

e,1 + P I
e,2P

I
e,3 , A11P

I
e,1 + A12,

P II
E =

(
P II

e,2 + P II
e,3 − 2P II

e,2P
II
e,3

)
P II

e,1 + P II
e,2P

II
e,3 , B11P

II
e,1 +B12,

where A11, A12, B11, and B12 are nonnegative quantities that do not depend on
the decision rule of Agent 1. The optimal decision rule Ĥ1(y1) for Agent 1 can be
expressed as a likelihood ratio test

fY1|H(y1 |h1)

fY1|H(y1 |h0)

bH1(y1)=h1

RbH1(y1)=h0

c10p0A11

c01(1− p0)B11

, η1,

which is similar to the standard optimal decision rule for a single agent.
Under the AWGN observation model, Agent 1 has optimal decision rule

y1

bH1(y1)=h1

RbH1(y1)=h0

h1 − h0

2
+

σ2

h1 − h0

ln η1 , λ1. (3)

The optimal decision rules of Agents 2 and 3 are analogous, with thresholds λ2 and
λ3. Note that (P I

e,1, P
II
e,1), (P I

e,2, P
II
e,2), and (P I

e,3, P
II
e,3), depend directly on λ1, λ2, and

λ3, respectively. The optimal value of λ1 in (3) is a function of λ2 and λ3 through η1

(hence A11 and B11), and similarly for λ2 and λ3. Thus, the λis cannot be optimized
independently.

Quantization of p0. As depicted in Fig. 1, the decision rule of Agent i is based
on a quantized version of the prior probability p

(i)
0 = qi(p0). Thus, Agent i makes

decisions to minimize perceived Bayes risk

R̄i = c10p
(i)
0 P

I
E + c01

(
1− p(i)

0

)
P II

E . (4)

The agent’s decision rule, and consequently P I
e,i and P II

e,i, are determined based on
R̄i. The (true) Bayes risk with decision rules impacted by quantization of the prior
probability is denoted R̃i. Based on this discussion, the mean Bayes risk (MBR)

E[R̃] =

∫ 1

0

(c10p0P
I
E(q(p0)) + c01(1− p0)P

II
E (q(p0)))fP0(p0) dp0

is the appropriate fidelity criterion for the quantizers qi(·) applied to P0; see also [4].

3 Agents with Identical Prior-Probability Quantizers

In this section, we assume that all agents use the same quantizer. This causes all
perceived Bayes risks to be equal to

R̄ = c10q(p0)P
I
E + c01(1− q(p0))P

II
E ,

306



so we further assume that all decision rules are identical. This in turn implies that
all local probabilities of error are equal for both Type I and Type II. In the AWGN
observation model, identical decision rules correspond to all λi thresholds taking one
common value λ.

An equivalent single-agent model. Consider any odd number of agents using
the decision rule

yi

bHi(yi)=h1

RbHi(yi)=h0

λ (5)

for some λ. With this rule, Ĥi = h1 implies Ĥj = h1 for any j such that yj > yi;

similarly, Ĥi = h0 implies Ĥj = h0 for any j such that yj < yi. Thus, comparing the
median yi to λ determines the majority-rule decision. In fact, the performance of the
collaborating group is the same as that of a single agent with observation likelihood
function fY |H determined by the median of the group’s observations. This equivalence
is most easily understood in the case of an additive noise observation model.

Theorem 1. Suppose 2n + 1 agents make decisions using the rule (5) for some λ,
where the observation of Agent i is Yi = H + Wi. The collaborative performance
by majority rule is equal to the performance of a single agent using rule (5) with
observation Y = H + V , where V = median({Wi}2n+1

i=1 ).

When the Wis are independent and identically distributed, their median is well
understood from the theory of order statistics [12]. In general, the variance of the
median is bounded as var(V ) ≤ var(Wi), with equality attained uniquely by Bernoulli
Wis [13]. For continuous noise distributions, as of interest here, the inequality is strict
and the variance of V decreases with n. If the Wis are continuous with pdf fW ,

fV (v) =
(2n+ 1)!

(n!)2
[FW (v)]n[1− FW (v)]nfW (v), (6)

where FW (v) =
∫ v

−∞ fW (w) dw is the cdf of W . For the case of Gaussian Wis,
var(V ) ≈ 0.449 var(W ) for 3 agents and var(V ) ≈ 0.287 var(W ) for 5 agents. A nat-
ural comparison is to 1

3
var(W ) and 1

5
var(W ), which are equivalent noise variances if

agents average observations rather than sharing only their (one-bit) decisions.

Optimal quantization. Consider collaboration by 2n+1 agents under a continuous
additive noise observation model. The agents use decision rule (5) and a K-level
quantizer q(·), which partitions the support [0, 1] of P0 into cells R1,R2, . . . ,RK and
has representation points a1, a2, . . . , aK . Using Theorem 1, this team of agents can be
replaced by a single agent with additive noise defined by (6). Thus, optimization of
the quantizer in the multi-agent model can be converted to the optimization problem
for a single agent discussed in [4].

As discussed in [4], MBR-optimal quantizers are regular. Each cell is an interval:
R1 = [b0, b1], R2 = (b1, b2], . . . , RK = (bK−1, bK ], where 0 = b0 < b1 < b2 <
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· · · < bK−1 < bK = 1, and each representation point ak belongs to the cell Rk,
bk−1 < ak < bk. The true Bayes risk averaged over P0 is

E[R̃] =
K∑

k=1

∫ bk

bk−1

(
c10p0P

I
E(ak) + c01(1− p0)P

II
E (ak)

)
fP0(p0) dp0,

where P I
E(a) and P II

E (a) are determined based on the perceived Bayes risk when agents
use a as the prior probability.

For any fixed partitioning, MBR-optimal quantizers should satisfy

ak = arg min
a∈(bk−1,bk]

∫ bk

bk−1

(c10p0P
I
E(a) + c01(1− p0)P

II
E (a))fP0(p0) dp0 (7)

for every k, which is the centroid condition with respect to MBR. Since the integral
on the right side of (7) has only one stationary point that is a minimum extremum [4,
Thm. 2], ak is the unique solution to(∫ bk

bk−1

c10p0fP0(p0) dp0

)
P I

E(a)

da

∣∣∣∣
ak

+

(∫ bk

bk−1

c01(1− p0)fP0(p0) dp0

)
P II

E (a)

da

∣∣∣∣
ak

= 0.

(8)
For any fixed set of reproduction points, MBR-optimal encoding should map p0

to the ak value that minimizes MBR:

k = arg min
k′∈{1,2,...,K}

[
c10p0P

I
E(ak′) + c01(1− p0)P

II
E (ak′)

]
.

This yields the nearest-neighbor condition with respect to MBR: For p0 ∈ [ak, ak+1],

c10p0P
I
E(ak) + c01(1− p0)P

II
E (ak)

p0∈Rk+1

R
p0∈Rk

c10p0P
I
E(ak+1) + c01(1− p0)P

II
E (ak+1).

Thus, the boundary between Rk and Rk+1 is bk yielding equality above at p0 = bk:

bk =
c01

(
P II

E (ak+1)− P II
E (ak)

)
c01 (P II

E (ak+1)− P II
E (ak))− c10 (P I

E(ak+1)− P I
E(ak))

. (9)

Though MBR-optimal quantizers do not have a closed form, the Lloyd-Max algorithm
can find a quantizer that meets the centroid and nearest neighbor conditions by
alternating (8) and (9). As given in [4, 14], the algorithm converges to an optimal
quantizer if fP0(p0) is positive and continuous in (0, 1) and∫ 1

0

(c10p0P
I
E(a) + c01(1− p0)P

II
E (a))fP0(p0) dp0

is finite for all a.
Fig. 2 provides a set of numerical examples. Optimal quantizers were designed

using the Lloyd-Max algorithm for one and three agents and for K = 1, 2, 3, 4. The
results are shown as plots of Bayes risk as a function of p0; since P0 is uniform in
this example, MBRs are given by areas under the plotted curves. The examples
demonstrate improvement with increasing K and increasing the number of agents.
They also demonstrate that the optimal quantizer for a single agent is different than
the optimal quantizer to be used identically by a team of agents.
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Fig. 2: Optimal performance with identical K-level quantizers under AWGN observation
model, where P0 is uniformly distributed on [0, 1], h0 = 0, h1 = 1, σ = 1, and Bayes
costs c10 = 1 and c01 = 4. Mismatched Bayes risk and unquantized Bayes risk are plotted
for one (dashed) and three (solid) agents. Marked points of tangency are the quantizer
reproduction points, and points of discontinuity are the quantizer cell boundaries.

4 Agents with Diverse Prior-Probability Quantizers

In this section, we remove the restriction that agents use the same quantizer. Differ-
ently quantized prior probabilities make the agents’ perceived Bayes risks differ even
though the agents have the same Bayes costs. The added complication in analysis
and optimization is worth it: performance of the team is improved.

We henceforth limit attention to the case of three agents and an equal number of
levels K for each agent’s quantizer. The quantizers q1, q2, and q3 could be as shown
in Fig. 3a. The superscript (i) indicates association with the quantizer of Agent i

so that qi has reproduction points {a(i)
k }Kk=1 and cell boundaries {b(i)k }Kk=0. Since we

assume that the agents do not know the true prior p0, the decision rule is optimized
based on the quantized prior probabilities p

(i)
0 = qi(p0). One collaborative way is to

minimize the perceived Bayes risk averaged over the three agents, which we call the
perceived common risk :

R̄C =
1

3
(R̄1+R̄2+R̄3) =

1

3
c10

(
p

(1)
0 + p

(2)
0 + p

(3)
0

)
P I

E+
1

3
c01

(
3− p(1)

0 − p
(2)
0 − p

(3)
0

)
P II

E .

An equivalence to agents with identical quantizers. Our key result is a perfor-
mance equivalence between three agents using quantizers (q1, q2, q3) and three agents
using a shared quantizer qS. The equivalence enables the optimization of (q1, q2, q3)
and shows that when these quantizers are different, the performance achieved is com-
mensurate with having finer quantizers.

Consider again Fig. 3a, which for simplicity has K = 2. Each quantizer qi divides
the interval [0, 1] into two cells, but the whole quantization system divides [0, 1] into

four cells: R′1 = [0, b
(1)
1 ], R′2 = (b

(1)
1 , b

(2)
1 ], R′3 = (b

(2)
1 , b

(3)
1 ], and R′4 = (b

(3)
1 , 1]. We

thus associate with (q1, q2, q3) a quantizer qS with this partition (and reproduction
points yet to be defined). More generally, three regular K-level quantizers can split
the entire interval into at most (3K−2) subintervals. Thus, it is certainly impossible
for three agents using different K-level quantizers to achieve performance better than
three agents using a shared (3K−2)-level quantizer. The equivalence can be achieved.
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Fig. 3: K-level quantizers (q1, q2, q3) and an equivalent (3K − 2)-level quantizer qS. (a)
Conversion from (q1, q2, q3) to qS. (b) Conversion from qS to (q1, q2, q3).

Theorem 2. Consider three K-level quantizers (q1, q2, q3) and a (3K−2)-level quan-
tizer qS. Agents that use (q1, q2, q3) and those that use (qS, qS, qS) achieve the same
performance for any p0 if

⋃3
i=1Bi = BS and qS(p0) = 1

3

∑3
i=1 qi(p0), where B1, B2,

B3, and BS are the sets of cell boundaries of q1, q2, q3, and qS, respectively.

Proof. Let TD denote a team of agents using different quantizers (q1, q2, q3) and TS

denote a team of agents using a shared quantizer (qS, qS, qS). Both teams use Bayes
costs c10 and c01. If

⋃3
i=1Bi = BS, the whole interval [0, 1] is divided into the same

subintervals by (q1, q2, q3) and by qS. The agents in TD and TS will have the same
true Bayes risk c10p0P

I
E + c01(1− p0)P

II
E for any p0 if they use the same decision rule

in any subinterval R′k. Since the decision rule should minimize the perceived common
risk of agents in TD and the perceived Bayes risk of agents in TS, the agents in both
groups will use the same decision threshold if

1
3
c10

[∑3
i=1 qi(p0)

]
P I

E(λ) + 1
3
c01

[∑3
i=1(1− qi(p0))

]
P II

E (λ)

= z
(
c10qS(p0)P

I
E(λ) + c01(1− qS(p0))P

II
E (λ)

)
for some constant z and any p0 and λ. Therefore, using different quantizers (q1, q2, q3)
is equivalent to using (qS, qS, qS) if∑3

i=1 qi(p0)∑3
i=1(1− qi(p0))

=
qS(p0)

1− qS(p0)
, (10)

or qS(p0) = 1
3

∑3
i=1 qi(p0) for all p0 ∈ [0, 1].

Optimal quantization. Recall that for any K, the optimization of (3K − 2)-level
qS to be shared by three identical agents can be accomplished as outlined in Sec. 3. In
light of Theorem 2, agents with diverse K-level quantizers (q1, q2, q3) cannot perform
better than the identical agents using qS. If we can create a mapping from the
optimized qS to (q1, q2, q3), we will have designed optimal diverse quantizers.
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(b) K = 3
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(c) K = 4

Fig. 4: Performance with optimally designed diverse K-level quantizers with system pa-
rameters as in Fig. 2. Mismatched Bayes risk and unquantized Bayes risk are plotted for
three values of K. The K = 2 performance matches the three-agent performance in Fig. 2d,
demonstrating Theorem 2.

Consider the example in Fig. 3b. From (10), each region gives one equation:

R′1 : x1 + x3 + x5 = 3a′1, (11a)

R′2 : x2 + x3 + x5 = 3a′2, (11b)

R′3 : x2 + x4 + x5 = 3a′3, (11c)

R′4 : x2 + x4 + x6 = 3a′4. (11d)

There are six unknowns but only four equations; thus, there is no unique solution.
Instead, we obtain several conditions about the representation points. First, represen-
tation points should lie in [0, 1] because they represent prior probabilities. Second, if
regular quantizers are desired, then each representation point should lie in the region
that it represents.1 This gives the following conditions:

0 < x1 < b′1, b
′
1 < x2 < 1, 0 < x3 < b′2, b

′
2 < x4 < 1, 0 < x5 < b′3, b

′
3 < x6 < 1. (12)

From (11), x2, x3, x4, and x5 can be expressed in terms of x1 and x6. Hence, after
finding a valid pair of (x1, x6) that satisfies (12), we can compute other variables,
which will give us the full description of (q1, q2, q3). Note that there are infinitely many
pairs that satisfy (12). Choosing any pair will result in the same performance with
respect to the mean Bayes risk because all of the resulting quantizers are associated
with the same (3K − 2)-level quantizer.

Fig. 4 provides a set of numerical examples. To enable comparison with Fig. 2,
the distribution of P0 and other parameters are unchanged from before. Quantizers
(q1, q2, q3) were designed by first optimizing an associated qS using the Lloyd-Max
algorithm and then determining regular quantizers that would yield the same perfor-
mance. The examples demonstrate the advantage of diversity in quantization.

5 Conclusion

This paper has introduced consideration of quantized prior probabilities in distributed
hypothesis testing. The main results are equivalences that simplify optimal quantizer

1The K-level quantizers need not be regular.
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design. Theorem 1 demonstrates the equivalence in performance between 2n+1 agents
with identical decision thresholds whose observations are corrupted by additive noises
{Wi}2n+1

i=1 and a single agent whose observation is corrupted by additive noise V =
median({Wi}2n+1

i=1 ); this equivalence enables the design of prior probability quantizers
for teams that use the same quantizer. However, using the same quantizer is far
from optimal. The equivalence in Theorem 2 shows that a diverse team of three
agents is able to nearly triple its effective number of quantization levels through joint
optimization toward a common minimum mean Bayes risk goal.
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