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Abstract

The effect of quantization of prior probabilities in a collection of distributed
Bayesian binary hypothesis testing problems over which the priors themselves
vary is studied, with focus on conflicting agents. Conflict arises from differ-
ences in Bayes costs, even when all agents desire correct decisions and agree
on the meaning of correct. In a setting with fusion of local binary decisions by
majority rule, Nash equilibrium local decision strategies are found. Assuming
that agents follow Nash equilibrium decision strategies, designing quantizers
for prior probabilities becomes a strategic form game; we discuss its Nash equi-
libria. We also propose two different constrained quantizer design games, find
Nash equilibrium quantizer designs, and compare performance. The system
has deadweight loss: equilibrium decisions are not Pareto optimal.

1 Introduction

Traditional analyses of Bayesian distributed detection and data fusion systems assume
that agents have noisy sensors and that their communication is constrained [1,2]. This
paper focuses on an additional limitation that agents—especially human ones—face
and on the resultant effects on group performance: in forming local decisions, an agent
cannot use a decision rule that is perfectly specialized to the particular object under
study; instead, the agent must assign the object to a category and use a decision
rule designed for that category. This categorization is justified both by information-
processing limitations of the agent [3] and by limitations in rates of learning from
training data [4, Sec. 5.3].

Agents are also traditionally assumed to share a single set of Bayes costs [1, 2].
However, there are situations—especially in human decision-making groups such as
juries and business units—where each agent in the group has a different preference for
Type I and Type II errors. Since agents derive differing utility from the group decision,
conflicts of interest arise and lead to game-theoretic considerations. A companion
paper studies the setting where Bayes costs are shared by agents [5].

With this inspiration, we study Bayesian distributed binary hypothesis testing un-
der an observation model specified by likelihood functions fYi|H(y |h0) and fYi|H(y |h1),
where i indexes the agents. To formalize having an ensemble of possible objects under
study, we consider the prior probability distribution over hypotheses {h0, h1} to itself
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be random with a known distribution. Since P(H = h1) = 1 − P(H = h0), the pmf
of H is described by a single scalar p0 = P(H = h0). We model p0 as a realization
of random variable P0 with a known pdf fP0 whose support is on the 1-dimensional
probability simplex [0, 1]. Categorization of the ensemble of objects is equated with
quantization of P0 to one of K levels. Our focus is on the design of quantizers for P0

that minimize Bayes risk; agents have their own perceptions of Bayes risk computed
from their local Bayes costs and the probabilities of error of the global decision, which
is made through majority vote.

Related work. Varshney and Varshney recently initiated the precise study of quan-
tization of prior probabilities in Bayesian hypothesis testing and its implications on
human decision-making, focusing on decision-making by a single agent [6]. This pa-
per extends to decision making by multiple agents with conflicts of interest. The
introduction of multiple agents highlights the role of strategic voting and introduces
novel strategic quantizer design methods. The conflicts of interest arise from differ-
ing Bayes costs. Such differences are studied as preference heterogeneity in political
science and economics [7] but seem to be absent in the engineering literature on
distributed detection [1].

Most previous work on the effect of quantization in Bayesian distributed detection
is focused on quantization of observations or on communication topology and rates
among agents and to the fusion center [1,8]. Here we do not consider quantization of
observations, besides implicitly in forming local decisions.

Game theory originated in studies of decision-making with conflicts of interest [9],
but the formulation of quantizer design games seems to be unique to this work.

Paper organization and preview of main results. Sec. 2 formalizes the setting
and defines notation; in particular, it defines the Bayes risk objective functions of
interest and the functions that take their place when prior probabilities are quan-
tized. Sec. 3 discusses Nash equilibrium decision making for a group of agents and
demonstrates that equilibrium strategies are not Pareto optimal. Sec. 4 formulates
the game for design of prior probability quantizers and characterizes Nash equilib-
rium quantizer designs. Restriction to common quantizer partitions leads to two
other quantizer design games with differing computable Nash equilibrium strategies.
By measuring system performance, deadweight loss from conflicts of interest is quan-
tified. The presence of deadweight loss demonstrates that group decision-making is
best when agents share a common goal.

2 Problem Statement

Consider a group of agents deciding between H = h0 and H = h1 when P(H =
h0 |P0 = p0) = p0 is given. The scenario of interest is shown in Fig. 1 for the case of
three decision making agents. For each i, Agent i (marked Di) observes Yi satisfying

likelihood function fYi|H and sends a local decision Ĥi ∈ {h0, h1} to a fusion center.
The observations are assumed to be conditionally independent given H. The fusion
center determines Ĥ ∈ {h0, h1} by majority rule.
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Fig. 1: A schematic diagram depicting the problem information pattern. The environment
B generates a Bernoulli signal H. Its prior probability p0 is quantized by three separate
quantizers; the results are used by local agents Di. Each agent also has access toH corrupted
by i.i.d. noise Wi and all agents’ Bayes costs c(i)10 and c

(i)
01 . The fusion center F determines

Ĥ from the local decisions Ĥi.

In the sequel we restrict attention to three agents and the additive white Gaussian
noise (AWGN) measurement model depicted in Fig. 1, with noise variables {Wi}3i=1

i.i.d. ∼ N (0, σ2). Generalizations are certainly possible.
Agent i has (local) Type I and Type II error probabilities given by

P I
e,i = P(Ĥi = h1 |H = h0) and P II

e,i = P(Ĥi = h0 |H = h1).

Since global errors occur exactly when the majority of agents make local errors, global
error probabilities can be expressed in terms of the local error probabilities:

P I
E = P(Ĥ = h1 |H = h0) = P I

e,1P
I
e,2 + P I

e,2P
I
e,3 + P I

e,3P
I
e,1 − 2P I

e,1P
I
e,2P

I
e,3, (1)

P II
E = P(Ĥ = h0 |H = h1) = P II

e,1P
II
e,2 + P II

e,2P
II
e,3 + P II

e,3P
II
e,1 − 2P II

e,1P
II
e,2P

II
e,3. (2)

All error probabilities depend on p0 and on the decision rules used by the agents.
When p0 is known, the goal of Agent i is to minimize the expected value of the

ith Bayes risk
R̃i = c

(i)
10p0P

I
E + c

(i)
01 (1− p0)P

II
E , (3)

where c
(i)
10 and c

(i)
01 are the positive Bayes costs for Agent i; correct decisions incur

no cost. Through the definitions of P I
E and P II

E , it is clear that R̃i is the conditional
mean of the Bayes cost given P0 = p0.

As depicted in Fig. 1, Agent i quantizes p0 to p
(i)
0 = qi(p0) due to information-

processing limitations. Thus, Agent i makes decisions to minimize ith perceived Bayes
risk

R̄i = c
(i)
10p

(i)
0 P

I
E + c

(i)
01

(
1− p(i)

0

)
P II

E . (4)

The decision threshold, and consequently P I
e,i and P II

e,i, of each agent is determined

based on {R̄i, i = 1, 2, 3}. However, the true Bayes risk is R̃i, where P I
E and P II

E in
(3) are affected by the perceived Bayes risks. We define mean Bayes risk (MBR) as
a fidelity criterion for the quantizer qi of fP0(p0):

E[R̃i] =

∫ 1

0

(c
(i)
10p0P

I
E(qi(p0)) + c

(i)
01 (1− p0)P

II
E (qi(p0)))fP0(p0) dp0; (5)

315



see also [6]. The MBR of an agent differs from that of other agents, but depends on
the quantizers of all agents. Thus designing quantizers qi is a game. Later we will find
Nash equilibrium quantizer designs, but first we discuss a game-theoretic formulation
of decision-making itself.

3 Equilibrium Decision Making

When agents share one cost function, they can collaborate to make decisions that
are optimal for all. Heterogeneous preferences, however, restrict collaboration. For
example, consider two agents that incur greater cost for Type II errors than for Type I
errors and the other agent that incurs greater cost for Type I errors than for Type II.
Then, the first two agents may tend to exaggerate Ĥi = h1 claims so as to decrease
probability of global Type II error. Hence the global decision would be more likely
to be h1 irrespective of the last agent’s Ĥi.

Game theory provides useful methods to analyze agents’ decision-making strate-
gies under competition [9]. It is straightforward to describe the decision-making
problem in strategic form with players I, strategies (Si)i∈I , and payoffs (ui)i∈I [9].
This is written as Game I.1

Theorem 1. Dominant strategies do not exist in Game I.

Proof. It is sufficient to consider dominant strategies of Agent 1 due to the symmetry
among agents. By definition, s∗1 is dominant if for all (s1, s2, s3) ∈ S1 × S2 × S3,

u1(s
∗
1, s2, s3) ≥ u1(s1, s2, s3). (6)

By defining f1(s2, s3) = P I
e,2 + P I

e,3 − 2P I
e,2P

I
e,3 and f2(s2, s3) = P II

e,2 + P II
e,3 − 2P II

e,2P
II
e,3,

(6) is equivalent to

c
(1)
10 p

(1)
0 P I

e,1(s
∗
1)f1(s2, s3) + c

(1)
01 (1− p(1)

0 )P II
e,1(s

∗
1)f2(s2, s3)

≤ c
(1)
10 p

(1)
0 P I

e,1(s1)f1(s2, s3) + c
(1)
01 (1− p(1)

0 )P II
e,1(s1)f2(s2, s3) , h(s1), (7)

where P I
e,1(s1) and P II

e,1(s1) denote error probabilities when Agent 1’s decision thresh-
old is s1. If s∗1 is dominant, then h(s1) should have a global minimum point at s1 = s∗1
irrespective of s2 and s3.

Since the measurement noise W1 has a continuous pdf, the decision rule yields
P I

e,1 and P II
e,2 such that P II

e,1(s1) is monotonically decreasing and strictly convex in
P I

e,1(s1). Then the location of the minimal extreme of h(s1) depends on f1(s2, s3) and

f2(s2, s3). This implies that for any c
(1)
10 , c

(1)
01 , and p

(1)
0 , no s∗1 exists such that h(s1) is

minimum at s1 = s∗1 for all (s2, s3) ∈ S2 × S3.
Likewise Agents 2 and 3 do not have dominant strategies either.

In addition to the lack of existence of dominant strategies, the only dominated
strategies for any agent are si =∞ and si = −∞. Therefore, Game I is not solvable by
iterative dominance. Each agent’s decision rule depends on other agents’ rules. Thus,
we consider Nash equilibrium strategies, introducing a modified game: Game Î.

1All strategic form game formulations are presented together at the end of the paper.
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Lemma 2 ( [9]). An infinite game (I, (Si)i∈I , (ui)i∈I) has a pure strategy Nash equi-
librium if its strategy spaces Si are nonempty compact convex sets; its payoff functions
ui(si, s−i) are continuous in s−i; and ui(si, s−i) are quasi-concave in si, where s−i de-
notes a strategy profile of every player except i.

Lemma 3. Game I is equivalent to Game Î.

Proof. The functions P I
e,i : R 7→ [0, 1] are bijective since Gaussian densities are con-

tinuous and greater than zero. Thus, there exist inverse functions
(
P I

e,i

)−1
that are

also bijective; ti are uniquely determined by si and vice versa. Since choosing either
ti or si does not change the players’ payoff, Game I and Game Î are equivalent.

Theorem 4. A pure Nash equilibrium always exists in Game I.

Proof. Consider Game Î, where strategy sets are compact and convex.
Due to the symmetry among players, it is sufficient to show concavity and conti-

nuity of the payoff function of Agent 1. From (1),

P I
E = t1t2 + t2t3 + t3t1 − 2t1t2t3 = (t2 + t3 − 2t2t3)t1 + t2t3,

which is linear in t1. Similarly, P II
E in (2) is linear in τ1:

P II
E = (τ2 + τ3 − 2τ2τ3)τ1 + τ2τ3,

where τi denotes the Type II error probability of Agent i and 0 ≤ τi ≤ 1. Note that
τ2+τ3−2τ2τ3 = τ2(1−τ3)+(1−τ2)τ3 ≥ 0. Since τ1 is convex in t1 by the characteristic
of probabilities of errors [6], P II

E is convex in t1. Hence, the payoff function of Agent 1,
which is the sum of P I

E and P II
E multiplied by negative coefficients, is concave in t1.

Furthermore, û1(t1, t2, t3) is continuous in (t2, t3) as well as t1 because τi is con-
tinuous in ti.

Likewise, for other players, ûi(t1, t2, t3) is concave in ti and continuous in (t−i, ti).

Thus by Lemma 2, Game Î has a pure Nash equilibrium (t∗1, t
∗
2, t
∗
3) for any c

(i)
10 ,

c
(i)
01 , and p

(i)
0 . By Lemma 3, Game I has a pure Nash equilibrium for any c

(i)
10 , c

(i)
01 , and

p
(i)
0 .

Due to existence, agents can always choose a Nash equilibrium strategy. A Nash
equilibrium can be found by solving

∂ûi(t1, t2, t3)

∂ti

∣∣∣∣
(t1,t2,t3)=(t∗1,t∗2,t∗3)

= 0, i = 1, 2, 3, (8)

and computing (s∗1, s
∗
2, s
∗
3) that leads to (t∗1, t

∗
2, t
∗
3) or directly by solving

∂ui(s1, s2, s3)

∂si

∣∣∣∣
(s1,s2,s3)=(s∗1,s∗2,s∗3)

= 0, i = 1, 2, 3. (9)

The reason that the latter is possible comes from the fact that

∂ûi(t1, t2, t3)

∂ti
=
dsi

dti

∂ui(s1, s2, s3)

∂si

, i = 1, 2, 3, (10)
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Fig. 2: The performance of the three agents whose Bayes costs are (c(1)
10 , c

(1)
01 ) = (1, 4),

(c(2)
10 , c

(2)
01 ) = (4, 1), and (c(3)

10 , c
(3)
01 ) = (4, 4) for h0 = 0, h1 = 1, p(i)

0 = 0.5 and σ = 1.

where dsi/dti < 0. Note that (9) always has a solution si unless for both j 6= i,
sj = ∞ or sj = −∞. In that case, the global decision will always be h0 or h1,
respectively, regardless of the decision made by Agent i, which means Agent i does
not play any role in the decision making.

The particular Nash equilibrium computed from (9) is not Pareto optimal, due to
conflict. In Fig. 2, the operating point of the Nash equilibrium is located in the interior
of the operating region. The agents can improve their performance by changing their
decision rules such that any point to the lower left region is achieved. Since agents
have different Bayes costs, however, they will not agree on how to optimize their
decision rules and thus incur deadweight loss.

In the sequel, we assume that agents adopt Nash equilibrium decision rules.

4 Quantization of Prior Probabilities

Quantizer design can also be described in strategic form: Game II.
There are 2K−1 degrees of freedom in a strategy when agents use K-point quan-

tizers: K for representation points {a(i)
k }Kk=1 and K − 1 for cell boundaries {b(i)k }

K−1
k=1 .

There is high computational complexity for K ≥ 2 because each variable depends on
some others. Consider examples of 2-point quantizers in Fig. 3. In the first example
in Fig. 3a, conditional MBRs of Agent 1 within R1 and R2 are given by

E[R̃1]R1 =
∫ b

(1)
1

0

(
c
(1)
10 p0P̄

I
E(a(1)

1 , a
(2)
1 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄ II

E (a(1)
1 , a

(2)
1 , a

(3)
1 )
)
fP0(p0) dp0, (11)

E[R̃1]R2 =
∫ b

(2)
1

b
(1)
1

(
c
(1)
10 p0P̄

I
E(a(1)

2 , a
(2)
1 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄ II

E (a(1)
2 , a

(2)
1 , a

(3)
1 )
)
fP0(p0) dp0

+
∫ b

(3)
1

b
(2)
1

(
c
(1)
10 p0P̄

I
E(a(1)

2 , a
(2)
2 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄ II

E (a(1)
2 , a

(2)
2 , a

(3)
1 )
)
fP0(p0) dp0

+
∫ 1

b
(3)
1

(
c
(1)
10 p0P̄

I
E(a(1)

2 , a
(2)
2 , a

(3)
2 ) + c

(1)
01 (1− p0)P̄ II

E (a(1)
2 , a

(2)
2 , a

(3)
2 )
)
fP0(p0) dp0,

(12)
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Fig. 3: Two examples of possible quantizers that agents use.

where P̄ I
E(x, y, z) and P̄ II

E (x, y, z) denote error probabilities when Agents 1, 2, and 3

use quantized prior probabilities x, y, and z. The dependency between a
(1)
1 and a

(1)
2

via a
(2)
1 and a

(3)
1 is revealed in (11) and (12). The dependency prevents agents from

determining each variable separately.
Furthermore, the dependency varies with quantizer partition structure. In Fig. 3b,

a
(1)
1 affects a

(1)
2 via a

(2)
1 , a

(2)
2 , and a

(3)
1 . To find the best set of quantizers, we need to find

the optimal set of quantizers for each of (3(K−1))!
(K−1)!(K−1)!(K−1)!

possible partition structures
and compare them to choose the best one.

The dependency among representation points of different partitions occurs because
quantizers used by agents have different partitions. If the quantizers have the same
partitions, then each partition will be independent of other partitions and we can
consider only dependency among agents.

Suppose all quantizers have the same partition, with fixed endpoints

0 = b0 < b1 < b2 < · · · < bK−1 < bK = 1.

The problem of designing quantizers reduces to the problem of choosing representation
points, Game III.

Defining εIk =
∫
Rk
p0fP0(p0) dp0 and εIIk =

∫
Rk

(1 − p0)fP0(p0) dp0, a Nash equilib-

rium (a
(1)∗
k , a

(2)∗
k , a

(3)∗
k ) in Game III is given by

∂vik(a
(1)
k , a

(2)
k , a

(3)
k )

∂a
(i)
k

= −c(i)10 ε
I
k

∂P I
E

∂a
(i)
k

− c(i)01 ε
II
k

∂P II
E

∂a
(i)
k

= 0, i = 1, 2, 3. (13)

It is difficult to solve (13) because P I
E and P II

E are indirectly dependent on a
(i)
k . They

are connected by the decision rule (s∗1, s
∗
2, s
∗
3), which is a Nash equilibrium in Game I

for p
(i)
0 = a

(i)
k , and that Nash equilibrium does not have a closed form.

There is an alternate way to find an equilibrium. For all objects that are cate-
gorized into Rk, agents recognize their prior probabilities as a

(i)
k and apply the same

decision rule to them. Thus, the agents can directly choose their decision rules to
apply to the objects, skipping the process of choosing representation points. This is
written as Game IV.

Theorem 5. There exists a Nash equilibrium in Game IV. As a result of Game IV,
agents will have quantizers with the same representation points

a
(i)
k = E[P0 |P0 ∈ Rk]. (14)
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Proof. We use the following payoff function instead of that in the definition of Game IV
because scaling does not affect the choice of strategies:

v̂ik(λ
(1)
k , λ

(2)
k , λ

(3)
k )

εIk + εIIk
= −c(i)10

(
εIk

εIk + εIIk

)
P I

E − c
(i)
01

(
1− εIk

εIk + εIIk

)
P II

E . (15)

Then Game I and Game IV are the same if p
(i)
0 = εIk/(ε

I
k + εIIk ), for i = 1, 2, 3.

Therefore, choosing decision rules directly is equivalent to quantizing p0 ∈ Rk to
εIk/(ε

I
k + εIIk ). Note that by definition, εIk/(ε

I
k + εIIk ) is the average of P0 conditioned on

P0 ∈ Rk, which gives (14).
Game IV becomes Game I with (14). Therefore, Game IV has a Nash equilibrium

by Theorem 4.

Working directly with decision thresholds rather than with representation points,
a Nash equilibrium (λ

(1)∗
k , λ

(2)∗
k , λ

(3)∗
k ) is found by solving

∂v̂ik(λ
(1)
k , λ

(2)
k , λ

(3)
k )

∂λ
(i)
k

= 0, i = 1, 2, 3. (16)

Games III and IV look similar but they have different Nash equilibria. Game III
hides the process of determining decision thresholds (s∗1, s

∗
2, s
∗
3) by Game I for

(p
(1)
0 , p

(2)
0 , p

(3)
0 ) = (a

(1)
k , a

(2)
k , a

(3)
k ). Since not only s∗1 but also s∗2 and s∗3 depend on a

(1)
k ,

∂vik(a
(1)
k , a

(2)
k , a

(3)
k )

∂a
(i)
k

=
3∑

j=1

∂λ
(j)
k

∂a
(i)
k

∂v̂ik(λ
(1)
k , λ

(2)
k , λ

(3)
k )

∂λ
(j)
k

, i = 1, 2, 3.

Therefore, a Nash equilibrium (a
(1)∗
k , a

(2)∗
k , a

(3)∗
k ) of Game III does not necessarily

lead to decision thresholds (λ
(1)∗
k , λ

(2)∗
k , λ

(3)∗
k ) that satisfy (16). Conversely, a Nash

equilibrium (λ
(1)∗
k , λ

(2)∗
k , λ

(3)∗
k ) of Game IV is not the decision rules for (p

(1)
0 , p

(2)
0 , p

(3)
0 ) =

(a
(1)∗
k , a

(2)∗
k , a

(3)∗
k ) that satisfy (13). The result in Fig. 4 shows that Games III and IV

end up with different sets of quantizers. Note that the Bayes risks of agents who
use quantized prior probabilities can be lower than those of agents who use true
prior probabilities because decision rules of the latter agents are not optimal, as we
discussed in Section 3.

5 Conclusions

This paper explores group decision-making problems under quantized prior prob-
abilities. Agents who have different cost functions encounter conflicts of interest in
decision making (Game I); the conflicts result in a Nash equilibrium that is not Pareto
optimal. The agents also face conflicts of interest in quantizing prior probabilities.
The conflicts lead to a quantizer design game (Game II) which is completely novel in
the quantization literature. The complexity of the game is too high to compute an
equilibrium due to dependence on the partition structure, however, we apply a reason-
able simplification that the agents use identical categories. Then we have Games III
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Fig. 4: A result of designing quantizers for uniformly distributed P0 and given a set of
endpoints {0, 0.25, 0.5, 0.75, 1}. (a) The resulting Bayes risks. (b) Quantizers obtained by
Game III. (c) Quantizers obtained by Game IV. Endpoints and representation points of
partitions are marked by + and ×, respectively.

and IV; both give equilibria in each category but are different in some sense. Game III
designs representation points of quantizers, which affect decision making indirectly
through the process of choosing decision rules (Game I). On the other hand, Game IV
determines decision rules of agents for prior probabilities in each partition, which di-
rectly control the decision making. Interestingly, the Nash equilibrium of the latter
is exactly the single-agent centroid condition. That is, each agent locally optimizes
quantization after the coordination of partition regions is imposed.
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Strategic Form Game Formulations

All games have players I = {1, 2, 3}.

Game I: Determination of decision rules
• The strategy of Agent i ∈ I is decision threshold si ∈ R.

• The payoff function of Agent i ∈ I is ui = −R̄i = −c(i)10p
(i)
0 P I

E − c
(i)
01 (1 − p(i)

0 )P II
E ,

which is the negative perceived Bayes risk.

Game Î: Determination of decision rules in terms of the probability of error

• The strategy of Agent i ∈ I is the Type I error probability ti ∈ [0, 1]. (This is
related to the decision threshold through ti = P I

e,i(si).)

• The payoff function of Agent i ∈ I is ûi(t1, t2, t3) = ui(s1, s2, s3) = −R̄i =
−c(i)10p

(i)
0 P I

E − c
(i)
01 (1− p(i)

0 )P II
E , which is the negative perceived Bayes risk.

Game II: Determination of quantizers for prior probabilities

• The strategy of Agent i ∈ I is si = (a(i)
1 , . . . , a

(i)
K , b

(i)
1 , . . . , b

(i)
K−1), which represents a

quantizer with representation point a(i)
k for kth region Rk = (b(i)k−1, b

(i)
k ] ⊂ [0, 1].

• The payoff function of Agent i ∈ I is vi = −E[R̃i] = −
∫
R̃ifP0(p0) dp0, which is the

negative mean Bayes risk.

Game III: Determination of representation points for fixed category Rk = (bk−1, bk]

• The strategy of Agent i ∈ I is representation point a(i)
k ∈ Rk = (bk−1, bk].

• The payoff function of Agent i ∈ I is vik(a(1)
k , a

(2)
k , a

(3)
k ) = −c(i)10 ε

I
kP

I
E − c

(i)
01 ε

II
k P

II
E ,

which is the negative mean Bayes risk.

Game IV: Determination of decision rules for fixed category Rk = (bk−1, bk]

• The strategy of Agent i ∈ I is λ(i)
k , which is a decision threshold for p0 ∈ Rk.

• The payoff function of Agent i ∈ I is v̂ik(λ(1)
k , λ

(2)
k , λ

(3)
k ) = −c(i)10 ε

I
kP

I
E − c

(i)
01 ε

II
k P

II
E ,

which is the negative mean Bayes risk.
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