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Abstract

This paper considers group decision making by imperfect agents that only know
quantized prior probabilities for use in Bayesian likelihood ratio tests. Global de-
cisions are made by information fusion of local decisions, but information sharing
among agents before local decision making is forbidden. The quantization scheme
of the agents is investigated so as to achieve the minimum mean Bayes risk; op-
timal quantizers are designed by a novel extension to the Lloyd-Max algorithm.
Diversity in the individual agents’ quantizers leads to optimal performance.

1 Introduction

Consider a binary decision problem. The Bayes rational decision making strategy is to perform the
likelihood ratio test (LRT). Decision makers first compute the likelihood ratio of states of an object
based on an observation. Then they make a decision by comparing the ratio to a decision threshold
determined by the prior probability of the state and their costs. Not only do LRTs minimize Bayes
risk, but also psychology experiments suggest that human decision makers employ them [1, 2].

Optimal LRTs require precise knowledge of the prior probabilities of object states. Much previous
research considers the prior probability to be a constant known to decision makers. However, de-
cision makers may face a great variety of objects. For example, soccer referees handle more than
twenty-two players in one game and salespeople at stores observe hundreds of customers in one
day. This is problematic because players have different prior probabilities of committing fouls and
customers have different prior probabilities of making purchases.

Decision makers should use different thresholds uniquely optimized to different objects of decision
making, such as players or customers. Computing thresholds and then remembering them is an
information processing burden, especially for human decision makers that often resort to categorical
and coarse thinking [3, 4]. Human decision makers can afford around seven categories without
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getting confused [5]. Thus, we model decision makers as grouping similar objects together and
treating them identically by applying a single decision threshold. By classifying all objects into a
small number of categories, decision makers can handle infinitely many objects; however decision
makers consequently have limited threshold precision, a type of bounded rationality.

In the context of LRTs, categorization of objects is equivalent to quantization of their prior probabil-
ities. With this idea, we move from considering a single object with a constant prior probability to
considering an ensemble of objects with performance averaged over the distribution of prior proba-
bilities.

Consider a decision-making group of N agents that chooses between two hypotheses h0 and h1.
Agents make local hard decisions without knowing other agents’ decisions. Local decisions are
combined by a fusion center to produce a global decision. The fusion center has a fixed symmetric
fusion rule of the L-out-of-N form whereby the global decision is h1 when L or more agents choose
h1. The symmetric fusion rule implies that all agents have an equal voice. Due to information-
processing constraints, agents must quantize prior probabilities to one of K values. Our interest
here is to design quantizers that lead to the smallest Bayes risk on average.

The study of quantization of prior probabilities originates from [6], which focuses on the minimum
mean Bayes risk error (MBRE) quantizer of a single agent. Maximum Bayes risk error is considered
in [7, 8]. Recent results and economic implications are reviewed in [9].

We have previously considered a distributed hypothesis testing problem with similar imperfect
agents, but where each agent is assumed to know other agents’ quantized prior probabilities, whether
they have a common interest [8, 10] or whether they have conflicts of interest [11]. The assumption
in these prior papers enables agents to optimize decision rules so as to minimize Bayes risk within
either the collaboration or the conflict system.

Information about other agents’ quantizers should not be taken for granted; it requires a coordination
mechanism built on communication channels. Such communication may not be possible in human
group decision-making scenarios due to geographic separation, desire to remain clandestine, or if N
is too large. In engineering applications, memory or power constraints may prevent detectors from
exchanging any information with neighboring detectors. In these scenarios, each agent has to make
decisions based on its information—its quantized prior probability and observed signal—only. In
this paper, agents do not know how other agents quantize prior probabilities.

Lack of knowledge about others makes it impossible for agents to collaborate by sharing a common
goal. Hence, their quantizers need to be cleverly designed so that local decision making becomes
harmonious with respect to the global mean Bayes risk (MBR), the distortion measure for quantiza-
tion. A modified Lloyd-Max algorithm can design MBR-optimal quantizers. It is demonstrated that
diversity among agents in quantization of prior probabilities can be helpful to improve the quality of
group decision making.

The group decision-making model we consider is described in Section 2. In Section 3, we analyze
the mean Bayes risk in terms of endpoints and representation points of quantizers. Then we propose
an algorithm to design optimal quantizers. An example of optimal quantizers obtained from our
algorithm is presented in Section 4. Section 5 concludes the paper.

2 Distributed Decision-Making Model with Imperfect Agents

We consider a team of N agents and an object in one of two binary states H ∈ {h0, h1}. The prior
probability of the object being in state h0, p0 = P{H = h0}, is a realization of a random variable
P0 drawn from its distribution fP0

. Since the prior probability of being in state h1 is determined by
p0 through p1 = 1 − p0, by the term prior probability we simply mean p0. The prior probability
is important for good decision making but Agent i only knows its quantized value of the prior
probability, qi(p0).

Agent i makes a noisy state measurement Yi with likelihood functions fYi |H(yi |h0) and
fYi |H(yi |h1). Agent i then makes a hard decision Ĥi whether the object is in state h0 or in h1
based on the quantized prior probability qi(p0) and the observation Yi. Its decision is transferred
to a fusion center, which makes a global decision Ĥ as h1 if it receives h1 from L or more agents
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Figure 1: A set of quantizers q1, . . . , qN categorizes cells C1, . . . , CNCell
.

and as h0 otherwise. The agents incur cost c10 for a false alarm (Ĥ = h1 when H = h0) and c01
for a missed detection (Ĥ = h0 when H = h1); costs c10 and c01 are common for all agents. For
simplicity, correct global decisions incur zero cost.

Agent i optimizes its decision rule as if it is the only decision maker because it does not have any
information about other agents:

fYi |H(yi |h1)
fYi |H(yi |h0)

Ĥi(y)=h1

R
Ĥi(y)=h0

c10qi(p0)

c01(1− qi(p0))
. (1)

This decision rule yields an error with probability P I
e,i = P{Ĥi = h1 |H = h0} when H = h0 and

with probability P II
e,i = P{Ĥi = h0 |H = h1} when H = h1.

The agents cannot collaborate to design a decision rule, but they still fuse their decisions to make
a global decision. By using L-out-of-N fusion rules, the global decision is wrong if L or more
agents send h1 when H = h0 or if N − L + 1 or more agents send h0 when H = h1. These error
probabilities, P I

E and P II
E , are used in computing the Bayes risk

R = c10p0P
I
E + c01(1− p0)P II

E .

3 Optimal Quantization of Prior Probabilities

Agent i has quantizer qi for prior probability p0, which hasK cells [0, b(i)1 ), [b
(i)
1 , b

(i)
2 ), . . . , [b

(i)
K−1, 1]

with corresponding representation points a(i)1 , a
(i)
2 , . . . , a

(i)
K , where a(i)k = qi(p0) for all p0 ∈

[b
(i)
k−1, b

(i)
k ). We define a set of endpoints {0, b1, b2, . . . , bNCell−1, 1}, 0 < b1 < b2 < · · · <

bNCell−1 < 1, as the union of endpoints of all quantizers q1, . . . , qN and define cells Ck as the inter-
vals [bk−1, bk), whereNCell is the number of the cells Ck. The maximum number ofNCell isN(K−
1) + 1. For cell Ck, we define a vector of representation points ak = (q1(p0), q2(p0), . . . , qN (p0)),
where p0 ∈ Ck, see Fig. 1. The necessary conditions of representation points and endpoints for local
optimality of the quantizers are now derived.

3.1 Representation points

Quantization performance is measured by Bayes risk averaged over P0:

E[R] =
∫ 1

0

(
c10p0P

I
E(q1(p0), . . . , qN (p0)) + c01(1− p0)P II

E (q1(p0), . . . , qN (p0))
)
fP0(p0) dp0.

Within cell Ck, since (q1(p0), . . . , qN (p0)) = ak is constant, the mean Bayes risk (MBR) is

E[R]k =

∫
Ck

(
c10p0P

I
E(ak) + c01(1− p0)P II

E (ak)
)
fP0

(p0) dp0 = c10π
I
kP

I
E(ak)+c01π

II
k P

II
E (ak),

where πI
k =

∫
Ck p0fP0(p0) dp0 and πII

k =
∫
Ck(1− p0)fP0(p0) dp0 are constants with respect to ak.
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Let us fix all representation points except that of qz , akz , in Ck. The mean Bayes risk in Ck can be
written as E[R]k = α1P

I
e,z+α2P

II
e,z+α3, where α1, α2, and α3 are positive constants. Since P II

e,z is
strictly convex in the P I

e,z and vice versa [12], E[R]k is strictly convex in P I
e,z(akz) and P II

e,z(akz).

The convexity is preserved in the entire MBR E[R] = E[R]1 + . . . + E[R]NCell
because the MBR

in each cell is strictly convex in P I
e,z(akz) and P II

e,z(akz) or constant. Therefore, the value of akz
that minimizes the MBR exists uniquely for any 1 ≤ k ≤ NCell and 1 ≤ z ≤ N . The value of akz
should be the minimum point.

3.2 Endpoints

Let us fix all representation points and endpoints except an endpoint bj . The endpoint bj only affects
two adjacent cells Cj and Cj+1, whose boundary is bj .

E[R]j + E[R]j+1 =

∫ bj

bj−1

(
c10p0P

I
E(aj) + c01(1− p0)P II

E (aj)
)
fP0

(p0) dp0

+

∫ bj+1

bj

(
c10p0P

I
E(aj+1) + c01(1− p0)P II

E (aj+1)
)
fP0(p0) dp0

Taking the derivative of the MBR, we have

d

dbj
(E[R]) =

d

dbj
(E[R]j + E[R]j+1)

=
(
c10bj(P

I
E(aj)− P I

E(aj+1))− c01(1− bj)(P II
E (aj+1)− P II

E (aj))
)
fP0(bj) (2)

If we compare each entry of two vectors aj and aj+1, at least one entry has different values. For any
entry that has a different value, aj+1 has a greater value than aj does because the former represents
larger P0. A bigger representation point leads to a smaller local false alarm probability. Thus,
P I
E(aj+1) < P I

E(aj). On the contrary, P II
E (aj+1) > P II

E (aj). Let β1 = P I
E(aj) − P I

E(aj+1) > 0
and β2 = P II

E (aj+1)− P II
E (aj) > 0.

d

dbj
(E[R]) = ((c10β1 + c01β2)bj − c01β2)fP0

(bj). (3)

This first derivative is zero at only one or no point if fP0
(p0) > 0,∀p0 ∈ [0, 1]. This means that

E[R] has only one or zero extreme point for bj ∈ (bj−1, bj+1): if it has one extreme point, then it is
the minimum point. Otherwise, either bj−1 or bj+1 is the minimum point. The value of bj should
be the minimum point.

3.3 Algorithm

The iterative Lloyd-Max algorithm is applied to find an optimal quantizer in a single-agent decision-
making model [6]. In this problem, however, the algorithm needs to be modified so as to optimizeN
different quantizers together. The key to the Lloyd-Max algorithm is alternating iterations of finding
optimal endpoints while fixing representation points and finding optimal representation points while
fixing endpoints.

In our group decision-making model, optimization steps are complicated because of dependency
among variables; a change of one representation point also changes optimal values of other rep-
resentation points. Hence, representation points are repeatedly adjusted until every representation
point is optimal for the other representation points and given endpoints. Likewise for optimization
of endpoints.

We use the following alternating nested-iteration optimization algorithm:

1. Assign initial values to endpoints and representation points.
2. (E-Step) Optimize endpoints with representation points fixed.

(a) From the first endpoint variable b(1)1 to the last one b(N)
K−1, successively optimize each

variable.
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Figure 2: Bayes risk for uniformly distributed P0 and K = 2. (a) An optimal set of quantizers (cell
endpoints as +’s and representation points as ◦’s) and the resulting Bayes risk. (b) The performance
loss in terms of Bayes risk due to the quantization of prior probabilities.

(b) Repeat step (a) until all endpoints become stable, i.e., a new iteration does not change
any endpoints.

3. (R-Step) Optimize representation points with endpoints fixed.

(a) From the first representation point variable a(1)1 to the last one a(N)
K−1, successively

optimize each variable.
(b) Repeat step (a) until all representation points become stable.

4. Iterate E-Step and R-Step until all endpoints and representation points become stable.

4 Example

As an example, let us consider the following measurement model for N = 3 agents:

Yi = sm +Wi, i = 1, . . . , N, m ∈ {0, 1}, (4)

where s0 = 0, s1 = 1, and Wi is a zero-mean Gaussian random variable with variance σ2 = 1. The
Bayes costs are c10 = c01 = 1. The local decisions are fused by MAJORITY rule (2-out-of-3 rule).

Fig. 2a shows Bayes risk when the agents can distinguish 2 categories, i.e., they use 2-level quan-
tizers. The Bayes risk (solid piecewise line) is compared to the Bayes risk when the agents can
distinguish any prior probability exactly and collaborate with others (dashed curve) like in [10],
which is the best performance that the agents can achieve. The excess Bayes risk, the difference
between the Bayes risks with and without quantization, is depicted in Fig. 2b. It shows the perfor-
mance loss due to quantized prior probabilities compared to the best performance. For comparison,
Fig. 2b also shows the performance loss when the agents are forced to use identical quantizers (gray
dashed curve) and the performance loss when the agents use diverse quantizers and can collaborate
by sharing their quantized values (dash-dot curve). The latter is the best performance that the agents
can achieve with quantized prior probabilities [8, 10].

The Bayes risks when the agents use 4-level quantizers are depicted in Fig. 3.

5 Conclusion

We have discussed decision making by multiple agents that have imperfect perception ability. There
are two factors that worsen the quality of global decisions. First, they perform local testing based on
quantized prior probabilities. Second, they do not know how other agents quantize prior probabili-
ties. We have determined the effect of these factors on Bayes risk in decision making.

To minimize the negative influence from these factors, we have defined mean Bayes risk as the
optimization criterion for prior-probability quantizers. The Lloyd-Max algorithm is modified to an
algorithm with double-iteration structure to design optimal quantizers. Using the algorithm, we
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Figure 3: Bayes risk for uniformly distributed P0 and K = 4. (a) An optimal set of quantizers (cell
endpoints as +’s and representation points as ◦’s) and the resulting Bayes risk. (b) The performance
loss in terms of Bayes risk due to the quantization of prior probabilities.

have provided an example of additive white Gaussian noise model. The result shows that the MBR
when the agents use diverse quantizers is lower than the MBR when they use identical quantizers.
It is reasonable because NCell (= N(K − 1) + 1) when they use diverse quantizers is greater than
NCell (= K) when they use identical quantizers. Therefore, we can conclude that the diversity
among agents is still helpful even though they cannot fully utilize the diversity because of lack of
knowledge about other agents.
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