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Abstract—Certain information-processing limitations in hy-
pothesis testing can be modeled as quantization of prior proba-
bilities. While quantization hurts performance, a team of decision
makers can minimize their performance loss by adopting diverse
quantizers and collaborating on the design of their decision rules.
In this paper, the benefits of diversity and collaboration in binary
hypothesis testing are discussed. A set of N diverse K-level
quantizers used by a team of N collaborating decision makers
is as powerful as a single (N(K − 1) + 1)-level quantizer used
by them all. If the decision makers do not collaborate, a set of
diverse quantizers is less powerful, but it is still better than a set
of identical quantizers.

I. INTRODUCTION

Quantization of prior probabilities is a novel restriction on
decision makers (DMs) first introduced in [1]. The need for
quantization arises from a model for an information-processing
limitation. When faced with an ensemble of decision making
(hypothesis testing) problems with different prior probability
distributions, it is ideal to vary the decision rule—perhaps
even having a different decision rule for each problem in
the ensemble. This may be impractical, especially when the
ensemble is large; for example, human DMs reportedly think
with around seven categories without getting confused [2], [3].
Categorically-thinking DMs apply one decision rule for each
category of problems. For binary decision problems, categories
are formed by quantization of a scalar prior probability.

Quantization of prior probabilities leads to suboptimal de-
cision making, but quantizers for prior probabilities can be
designed to minimize the cost of wrong decisions due to quan-
tization. Here we evaluate decision making on the ensemble
with the mean Bayes risk and the effect of quantization by
the mean Bayes risk error (MBRE), which is the mean excess
of the Bayes risk caused by quantization. Other criteria are
possible, such as minimax Bayes risk [4]

Here we study categorically-thinking DMs in a distributed
decision-making system described by voting and integrating.
Every DM has an equal vote on binary candidates, and
all the votes are integrated by a fixed fusion rule such as
MAJORITY rule. The quantization of prior probabilities raises
two interesting issues: collaboration and diversity.

DMs that share one cost function can collaborate to op-
timize everyone’s decision rules for global objectives [5],
[6], whereas DMs that have individual cost functions would
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have conflict in optimizing decision rules for individual ob-
jectives [7]. Even if DMs share one cost function, they may
not collaborate on decision making due to lack of communica-
tion [8]. Optimal quantizers have different properties in each
of these cases, and consequently different design algorithms
and performance.

Diversity is defined as DMs using different categorization
(quantization of prior probabilities). Diverse quantization is
compared to identical quantization in [6], [8]. It is perhaps
immediate that DMs with differing objectives would optimally
employ different quantizers. Even when DMs have a common
cost function, diversity is useful in the sense that a set of
diverse quantizers is tantamount to having finer quantization
cells than a set of identical quantizers.

A group of DMs produces decisions of different quality
depending on whether they collaborate and whether they have
diverse quantizers. This paper summarizes extant results in this
area. Section II describes the basic decision making model.
Section III presents several quantization models and discusses
optimal decision rules and quantizers. Section IV shows an
example to compare them, and Section V concludes.

II. BASIC DECISION MAKING MODEL

Consider an ensemble of objects that are independently
in state h0 or h1 with individual prior probabilities. One
object is randomly chosen to be a subject of decision making,
and its state is denoted by H ∈ {h0, h1}. The object is
distinguishable from others by its prior probability of being in
state h0, denoted by p0 = P{H = h0}. Because of the random
selection from the ensemble of objects, we consider p0 to be
a realization of a random variable P0 with a density fP0 .

The distributed decision making system under consideration
consists of N DMs and one fusion center. Each DM has
two kinds of imperfect information. DM i receives a real-
ization yi of a random variable Yi, where Y1, Y2, . . . , YN are
conditionally independent given the state hm, with identical
likelihoods fY ∣H(yi ∣hm). In addition, DM i knows quantized
prior probability qi(p0). Using yi and qi(p0), DM i makes a
hard decision Ĥi ∈ {h0, h1} and sends it to the fusion center.
The fusion center makes a global decision based only on the
local decisions: Ĥ = h1 if it receives h1 from L or more DMs
and Ĥ = h0 otherwise (L-out-of-N fusion rule).

The system incurs cost c10 for a false alarm (Ĥ = h1 when
H = h0) and c01 for a missed detection (Ĥ = h0 when H = h1).
For simplicity, correct global decisions incur zero cost. Note
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that there is a single common cost for the system decision;
there are no individual costs for the DMs.

Given P0 = p0, the system has the Bayes risk

R(p0) = c10p0P I
E(p0) + c01(1 − p0)P II

E (p0),

where P I
E(p0) and P II

E (p0) denote the probabilities of false
alarms and missed detections of the system. They are deter-
mined by each DM’s probabilities of false alarms and missed
detections, P I

e,i(p0) and P II
e,i(p0), in an inclusion-exclusion

manner:

P I
E =

N

∑
n=L

∑
I⊆[N]

∣I∣=n

∏
i∈I

P I
e,i ∏

j∈[N]∖I

(1 − P I
e,j) , (1)

P II
E =

N

∑
n=N−L+1

∑
I⊆[N]

∣I∣=n

∏
i∈I

P II
e,i ∏

j∈[N]∖I

(1 − P II
e,j) , (2)

where [N] denotes the set {1, 2, . . . , N}.
The average performance of the decision making system is

measured by the mean Bayes risk

E[R] = ∫
1

0
R(p0)fP0(p0)dp0. (3)

The quantizers of interest are functional scalar quantizers [9];
the distortion measure is not the error of the prior probability
but the error of the mean Bayes risk.

III. QUANTIZATION MODELS

In this section, we introduce several variations on the basic
decision making model. These are compared quantitatively in
Section IV.

Purely to serve as a baseline for comparison—i.e., not
falling within the model of the previous section—suppose the
DMs communicate their observations {yi} (rather than only
hard decisions {Ĥi}) perfectly to the fusion center, and the
fusion center has perfect knowledge of the prior probability p0.
Then the Bayes risk is minimized by the following likelihood
ratio test:

fY1,...,YN ∣H(y1, . . . , yN ∣1)
fY1,...,YN ∣H(y1, . . . , YN ∣0)

Ĥ(y)=1

⋛
Ĥ(y)=0

c10p0
c01(1 − p0)

. (4)

In the following, we consider first in Section III-A the
restriction of DM-to-fusion center communication to hard
decisions; then, in Section III-B, the restriction of the fusion
center to use a quantized prior probability. Sections III-C–III-E
study variations on the model in Section II.

A. Communication Constraints: Hard Decisions

DMs are connected to the fusion center with a channel of
1-bit capacity. Since the fusion center can only receive hard
decisions from the DMs, the fusion center has a simple fixed
fusion rule: the L-out-of-N rule. For example, it uses the
MAJORITY rule (⌈N+1

2
⌉-out-of-N rule) or the OR rule (1-out-

of-N rule). The DMs are informed of the fusion rule and adjust

their local decision rules to optimize the global objective:

fYa∣H(ya ∣h1)
fYa∣H(ya ∣h0)

Ĥa(ya)=h1

⋛
Ĥa(ya)=h0

(5)

p0c10 ∑
I⊆[N]∖{a}
∣I∣=L−1

∏
i∈I

P I
e,i ∏

j∈[N]∖(I∪{a})

(1 − P I
e,j)

(1 − p0)c01 ∑
I⊆[N]∖{a}
∣I∣=N−L

∏
i∈I

P II
e,i ∏

j∈[N]∖(I∪{a})

(1 − P II
e,j)

.

The details are explained in [10].

B. Memory Constraints: Quantized Priors

The optimal decision rule at the fusion center is (4), but
the DMs know inaccurate prior probabilities qi(p0). A fusion
center that does not know p0 must replace p0 by ∑i qi(p0)/N
in (4), which makes the decision rule suboptimal.

C. Hard Decisions and Identical Local Quantizers

Now consider DMs that have to make hard decisions before
communicating with a fusion center, as in Section III-A, and
in addition use identically quantized prior probabilities. Even
though they know the fusion rule, their decision rules that
replace p0 in (5) by qa(p0) are worse than (5) because of
inexact prior probabilities.

All DMs have the same decision rule because
they have identical K-level quantizers q1(p0) = ⋯ =
qN(p0) = q(p0), for all p0, whose quantization cells are
[0, b1), [b1, b2), . . . , [bK−1,1] and representation points are
a1, . . . , aK . The optimal K-level quantizer is

q∗ = argmin
q
∫

1

0
(c10p0P I

E(q(p0)) + c01(1 − p0)P II
E (q(p0)))

× fP0(p0)dp0

= argmin
aK
1 ,bK−11

K

∑
k=1

(c10P I
E(ak)∫

bk

bk−1
p0fP0(p0)dp0

+c01P II
E (ak)∫

bk

bk−1
(1 − p0)fP0(p0)dp0) .

Since the total distortion is the sum of the distortion in each
cell, the optimization of representation points in each cell can
be performed separately.

In the case that the observations are of the state corrupted by
conditionally-independent additive noise, this model is equiv-
alent with respect to Bayes risk to a single-DM model with
additive noise V , which is the Lth largest noise Y(L) among
Y1, . . . , YN [6, Theorem 3]. This equivalence guarantees us
that the optimization of the quantizer performed in the single-
DM model leads to the same result as that performed in the N -
DM model [6, Theorem 4]. The nearest neighbor and centroid
conditions, which are necessary for optimal quantizers in the
single-DM model, are given in [1], and the optimal quantizer
can be obtained by the iterative Lloyd–Max algorithm.
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Fig. 1. A set of quantizers q1, . . . , qN categorizes cells C1, . . . ,CNcell
.

D. Hard Decisions and Diverse Local Quantizers

The system has the same constraints as in Section III-C
but DMs quantize prior probabilities differently so as to take
advantage of diversity. Intuitively, a set of diverse quan-
tizers should be better than a set of identical quantizers.
Fig. 1 depicts an example of N diverse quantizers q1, . . . , qN ,
which have K cells [0, b(i)1 ), [b(i)1 , b

(i)
2 ), . . . , [b(i)K−1,1] with

corresponding representation points a
(i)
1 , a

(i)
2 , . . . , a

(i)
K , i =

1, . . . ,N . Then the entire system has Ncell cells C1, . . . ,CNcell

to quantize prior probabilities, where a set of endpoints
{0, β1, β2, . . . , βNcell−1,1}, 0 < β1 < β2 < ⋯ < βNcell−1 < 1,
is the union of endpoints of all quantizers q1, . . . , qN and
Ck = [βk−1, βk). Since the maximum number of Ncell is
N(K − 1)+ 1, which is bigger than K for N > 1, this system
can quantize prior probabilities with less errors than that in
Section III-C.

In this model, the decision rules are based on differently
quantized prior probabilities. The optimal quantizers are

q∗1 , . . . , q
∗

N

= argmin
q1,...,qN

∫
1

0
(c10p0P I

E(q1(p0), . . . , qN(p0))

+c01(1 − p0)P II
E (q1(p0), . . . , qN(p0))) fP0(p0)dp0

= argmin
aK
1 ,bK−11

K

∑
k=1

(c10P I
E(αk)∫

bk

bk−1
p0fP0(p0)dp0

+c01P II
E (αk)∫

bk

bk−1
(1 − p0)fP0(p0)dp0) .

Unlike in Section III-C, we cannot separately perform the opti-
mization in each cell because αk, the vectors of representation
points of the quantizers within the cell Ck, are not independent.
In Fig. 1, for example, the second elements of α1 and α2

should be the same because they both reflect a(2)1 . Thus,
we extend the Lloyd–Max algorithm to optimize N diverse
quantizers. The nearest neighbor and centroid conditions for
optimal quantizers and the algorithm are described in [8].
Because of iterations within iterations, the algorithm is more
complex than the Lloyd–Max algorithm.

E. Hard Decisions, Diverse Local Quantizers, and Collabo-
ration

To make better use of the diversity in Section III-D, DMs
can share their quantized values of prior probabilities. In
Section III-D, using the set of diverse K-level quantizers is
not as good as using a set of identical Ncell-level quantizers
because the decision makers do not know others’ quantization
of prior probabilities. If they know others’ quantized values
of prior probability, then all decision makers can use better
decision rules, which replace p0 in (5) by 1

N ∑
N
i=1 qi(p0).

Sharing the quantized prior probabilities for better decision
rules is what we call collaboration.

Under collaboration, there is an equivalence between diverse
quantization and identical quantization. Using a set of diverse
quantizers q1, . . . , qN is as good as using identical quantizer
qS(⋅) = 1

N ∑
N
i=1 qi(⋅) [6, Theorem 5]. Hence, an optimal set

of diverse K-level quantizers is equivalent to an optimal
(N(K−1)+1)-level quantizer identically used by N decision
makers [6, Theorem 6].

Even though decision makers use diverse quantizers, the
design of optimal quantizers in this model is much easier
than in the model of Section III-D. The equivalence allows
us to design an optimal (N(K − 1) + 1)-level quantizer qS
first and then disassemble the quantizer into N diverse K-
level quantizers that satisfy qS(⋅) = 1

N ∑
N
i=1 qi(⋅). The design

of qS follows the Lloyd–Max algorithm like in Section III-C,
and the disassembly algorithm is introduced in [5], [6].

IV. BENEFITS

As an example, let us consider the following measurement
model for N = 3 DMs:

Yi = sm +Wi, i = 1, . . . ,N, m ∈ {0,1}, (6)

where s0 = 0 when H = h0, s1 = 1 when H = h1, and Wi are
iid zero-mean Gaussian random variable with unit variance.
The prior probability p0 is uniformly distributed within [0,1].
The Bayes costs of the decision are c10 = c01 = 1. Local
decisions are fused by MAJORITY.

Fig. 2 depicts the performance of the decision making
systems as p0 is varied with K = 3 levels for quantizers.
Performance is shown as excess Bayes risk with respect to
the baseline system using (4). Comparing the three kinds of
quantizers for prior probabilities, which are shown in Fig. 3,
diverse quantizers yield smaller Bayes risk than identical
quantizers. Also, the diverse quantizers are more useful when
the decision makers collaborate.

Fig. 4 shows the mean Bayes risk depending on K, the
number of quantizer levels. The difference between ∗ and +
or the difference between ◽ and ○ shows the performance loss
due to the quantization of observations and the MAJORITY
fusion rule. In Fig. 5, the curves depict the performance loss
induced by identical quantization and diverse quantization. It
also shows that collaboration improves the performance by the
difference between × and ○.
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V. CONCLUSION

We have discussed the effect of quantization of prior prob-
abilities on hypothesis testing. To minimize the negative influ-
ence due to the quantization, we have defined the mean Bayes
risk error as the optimization criterion for prior-probability
quantizers. Then we have compared the identical quantization
to the diverse quantization.

Diverse quantization is the better option than identical
quantization. Diverse quantizers require more computational
cost to be designed, but once they are designed, they keep
yielding better decisions without any additional cost.

Collaboration through sharing of quantizers among DMs
is a way to amplify the benefit of diverse quantization.
Collaboration requires communication among DMs to share
their quantized values of prior probability at each decision
making instance, but it minimizes the effect of quantization
and yields the smallest mean Bayes risk.
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