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Abstract—This paper studies the quantization of prior probabil-
ities, drawn from an ensemble, in distributed detection with data
fusion by combination of binary local decisions. Design and per-
formance equivalences between a team of agents and a more
powerful single agent are obtained. Effects of identical quantiza-
tion and diverse quantization on mean Bayes risk are compared.
It is shown that when agents using diverse quantizers interact to
agree on a perceived common risk, the effective number quanti-
zation levels is increased. With this collaboration, optimal diverse
regular quantization with cells per quantizer performs as well
as optimal identical quantization with cells per quan-
tizer. Similar results are obtained for the maximum Bayes risk
error criterion.

Index Terms—Bayesian hypothesis testing, Bregman divergence,
mean Bayes risk minimization, quantization theory, team theory.

I. INTRODUCTION

C ONSIDER a team of agents that aims to collaboratively
choose between hypotheses and after each agent

obtains a noisy observation. Local decision making proceeds in
parallel, with all agents synchronously obtaining private obser-
vations, making hard decisions locally, and sending decisions
to the fusion center, without any knowledge of other agents’ de-
cisions. The fusion center has some fixed fusion rule known to
all agents that generates a global decision based only on local
decisions. Fusion rules that are deterministic and symmetric are
of the -out-of- form whereby the global choice is when
or more agents choose . Examples are the MAJORITY rule

and the OR rule . With known prior
probabilities for the object state, the local decision rules and the
fusion rule can be analyzed and optimized as standard Bayesian
hypothesis testing.
Symmetric combining of binary decisions arises often in

human affairs. Decision making by juries or committees has
been analyzed in economics and political science to understand
rational decision rules when the human decision makers possess
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a common preference for two alternatives [1]. A long-running
thread in economics treats human agents as Bayesian decision
makers [2], and this is supported by psychological research
[3] as well. A key human limitation is a prime motivation
for this work: Human decision makers are known to think
categorically—first assigning a decision-making problem to
a category and then applying a rule appropriate for that cate-
gory—due to their limited information processing capacities
[4]. The quality of decisions depends on the individuals’ cat-
egorization schemes. Our tools and techniques are all from
signal processing, and there is increasing interest among signal
processing researchers to study the social world [5].
Here, we consider an ensemble of objects, generally uncount-

ably many. Each agent is only able to apply a decision rule that
depends on a category of the object. We limit our attention to
binary hypothesis testing, so a prior distribution is specified by
a single scalar

We model categories as a partition of the possible values for
into single intervals. From an agent’s perspective, any object

belongs to one of categories

...

The agent treats any object in as having prior probability
rather than the true prior probability . Due to categoriza-

tion, the agent only needs decision rules—one for each cat-
egory—no matter how many objects are there. In contrast, if
the agent performs Bayesian hypothesis testing with exact prior
probabilities, then the agent needs to have as many decision
rules as objects.
In this model, categorization is a mapping from the true prior

probability space to one of the discriminable values
, which is a form of regular scalar quantization.

Quantization performance is measured by the quality degrada-
tion of decisions made based on the quantized prior probability;
this is a Bregman divergence called Bayes risk error [6]. We
model as a realization of a random variable with prob-
ability density function , and averaging the Bayes risk
error over gives mean Bayes risk error (MBRE). Except in
Section VI, our goal is to optimize performance with respect to
MBRE, with given. We consider two cases: when all agents
use identical quantizers and when they use different quantizers.

1053-587X/$31.00 © 2012 IEEE
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The traditional advantage of having multiple agents in hy-
pothesis testing problems is obtaining more observations about
objects: agents observe different noise realizations and reduce
the effects of noise by information aggregation. New here, we
show that diversity among agents’ mapping schemes for prior
probabilities can decrease the chance that inexact prior proba-
bilities lead to wrong decisions. Diversity potentially helps each
agent in cancelling others’ wrong decisions so that the quality
of a global decision can be improved on average.
It is assumed in this paper that as part of their collaboration,

agents share their quantized prior probabilities with each other.
We introduce a new criterion for decision making—perceived
common risk—which is computed from the shared values and
used by all the agents. Under this collaboration, optimal design
of the prior-probability quantizers enables agents with dif-
ferent -level regular quantizers to perform as well as agents
with identical -level quantizers.
The precise study of quantization of prior probabilities in

Bayesian hypothesis testing was recently initiated in [7], which
focuses on the minimum MBRE quantizer of a single agent.
Quantization of prior probabilities to minimizemaximumBayes
risk is considered in [8]. The study of quantization of prior prob-
abilities in distributed hypothesis testing by three agents ap-
pears in [9], work generalized herein. We use a single set of
Bayes costs as an element of making the agents a team in the
sense of Marschak and Radner [10], i.e., having a common goal.
An alternative is for each agent to have potentially-different
Bayes costs. This introduces game-theoretic considerations as
described in [11].
Most previous work on the effect of quantization in Bayesian

distributed detection is focused on the quantization of observa-
tions [12]–[14] or the communication topology and rates among
agents [15] and/or to the fusion center [16], [17]. We do not con-
sider quantization of observations here, though it may be noted
that quantization outside of the system designer’s control could
be incorporated into the likelihood functions.
Section II provides additional background and motivation

from human teams. The group decision-making model that
we are considering is described in Section III. In Section IV,
we discuss the effect of quantization of prior probabilities
on decision making and compare performances of the teams
of agents that use identical quantizers and that use different
quantizers. Examples of optimal quantizers obtained from our
design algorithm are presented in Section V. In addition to
the mean Bayes risk error, the maximum Bayes risk error is
considered in Section VI. Section VII concludes the paper.

II. BACKGROUND: DECISIONS BY HUMAN TEAMS

Although the mathematical results presented herein may
be broadly applicable, our primary motivation is to introduce
an analysis framework under which to study decision making
by teams of human agents. These agents are restricted to a
“categorical model of cognition,” or more simply “categor-
ical thinking” due to information-processing limitations well
described in psychology and economics [4], [18]–[20]. This
categorical thinking reduces the complexity of human decision
making, and the human agents in this paper are assumed to

know their limitations and optimize their strategy under the
limitations, which is called “costly rationality” [21].
We look at teams of agents that work together to make

decisions by voting [1] and one focus is on the benefit of
diversity of categorization—cognitive diversity or diversity of
training—among the agents.
Here is one particular example: a team of physicians that to-

gether make a binary decision, say on whether to implement a
particular therapy. The key elements of a model of team deci-
sion making cast in this setting are as follows:
• An ensemble of problems is like a set of patients. One
patient is to be treated. Let us say the patient collects votes
and chooses to undergo the therapy if at least out of
physicians recommend it.

• Categorization by prior probability is like forming risk
groups (very high, high, medium, low, very low). Physi-
cians may reasonably assign risk groups differently.

• A coordination stage of sharing quantized prior probabili-
ties would involve the physicians sharing their opinions of
the risk group of the patient.

• Each agent uses the quantized prior probability and a pri-
vate observation, which is to say that a physician uses a
risk group and a medical test within her expertise to make
her recommendation. Human agents like physicians simply
do not use something like a continuous-valued prior prob-
ability—they use categories. This is partly due to the ag-
gregation into categories that is necessary for interpreting
medical studies [22, Sec. 5.3].

• The fusion center collects votes from the agents; in our
case, the patient collects the recommendations of the physi-
cians. Of course, a patient could collect much more infor-
mation, but this may place unreasonable burden on the pa-
tient—he needs to be able to rely on the physicians to distill
information down to binary recommendations.

• From physicians’ points of view, they treat many patients
who have different prior probabilities. They may design
their categories to minimize the overall population-wide
risk due to wrong decisions.

• Our results indicate the benefit of diversity of quantization
of prior probabilities, which means of the physicians using
different risk group categorizations.

Although our results include various optimizations, we are
not asserting that human agents actually perform these opti-
mizations explicitly. By studying optimal performance under
certain constraints, we are able to draw certain qualitative con-
clusions [21]. Though, it should be noted that human reasoning
often approximates Bayes-optimal reasoning [2], [3], [23], [24].

III. DISTRIBUTED DETECTION AND DATA FUSION MODEL

A binary hypothesis test for a given object is performed by a
team of agents. The object is in state with probability
and in state with probability . The agents have

a common goal to minimize the cost due to the global decision;
the cost for false alarm (misjudgment of as ) is and
the cost for missed detection (misjudgment of as ) is
for all agents. For simplicity, we consider zero cost for correct
decisions.
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The observation by Agent is conditionally indepen-
dent of , and governed by the likelihood function

. Each agent makes a hard local decision
based on its observation and the prior proba-

bility it believes. The local decision is transferred to a fusion
center to be merged with other agents’ decisions by some fixed
fusion rule. We consider symmetric fusion rules, which are
described as -out-of- rules for a specific . This
fusion rule returns if at least agents declare ;
otherwise, it returns .
Each individual agent makes the two types of errors with the

following conditional probabilities:

Then, from the -out-of- fusion rule, the conditional proba-
bilities of the global decision being in error are

(1)

(2)

where denotes the set . The Bayes risk is
based on the team decision

(3)

In Agent ’s point of view

The last terms in both formulas are independent of Agent ’s
strategy. Hence, upon observing , for the purpose of

minimizing the Bayes risk, Agent adopts the following likeli-
hood ratio test as its decision rule: see (4) at the bottom of the
page.
Consider the special case of agents making observations

through additive Gaussian noise. That is, being in state
sends a signal to all agents, but Agent receives
the corrupted signal , where the noise is
assumed to be i.i.d. Gaussian with zero mean and variance .
Then the left-hand side of (4) is given by

and the monotonicity of this expression implies that the likeli-
hood ratio test can be simplified to a decision rule with a deci-
sion threshold

(5)

Hereafter we will assume that the agents have identically-dis-
tributed observations. Along with the use of the -out-of- rule
for fusion, this gives the agents symmetric roles. The likelihood
ratio test (4) becomes identical for each agent, and in the case
that the likelihood ratio is monotonic, the threshold in (5) be-
comes identical.
Limiting attention to identical decision rules considerably

simplifies the problem. Using identical local decision rules
is asymptotically optimum for the binary hypothesis testing
problem [25]. Furthermore, numerical experience shows that
the optimal fusion rule has the -out-of- form and con-
straining to identical decision rules results in little or no loss of
performance for finite [16]. These results have been obtained
in decentralized detection models in which the fusion rule is to
be optimized in addition to the local decision rules. Our model
has a fixed -out-of- fusion rule and only local decision rules
are subject to optimization. Numerical experiments show that
the restriction to identical decision rules leads to no loss of
performance for in the Gaussian likelihoods case (see
Sections V-A and V-B) and the exponential likelihoods case
(see Section V-C). Thus, we constrain the agents to use iden-
tical decision rules in the remainder of the paper. In particular,
coordination as described in the following section enables the
use of the identical decision rules in Section IV-C.

IV. QUANTIZATION OF PRIOR PROBABILITIES

We generalize the classical formulation in which all agents
know the true prior probability by assuming
each Agent bases its decision rule on , where a scalar
quantizer on (see Fig. 1). Such a setting can arise when

(4)
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Fig. 1. A schematic diagram depicting the problem information pattern for
. The environment B generates a Bernoulli signal . Its prior proba-

bility is quantized by three separate quantizers; the results are used by local
agents . Each agent also has access to corrupted by i.i.d. noise . The
fusion center F determines from the local decisions .

the team faces an ensemble of binary hypothesis testing prob-
lems and the agents lack the ability to have a different decision
rule for each problem instance. The prior probability is thus
modeled as a realization of a random variable with density
function . This section discusses computation of Bayes risk
averaged over and the optimization of the quantizers applied
to the prior probability, with given.
To optimize team performance, all agents must coordinate by

sharing their quantized prior probabilities. The following steps
describe the collaborative decision making process.
1) Quantizer design: For the given , the -level quan-
tizers are designed. These quantizers remain
fixed for all time.

2) Coordination: Agents encounter an object whose prior
probability is . Each agent applies its quantizer to the
prior probability and sends the output to all other
agents as a part of collaboration.

3) Decision rule design: Agents determine the best common
decision rule based on .

4) Signal observation and decision making: Each agent ob-
serves a noisy signal and applies the decision rule to
make a local decision .

5) Decision fusion: All local decisions are fused to pro-
duce a global decision .

Quantizer design and decision rule design are detailed in this
section. The operations of local decision making and global de-
cision fusion have already been discussed. Coordination simply
involves communication.
The Bayes risk incurred when each agent bases its

local decision on its quantized prior probability is denoted
.1 This is called mismatched Bayes

risk to contrast to the true Bayes risk if the agents know
the true prior probability . The Bayes risk error is defined as

We compute the mean Bayes risk error (MBRE) as the distor-
tion of the quantizers for prior probabilities, which measures the
average performance over all

1Note that by coordination, each agent knows other agents’ quantized prior
probabilities.

Minimum MBRE quantizers are to be designed within this
model.

A. Single Agent

Let us first review the case of [7]. The optimal choice
of values for quantized prior probabilities is described by the
minimum MBRE quantizer

where the distortion measure of the single quantizer is the
Bayes risk error

Theorem 1 ([7, Thm. 1]): The Bayes risk error is
nonnegative and only equal to zero when . As a function
of , it is continuous and strictly convex for all .
Theorem 2 ([7, Thm. 2]): For any deterministic likelihood

ratio test , as a function of for all , the Bayes
risk error has exactly one stationary point, which is a
minimum.
Due to the strict convexity of in for all , quan-

tizers that satisfy necessary conditions for MBRE optimality are
regular; quantization cells are subintervals

, and each representation point
is in . The necessary conditions for the optimality of a quan-
tizer for are now described.
A nearest neighbor condition describes an expression for the

cell boundaries for fixed representation points . Be-
tween two consecutive representation points and , the
cell boundary needs to separate such that

and such that . Thus,
is obtained from

(6)

The point is found to be

A centroid condition describes optimal representation points
for fixed quantization cells. The MBRE is expressed as the sum
of integrals over quantization regions

and the minimization may be performed for each cell separately.
The representation point of the cell is chosen from
the optimization problem

Since Bayes risk error is a Bregman divergence [6], the unique
minimizer is the centroid of the region
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The minimum MBRE quantizer can be found by the itera-
tive Lloyd-Max algorithm, which alternates between the nearest
neighbor and the centroid conditions.

B. Identical Quantizers

Consider, for , that all agents use the same quantizer
for prior probabilities. For an object with prior probability ,
all agents use as the object’s prior. The agents will
incur the mismatched Bayes risk

(7)

due to their decisions, but what they minimize is perceived
Bayes risk

(8)

The probabilities and in (7) and (8) are identical. In other
words, and are determined from the decision rules that
minimize the perceived Bayes risk (8) and applied to compute
the mismatched Bayes risk (7).
A general way to find local decision rules is to directly opti-

mize (1) and (2), but these are generally complicated functions.
One way to simplify the analysis for additive noise observation
models is to find a decision-making model with a single agent
whose performance is the same as the original team with mul-
tiple agents. By the same performance, we mean that, for the
same prior-probability quantizer and decision rule, the Type I
and Type II error probabilities of the new single agent are equal
to the team error probabilities and of the original team.
Thus, their optimal decision rules are also identical.
Theorem 3: Assume that the unquantized prior probability is

known. Consider agents that perform group decision-making
with observations corrupted by additive noises .
For convenience, index the agents in descending order of the
realizations of the noises: . When
their decisions are fused by the -out-of- rule, their perfor-
mance is the same as that of a single agent having the same
Bayes costs if its observation is corrupted by the th largest ad-
ditive noise .

Proof: The global decision is the same as the decision of
Agent because all agents adopt the same decision threshold
. If Agent declares , then Agents , whose
observations are smaller than or the same as that of Agent ,
also declare . Since at least agents send , the
fusion rule gives as the global decision. If Agent declares
, then Agents , whose observations are larger than

or at least the same as that of Agent , also declare and the
global decision is .
As such, the Bayes risk (3) can be rewritten as

(9)

If we consider a new single-agent problem with additive noise
, then the Bayes risk of the single agent is equal to

(9). Therefore, the optimal decision rule of the single agent is
equal to that of the multiple agents, and the single agent obtains
the same performance as the team of multiple agents.
When the are i.i.d. continuous random variables with pdf
and cdf , the random variable is well under-

stood from the theory of order statistics [26]. The pdf of is

Thus, we only need to consider a single agent with a different
additive noise , no matter how many agents there are. The
Bayesian decision rule of the single agent that observes

is given by

which can also be used by the multiple agents.
Hence, for the multiple agents that know quantized prior

probability , their decision rule is given by

(10)

Theorem 4: If multiple agents use identical quantizers for
prior probabilities, then their optimal quantizer is equal to the
optimal quantizer in the equivalent single-agent model.

Proof: Since Theorem 3 is valid for any prior probability,
Theorem 3 holds for quantized prior probabilities whenever the
multiple agents and the single agent quantize the prior proba-
bility to the same value. Thus, their average performances are
also the same if they use the same quantizer for prior prob-
ability. As a result, the single agent can achieve the minimum
MBRE by adopting the optimal quantizer of the multiple agents
and vice versa.
The analysis and design of the minimum MBRE quantizer in

a single-agent model in [7] can be applied to the multiple-agent
model without any change except the noise model.

C. Diverse Quantizers

Now consider the setting where each agent may have its own
quantizer for prior probabilities. For an object with prior proba-
bility , Agent believes that the probability of the object being
in state is , which may be different from Agent
’s quantization . This diversity may allow the
agents to improve the quality of their decisions as a team.
The coordination phase of the collaborative decision making

process is key in deriving maximum advantage from the di-
versity of the agents. When agents use identical quantizers, all
agents consider the same perceived Bayes risk (8) even if they
do not communicate, but here collaboration must be established.
Agents may try to minimize their own perceived Bayes risks

so as to give the best decisions for all agents. When all agents
quantize the prior probability to different values, however, they
have different perceived Bayes risks:



4542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 9, SEPTEMBER 2012

If all agents individually optimize their decision rules, the re-
sulting performance is not as good as their best together [11].
All agents will incur the same cost as a result of their de-

cisions: if their team misreads as and if their
team misreads as . This motivates them to collaborate by
sharing a common goal that replaces their individual perceived
Bayes risks. As the common goal, we introduce a weighted sum
of the perceived Bayes risks called perceived common risk

where are known constants that satisfy and
for all . The values may reflect hierarchy

(power) or confidence of agents. The decision rule that is deter-
mined based on the perceived common risk is given by

(11)

The introduction of the perceived common risk allows us
to treat identical-quantizer and diverse-quantizer settings on a
common footing. The minimum perceived-common-risk deci-
sion rule can be used since, if all agents use identical quantizers
like in Section IV-B, their perceived common risk is equal to
their perceived Bayes risks:

The decision rules that are determined based on the per-
ceived common risk are generally not optimal for a given
. Specifically, the decision rules are optimal if and only if

. However, this suboptimality is due to the
quantization of the prior probabilities, not because the per-
ceived common risk is a bad criterion. The performance of the
decision-making team is measured by the Bayes risk averaged
over , not by the Bayes risk for specific . Thus, a set of
quantizers that leads to good decisions on average is essential
for the agents to use the perceived common risk as a common
goal of minimization.
Design of such quantizers has high computational com-

plexity. In Section IV-B, a single quantizer is easily designed
by the iterative Lloyd-Max algorithm, which utilizes indepen-
dence among endpoints of quantization cells in the nearest
neighbor step (optimizing cell boundaries) and independence
among representation points in the centroid step (optimizing
representation points). On the other hand, multiple quantizers
that define different quantization cells do not have such inde-
pendencies.
For the simple example of Fig. 2, the cell of the quan-

tizer affects the decisions for objects whose prior probabili-
ties are within the interval or . The team performance in

Fig. 2. An example that shows how the dependency among representation
points propagates to break the independence between representation points of
two different cells and .

the interval is affected by the representation points and
and by and in the interval . Hence, we can ob-

serve that dependency is propagated through the representation
points: a choice of depends on a choice of , which de-
pends on a choice of . In order to avoid such complexity, we
introduce an indirect method to optimize diverse quantizers.
Consider a team of agents that respectively use different
-level quantizers and another team of agents

that all use an identical -level quantizer . Please note that
each team uses identical decision rules that are determined to
minimize the perceived common risks.
Theorem 5: A set of different -level quantizers

and a -level quantizer result in the same
perceived common risk if, for all

(12)

Proof: For an object with prior probability , agents re-
spectively using make decisions based on indi-
vidually quantized prior probabilities . Their per-
ceived common risk is

(13)

For agents using the common quantizer , with quantized prior
probability , their perceived common risk is

(14)

The perceived common risks (13) and (14) only depend on
the decision rules used by agents. If there exists a positive
constant that satisfies

for any -tuple of decision rules, then the -tuple that min-
imizes also minimizes . If the proportionality
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property holds for all , then the agents in both
cases always use the same decision rules. Therefore, the set
of different quantizers and the set of identical
quantizers will cause the same Bayes risk on any
problem in the ensemble.
For any -tuple and any if and only

if and . From
the fact that , the constant can only be 1, and the
condition is simplified to

This simple condition comes from the fact that the perceived
common risk is a weighted sum of the perceived Bayes risks.
Theorem 6: A team of agents individually using diverse
-level regular quantizers can achieve the minimum mean

Bayes risk error that they can achieve when they use the same
-level quantizer.

Proof: When the agents use an identical -level quan-
tizer, the optimal quantizer is always a regular quantizer [7];
each quantization cell is an interval and its representation
point is within the interval. Equation (12) is given by

In a cell and are constants, where
is one of the representation points of -level quantizer

. Thus, the condition (12) is the same as

Overall, we have a total of equations, which are described
in the following matrix form:

...
... (15)

where is a matrix that has

as its th row and is the representation point of the th
cell of for any . The th cell indicates the
quantization cell of that includes the subcell .
There exists an that satisfies (15) only if there exists a set

of different -level quantizers that are equivalent
to . In (15), the vector is a given pa-
rameter and the vector is uniquely de-
termined by the optimization of ; the matrix consists of
unknown parameters (i.e., representation points of ) to be de-
termined. However, if has any linearly dependent row, the
representation points may not exist. On the other hand, if has
only linearly independent rows and , then we can
solve (15) to find all the representation points of .

The maximum number of linearly independent rows of is

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

Any other row is a linear combination
of the rows.2 Thus, the existence of
that is equivalent to is only guaranteed when

.
A quantizer with greater does not increase mean Bayes

risk error [7]. Therefore, the minimum mean Bayes risk error
of agents using diverse -level quantizers is upper bounded by
that of agents using the identical -level quantizer.

The significance of Theorem 5 is that it enables a simple de-
sign algorithm for diverse quantizers . Without loss
of performance with respect to the mean Bayes risk, instead of
solving the more difficult minimization problem

(16)

we can solve the simpler minimization problem

(17)

and find that, for all , satisfy (12)

(18)

Furthermore, even the design of in (17) is simplified by The-
orem 4 to a single-agent, single-quantizer problem, where the
quantizer has cells according to Theorem 6.
The optimal set of -level regular quantizers for agents

is always a set of diverse quantizers if . The optimal set
of quantizers can be designed by a two-step algorithm. The first
step is to design the optimal -level quantizer
to be commonly used by agents, e.g., with the Lloyd-Max

algorithm [7].
The second step is to disassemble the quantizer into

different -level regular quantizers that lead to the

2For example, is the second
row of plus the third row minus the first row.
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same mean Bayes risk. As mentioned after Theorem 2, is
a regular quantizer. We are considering only the construction
of regular quantizers ; nonregular quantizers are not
plausible as a model for human behavior. Since the -level
quantizer is regular, its quantization cells are intervals, i.e.,
the cell is defined to be for any Agent and cell
index .
In order to satisfy (12), each cell boundary of needs to

be a cell boundary of at least one of because, for
any cell boundary of and for any and

. Also,
any two or more quantizers out of cannot have a
common cell boundary since has cells. As
a result, each cell boundary of , except 0 and 1, needs to be a
cell boundary of exactly one of .
Therefore, we determine cell boundaries of by

splitting the cell boundaries of into sets by the following
conditions:

(19)

where is the set of cell boundaries of and are the sets
of cell boundaries of and .
The sets that satisfy (19) are not unique.
Representation points of the cells of are deter-

mined after cell boundaries of the quantizers are fixed. We
have equations of representation points
of that describe the condition (12). Once we find
the representation points that satisfy all the equations, then the
quantizers are minimum MBRE diverse quantizers for the
agents. The optimal identical quantizer is always regular
because the optimal quantizer for single agent is regular, but
the optimal diverse quantizers need not be regular.
The total number of the representation points is , but

we have less equations than what we need to uniquely
determine the representation points. Furthermore, a different ar-
rangement of cell boundaries changes the equations and, con-
sequently, proper representation points. Therefore, optimal di-
verse -level quantizers are not unique; any choice leads to the
same result because Theorem 5 shows that any set of the optimal
quantizers causes the same mean Bayes risk error as does.
In an example of 3 agents and 2-level quantizers presented

in [9], the optimization of returns a 4-level quantizer with
boundary points and representation
points . Let us determine the cell boundaries of

, and to be , and , that is
to set , and .
Then, (9) is translated to

(20)

We need to solve (20) with respect to six variables
and , which are the represen-

tation points of , and . Since we have only four
equations, we can find infinitely many solutions that satisfy
(20). Once we pick one, it determines , and .

D. Comparison to Team-Oblivious Agents

We have discussed teams of agents that are aware of the ex-
istence of the other agents and the -out-of- fusion
rule. Let us now consider the case when the agents do not know
and ; individual agents maximize their own probability of

being correct. Agent considers the Bayes risk

All agents choose their quantizers as if they are single agents
with additive noise drawn from . Consequently, they have
identical quantizers because they have the same Bayes costs

and .
Their quantizers are obviously not optimal. In Section IV-B,

it has been shown that their optimal identical quantizers need
to be designed based on the additive noise , whose
density function is different from , in a single-agent model.
Furthermore, any identical quantizers can be improved by trans-
formation of diverse quantizers, as in Section IV-C. Therefore,
for each agent, minimization of the MBRE of its own decision
is not the best strategy as an optimal team member and its op-
timal behavior depends on and . The effect of and on
the design of optimal quantizers is reflected by the equivalent
single-agent model in Theorem 3.

E. Comparison to Uncooperative Agents

The communication of quantized probabilities is critical in
our main results; it brings in the perceived common risk and
consequently enables agents to optimize their quantizers effi-
ciently and to adopt the best decision rule. Let us briefly consider
the case when the agents do not share quantized prior probabili-
ties. Agent will use the following likelihood ratio test because

is its only information about prior probability:

In addition, the agents cannot use perceived common risk as
their decision criterion. Thus, Theorems 5 and 6 are not appli-
cable in this case and the design of diverse quantizers becomes
more complex. The resulting mean Bayes risk is also higher
than that under collaboration. This case has been discussed in
[27]–[29] with more details.

V. EXAMPLES

Throughout this section, assume that the prior probability
of an object being in state is drawn from the uniform distri-
bution for all .

A. Gaussian Likelihoods, MAJORITY Rule

Suppose the object sends the signal in state and
in state , and each agent receives the signal corrupted

by additive i.i.d. noise with cdf and pdf where
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Fig. 3. Optimal diverse -level quantizers (cell boundaries as ’s and rep-
resentation points as ’s) for uniformly distributed and the resulting mis-
matched Bayes risk when agents perform distributed hypothesis testing
fused by the MAJORITY rule. The parameters are defined as

, and , for . For comparison, the unquantized
Bayes risk is depicted by dotted curves. (a) . (b) . (c) . (d)

.

Each likelihood is thus Gaussian with mean . The MA-
JORITY rule is used to fuse local decisions made by agents.
We assume that is an odd number so that voting never results
in a tie.
From Theorem 3, the equivalent single-agent model has an

additive noise with pdf given by

The mean of is zero and the variance of is propor-
tional to that of

(21)

where and denote the pdf and cdf of a standard normal
random variable, and . The factor is the variance
of the median of i.i.d. standard normal random variables.

Fig. 4. Bayes risk error of the quantizers in Fig. 3. (a) . (b) . (c)
. (d) .

Fig. 5. Mean Bayes risk error for uniformly distributed in the example of
Fig. 3.

The means and variances of Gaussian order statistics have been
studied extensively [30]–[32], and the value of for any

can be found in [31]. For example,
and .
This equivalent single-agent model is considered for opti-

mization of identical -level quantizers. An op-
timal set of diverse -level regular quantizers for the agents can
be designed from the optimal -level quantizer.
Fig. 3 shows an example of a team of five agents;3 it de-

picts an optimal set of diverse -level quantizers and the re-
sulting Bayes risk for . The Bayes risk error due
to quantization of prior probabilities is depicted in Fig. 4, which
shows improvement of decision making as increases. Also,
the mean Bayes risk error is given in Fig. 5; it shows the advan-
tage of using optimal diverse quantizers against using optimal
identical quantizers.

3An example of a team of three agents is given in [9].
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Asymptotically, decays inversely with ; more pre-
cisely [33]

(22)

If the agents could share their observations rather than their local
hard decisions, the team would base its decision on the sample
mean of the observations. The resulting performance is gov-
erned by the variance of the sample mean of the noise variables

. For ,

The ratio of between the two asymptotic variances quan-
tifies the loss in using majority vote rather than fusing full
measurements.

B. Gaussian Likelihoods, OR Rule

Maintaining the Gaussian observation model from
Section V-A, now consider fusion using the OR rule: the
global decision is only when all agents declare . The
equivalent single-agent model has an additive noise ,
which is the maximum order statistic of noises .
The pdf of is given by

The mean of is proportional to

and the variance of is proportional to

these can be proven analogously to (21). The factor is in-
creasing in but is decreasing in . For example,

and and .
For other between 1 and 20, the values of and are
listed in [31].
An optimal set of diverse -level regular quantizers for a

team of five agents is given in Fig. 6 for . Figs. 7
and 8 show the Bayes risk error and the mean Bayes risk
error due to the quantization. The trends are similar to those
in Section V-A, which considers the same model except for
the fusion rule. The difference in the fusion rule changes the
equivalent single-agent model. However, the same optimization
algorithm of quantizers for prior probabilities can be applied in
any case: designing the optimal identical -level
quantizer of the equivalent single agent and disassembling the
quantizer into diverse -level regular quantizers. The algo-
rithm comes from the relationship between the perceived Bayes
risk and the common risk, which is defined as the weighted
sum of the perceived Bayes risk. Thus, the algorithm does not
depend on how the team of agents make decisions and the error
probabilities and are computed.
Average performance with the OR rule (Fig. 8) is slightly

worse than with the MAJORITY rule (Fig. 5). A qualitative un-
derstanding can be obtained through study of and ,

Fig. 6. Optimal diverse -level quantizers (cell boundaries as ’s and rep-
resentation points as ’s) for uniformly distributed and the resulting mis-
matched Bayes risk when agents perform distributed hypothesis testing
fused by the OR rule. The parameters are defined as ,
and , for . For comparison, the unquantized Bayes risk
is depicted by dotted curves. (a) . (b) . (c) . (d) .

and asymptotic behavior of the variances of these random vari-
ables suggests that the performance gap increases with .
While the mean of is zero for all (the mean

of ) is positive for and increasing with . In
the equivalent single-agent model under the OR rule, the single
agent tends to observe something larger than a true signal by
about because of the noise . Hence, the optimal de-
cision threshold of the single agent is larger than that in the
model of Section V-A. This can be interpreted as any individual
agent optimally requiring “stronger evidence” to declare as
the number of agents increases. The optimal decision thresholds
for are shown in Fig. 9. The asymptotic growth of
is given by (see [26, Ex. 10.5.3])

If all the equivalent noise variables had the same standardized
distribution, then MAJORITY and OR fusion rules for fixed
could be compared through the variances and . We
saw in (22) that . The decay of is much
slower; specifically (see [26, Ex. 10.5.3])

This suggests that for large (and the Gaussian likelihood
case), the MAJORITY rule is more effective than the OR rule.



RHIM et al.: COLLABORATIVE DISTRIBUTED HYPOTHESIS TESTING 4547

Fig. 7. Bayes risk error of the quantizers in Fig. 6. (a) . (b) . (c)
. (d) .

Fig. 8. Mean Bayes risk error for uniformly distributed in the example of
Fig. 6.

C. Exponential Likelihoods

Consider a particle that disappears with rate in state and
with rate in state , where . Conditioned on , the
particle has an exponentially distributed lifetime

An agent observes that the particle disappears at time and
performs Bayesian hypothesis testing by the likelihood ratio test

The likelihood ratio test can be simplified to the decision rule

Fig. 9. Optimal decision threshold for agents for and .
(a) MAJORITY rule. (b) OR rule.

which yields errors with probabilities

Now suppose that agents perform Bayesian hypothesis
testing with particles in the same state; Agent observes
that the th particle disappears at time and applies
a common decision threshold to its observation to make its
local decision. All agents’ decisions are fused by -out-of-
rule. Then the equivalent single-agentmodel is to consider a par-
ticle with lifetime , which is the th longest lifetime among

The probabilities of global errors are

In this scenario, a small is a good choice for the fusion rule.
Fig. 10(a) shows that the smallest mean Bayes risk without
quantization of prior probabilities is achieved by .
Fig. 10(b) depicts an example of Bayes risk when five agents
use diverse minimum MBRE quantizers and their fusion rule is
the OR rule or the MAJORITY rule.

VI. MINIMAX BAYES RISK ERROR QUANTIZERS

Rather than mean Bayes risk error, let us consider maximum
Bayes risk error as the criterion for optimizing quantizer design
[8]. Such quantizers optimize worst case performance, whereas
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Fig. 10. Bayes risk (a) without quantization of prior probabilities and (b) with
diverse 2-level minimum MBRE quantizers for

, and for .

minimum MBRE quantizers optimize average performance.
The minimax Bayes risk error quantizer is defined by the
following optimization problem:

The minimax Bayes risk error quantizer has the same nearest
neighbor condition as the minimum MBRE quantizer for
. On the other hand, a centroid condition for optimality of a
regular quantizer for is different from that of the min-
imum MBRE quantizer [8]. For any quantization point , the
Bayes risk error is nonnegative
and strictly convex in , with minimum value of zero attained
only at . Thus, its maximum point within its th cell

is a cell boundary: or . The point
that satisfies

(23)

minimizes the maximum Bayes risk error within . This is
the centroid condition for the representation point of
cell . The minimax Bayes risk error quantizer can be found
by alternatively applying the nearest neighbor condition (6) and
the centroid condition (23) through the iterative Lloyd-Max
algorithm.
For , agents can take advantage of diversity in the

same way as in Section IV-C. A team of agents bonded by the
-out-of- fusion rule is equivalent to a single agent with noise
equal to their th largest noise (cf. Theorem 3). Thus,
identical quantizers that minimize maximum Bayes risk error
of the agents also minimize that of the single agent and vice
versa (cf. Theorem 4).
Furthermore, if the agents collaborate by sharing the per-

ceived common risk, there exists a set of diverse -level
regular quantizer that leads to the same Bayes risk for any as

Fig. 11. (a) Bayes risk. (b) Bayes risk error for agents performing
distributed hypothesis testing fused by the MAJORITY rule. They observe sig-
nals corrupted by i.i.d. additive Gaussian noise . The parameters are
defined as , and for

.

a set of identical -level quantizers does (cf. The-
orem 5). Therefore, the identical -level minimax
Bayes risk error quantizers can be transformed into diverse
-level minimax Bayes risk error regular quantizers (cf. The-

orem 6).
Fig. 11 shows an example of Bayes risk when five agents use

diverse 2-level minimax Bayes risk error quantizers and their
fusion rule is MAJORITY. A property of minimax Bayes risk
error quantizers is that the maximum Bayes risk errors at all
cell boundaries are the same, which is shown in Fig. 11(b). In
addition, the minimax Bayes risk error quantizers are not de-
pendent on the distribution of as long as for all

because they minimize the worst case error, not the
average.

VII. CONCLUSION

We have discussed distributed detection and data fusion per-
formed by a team of agents when there is a distribution of prior
probabilities and the agents only know quantized versions of
prior probabilities. When all agents use identical quantizers,
they are affected by the same perceived Bayes risk and the dis-
tributed hypothesis testing problem can be analyzed by existing
theorems of decision theory. On the contrary, when they do not
use identical quantizers, then they consider different perceived
Bayes risks, which prevents them from collaborating in hypoth-
esis testing. We let the agents use the perceived common risk
as a new distortion measure for hypothesis testing so as to unite
them as a team to perform distributed hypothesis testing in any
case.
We have defined mean Bayes risk error as the optimization

criterion for prior-probability quantizers. We have presented
theorems to show that diverse quantizers are better than
identical quantizers. The equivalence between multiple-agent
decision making and single-agent decision making simplifies
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a team of agents that use identical quantizers to a single agent.
By combining the equivalence theorem with the equivalence
between diverse quantizers and identical quantizers used by
a team of agents, we can take advantage of the study of the
minimum MBRE quantizer of a single agent to analyze optimal
diverse regular quantization for multiple agents. It is shown that
if the agents use diverse -level regular quantizers, it has the
same effect as using identical -level quantizers.
The assumption that each agent knows the others’ quantiza-

tion results and determines optimal identical decision rules leads
to this strongly positive result. Without such an assumption, the
agents are no longer able to collaborate to determine their de-
cision rules. Each agent would optimize its decision rule based
only on its own quantized value of prior probabilities, and con-
sequently all agents will use suboptimal diverse decision rules.
However, it is still better to use diverse quantizers for prior prob-
abilities, as discussed in [27]–[29].
The equivalence theorems hold under the condition that

all agents collaborate to perform Bayesian hypothesis testing.
Hence, for any given distortion function of quantizers, di-
verse quantizers that minimize the distortion can be easily
found. While the case of minimum MBRE was covered in
detail, we also discussed the minimax Bayes risk error cri-
terion. In the minimax case, one can again first design an

-level quantizer for a single agent and then
disassemble the quantizer into diverse -level regular
quantizers.
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