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Abstract—Light detection and ranging systems reconstruct
scene depth from time-of-flight measurements. For low light-level
depth imaging applications, such as remote sensing and robot
vision, these systems use single-photon detectors that resolve indi-
vidual photon arrivals. Even so, they must detect a large number
of photons to mitigate Poisson shot noise and reject anomalous
photon detections from background light. We introduce a novel
framework for accurate depth imaging using a small number
of detected photons in the presence of an unknown amount of
background light that may vary spatially. It employs a Poisson
observation model for the photon detections plus a union-of-sub-
spaces constraint on the discrete-time flux from the scene at
any single pixel. Together, they enable a greedy signal-pursuit
algorithm to rapidly and simultaneously converge on accurate
estimates of scene depth and background flux, without any as-
sumptions on spatial correlations of the depth or background flux.
Using experimental single-photon data, we demonstrate that our
proposed framework recovers depth features with 1.7 cm absolute
error, using 15 photons per image pixel and an illumination pulse
with 6.7-cm scaled root-mean-square length. We also show that our
framework outperforms the conventional pixelwise log-matched
filtering, which is a computationally-efficient approximation to
the maximum-likelihood solution, by a factor of 6.1 in absolute
depth error.

Index Terms—Computational imaging, greedy algorithms,
LIDAR, single-photon imaging, union-of-subspaces.

I. INTRODUCTION

CONVENTIONAL light detection and ranging (LIDAR)

system, which uses a pulsed light source and a
single-photon detector, forms a depth image pixelwise using
the histograms of photon detection times. The acquisition times
for such systems are made long enough to detect hundreds of
photons per pixel for the finely binned histograms these systems
require to do accurate depth estimation. Here, we introduce
a framework for accurate depth imaging using only a small
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number of photon detections per pixel, despite the presence
of an unknown amount of spatially-varying background light
in the scene. We use a Poisson observation model for the
photon detections plus a union-of-subspaces constraint on the
scene’s discrete-time flux at any single pixel. Using a greedy
signal-pursuit algorithm—a modification of CoSaMP [1]—we
solve for accurate estimates of scene depth and background
flux. Our method forms estimates pixelwise and thus avoids
assumptions on transverse spatial correlations that may hinder
the ability to resolve very small features. We experimentally
demonstrate that our proposed depth imaging framework
outperforms log-matched filtering, which is the maximum-like-
lihood (ML) depth estimator given zero background light.

The conventional estimation of depth using histograms of
photon detections is accurate when the number of detections
is high. In the low photon-count regime, the depth solution is
noisy due to shot noise. It has been shown that image denoising
methods, such as wavelet thresholding, can boost the perfor-
mance of scene depth recovery in the presence of background
noise [2]. Also, using an imaging model that incorporates occlu-
sion constraints was proposed to recover an accurate depth map
[3]. However, these denoising algorithms implicitly assume that
the observations are Gaussian distributed. Thus, at low photon-
counts, where depth estimates are highly non-Gaussian [4], their
performance degrades significantly [5].

First-photon imaging (FPI) [6] is a framework that allows
high-accuracy imaging using only the first detected photon at
every pixel. It demonstrated that centimeter-accurate depth
recovery is possible by combining the non-Gaussian statistics
of first-photon detection with spatial correlations of natural
scenes. The FPI framework uses an imaging setup that includes
a raster-scanning light source and a lensless single-photon
detector. More recently, photon-efficient imaging frameworks
that use a detector array setup, in which every pixel has the
same acquisition time, have also been proposed [5], [7], [8].

Prior methods have two common limitations that we avoid:

¢ Over-smoothing: Many methods assume spatial smooth-
ness of the scene to mitigate the effect of shot noise. In
some applications, it is important to capture features that
only occupy a few image pixels. Methods that assume spa-
tial correlations may yield erroneously over-smoothed im-
ages that wash out the scene’s fine-scale features. In such
scenarios, a robust pixel/wise imager is preferable.

* Calibration: Many methods assume a calibration step to
measure the amount of background flux existing in the
environment. This calibration mitigates bias in the depth
estimate caused by background-photon or dark-count de-
tections, which have high temporal variance. In practical
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Fig. 1. Anillustration of the single-photon imaging setup for one illumination pulse. A pulsed optical source illuminates a scene pixel with photon-flux waveform
s(t). The flux waveform r (¢} that is incident on the detector consists of the pixel return as(¢ — 2d/c)—where a is the pixel reflectivity, d is the pixel depth, and
c is light speed—-plus the background-light flux b. The rate function A(¢) driving the photodetection process equals the sum of the pixel return and background
flux, scaled by the detector efficiency 7, plus the detector’s dark-count rate b,. The record of detection times from the pixel return (or background light plus dark
counts) is shown as blue (or red) spikes, generated by the Poisson process driven by A(%).

imaging scenarios, however, the background response
varies in time, and continuous calibration may not be prac-
tical. Furthermore, many methods assume background flux
does not vary spatially. Thus, a calibrationless imager that
performs simultanous estimation of scene parameters and
spatially-varying background flux from photon detections
is useful.

Similar to [3], we use a union-of-subspaces constraint for
modeling the scene parameters. Our union-of-subspaces con-
straint is defined for both the signal and background waveform
parameters that generate photon detections; the framework in
[3] assumes a system observing a noiseless signal waveform, not
one corrupted by photon noise. We propose a greedy signal pur-
suit algorithm that accurately solves for the scene parameters at
each pixel. We evaluate the photon efficiency of this framework
using experimental single-photon data. In the presence of strong
background light, we show that our pixelwise imager gives an
absolute depth error that is 6.1 times lower than that of the pix-
elwise log-matched filter.

II. SINGLE-PHOTON IMAGING SETUP

Fig. 1 illustrates our imaging setup, for one illumination
pulse, when the scene is illuminated in raster-scanning manner
and a single-element photon detector is employed. (Alter-
natively, to reduce the time needed to acquire a depth map,
our framework can be applied without modification when the
scene is flood illuminated and a detector array is used.) A
focused optical source, such as a laser, illuminates a pixel of
the scene with the pulse waveform s(¢) that starts at time 0
and has root-mean-square pulsewidth 7;,. This illumination is
repeated every T, seconds for a sequence of Ny pulses. The
single-photon detector, in conjunction with a time correlator,
is used to time stamp individual photon detections, relative
to the time at which the immediately preceding pulse was
transmitted. These detection times, which are observations of
a time-inhomogeneous Poisson process, whose rate function
combines contributions from pixel return, background light,
and dark counts, are used to estimate scene depth for the illu-
minated pixel. This pixelwise acquisition process is repeated
for N, x N, image pixels by raster scanning the light source
in the transverse directions.

III. FORWARD IMAGING MODEL

For simplicity of exposition and notation, we focus on one
pixel; this is repeated for each pixel of a raster-scanning or
array-detection setup. Let a, d, and b be unknown scalar values
that represent reflectivity, depth, and background flux at the
given pixel. The reflectivity value includes the effects of radial
fall-off, view angle, and material properties. After illuminating
the scene pixel with a single pulse s(2), the backreflected wave-
form that is incident at the single-photon detector is

r(t) = as(t — 2d/c) + b,

tel0,T,). (1)

Using (1), we observe that the rate function that generates the
photon detections is
A#) = n(as(t — 2d/c) + b) + b,

te[0,7,), (@

where n € (0, 1] is the quantum efficiency of the detector and
bq > 0 is the dark-count rate of the single-photon detector.

Let A be the time bin duration of the single-photon detector.
Then M = [T, /A] is the total number of time bins that capture
photon detections. Let y be the vector of size M x 1 that con-
tains the number of photon detections at each time bin after we
illuminate the pixel N, times with pulse waveform s(t). Then,
from photodetection theory [9], we have that

kA
vi ~ Poisson | N, / Dp(as(t — 2d/c) +b) + baldt | ,
(k—1)A
3)

for k = 1,..., M. We have assumed that our total pixelwise
acquisition time N7, is short enough that & is constant during
that period, the low-flux condition ensures that Zi”zl Vi < Ng,
and the effect of reset time of the single-photon detector is neg-
ligible. We wish to reach an approximation in which the Poisson
parameter of yy, is given by the product of a known matrix and
an unknown (and constrained) vector.

Choose N € Z* such that e = T,./N is adequate resolution
for the estimated time of flight. (Our interest is in N > M and
hence ¢ < A.) Since 2d/c € [0,T,), v € RY defined by

v — {Nsna, if2d/c € [(j — 1)¢, je)
i=

0, otherwise, J=L2,...

7
7]\7
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has exactly one nonzero entry. Using this vector,

Nenas(t — 2d/c) ~ ZN Vit (t — (j — %) e> 4)
e

is a good approximation when e is small enough; effectively,
2d/c has been quantized to an interval of length €. Substituting
(4) into the Poisson parameter expression in (3) gives

N kA 1
E A / 3 (t (j—) E) dt | vj+NgA(nb+bg).
=1\ J 1) 2

Then, we can rewrite (3) as

yi ~ Poisson((Sv + Blas«1),), ©)
fork =1,...70, where 1,71 is an M x 1 vector of 1’s,
1A . 1 -
Si; = f(iq)A s(t — (j — 3)e)dt, and B = NyA(nb + bg).
Finally, defining A = [S,1p7x1] and x = [vT, B|¥, we can

further rewrite (5) as

Vi ~ Poisson((Ax),). (6)

Since v has exactly one nonzero entry, x lies in Sy, the union
of N subspaces defined as

N
SN = Uk,:l {X S RNJrl . X{I,Q,A..,N}\{k} = 0} s (7)

where each subspace is of dimension 2.

IV. SOLVING THE INVERSE PROBLEM

We have interpreted the problem of robust single-photon
depth imaging as a noisy linear inverse problem, where the
signal of interest x lies in the union-of-subspaces Sy . Using
(6), the observed photon count histogram y has the probability
mass function

M
py(yi A, x) = [[ e @ (A% /yi!. ®)
k=1
Thus, neglecting terms in the negative log-likelihood function
that are dependent on y but not on x, we define
M
LA y) =) [(Ax), —yelog(Ax),]. (9
This objective function can be proved to be convex in x.

We solve for x by minimizing £(x; A, y) with the constraint
that x lies in the union-of-subspaces Sy . Also, because photon
flux is a non-negative quantity, the minimization results in a
more accurate estimate when we include a non-negative signal
constraint. Thus, we wish to solve

minimize

L(x;A,y)

st. x€8y, x>0, i=1,...,(N+1).(10)

We propose an algorithm that is inspired by compressive sam-
pling matching pursuit (CoSaMP) [1], a greedy algorithm that
finds a K -sparse approximate solution to an underdetermined
linear inverse problem. CoSaMP iterates until it finds a solution
that agrees with the observed data (according to some conver-
gence metric), while the solution is a linear combination of K
columns of the forward matrix A. Unlike algorithms that only
add to the solution support, never culling, CoSaMP has solution
stability and accuracy properties that compete with globally-op-
timal £; -based convex optimization methods for sparse approx-

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 12, DECEMBER 2015

imation [10]. Also, CoSaMP has been shown to be adaptable
to applications in which the signal being estimated has a struc-
tured support [11], as is true for the union-of-subspaces model.
Thus, we modified the CoSaMP algorithm to our specific use
case, where we are interested in recovering a sparse solution in
the union-of-subspaces S using photon-noise corrupted data.

Our greedy algorithm is given in Algorithm 1. We define
To(x) to be the thresholding operator setting all negative en-
tries of x to 0, supp(x) to be the support of x, and x] to be
the vector that approximates x with its & largest terms. Also, we
take A s to be a matrix with columns of A chosen by the index
set S. Finally, we use AT and AT to denote the transpose and
pseudo-inverse of matrix A, respectively.

Algorithm 1 Depth imaging using a union-of-subspaces model

Input: y, A, S

Output: x(*¥)

Initialize x(® « 0, u « y, k < 0;

repeat
k+—k+1,;
% « ATu;
Q + supp((ken)m) Usupp(x{iy ) U{N +1};
blo < ALy; bla- < 0;
x®) e To([(byn)E) bl
u+— y— Ax®

until [ x5 D — x®)|2 < §

> Update solution

In Algorithm 1, for computational efficiency we have ap-
proximated £(x; A,y) with the £»-loss ||y — Ax]||3, which is
the first-order Taylor expansion of £(x; A,y) up to a constant.
Because CoSaMP also assumes an ¢3-loss function, the only
change from CoSaMP is then the update stage; instead of
picking out the best k terms, we pick out the two terms from
the intermediate solution based on the union-of-subspaces and
non-negativity constraints. We iterate until the solution meets
the convergence criterion: ||x*~1) — x(*)||2 < 4.

Many sparse pursuit algorithms, such as CoSaMP, are guar-
anteed to be successful when A is incoherent. In our setup,
however, A is highly coherent due to ¢ being small and the
pulse waveform s(¢) being smooth. Nevertheless, because the
linear system’s degree of underdetermination is extremely mild
(A € RN*N+D)Y and the sparsity level is fixed to a small
number (dim(Sy) = 2) relative to the signal dimension (typi-
cally exceeding 100), our algorithm recovers the scene param-
eters of interest in a robust manner.

V. EXPERIMENTAL RESULTS

To validate our framework, we used a dataset collected by
D. Venkatraman for the First-Photon Imaging project [6]; this
dataset and others are available from [12]. The experimental
setup uses a pulsed laser diode with pulsewidth T,, = 270 ps
and repetition period 7, = 100 ns. A two-axis galvo was used
to scan 350 x 350 pixels of a mannequin face at a distance of
about 4 m. A lensless single-photon avalanche diode detector
with quantum efficiency n = 0.35 was used for detection. The
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Fig. 2. Experimental pixelwise depth imaging results using single photon observations. The number of photon detections at every pixel was set to be 15. The
figure shows the (a) photograph of imaged face, (b) ground-truth depth, (c) depth from log-matched filtering, which is approximately ML, and (d) depth using
our method. The absolute depth-error maps for ML and our framework are shown in (e) and (f), respectively. (a) Photograph. (b) Truth. (c) Log-matched filter.

(d) Proposed. (e) Error of (c). (f) Error of (d).

background light level was set using an incandescent lamp. The
original mannequin data from [12] had the background count
rate approximately equal to the signal count rate. Our exper-
iment uses cropped data showing only the mannequin’s face,
where the background count rate was approximately 0.1 of the
average signal count rate. Although we used raster-scanning for
our experiments, since our algorithm is applied pixelwise, it can
be also used for imaging with a floodlight illumination source
and a detector array.

We could compare our imaging method with the ML es-
timator for scene parameters {a,d, b}. Unfortunately, due to
nonzero background flux, ML estimation requires minimizing
a non-convex cost function, leading to a solution without
convergence and accuracy guarantees. Thus, zero background
is assumed conventionally such that the ML depth estimate
reduces to the simple log-matched filter [13]:

(11)

Note that this is equivalent to a one-step greedy algorithm
(where a union-of-subspaces constraint is irrelevant) of mini-
mizing £(x; A,y) for a 1-sparse solution. We use (11) as the
baseline depth estimator that is compared with our proposed
estimator using the union-of-subspaces model.

Fig. 2 shows the results of recovering depth of the mannequin
face using single-photon observations. The kernel matrix S was
obtained by an offline measurement of the pulse shape. Note that
this measurement depends only on the source, not on properties
of the scene. The ground-truth depth, shown in Fig. 2(b), was
generated separately by using background-calibrated ML esti-
mation from 200 photons at each pixel.

In our depth imaging experiment, the number of photon de-
tections at each pixel was set to 15. We observe that, due to ex-
traneous background photon detections, the log-matched filter
estimate in Fig. 2(c) (average absolute error = 10.3 cm) is
corrupted with high-variance noise and the facial features of
the mannequin are heavily obscured. On the other hand, our
estimate, shown in Fig. 2(d), shows high-accuracy depth re-
covery (average absolute error = 1.7 cm). As shown by the
error maps in Fig. 2(e), (f), both methods fail in depth recovery
in the face boundary regions, where very little light is reflected
back from the scene to the single-photon detector. This is be-
cause the signal-to-background ratio (SBR), which is the ratio of
the probability of a detection coming from signal and the prob-
ability of a detection coming from background+dark counts, is
very low in such regions. Also, we observe that our estimated
average background level over all pixels was B=14x10"3,

. 1
dyr, = §€ (arg maxic{i,..n} 10% SzTy) .

Root mean square error [cm]

10° 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9 10

Number of photons per pixel

Fig. 3. Depth recovery performance of our algorithm at a face pixel (SBR =
6.7 and pixel coordinates (81,272)) and a depth-boundary pixel (SBR. = 1.5
and pixel coordinates (237,278)) for varying numbers of photon detections.

which is very close to the calibrated true background level B
=13x1073

Fig. 3 shows how our depth reconstruction algorithm per-
forms with varying numbers of photon detections for two dif-
ferent pixels, one in the facial region (with SBR 6.7) and one
at the face boundary (with SBR 1.5). We observe that the algo-
rithm performs better for higher SBR overall, and that the rate
of decrease in depth error with increasing number of photon de-
tections is faster for high SBR than for low SBR, especially at
the very low-flux regime (2 to 5 detections). In this experiment,
we had M = N = 801. Also, we set § = 10~* and the average
number of iterations until convergence was measured to be 2.1
over all pixels. Code and data used to generate results can be
downloaded from [14].

VI. CONCLUSIONS AND FUTURE WORK

We presented an imaging framework for calibrationless,
pixelwise depth reconstruction using single-photon observa-
tions. Our method combined photon detection statistics with
discrete-time flux constraints expressed using a union-of-sub-
spaces model. We developed a greedy algorithm that recovers
scene depth by solving a constrained optimization problem.

Our framework can be used in low light-level imaging ap-
plications, where the scene being imaged has fine features and
filtering techniques that exploit patchwise smoothness can po-
tentially wash out those details. For example, it can be useful
in applications such as airborne remote sensing [15], where the
aim is to recover finely-featured 3D terrain maps.

A straightforward generalization is to multiple-depth estima-
tion, where more than one reflector may be present at each pixel.
For K reflectors at a pixel, 1-sparsity must be changed to a
K -sparsity when defining the union-of-subspaces.
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