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Abstract

Quantizers for probabilistic sources are usually optimized for mean-squared
error. In many applications, maintaining low relative error is a more suitable ob-
jective. This measure has previously been heuristically connected with the use
of logarithmic companding in perceptual coding. We derive optimal compand-
ing quantizers for fixed rate and variable rate under high-resolution assump-
tions. The analysis shows logarithmic companding is optimal for variable-rate
quantization but generally not for fixed-rate quantization. Naturally, the im-
provement in relative error from using a correctly optimized quantizer can be
arbitrarily large. We extend this framework for a large class of nondifference
distortions.

1 Introduction

The problem of optimizing a quantizer for a given distortion measure and probabilistic
source model is well-studied, and it is surveyed in [1]. Most commonly, mean-squared
error (MSE) is used both in theory and practice due to its efficacy in measuring sig-
nal fidelity and convenient mathematical properties, especially in conjunction with
Gaussian random variables and linear systems. However, most practical applications
require nonlinear post-processing or alternative distortion measures that make quan-
tizers designed for MSE suboptimal. Recent work in functional scalar quantization
(FSQ) addresses how to design quantizers when the computations that follow are
known [2, 3]. A key result is that if the computations are nonlinear, using a quantizer
accounting for functional sensitivity can be dramatically better than using an MSE-
optimized one; this has been constructively demonstrated in the design of quantizers
for compressed sensing [4]. Functional quantization is intimately related to the idea
of “task-driven” quantization for inference problems [5, 6, 7].

In this work, we approach the design of quantizers for nondifference distortion
measures using FSQ. In particular, the emphasis is on relative error, which is defined
as

dre(x, y) =
(x− y)2

x2
.
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Fig. 1: A companding model for nonuniform quantization. The input x is transformed by
a nonlinear function c and then uniformly quantized. The nonlinearity is then inverted to
produce the output Q̃(x), with tilde indicating that the quantizer is generated using the
compander model.

This measure is often used explicitly in the engineering literature for numerical anal-
ysis and fidelity of floating-point representations [8]. It also serves as a heuristic
justification for using logarithmic quantization [9, 10], such as µ-law and A-law com-
panding in perceptual coding. We formalize this justification by showing logarithmic
companding is indeed optimal if relative error is the measure of interest and the quan-
tization is variable rate. We also demonstrate that this does not hold in the fixed-rate
case, but the optimal quantizers may be very similar depending on the source dis-
tribution. Moreover, we present some new applications where relative error may be
useful in analyzing signal acquisition.

Relative error falls under a class of nondifference distortion measures called locally

quadratic, which has been studied both for fixed rate [11] and variable rate [12]. As
such, our results may be derived using those frameworks. However, we propose an
alternative derivation using FSQ, taking advantage of its intuitive construction and
potential generalizations to other measures.

2 Preliminaries

We define a scalar quantizer QK as a mapping from the real line to a set of K points
C = {ck}. In particular, the quantizer is regular if we partition R into a set of
nonoverlapping intervals P = {Pk} and set QK(x) = ck if x ∈ Pk. Since the Pk’s
are intervals, the set P can also be represented by a set {pk}Kk=0 corresponding to the
boundary points of the intervals with p0 = −∞ and pK = ∞.

A widely-used mapping is uniform quantization, where the ck’s are equidistant on
the support and the intervals have equal lengths (except at the ends of the support).
A more general class of quantizers can be constructed using a compander [13] as
shown in Figure 1. In this model, the source signal is transformed using a strictly
increasing and smooth nonlinear function c : R → [0, 1], then quantized using a
uniform quantizer with K levels on the support [0, 1], and finally passed through the
inverse of c. The net effect is a sequence of nonuniform quantizers indexed by K and
defined by a single function c. Commonly, we define a point density function λ to
satisfy

λ(x) ∝ c′(x);
∫

λ(x) dx = 1,
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which forms a one-to-one correspondence to c. One interpretation of the point density
for large K is that λ(x)δ is the approximate fraction of codewords in an interval
centered at x with width δ.

The output of a quantizer is often converted into a binary stream and described
with a rate which is used as a parameter to study performance. For the case when
each codeword has the same length (fixed rate), the rate is defined as Rfr = log2(K).
For the case when the codewords are entropy-coded based on the the distribution of
QK(x) (variable rate), the rate is defined as Rvr = H(QK(x)). This is related to
the number of quantization levels through the approximation Rvr ≈ h(x) + log2 K +
E[log2 λ(x)] [14].

2.1 Quantization for MSE

Consider an iid scalar source x with a probability density fx to be quantized by Q̃K

constructed using the compander model given λ. The MSE is defined as

Dmse(K) = E[|x− Q̃K(x)|2].
WhenK is large, the distortion can be simplified using high-resolution approximations
to yield

Dmse(K) ≃ 1

12K2
E[λ−2(x)], (1)

where ≃ indicates that the ratio of the two expressions approaches 1 as K increases.
Hence, the performance of a scalar quantizer for MSE can be determined solely by
a simple relationship between the source distribution, point density and size of the
codebook that becomes more precise when K is large. For a given K, the construction
using the compander model does not necessarily give the best possible MSE. However,
it is asymptotically optimal [15], meaning

lim
K→∞

infQ̃K
E[|x− Q̃K(x)|2]

infQK
E[|x−QK(x)|2]

= 1.

In practice, we find that this approximation is reasonable even for moderate values
of K.

For fixed-rate quantization, Hölder’s inequality is used to show that the optimal
point density is

λ∗

mse,fr(x) ∝ f 1/3
x

(x), (2)

and the resulting distortion is

D∗

mse,fr(R) ≃ 1

12
‖fx‖1/32−2R, (3)

with the notation ‖f‖p = (
∫

∞

−∞
f p(x) dx)1/p [16]. This is visualized in Figure 2 for a

sample source distribution and K.
For variable-rate quantization, Jensen’s inequality is used to show the optimal

point density λ∗

mse,vr is constant on the support of the input distribution [16], so the
optimal quantizer is uniform and the resulting distortion is

D∗

mse,vr(R) ≃ 1

12
2−2(R−h(x)). (4)
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Fig. 2: An example of a source probability density function and the corresponding optimal

point density function for fixed-rate quantization, defined as λ∗

mse,fr(x) ∝ f
1/3
x (x). A quan-

tizer with K = 21 is represented by the dots corresponding to the placement of codewords.

2.2 Functional Scalar Quantization

More recently, FSQ has been proposed for when the computation following quantiza-
tion is known. Given that the quantizer output is transformed by a function g, the
error measure is now

Dfsq(K) = E[|g(x)− g(Q̃K(x))|2]. (5)

We require fx and g to satisfy certain smoothness conditions as discussed in [3]
and define the sensitivity profile to be γ(x) = |g′(x)|. The distortion performance is
then

Dfsq(K) ≃ 1

12K2
E

[

(

γ(x)

λ(x)

)2
]

, (6)

which is (1) with an added factor γ.
For fixed-rate quantization, the optimal point density is

λ∗

fsq,fr(x) ∝
(

γ2(x)fx(x)
)1/3

, (7)

resulting in distortion

D∗

fsq,fr(R) ≃ 1

12
‖γ2fx‖1/32−2R. (8)

For variable-rate quantization, the optimal point density is

λ∗

fsq,vr(x) ∝ γ(x), (9)

resulting in distortion

D∗

fsq,vr(R) ≃ 1

12
2−2(R−h(x)−E[log

2
γ(x)]). (10)
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3 Quantization for Relative Error

We now consider expected relative error, which takes the form

Dre(K) = E

[

|x− Q̃K(x)|2
x2

]

. (11)

Relative error corresponds to the squared error scaled by the energy of the input,
making the result scale invariant. In this section, we demonstrate how to optimize
quantizers for relative error.

First, we find the distortion performance of a quantizer Q̃K , which is analogous
to (1) and (6).

Theorem 1. Consider a memoryless source x with probability density fx that is

smooth on a compact subinterval of (0,∞) and zero elsewhere. The source is quan-

tized using a nonuniform scalar quantizer constructed using the compander model and

specified by λ and K. The relative error between the output of the quantizer and the

source satisfies

lim
K→∞

Dre(K)K2 =
1

12
E[x−2λ−2(x)],

which we express also as

Dre(K) ≃ 1

12K2
E[x−2λ−2(x)].

This theorem can be proven by emulating the steps for the derivation of (1) (see,
e.g., [1]) with the new cost. We will instead follow the FSQ steps [3, Appendix A]
to demonstrate that the results hold for a class of fidelity measures beyond relative
error.

Consider a fidelity measure that takes the form

d(x, y) = n(x) (m(x)−m(y))2 ,

where m satisfies the smoothness conditions in FSQ and n is non-negative, bounded
and piecewise smooth. To compute expected cost for the quantized signal, we use the
total expectation theorem to separate the error terms for the quantization cells and
use Taylor expansion to rewrite the difference term as

m(x)−m(ck) = m′(ck)(x− ck) +O((x− ck)
2)

for x ∈ Pk. The residual terms are inconsequential and the distortion becomes

Dfsq(K,λ) =
K
∑

k=1

E
[

n(x) (m(x)−m(ck))
2 | x ∈ Pk

]

P(x ∈ Pk)

(a)
≈

K
∑

k=1

E
[

n(x) (m′(ck)(x− ck))
2 | x ∈ Pk

]

P(x ∈ Pk)
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(b)
≈

K
∑

k=1

E
[

n(ck) (m
′(ck)(x− ck))

2 | x ∈ Pk

]

P(x ∈ Pk)

(c)
≈ 1

12

K
∑

k=1

(

√

n(ck)m
′(ck)

Kλ(ck)

)2

P(x ∈ Pk)

(d)
≈ 1

12K2
E
[

γ2(x)/λ2(x)
]

,

where (a) follows from Taylor expansion, (b) holds when K is large and n is bounded
and smooth, (c) uses the high-resolution approximation of length(Pi) ≈ (Kλ(ci))

−1,
and (d) follows from setting γ(x) = |

√

n(x)m′(x)| and using the standard high-
resolution technique of approximating the expectation using a Riemann sum.

For relative error, the conditions are satisfied and γ(x) = 1/x, which leads to the
distortion result in the theorem. Moreover, since this expression matches (6), we can
easily find the optimal point densities.

Corollary 1. For a given source probability density fx with support contained in [a, b]
with 0 < a < b < ∞, the optimal point density for fixed-rate quantization is

λ∗

re,fr(x) =
x−2/3f

1/3
x (x)

∫ b

a
t−2/3f

1/3
x (t) dt

, if x ∈ [a, b]; and 0 otherwise.

Corollary 2. For a given source probability density fx with support contained in [a, b]
with 0 < a < b < ∞, the optimal point density for variable-rate quantization is

λ∗

re,vr(x) =
1/x

∫ b

a
1/t dt

, if x ∈ [a, b]; and 0 otherwise.

The variable-rate case is particularly interesting because the equivalent compander
is c(x) = ln(x), meaning the codewords are uniform on a logarithmic scale over the
support of the source. As for the MSE-optimized quantizer, λ∗

re,vr does not depend
on the source distribution except in that it spans the same support. In general, the
fixed-rate quantizer will not be logarithmic except when fx(x) ∝ 1/x.

4 Numerical Results

As expected, if the true cost is relative error, using λ∗

re is better than λ∗

mse. In fact,
the improvements can be substantial if the source has support that spans several
orders of magnitude. However, the measure is ill-posed if the support includes 0, so
we currently restrict our attention to sources that take strictly positive values.

For example, consider x uniformly distributed on [a, b] for 0 < a < b < ∞.
Using (2), the fixed-rate quantizer designed for MSE is given by

λ∗

mse,fr(x) =

{

1/(b− a), if x ∈ [a, b];
0, otherwise.
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x
1 1000

Uniform

RE−FR

RE−VR

Fig. 3: Codebooks for fixed-rate and variable-rate quantizers optimized for relative error
using a source uniformly distributed on [1, 1000], as well as for a uniform quantizer, which
would be optimal if the cost was MSE. The relative-error quantizers have finer quantization
for smaller magnitude since the scaled error will be greater. The two variable-rate quantizers
only depend on the support of the source, not its distribution.

Using Corollary 1, the fixed-rate quantizer designed for relative error is

λ∗

re,fr(x) =

{

x−2/3/3(b1/3 − a1/3), if x ∈ [a, b];
0, otherwise.

Applying Theorem 1 to both point densities then yields the performance. In partic-
ular, the best relative error for the uniform distribution is

D∗

re,fr(R) =
27

12
· b

1/3 − a1/3

b− a
2−2R. (12)

Letting (a, b) = (1, 10), the optimal relative-error quantizer yields a 2.4 dB improve-
ment over the MSE quantizer. Meanwhile, (a, b) = (1, 1000) leads to a performance
improvement of 17 dB. We can see this can be arbitrarily large depending on the
support of x.

In the variable-rate case, both the MSE-optimized and RE-optimized quantizers
only depend on the support of the source, and the codewords are uniformly placed
on linear and logarithmic scales respectively. Again, we can find the distortion using
Theorem 1, with the best possible performance for this source being

D∗

re,vr(R) =
(b− a)2

12
2−2(R−C), (13)

where C = 1/ ln(2) − (b log2 b − a log2 a)/(b− a). Letting a = 1 and b = 10 or 1000,
λ∗

re,vr will yield an additional performance gain of 1.1 and 4.3 dB respectively over
λ∗

re,fr. These gains are for any rate since all quantizers considered have the same 2−2R

decay.
Figure 3 shows how the codebooks of the respective types of quantization differ and

Figure 4 demonstrates the performance trends as the length of the support changes.

5 Generalized Relative Error

One major limitation of relative error is that it is not well-defined when the support
of fx includes 0. This is because the error can grow without bound when x is very
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Fig. 4: Performance results of the fixed- and variable-rate quantizers with a uniform source
x ∼ U(1, b). The plots provide trends in terms of (a) relative error in dB for R = 6; and
(b) performance gain over the uniform quantizer. The performance gain does not depend
on rate.

x
−1 0 1

ε = 0.001

ε = 0.01

ε = 0.1

Fig. 5: Codebooks for variable-rate quantization optimized for generalized relative error
when the source has support on [−1, 1].

small. To combat this problem, we introduce generalized relative error as a way to
bound the maximum relative error. Generalized relative error, parametrized by ε, is
defined as

Dgre(K, ε) = E

[

|x− Q̃K(x)|2
x2 + ε

]

. (14)

Following the steps of the proof of Theorem 1, we can show that

γgre(x, ε) = |
√

n(x, ε)m′(x)| = 1√
x2 + ε

.

With γgre(x, ε), we can find the optimal quantzers and their corresponding distor-
tions. An interesting result arises for variable-rate quantization, where λ∗

gre,vr(x, ε) ∝
γgre(x, ε) yields

cgre(x, ε) ∝ sinh−1(x/
√
ε).

The effect of ε is demonstrated in Figure 5.
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6 Extensions and Applications

As alluded to earlier, the FSQ framework can be used to find optimal quantizers for
nondifference distortion measures. In the derivation of Theorem 1, we present one
such class with measures that can be expressed as

Cost(x, y) = E
[

n(x) (m(x)−m(y))2
]

(15)

under some conditions on m and n. Using Taylor expansion, this class becomes the
set of all input-weighted locally quadratic measures, which has been explored in [12].
Future directions of this work include generalizing the types of measures which can
be represented using FSQ and exploring whether measures on vectors that may not
be separable in their components fit in this framework.

We now discuss some applications where the relative error measure may lead to
better performance results. In the quantization literature, relative error is usually
a justification for using logarithmic companding in perceptual coding. In this work,
we formalize this intuition and show logarithmic companding is indeed optimal for
variable-rate quantization using the relative error measure. We also find that this is
not necessarily true for fixed-rate quantization, but the optimal quantizer may have
a mapping that is similar depending on the source distribution. In practice, certain
parameters for µ-law and A-law companding perform well for speech, and it may be
of interest to compare these quantizers to ones optimized for relative error under a
realistic speech prior.

Beyond perceptual coding, relative error may have broader implications in bi-
ological systems. Using the Weber–Fechner law, we know that human perception
is logarithmically proportional to many physical stimuli. Examples may be found
in touch, vision [17], hearing [18], and numerical cognition [19]. However, Weber–
Fechner is derived using a differential equation for which there is little neuroscientific
evidence. An alternative approach to understanding this phenomenon is to model
perception as quantized to a finite set of descriptions (or codewords). Hence, if these
descriptions are efficient, meaning entropy-coded, and relative error is the natural
measure of accuracy, then they are spaced logarithmically.

A final area of interest is signal acquisition, where relative error is relevant when
gain control may be difficult to perform and the signal can have large variations. An
example of this is wireless communications with fading channels [20]. If the channel
gain is known, the distortion due to quantization can be greatly reduced if the gain
is inverted before the ADC. However, when channel state information is not known,
designing the quantizer using a relative error metric can yield better results than
using an MSE quantizer.
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