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Abstract—Distributed functional scalar quantization (DFSQ)
theory provides optimality conditions and predicts performance
of data acquisition systems in which a computation on acquired
data is desired. We address two limitations of previous works:
prohibitively expensive decoder design and a restriction to source
distributions with bounded support. We show that a much simpler
decoder has equivalent asymptotic performance to the conditional
expectation estimator studied previously, thus reducing decoder
design complexity. The simpler decoder features decoupled com-
munication and computation blocks. Moreover, we extend the
DFSQ framework with the simpler decoder to source distributions
with unbounded support. Finally, through simulation results, we
demonstrate that performance at moderate coding rates is well
predicted by the asymptotic analysis, and we give new insight on
the rate of convergence.

Index Terms—Asymptotic quantization theory, distributed
source coding, functional source coding, data compression, coding
for computing.

I. INTRODUCTION

F UNCTIONAL source coding techniques are of great im-
portance inmodern distributed systems such as sensor net-

works and cloud computing architectures because the fidelity of
acquired data can greatly impact the accuracy of computations
made with that data. In this work, we provide theoretical and
empirical results for quantization in distributed systems with
communication topologies described by Fig. 1. Here, memo-
ryless sources produce scalar realizations
from a joint distribution at each discrete time instant. These
measurements are compressed by separate encoders and then
sent to a central decoder that approximates a computation on
the original data; the computation may be the identity func-
tion, meaning that the acquired samples themselves are to be
reproduced.
There has been substantial effort to study distributed coding

using information theoretic concepts, taking advantage of large
block lengths and powerful decoders to approach fundamental
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Fig. 1. A distributed computation network, where each of spatially-sep-
arated sources generate a scalar . The scalars are encoded and com-
municated over rate-limited links to a central decoder without interaction
between encoders. The decoder computes an estimate of the function

from the received data using . Each
encoder is allowed transmission rate .

limits of compression. However, techniques inspired by this
theory are infeasible for many applications. In particular, strong
dependencies between source variables imply low information
content per variable, but exploiting this is difficult under low la-
tency requirements.
Rather than have long blocks, the complementary asymptotic

of high-resolution quantization theory [1] is more useful for
these scenarios; most of this theory is focused on the scalar case,
where the block length is one. The principal previous work in
applying high-resolution quantization theory to the acquisition
and computation network of Fig. 1 is the distributed functional
scalar quantization (DFSQ) framework [2]. The key message
from this previous work is that the design of optimal encoders
for systems that perform nonlinear computations can be dras-
tically different from what traditional quantization theory sug-
gests. In recent years, ideas from DFSQ have been applied to
compressed sensing [3], compression for media [4], and channel
state feedback in wireless networks [5].
Like information theoretic approaches, the existing DFSQ

theory relies in principle on a complicated decoder; this is re-
viewed in Section II-C. The primary contribution of this paper
is to study a DFSQ framework that employs a simpler decoder.
Remarkably, the same asymptotic performance is obtained with
the simpler decoder, so the optimization of quantizer point den-
sities is unchanged. Furthermore, the simplified framework al-
lows a greater decoupling or modularity between communica-
tion (source encoding/decoding) and computation aspects of the
network.
The analysis presented here uses different assumptions on the

source distributions and function than [2]—neither is uniformly
more or less restrictive. Unlike in [2], we are able to allow the
source variables to have infinite support. In fact, the functional
setting allows us to generalize the classes of distributions whose
reconstruction performance can be accurately predicted using
high-resolution quantization theory. Both papers contain rather
technical conditions, and together they suggest a rather gen-
eral applicability of DFSQ theory. We begin in Section II by
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reviewing relevant previous work and summarizing the contri-
butions of this paper. In Sections III and IV, we give distor-
tion analysis and optimal quantizer design results. Finally, we
provide examples to demonstrate convergence in Section V and
conclude in Section VI.

II. PRELIMINARIES

A. Previous Work

The distributed network shown in Fig. 1 is of great interest to
the information theory and communications communities, and
there exists a variety of results corresponding to different sce-
narios of interest. We present a short overview of some major
works; a more comprehensive review appears in [2].
In the large block length asymptotic, there are many influ-

ential and conclusive results. For the case of discrete-valued
sources and , the lossless distributed source
coding problem is solved by Slepian and Wolf [6]. In the lossy
case, the problem is generally open except in specific situations
[7], [8]. The case where and the rate is uncon-
strained except for is the well-known source coding with
side information problem [9]. For more general computations,
the lossless [10]–[12] and lossy [13], [14] cases have both been
explored.
There are also results for when the block length is con-

strained to be very small. We will delay discussion of DFSQ
for Section II-C and instead focus on related works. The use of
high-resolution for computation has been considered in detec-
tion and estimation problems [15]–[18]. In the scalar setting,
the scenario where the computation is unknown but is drawn
from a set of possibilities has been studied [19]. Finally, there
are strong connections between DFSQ and multidimensional
companding, a technique used in perceptual coding [20].

B. High-Resolution Scalar Quantizer Design

A scalar quantizer is a mapping from the real line to a
set of points called the codebook, where

if and the cells form a partition of
. The quantizer is called regular if the partition cells are inter-
vals containing the corresponding codewords. We then assume
the codebook entries are indexed from smallest to largest and
that for each ; this is essentially without loss
of generality because the dispositions of the endpoints of the
cells are immaterial to performance when the quantizer input is
continuous. Regularity implies

, with and . Define the granular
region as and its complement as
the overload region.
Uniform (linear) quantization, where partition cells in the

granular region have equal length, is most commonly used in
practice, but other quantizer designs can improve reconstruc-
tion fidelity. Fig. 2 presents the compander model as a method
for generating nonuniform quantizers from a uniform one. In
this model, the scalar source is transformed using a nonde-
creasing and smooth compressor function , then
quantized using a uniform quantizer with levels in , and
finally passed through the expander function . Compressor
functions are defined such that and

Fig. 2. The compander model for constructing nonuniform scalar quantizers.
The compressor function is defined such that and

. The notation is used to denote the canonical uni-
form quantizer with codewords in . In this paper, only the partition
boundaries are scaled using ; the codewords are defined through midpoint re-
construction (2).

. It is convenient to define a point density
function as . Because of the limiting conditions on
, there is a one-to-one correspondence between and , and
hence a quantizer of the form shown in Fig. 2 can be uniquely
specified using a point density function and codebook size. We
denote such a quantizer as . By virtue of this definition,
the integral of the point density function over any quantizer cell
is :

(1)

In practice, scalar quantization is rarely, if ever, performed
by an explicit companding operation. A slight modification that
avoids repeated computation of derives partition boundaries
from the compressor function by applying and comparing to
threshold values (multiples of ) to determine the partition
cell , but then obtains from a precomputed table. We as-
sume that the non-extremal reconstruction values are set to the
midpoints of the cells, i.e.,

(2)

This is suboptimal in terms of MSE relative to centroid recon-
struction, but it has the simplicity of depending only on and ,
not on the source density. The extremal reconstruction values
are fixed to be and . This again is subop-
timal but does not depend on the source distribution. We will
show later that this suboptimality does not affect asymptotic
quantizer performance.
The utility of the compander model is that we can precisely

analyze the distortion behavior as becomes large and use this
to optimize . Assuming the source is well-modeled as being
drawn from a probabilistic distribution, we define the mean-
squared error (MSE) distortion as

(3)

where the expectation is with respect to the source density .
Under the additional assumption that the tails of decay suf-
ficiently fast,

(4)

where indicates that the ratio of the two expressions
approaches 1 as increases [21], [22]. Hence, the MSE per-
formance of a scalar quantizer can be approximated by a simple
relationship between the source distribution, point density and
codebook size, and this relation becomes more precise with
increasing . Moreover, quantizers designed according to this
approximation are asymptotically optimal, meaning that the
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quantizer optimized over has distortion that approaches the
performance of the best found by any means [23]–[25]:

where is a valid point density. Experimentally, the approxima-
tion is accurate even for moderate [1], [26]. Since the depen-
dence on and is separated in the limit, calculus techniques
can be used to optimize companders.
When the quantized values are to be communicated or stored,

it is natural to map each codeword to a string of bits and consider
the trade-off between performance and communication rate ,
defined to be the expected number of bits per sample. In the sim-
plest case, the codewords are indexed by a simple binary expan-
sion and the communication rate is ; this is called
fixed-rate or codebook-constrained quantization. Hölder’s in-
equality can be used to show that the optimal point density for
fixed-rate is asymptotically

(5)

and the resulting distortion is asymptotically

(6)

with the notation [27]. In general,
the codeword indices can be coded to produce bit strings of dif-
ferent lengths based on probabilities of occurrence; this is re-
ferred to as variable-rate quantization. If the decoding latency
is allowed to be large, one can employ block entropy coding and
the communication rate approaches :

(7)

This particular scenario, called entropy-constrained quantiza-
tion, can be analyzed using Jensen’s inequality to show the op-
timal point density is constant on the support of the input
distribution [27]. The optimal quantizer is asymptotically uni-
form and the resulting distortion is asymptotically

(8)

Note that block entropy coding suggests that the sources are
transmitted in blocks even though the quantization is scalar. As
such, (8) is an asymptotic result and serves as a lower bound on
practical entropy coders with finite block lengths that match the
latency restrictions of a system.
In general, the optimal entropy-constrained quantizer (at a fi-

nite rate) for a distribution with unbounded support can have an
infinite number of codewords [28]. The compander model used
in this paper cannot generate all such quantizers. A common
alternative is to allow the codomain of to be rather than

, resulting in a point density that cannot be normalized
[29], [30]. To avoid parallel developments for normalized and
unnormalized point densities, we restrict our attention to quan-
tizers that have a finite number of codewords at any finite
rate . This may preclude exact optimality, but under mild con-
ditions it does not change the asymptotic behavior as and
increase without bound.

C. Functional Scalar Quantizer Design

In a distributed network where the encoders employ scalar
quantization and the decoder performs a reconstruction using
on the quantized data to approximate a desired computation
, optimizing the quantizers for rather than source fidelity
can lead to substantial gains. In [2], distortion performance and
quantizer design are discussed for the distributed setting shown
in Fig. 1, with a scalar-valued function. For DFSQ, the cost of
interest is functional MSE (fMSE):

(9)

where is chosen to be the joint centroid (JC) reconstruction or
minimum functional MSE (fMMSE) estimator

(10)

and is scalar quantization performed on a vector such
that

Note the complexity of computing —it requires integrating
over an -dimensional partition cell with knowledge of the
joint source density . Later in this paper, we avoid this com-
plexity by choosing to be simply the desired computation di-
rectly applied to the quantized observations.
Before understanding how a quantizer affects fMSE, it is con-

venient to define how a computation locally affects distortion.
Definition 1: The univariate functional sensitivity profile of

a function is defined as

The nth functional sensitivity profile of a multivariate function
is defined as

(11)

where is the partial derivative of with respect to its th
argument evaluated at the point .
Given the functional sensitivity profile, the main result of [2]

says

(12)

provided the following conditions are satisfied:
MF1. The function is Lipschitz continuous and twice
differentiable in every argument except possibly on a set
of Jordan measure 0.
MF2. The source pdf is continuous, bounded, and
supported on .
MF3. The function and point densities allow

to be defined and finite for all .
Following the same recipes to optimize over , the rela-

tionship between distortion and communication rate is found. In
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both cases, the functional sensitivity profile acts to shift quanti-
zation points to where they can reduce the distortion in the com-
putation. For fixed rate, the minimum high-resolution distortion
is asymptotically achieved by

(13)

where is the marginal distribution of . In the entropy-
constrained case, the optimizing point density is asymptotically

(14)

Notice unnormalized point densities are not required here since
the sources are assumed to have bounded support.

D. Main Contributions of Paper

The central goal of this paper is to develop a more practical
method upon the theoretical foundations of [2]. In particular, we
provide new insight on how a simplified decoder can be used in
lieu of the optimal one in (10). Although the conditional expec-
tations are offline computations, they may be extremely diffi-
cult and are computationally infeasible for large and . We
consider the case when the decoder is restricted to applying the
function explicitly on the quantized measurements. To accom-
modate this change, a different set of conditions is required of
, , and .
Additionally, we generalize the theory to infinite-support

source variables and vector-valued computations. In brief, we
derive new conditions on the tail of the source density and
computation that allow the distortion to be stably computed.
Interestingly, this extends the class of probability densities
under which high-resolution analysis techniques have been
successfully applied. The generalization to vector-valued is a
more straightforward extension that is included for complete-
ness. We present several examples to illustrate the framework
and the convergence to the asymptotics developed in this work.

III. UNIVARIATE FUNCTIONAL QUANTIZATION

We first discuss the quantization of a scalar random variable
by to approximate . As mentioned, the decoder

will apply to rather than compute the joint centroid
condition like in [2]. We find the dependence of fMSE on and
then optimize with respect to to minimize fMSE .
Consider the following conditions on the source density ,

point density of a companding quantizer, and computation of
interest :

UF1 . The source pdf is continuous and positive on .
UF2 . The point density is continuous and positive on .
UF3 . The function is continuous on with everywhere-
defined derivatives and .
UF4 . For ,

is integrable over .

UF5 . , and satisfy the tail condition

and the corresponding condition for .
UF6 . Define as the derivative of the expander function
, meaning . There exists some

such that is decreasing for , is increasing
for , and the tails of satisfy

for .
The main result of this section is on the fMSE induced by a

quantizer under these conditions:
Theorem 1: Assume , , and satisfy Conditions

UF1 –UF6 . Then the fMSE

satisfies the following limit:

(15)

Proof: See Appendix A.

Remarks

1) The fMSE in (15) is the same as in (12). We emphasize that
the theorem shows that this fMSE is obtained by simply
applying to the quantized variables rather than using the
optimal decoder (10). Further analysis on this point is given
in Section III-C

2) One key contribution of this theorem is the additional tail
condition for infinite-support source densities, which ef-
fectively limits the distortion contribution in the overload
region. This generalizes the class of probability densities
for which quantization distortion can be analyzed using
high-resolution approximations [23]–[25].

3) The tail conditions in imply the overload contribu-
tions to distortion become negligible as becomes large,
which is natural for well-behaved sources, computations
and compressor functions. This is used to ensure Taylor’s
theorem can be successfully applied to bound fMSE . The
tail conditions in do not have simple interpretations
but are necessary to employ the dominated convergence
theorems used in the proof of Theorem 1 [25]. Both con-
ditions are satisfied in many problems of interest.

4) When is monotonic, the performance in (15) is as good as
quantizing and communicating [2, Lemma 5]. Oth-
erwise, the use of a regular quantizer results in a distortion
penalty, as illustrated in Example 1 of Section V.



SUN et al.: DISTRIBUTED FUNCTIONAL SCALAR QUANTIZATION SIMPLIFIED 3499

5) For linear computations, the functional sensitivity profile
is flat, meaning the optimal quantizer is the same as in the
MSE-optimized case. Hence, functional theory will lead
to new quantizer designs only when the computation is
nonlinear.

6) Although we have assumed , and are “nice” in the
sense that they are continuous and positive, the proof of
Theorem 1 could allow to be discontinuous or nondif-
ferentiable at a finite number of points, provided the tail
conditions still hold and a minor adjustment is made on
how partition boundaries are chosen. Rather than elabo-
rating further, we refer the reader to a similar extension in
[2, Section III-F]. A similar argument can also be made for
having a finite number of discontinuities in its first and

second derivatives.
7) For the high-resolution assumptions to hold, the point den-
sity should be positive where the source distribution is pos-
itive. However, a consequence of Theorem 1 is that there
is no distortion contribution from regions where the func-
tional sensitivity profile is zero, meaning the point density
can be zero there. The coding of such “don’t-care” intervals
must be handled with care, as discussed in [2, Section VII].

A. Asymptotically Optimal Quantizer Sequences

Since the fMSE of Theorem 1 matches (12), the optimizing
quantizers are the same. Using the recipe of Section II-B, we
can show the optimal point density for fixed-rate quantization
is asymptotically

(16)

over the entire support of , resulting in distortion

(17)

Meanwhile, optimization in the entropy-constrained case
yields

(18)

over the entire support of , resulting in distortion

(19)

Observe that while minimization of the distortion-rate
expressions provides “optimal” companding quantizers, the
distortion-rate expressions themselves are restricted to quan-
tizer point density functions that satisfy – . Some
of these conditions may be verified quite easily: for instance,

for is equivalent to the asymptotic distortion
expression being finite. Additionally, if the distribution and
functional sensitivities satisfy certain properties—e.g., if the
sensitivities possess a positive lower bound over the dis-
tribution’s support—these conditions may be automatically
satisfied. In general, the conditions must be checked on a
case-by-case basis for the asymptotic analysis to rigorously
hold. As demonstrated in Example 5 of Section V, design

Fig. 3. (a) Codeword placement under simple, MMSE, and fMMSE decoders.
The simple decoder performs midpoint reconstruction followed by the applica-
tion of the computation . The MMSE decoder applies to the conditional ex-
pectation of within the cell. Finally, the fMMSE decoder determines (10) for
the cell. In this example, the source distribution is exponential and the computa-
tion is concave. (b) Performance loss due to the suboptimal codeword placement
with respect to rate. We can see that relative excess fMSE decreases linearly
with rate and hence the fMSE of the resulting quantizers are asymptotically
equivalent.

based on the asymptotic analysis can be sensible even when
the technical requirements are not satisfied. Further care is
needed in the entropy-constrained setting. Many computations
yield that is not integrable over , making (18) invalid;
for example, a linear computation leads to constant . When
the source has finite support, the integral in the denominator
of (18) can be reduced to one on that finite support, again
yielding a valid, optimal normalized point density. Otherwise,
one must use an unnormalized point density to represent the
asymptotically-optimal companding quantizer sequence. We
leave this generalization as future work.

B. Negligible Suboptimality of Simple Decoder

Recall that the decoder analyzed in this work is the computa-
tion applied to midpoint reconstruction as formulated in (2).
One may do better by applying after finding the conditional
MMSE estimate of (using knowledge of the source distribu-
tion only) and would do best with the fMMSE estimator (10)
(incorporating knowledge of the function as well). The code-
word placements of the three decoders are visualized through
an example in Fig. 3(a). The asymptotic match of the perfor-
mance of the simple decoder to the optimal estimator (10) is a
main contribution of this paper.
The simple decoder is suboptimal because it does not con-

sider the source distribution at all, or equivalently assumes the
distribution is uniform and the functional sensitivity profile is
constant over the cell. High-resolution analysis typically ap-
proximates the source distribution as uniform over small cells
[30], and the proof of Theorem 1 uses the fact that the sensitivity
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is approximately flat over very small regions as well. Hence, the
performance gap between the simple decoder and the fMMSE
estimator becomes negligible in the high-resolution regime.
To illuminate the rate of convergence, we study the perfor-

mance gap as a function of quantization cell width, which is de-
pendent on the communication rate [Fig. 3(b)]. Through exper-
imental observation, we see the relative excess fMSE (defined
as appears exponential in rate, meaning

for some constants and . The speed at which the perfor-
mance gap shrinks contributes greatly to why the high-resolu-
tion theory is successful even at low communication rates.

IV. MULTIVARIATE FUNCTIONAL QUANTIZATION

We now describe the main result of the paper for the scenario
shown in Fig. 1, where random scalars are
individually quantized and a scalar computation is per-
formed. We will use a codebook size parameter and fractional
allocations such that every and ; the
codebook size for quantizer is then . Since we
are concerned with an asymptotic result, the use of ensures all
codebooks grow at the same rate.
Assume the following conditions on the multivariate joint

density, computation and quantizers:
MF1 . The joint pdf is continuous and positive on
MF2 . For every , the point density is
continuous and positive on
MF3 . The multivariate function is continuous and twice
differentiable in every argument over ; that is, the first
partial derivative and second partial deriva-
tive are well-defined for every

MF4 . For any ,

(20)

is integrable over . Moreover, for any
,

(21)

is integrable over
MF5 . for ,

(22)

is integrable over . For ,

as , where
MF6 . We adopt the notation for with the th el-
ement removed; the inverse operator outputs a
length- vector with inserted as the th element. Then
for every index , the following holds for every :

An analogous condition holds for the corresponding nega-
tive-valued tails.
MF7 . Define as the derivative of the expander function
, meaning . There exists some
such that is decreasing for , is

increasing for , and the tails of satisfy

for all . This condition is a generalization
of for applied to (20). Effectively, it bounds
the tail contributions of an integral with the integrand being
a modified version of (20). We also require similar condi-
tions for (21) and (22), which are analogous to for

and respectively. We omit the exact form
here for brevity.

Recalling and represent a set of quantizers
and point densities respectively, we present a theorem similar
to Theorem 1:
Theorem 2: Assume , , and satisfy conditions
– . Also assume a fractional allocation such that

every and , meaning a set of quantizers
will have for some total allocation .

Then the fMSE

satisfies the following limit:

(23)
Proof: See Appendix B

Remarks

1) Like in the univariate case, the simple decoder has perfor-
mance that is asymptotically equivalent to the more com-
plicated optimal decoder (10).

2) Here, the computation cannot generally be performed be-
fore quantization because encoders are distributed. The ex-
ception is when the computation is separable, meaning it
can be decomposed into a linear combination of compu-
tations on individual scalars. As a result, for each the
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partial derivative of depends only on and the func-
tional sensitivity profile simplifies to the univariate case,
as demonstrated in Example 2 of Section V.

3) The strict requirements of and could poten-
tially be loosened. However, simple modification of in-
dividual quantizers like in the univariate case is insuffi-
cient since discontinuities may lie on a manifold that is
not aligned with the partition boundaries of the Cartesian
product of scalar quantizers. As a result, the error from
using a planar approximation through Taylor’s theorem
may decay at the same rate as in (23), which would invali-
date Theorem 2. However, based on experimental observa-
tions, such as in Example 5 of Section V, we believe that
when these discontinuities exist on a manifold of Jordan
measure zero their error may be accounted for. Techniques
similar to those in the proofs from [2] could potentially be
useful in showing this rigorously.

4) Condition is known as the asymptotic whiteness
property (AWP). For uniform quantization with midpoint
reconstruction and nonuniform quantization with centroid
reconstruction, it is shown in [31], [32] that the quantiza-
tion error for each cell converges to a uniform density suf-
ficiently fast such that the correlation of the quantization
error components vanishes faster than the distortion under
mild regularity conditions. We leave the AWP as a condi-
tion, but mention that establishing it under general condi-
tions for companding quantizers with midpoint reconstruc-
tion is an interesting open problem. The solution may rely
on extending Theorem 1 of [31] to hold after the expan-
sion step of the compander. To prove the convergence of
the quantization error correlation to zero, it may be neces-
sary to consider midpoint reconstruction both before and
after expansion using techniques developed in [33].

A. Asymptotically Optimal Quantizer Sequences

As in the univariate case, the optimal quantizers match those
in previous DFSQ work since the distortion equations are the
same. Using Hölder’s inequality, the optimal point density for
fixed-rate quantization for each source (communicated with
rate ) is asymptotically

(24)

over the support of , with fMSE

(25)

Similarly, the best point density for the entropy-constrained case
is asymptotically

(26)

over the support of , leading to a fMSE of

(27)

We present performance while leaving the fractional alloca-
tion as a parameter. Given a total communication rate con-
straint , we can also optimize . Rather than repeat the re-
sults here, we point to similar work in [2, Lemma 4].
As in the univariate case, this optimization arrives with the

caveat that conditions – must be satisfied by the re-
sulting point density functions. In general this must be verified
in a case-by-case basis, but as noted in Section III-B, the re-
quirements can often be too strict.

B. Vector-Valued Functions

In Theorem 2, we assumed the computation is scalar-
valued. For completeness, we now consider vector-valued
functions, where the output of is a vector in . Here, the
distortion measure is a weighted fMSE:

where is a set of scalar weights and is the th entry
of the output of . Through a natural extension of the proof
of Theorem 2, we can find the limit of the weighted fMSE
assuming each entry of the vector-valued function satisfies

– .
Corollary 1: The weighted fMSE of a source , compu-

tation , set of scalar quantizers , and fractional alloca-
tion satisfies the following limit:

(28)

where the combined functional sensitivity profile is

The point densities given in (24) and (26) are again optimal
under this new definition of .

V. EXAMPLES

In this section, we present examples for both univariate and
multivariate functional quantization using asymptotic expres-
sions and empirical results from sequences of real quantizers.
The empirical results are encouraging since the convergence to
asymptotic limits is fast, usually when the quantizer rate is about
4 bits per source variable. This is because the Taylor remainder
term in the distortion calculation decays with an extra factor,
which is exponential in the rate.

A. Examples for Univariate Functional Quantization

Below we present an example of functional quantization in
the univariate case. The theoretical results follow directly from
Section III.
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Fig. 4. Empirical and theoretical performance for the ordinary and functional quantizers for: (a) a scalar Gaussian source and ; (b) jointly Gaussian
sources with correlation coefficient 0.5 and ; (c) exponential sources with parameter and ; and (d)

exponential sources and . Note that we also include empirical results for uniform quantizers that have different granular regions
depending on the quantization rate and the case when the computation is performed before quantization in (a), labeled “Encoder.” Theoretical performance is
determined using Theorem 2 and are represented by solid lines. Experimental validation is determined by designing real quantizers using the compander model
and running Monte Carlo simulations; the resulting fMSE is represented by markers. To emphasize the gap between the results and to illustrate convergence to the
high-resolution approximation, we normalize the plots by multiplying fMSE by .

Example 1: Assume and , yielding a
functional sensitivity profile . We consider uniform
quantizers, optimal “ordinary” quantizers (quantizers optimized
for distortion of the source variable rather than the computa-
tion) given in Section II-B, and optimal functional quantizers
given in Section III-C, for a range of rates. The point densities
of these quantizers, the source density , and computation
satisfy – and hence we use Theorem 1 to find asymp-
totic distortion performance.We also design practical quantizers
for a range of and find the empirical fMSE through Monte
Carlo simulations. In the fixed-rate case, theoretical and em-
pirical performance are shown Fig. 4(a). The distortion-min-
imizing uniform quantizer has a granular region that depends
on , which was explored in [34]. Here, we simply perform a
brute-force search to find the best granular region and the cor-
responding distortion. Surprisingly, this choice of the uniform
quantizer performs better over moderate rate regions than the
MSE-optimized quantizer. This is because the computation is
less meaningful where the source density is most likely and the
MSE-optimized quantizer places most of its codewords. Hence,
one lesson from DFSQ is that using standard high-resolution
theory may yield worse performance than a naive approach for
some computations. Meanwhile, the functional quantizer opti-
mizes for the computation and gives an additional 3 dB gain
over the optimal ordinary quantizer. There is still a loss in using
regular quantizers due to the computation being non-monotonic.

In fact, if the computation can be performed prior to quantiza-
tion, we gain an extra bit for encoding the magnitude and thus
6 dB of performance. This illustrates Remark 2 of Section III-A.
In the fixed-rate case, the empirical performance approaches the
distortion limit described by Theorem 1. The convergence is
fast and the asymptotic results predict practical quantizer per-
formance at rates as low as 4 bits/sample.

B. Examples for Multivariate Functional Quantization

We next provide four examples that follow from the theory
of Section IV.
Example 2: Let sources be iid standard normal random

variables and the computation be . Since the
computation is separable, the functional sensitivity profile of
each source is , and the quantizers are the same
as in Example 1. The distortion is also the same, except now
scaled by .
Example 3: We now consider a more interesting extension

of Example 2 where the sources are correlated and the compu-
tation is . Because the norm is not squared, the
computation is no longer separable. For two jointly Gaussian
random variables distributed , a correlation coefficient
of implies that
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where is standard normal and independent of . The func-
tional sensitivity profile then becomes

In Fig. 4(b), we demonstrate the convergence of the distortion
from sequences of companding quantizers to the asymptotic be-
havior for . Similar results can be obtained for other
choices of .
Example 4: Consider two iid exponential sources and
with parameter ; we wish to compute

, where we let . Using (11), the functional
sensitivity profiles are

and . In Fig. 4(c), we experimentally
verify that sequences of real quantizers approach the predicted
distortion-rate trade-off.
Example 5: Let sources be iid exponential with param-

eter and the computation be . In this
case, Condition is not satisfied since there exists

two-dimensional planes where the derivative is not de-
fined. However, as discussed in the remarks on Theorem 2, we
strongly suspect we can disregard the distortion contributions
from these surfaces. The overall performance, ignoring the vio-
lation of condition , may be analyzed using the functional
sensitivity profile:

where the third line follows from the cdf of exponential random
variables.
In Fig. 4(d), we experimentally verify that the asymptotic pre-

dictions are precise. This serves as evidence that may be
loosened.

VI. CONCLUSION

In this paper, we have extended distributed functional scalar
quantization to a general class of finite- and infinite-support dis-
tributions, and demonstrated that a simple decoder, performing
the computation directly on the quantized measurements,
achieves asymptotically equivalent performance to the fMMSE
decoder. Although there are some technical restrictions on the
source distributions and computations to ensure the high-reso-
lution approximations are legitimate, the main goal of the paper
is to show that DFSQ theory is widely applicable to distributed
acquisition systems without requiring a complicated decoder.
Furthermore, the asymptotic results give good approximations
for the performance at moderate quantization rates.

DFSQ has immediate implications in how sensors in acqui-
sition networks collect and compress data when the designer
knows the computation to follow. Using both theory and exam-
ples, we demonstrate that knowledge of the computation may
change the quantization mapping and improve fMSE. Because
the setup is very general, there is potential for impact in areas of
signal acquisition where quantization is traditionally considered
as a black box. Examples include multi-modal imaging tech-
nologies such as 3D imaging and parallel MRI. This theory can
also be useful in collecting information for applications in ma-
chine learning and data mining. In these fields, large amounts
of data are collected but the measure of interest is usually some
nonlinear, low-dimensional quantity. DFSQ provides insight on
how data should be collected to provide more accurate results
when the resources for acquiring and storing information are
limited.

APPENDIX A
PROOF OF THEOREM 1

Taylor’s theorem states that a function that is times
continuously differentiable on a closed interval takes the
form

with a Taylor remainder term

for some . More specific to our framework, for any
, the first-order remainder is bounded as

(29)

We will denote the length of the partition corresponding to the
th codeword as and let if .
Moreover, we define as a piecewise-constant upper bound to
the second derivative of over the partition of :

(30)

Since is at the midpoint between and , we can rewrite
the Taylor remainder term as

(31)

Consider expansion of by total expectation:

We would like to eliminate the first and last components of the
sum because the unbounded interval of integration would cause
problems with the Taylor expansion employed later. The last
component is

(32)
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where we have used . By Condition , this is
asymptotically negligible in comparison to

Thus (32) does not contribute to . We
can similarly eliminate the first term, yielding

(33)

where we recall indicates that the ratio of the two expressions
approaches 1 as increases. Effectively, promises that
the tail of the source distribution is decaying fast enough that
we can ignore the distortion contributions outside the extremal
codewords.
Assuming , further expansion of (33) using Taylor’s the-

orem yields:

(34)

(35)

(36)

Of the three terms, only term has a meaningful contribution,
which has the following asymptotic form:

(37)

where (a) follows from the definition of ; (b) from
and ; and (c) from an extension of the proof

by Linder [25], which is given in Theorem 3 in Appendix C.

Conditions , and for are used here.
Noting that gives (15).
The higher-order error terms become negligible with in-

creasing using the bound reviewed in (29):

where (a) follows from bounding using (31); (b) from
and ; (c) from a similar extension of

Theorem 3 (see Appendix D), using and for ;
and (d) from for . Compared to (37), there is an
extra factor arising from the second-order Taylor error,
which drives term to 0. A similar analysis can be used to show
that expansion term scales as with growing codebook
size and is therefore also negligible. Here, conditions and

for are needed.

APPENDIX B
PROOF OF THEOREM 2

We parallel the proof of Theorem 1 using Taylor expansion
and bounding the distortion contributions of each granular cell.
By the first-order version of the multivariate Taylor’s theorem,
a function that is twice continuously differentiable on a closed
ball containing takes the form

where we recall that is the partial derivative of with
respect to the th argument evaluated at the point . The re-
mainder term is bounded by

(38)

where is the second-order partial derivation with respect to
first and then evaluated at .
Let be an indexing of the cells in the Cartesian product of
scalar quantizers, excluding the overload regions. By total

expectation, we find the distortion of each partition cell and
sum their contributions. By Condition , the distortion from
overload cells become negligible with increasing and can be
ignored. Using Taylor’s theorem and , the scaled total dis-
tortion becomes
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where

Let us consider the summands of where :

(39)
We note that these distortion contributions are equivalent to
those in the univariate case and can apply the derivations in
Theorem 1. Using Conditions , and , (39) ap-
proaches the integral expression

where the expectation on the left-hand side is with respect to the
joint density . Using the definition of functional sensitivity
profile in (11), we get the right-hand side, where the expectation
is only with respect to .
We now consider the remaining summands of where ,

corresponding to the correlation between quantization errors in
the granular region. Under the asymptotic whiteness property

, the distortion contributions from these terms decay faster
than in the terms in (39) in the granular region; therefore, they
do not contribute to the asymptotic distortion. In Remark 3 of
Section IV-A, we discuss generalizing to discontinuous densi-
ties and computations. Some care is needed so that this does not
violate the validity of the asymptotic whiteness property.
We will now parallel the results of Appendix A to show the

higher-order error terms and are negligible with large .
We denote the length of the partition corresponding to the th
codeword of the th quantizer as and let
if . Moreover, we define as a piecewise-constant
upper bound to the second-order partial derivative of over the
partition of :

where is an -dimensional cell in . We can then bound
(38):

(40)

We now consider :

where (a) follows from bounding using (30) and the
fact that the limits of integration converge to ; and (b) from
a generalization of the proof by Linder [25], which relies on the
dominated convergence theorem to show how interval lengths
can converge to the reciprocal of the point density. For this case,
there is an extra factor which drives to 0, using conditions

and . Note that for general vector quantizers, a com-
panding function may not exist. However, the simple structure
arising from a Cartesian product of scalar quantizers is nicely
represented, which allows Linder’s method to be adequate.
Remainder term is negligible in a similar manner (van-

ishing with ), which proves the theorem.

APPENDIX C
WEIGHTED DISTORTION OF COMPANDING QUANTIZERS

In this section, we prove a modest extension to Linder’s rig-
orous results [25] on the distortion of companding quantizers on
sources with infinite support. The addition here is a weighting
function inside the integral of the MSE distortion:

(41)

Linder’s result for MSE relies heavily on the dominated conver-
gence theorem and its generalization. We will follow a similar
strategy, except on a “weighted” probability density that is not
required to integrate to 1.
Recall that a scalar companding quantizer is specified

by the codebook size and point density , where is the
derivative of the compressor function . In this section, we will
be explicit that we are considering a sequence of quantizers in-
dexed by that are constructed using the companding model.
The partition points of are defined as
and the codewords are determined using midpoint reconstruc-
tion, , except for the extremal code-
words. We additionally define the derivative of the expander
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function as , where , and the interval
that is mapped to codeword as .
We let denote the Lebesgue measure.
We impose the following conditions on , , and :
LC1. The point density is continuous and positive on .
LC2. is Lebesgue integrable over .
LC3. There exists some such that is increasing
for and is decreasing for .
LC4. The inverse of , , satisfies

Before stating the main result, we define several sequences of
functions that will be needed in the proof.

Definition 2: Consider a function that is continuous, pos-
itive and integrable. The piecewise constant and truncated ap-
proximation to over the partition induced by quantizer
is defined as

for

otherwise,

where

Using the Lebesgue differentiation theorem, as
a.e. with respect to .

Definition 3: We define as an approximation to a function
:

for

otherwise.

The approximation is the piecewise-constant function that
most tightly upper bounds on the granular region. We note that

as by the continuity of , which follows from
LC1. Notice a slight modification in the definition of from
that in [25], due to the different placement of codewords in the
extremal quantization cells.

Definition 4: We define as an approximation to a function
:

for
otherwise.

Intuitively, is a piecewise-constant approximation of
with points of discontinuity determined by the partition .
We now introduce some lemmas that we will combine to

prove the theorem. First, we relate the distortion integrals with
respect to and :

Lemma 1: The integral with respect to converges to the
integral with respect to in the following manner:

Proof: The change of variables yields an alter-
native form for the LHS integral:

where .
Note that LC3 implies that there exists some such

that is decreasing on . Using the inequality
and the definition of , we can see

for all . Using the continuity of and LC4, we
can use the Lebesgue Dominated Convergence Theorem [35,
Section 4.4] and as to show

(42)

Similarly, we can parallel the above proof for to
show

(43)

Because is bounded on by LC1,

(44)

Combining (42)–(44) proves the lemma.
Next we relate quantization error and :
Lemma 2: For large and , ,

Proof: The left inequality is trivial. By the mean-value the-
orem of differentiation, there exists some such that

Using the definition of yields the right inequality for large
enough such that Condition LC3 ensures is monotonic in the
extremal partitions.



SUN et al.: DISTRIBUTED FUNCTIONAL SCALAR QUANTIZATION SIMPLIFIED 3507

Finally, we introduce a lemma that relates the truncated
source to the integrable form of the distortion:

Lemma 3: The following limit holds:

Proof: We can show that

where the first line comes from variance of uniform noise on
an interval and the definition of , and the second line comes
from the definition of . From Lemma 2, we find domi-
nates , i.e., for . Using Lemma
1, we see is Lebesgue integrable. Combining the
General Dominated Convergence Theorem [35, Section 4.4]
and the fact that as for all ,

where we use LC2 to ensure the existence of the right-hand side.

We now prove the main theorem:
Theorem 3: Suppose the source density , weighting

function , and point density satisfy Conditions LC1–4 .
Then

Proof: Let . We want to show that

(45)

To prove (45), we note

where the last inequality holds only for large since
approaches 1 from above. We also recall as
a.e. with respect to . Hence, we can again employ the General
LebesgueDominated Convergence Theorem, this time using the
fact , along with Lemma 1 to show (45).
To complete the proof of the theorem, we combine Lemma 3

and (45).

APPENDIX D
GENERALIZING THEOREM 3

We also need a Linder-style proof to bound the higher-order
distortion terms (35) and (36). Here, we provide only a brief
sketch on how to extend Theorem 3. Consider the integral

(46)

where if . We can rewrite (46) as

where the first line uses the definition of and the second
uses Lemma 2. Ensuring that the right-hand side is integrable is
sufficient to show that (46) becomes negligible as becomes
large. The success of convergence with depends on a condi-
tion analogous to LC4.
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