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Distributed Functional Scalar Quantization Simplified
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Abstract—Distributed functional scalar quantization (DFSQ)
theory provides optimality conditions and predicts performance
of data acquisition systems in which a computation on acquired
data is desired. We address two limitations of previous works:
prohibitively expensive decoder design and a restriction to source
distributions with bounded support. We show that a much simpler
decoder has equivalent asymptotic performance to the conditional
expectation estimator studied previously, thus reducing decoder
design complexity. The simpler decoder features decoupled com-
munication and computation blocks. Moreover, we extend the
DFSQ framework with the simpler decoder to source distributions
with unbounded support. Finally, through simulation results, we
demonstrate that performance at moderate coding rates is well
predicted by the asymptotic analysis, and we give new insight on
the rate of convergence.

Index Terms—Asymptotic quantization theory, distributed
source coding, functional source coding, data compression, coding
for computing.

I. INTRODUCTION

UNCTIONAL source coding techniques are of great im-
portance in modern distributed systems such as sensor net-
works and cloud computing architectures because the fidelity of
acquired data can greatly impact the accuracy of computations
made with that data. In this work, we provide theoretical and
empirical results for quantization in distributed systems with
communication topologies described by Fig. 1. Here, N memo-
ryless sources produce scalar realizations X = (Xy,..., Xy)
from a joint distribution inv at each discrete time instant. These
measurements are compressed by separate encoders and then
sent to a central decoder that approximates a computation on
the original data; the computation may be the identity func-
tion, meaning that the acquired samples themselves are to be
reproduced.
There has been substantial effort to study distributed coding
using information theoretic concepts, taking advantage of large
block lengths and powerful decoders to approach fundamental
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Fig. 1. A distributed computation network, where each of N spatially-sep-
arated sources generate a scalar X,,. The scalars are encoded and com-
municated over rate-limited links to a central decoder without interaction
between encoders. The decoder computes an estimate of the function
g(X]N) = g(X1.X>,...,Xn) from the received data using §(X"). Each
encoder is allowed transmission rate 2., .

limits of compression. However, techniques inspired by this
theory are infeasible for many applications. In particular, strong
dependencies between source variables imply low information
content per variable, but exploiting this is difficult under low la-
tency requirements.

Rather than have long blocks, the complementary asymptotic
of high-resolution quantization theory [1] is more useful for
these scenarios; most of this theory is focused on the scalar case,
where the block length is one. The principal previous work in
applying high-resolution quantization theory to the acquisition
and computation network of Fig. 1 is the distributed functional
scalar quantization (DFSQ) framework [2]. The key message
from this previous work is that the design of optimal encoders
for systems that perform nonlinear computations can be dras-
tically different from what traditional quantization theory sug-
gests. In recent years, ideas from DFSQ have been applied to
compressed sensing [3], compression for media [4], and channel
state feedback in wireless networks [5].

Like information theoretic approaches, the existing DFSQ
theory relies in principle on a complicated decoder; this is re-
viewed in Section II-C. The primary contribution of this paper
is to study a DFSQ framework that employs a simpler decoder.
Remarkably, the same asymptotic performance is obtained with
the simpler decoder, so the optimization of quantizer point den-
sities is unchanged. Furthermore, the simplified framework al-
lows a greater decoupling or modularity between communica-
tion (source encoding/decoding) and computation aspects of the
network.

The analysis presented here uses different assumptions on the
source distributions and function than [2]—neither is uniformly
more or less restrictive. Unlike in [2], we are able to allow the
source variables to have infinite support. In fact, the functional
setting allows us to generalize the classes of distributions whose
reconstruction performance can be accurately predicted using
high-resolution quantization theory. Both papers contain rather
technical conditions, and together they suggest a rather gen-
eral applicability of DFSQ theory. We begin in Section II by
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reviewing relevant previous work and summarizing the contri-
butions of this paper. In Sections III and IV, we give distor-
tion analysis and optimal quantizer design results. Finally, we
provide examples to demonstrate convergence in Section V and
conclude in Section VI.

II. PRELIMINARIES

A. Previous Work

The distributed network shown in Fig. 1 is of great interest to
the information theory and communications communities, and
there exists a variety of results corresponding to different sce-
narios of interest. We present a short overview of some major
works; a more comprehensive review appears in [2].

In the large block length asymptotic, there are many influ-
ential and conclusive results. For the case of discrete-valued
sources and g(X) = X}, the lossless distributed source
coding problem is solved by Slepian and Wolf [6]. In the lossy
case, the problem is generally open except in specific situations
[7], [8]. The case where g(X{¥) = X, and the rate is uncon-
strained except for Ry is the well-known source coding with
side information problem [9]. For more general computations,
the lossless [10]-[12] and lossy [13], [14] cases have both been
explored.

There are also results for when the block length is con-
strained to be very small. We will delay discussion of DFSQ
for Section II-C and instead focus on related works. The use of
high-resolution for computation has been considered in detec-
tion and estimation problems [15]-[18]. In the scalar setting,
the scenario where the computation is unknown but is drawn
from a set of possibilities has been studied [19]. Finally, there
are strong connections between DFSQ and multidimensional
companding, a technique used in perceptual coding [20].

B. High-Resolution Scalar Quantizer Design

A scalar quantizer (Jx is a mapping from the real line to a
set of K points C = {¢x 1, C R called the codebook, where
Qr(z) = ¢x ifz € Py and the cells { P, }*_, form a partition of
R. The quantizer is called regular if the partition cells are inter-
vals containing the corresponding codewords. We then assume
the codebook entries are indexed from smallest to largest and
that P, = (pr_1, px] for each k; this is essentially without loss
of generality because the dispositions of the endpoints of the
cells are immaterial to performance when the quantizer input is
continuous. Regularity implies pyg < ¢ < p1 < 2 £ -+ <
cx < pr, with pg = —oc and pg = oc. Define the granular
region as (¢1, ¢ ) and its complement (—o0, ¢1] U [¢x, o¢) as
the overload region.

Uniform (linear) quantization, where partition cells in the
granular region have equal length, is most commonly used in
practice, but other quantizer designs can improve reconstruc-
tion fidelity. Fig. 2 presents the compander model as a method
for generating nonuniform quantizers from a uniform one. In
this model, the scalar source is transformed using a nonde-
creasing and smooth compressor function ¢ : R —[0, 1], then
quantized using a uniform quantizer with K levels in (0, 1), and
finally passed through the expander function ¢~*. Compressor
functions are defined such that lim, — o~ c¢(z) = 0 and
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Fig. 2. The compander model for constructing nonuniform scalar quantizers.
The compressor function ¢ is defined such that lim, — _ o, ¢(z) = 0 and
lim, — ., ¢(x) = 1. The notation } x i is used to denote the canonical uni-
form quantizer with /' codewords in (0, 1). In this paper, only the partition
boundaries are scaled using ¢; the codewords are defined through midpoint re-
construction (2).

lim, — o ¢(x) = 1. It is convenient to define a point density
Sfunction as A(x) = ¢/(x). Because of the limiting conditions on
¢, there is a one-to-one correspondence between A and ¢, and
hence a quantizer of the form shown in Fig. 2 can be uniquely
specified using a point density function and codebook size. We
denote such a quantizer as (i . By virtue of this definition,
the integral of the point density function over any quantizer cell
is1/K:

E=1,2,....K.

"Phk—1 l
/ Mz)dr = e (D

Pr

In practice, scalar quantization is rarely, if ever, performed
by an explicit companding operation. A slight modification that
avoids repeated computation of ¢ ! derives partition boundaries
from the compressor function ¢ by applying ¢ and comparing to
threshold values (multiples of 1/K) to determine the partition
cell Py, but then obtains ¢, from a precomputed table. We as-
sume that the non-extremal reconstruction values are set to the
midpoints of the cells, i.c.,
Pkt DPr
==
This is suboptimal in terms of MSE relative to centroid recon-
struction, but it has the simplicity of depending only on A and K,
not on the source density. The extremal reconstruction values
are fixed to be ¢c; = p; and cx = px _1. This again is subop-
timal but does not depend on the source distribution. We will
show later that this suboptimality does not affect asymptotic
quantizer performance.

The utility of the compander model is that we can precisely
analyze the distortion behavior as K becomes large and use this
to optimize A. Assuming the source is well-modeled as being
drawn from a probabilistic distribution, we define the mean-
squared error (MSE) distortion as

Dmse(K7 )‘) =E [|X - QR’,)\(X)F:I b (3)

where the expectation is with respect to the source density fx.
Under the additional assumption that the tails of fx decay suf-
ficiently fast,

ch k=23,....K — 1.

@)

N 1
)~ TRe
where ~ indicates that the ratio of the two expressions
approaches 1 as K increases [21], [22]. Hence, the MSE per-
formance of a scalar quantizer can be approximated by a simple
relationship between the source distribution, point density and
codebook size, and this relation becomes more precise with
increasing K. Moreover, quantizers designed according to this
approximation are asymptotically optimal, meaning that the

Dipse(K, EA~*(X)], 4)
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quantizer optimized over A has distortion that approaches the
performance of the best () found by any means [23]-[25]:

1

WE[)\Q(X)]»

inf E [|X — Qg (X)|’] ~ inf

Qxk A
where A is a valid point density. Experimentally, the approxima-
tion is accurate even for moderate K [1], [26]. Since the depen-
dence on K and A is separated in the limit, calculus techniques
can be used to optimize companders.

When the quantized values are to be communicated or stored,
it is natural to map each codeword to a string of bits and consider
the trade-off between performance and communication rate /7,
defined to be the expected number of bits per sample. In the sim-
plest case, the codewords are indexed by a simple binary expan-
sion and the communication rate is I? = log,( K); this is called

fixed-rate or codebook-constrained quantization. Holder’s in-
equality can be used to show that the optimal point density for
fixed-rate is asymptotically

x 1/3
mse,fr (‘(L‘) X/ (‘l’)7 (5)
and the resulting distortion is asymptotically
;knbefr( ) _||fX||1/32 R (6)

with the notation || f||, = ([~ f7(z)dz)*/? [27]. In general,
the codeword indices can be coded to produce bit strings of dif-
ferent lengths based on probabilities of occurrence; this is re-
ferred to as variable-rate quantization. If the decoding latency
is allowed to be large, one can employ block entropy coding and
the communication rate approaches H(Q g A (X)):

R~ h(X) + log, K + E[log, AM(X)]. @)
This particular scenario, called entropy-constrained quantiza-
tion, can be analyzed using Jensen’s inequality to show the op-
timal point density A}, . is constant on the support of the input
distribution [27]. The optlmal quantizer is asymptotically uni-
form and the resulting distortion is asymptotically

Do) 2 5210, ®)
Note that block entropy coding suggests that the sources are
transmitted in blocks even though the quantization is scalar. As
such, (8) is an asymptotic result and serves as a lower bound on
practical entropy coders with finite block lengths that match the
latency restrictions of a system.

In general, the optimal entropy-constrained quantizer (at a fi-
nite rate) for a distribution with unbounded support can have an
infinite number of codewords [28]. The compander model used
in this paper cannot generate all such quantizers. A common
alternative is to allow the codomain of ¢ to be R rather than
(0, 1), resulting in a point density that cannot be normalized
[29], [30]. To avoid parallel developments for normalized and
unnormalized point densities, we restrict our attention to quan-
tizers that have a finite number of codewords K at any finite
rate I?. This may preclude exact optimality, but under mild con-
ditions it does not change the asymptotic behavior as K and I?
increase without bound.
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C. Functional Scalar Quantizer Design

In a distributed network where the encoders employ scalar
quantization and the decoder performs a reconstruction using
g on the quantized data to approximate a desired computation
g, optimizing the quantizers for g rather than source fidelity
can lead to substantial gains. In [2], distortion performance and
quantizer design are discussed for the distributed setting shown
in Fig. 1, with g a scalar-valued function. For DFSQ, the cost of
interest is functional MSE (fMSE):

|:’g YI\

where § is chosen to be the joint centroid (JC) reconstruction or
minimum functional MSE (fMMSE) estimator

fljc(QKi‘V,A'lV (Ti\))
=B (XD | Quep ap (XI) = Quepap (03]

and () g~ y~ is scalar quantization performed on a vector such
K[Y A
that

. 2
Dfmse( 1 7)\1\ g(QKl’V,}\F(Xi’\ ))‘ :|: (9)

(10)

Qy Ay (#Y) = (@5 (1) Qay e (7)) -

Note the complexity of computing §;.—it requires integrating
over an /V-dimensional partition cell with knowledge of the
joint source density f XN Later in this paper, we avoid this com-
plexity by choosing g fo be simply the desired computation di-
rectly applied to the quantized observations.

Before understanding how a quantizer affects fMSE, it is con-
venient to define how a computation locally affects distortion.

Definition 1: The univariate functional sensitivity profile of
a function g is defined as

v(x) = |g'(x)].

The nth functional sensitivity profile of a multivariate function
g is defined as

() = (B [lga(XV)2 | X, = 2]) ",

(11)

where g, () is the partial derivative of g with respect to its nith
argument evaluated at the point .
Given the functional sensitivity profile, the main result of [2]

says
Sl (X))’
zzlzK%EKAn(Xn)) - 02

n=1

Dfmse (K{V B )\i\")

provided the following conditions are satisfied:
MF1. The function g is Lipschitz continuous and twice
differentiable in every argument except possibly on a set
of Jordan measure 0.
MF2. The source pdf inv is continuous, bounded, and
supported on [0, 1]V
MF3. The function g and point densities A,, allow

E ’Yn(Xn) 2
An (Xn)
to be defined and finite for all n.

Following the same recipes to optimize over AL, the rela-
tionship between distortion and communication rate is found. In
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both cases, the functional sensitivity profile acts to shift quanti-
zation points to where they can reduce the distortion in the com-
putation. For fixed rate, the minimum high-resolution distortion
is asymptotically achieved by
. 1/3

e (1) 0 (3 (@) fx, ()77 (13)
where fx,_ is the marginal distribution of X,,. In the entropy-
constrained case, the optimizing point density is asymptotically

*

n.fmse,cc (T) X ’yn(,b) (14)
Notice unnormalized point densities are not required here since
the sources are assumed to have bounded support.

D. Main Contributions of Paper

The central goal of this paper is to develop a more practical
method upon the theoretical foundations of [2]. In particular, we
provide new insight on how a simplified decoder can be used in
lieu of the optimal one in (10). Although the conditional expec-
tations are offline computations, they may be extremely diffi-
cult and are computationally infeasible for large N and K. We
consider the case when the decoder is restricted to applying the
function g explicitly on the quantized measurements. To accom-
modate this change, a different set of conditions is required of
g, AV, and inw.

Additionally, we generalize the theory to infinite-support
source variables and vector-valued computations. In brief, we
derive new conditions on the tail of the source density and
computation that allow the distortion to be stably computed.
Interestingly, this extends the class of probability densities
under which high-resolution analysis techniques have been
successfully applied. The generalization to vector-valued g is a
more straightforward extension that is included for complete-
ness. We present several examples to illustrate the framework
and the convergence to the asymptotics developed in this work.

III. UNIVARIATE FUNCTIONAL QUANTIZATION

We first discuss the quantization of a scalar random variable
X by Qx » to approximate g(.X'). As mentioned, the decoder
will apply g to @k »(X) rather than compute the joint centroid
condition like in [2]. We find the dependence of fMSE on A and
then optimize with respect to A to minimize fMSE .

Consider the following conditions on the source density fx,
point density A of a companding quantizer, and computation of
interest g:

UF1’. The source pdf fx is continuous and positive on R.
UF2’. The point density A is continuous and positive on R.
UF3’. The function g is continuous on R with everywhere-
defined derivatives ¢’ and ¢”.

UF4'. Form = 0,1,2,

Fx(@)lg" (@)™ g ()7 /A" (@)

is integrable over R.
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UF5’. fx, g and A satisfy the tail condition
17 () — g(y)? fx (x) da
2
(f;o A(zx) dx)

and the corresponding condition for y — —oc.

UF6’. Define s as the derivative of the expander function
¢!, meaning s(c(x)) = 1/A(x). There exists some B > 0
such that s(c(z)) is decreasing forz < — B, s is increasing

for z > B, and the tails of s satisfy

/C(B)

/°° s ((e(2)+1)/2) |g' ()™ g (@)™ fx (@) de < oo,
JeB)

form = 0,1,2.
The main result of this section is on the fMSE induced by a
quantizer () » under these conditions:
Theorem 1: Assume fx, g, and A satisfy Conditions
UF1’'-UF6'. Then the fIMSE

lim =0,

Y—00

2 el@)/2) lg" @] lg @ fx (@) de < oc,

Dflnse(Ka )‘) =E U(](X) - Q(QK,A(X))F:I

(%)2] . (15)

Proof: See Appendix A. [ |

satisfies the following limit:

1
lim KQDfmse(Kv )\) =SB

Remarks

1) The fMSE in (15) is the same as in (12). We emphasize that
the theorem shows that this fMSE is obtained by simply
applying ¢ to the quantized variables rather than using the
optimal decoder (10). Further analysis on this point is given
in Section III-C

2) One key contribution of this theorem is the additional tail
condition for infinite-support source densities, which ef-
fectively limits the distortion contribution in the overload
region. This generalizes the class of probability densities
for which quantization distortion can be analyzed using
high-resolution approximations [23]-[25].

3) The tail conditions in UF3’ imply the overload contribu-
tions to distortion become negligible as K becomes large,
which is natural for well-behaved sources, computations
and compressor functions. This is used to ensure Taylor’s
theorem can be successfully applied to bound fMSE . The
tail conditions in UF6 do not have simple interpretations
but are necessary to employ the dominated convergence
theorems used in the proof of Theorem 1 [25]. Both con-
ditions are satisfied in many problems of interest.

4) When g is monotonic, the performance in (15) is as good as
quantizing and communicating g(X) [2, Lemma 5]. Oth-
erwise, the use of a regular quantizer results in a distortion
penalty, as illustrated in Example 1 of Section V.
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5) For linear computations, the functional sensitivity profile
is flat, meaning the optimal quantizer is the same as in the
MSE-optimized case. Hence, functional theory will lead
to new quantizer designs only when the computation is
nonlinear.

6) Although we have assumed fx, g and A are “nice” in the
sense that they are continuous and positive, the proof of
Theorem 1 could allow fx to be discontinuous or nondif-
ferentiable at a finite number of points, provided the tail
conditions still hold and a minor adjustment is made on
how partition boundaries are chosen. Rather than elabo-
rating further, we refer the reader to a similar extension in
[2, Section ITI-F]. A similar argument can also be made for
g having a finite number of discontinuities in its first and
second derivatives.

7) For the high-resolution assumptions to hold, the point den-
sity should be positive where the source distribution is pos-
itive. However, a consequence of Theorem 1 is that there
is no distortion contribution from regions where the func-
tional sensitivity profile is zero, meaning the point density
can be zero there. The coding of such “don’t-care” intervals
must be handled with care, as discussed in [2, Section VII].

A. Asymptotically Optimal Quantizer Sequences

Since the fMSE of Theorem 1 matches (12), the optimizing
quantizers are the same. Using the recipe of Section 1I-B, we
can show the optimal point density for fixed-rate quantization
is asymptotically

1/3
.o @ @)
Afmse,fr('(l‘) - oo 5 1/3 (16)
Jooe (P fx(8) 77 dt
over the entire support of X, resulting in distortion
. 1,
Dfmse,fr(R) = E ||72fX||1/5 2 ZR' (17)

Meanwhile, optimization in the entropy-constrained case
yields

¥(z)

)‘;:mse.ec(a;) = T~ 1, (18)
' S v(t)ydt
over the entire support of X, resulting in distortion
DE‘kmSCTCC(R) ~ i 22h(X)+2E[log ')/(X)}272R‘ (19)

12

Observe that while minimization of the distortion-rate
expressions provides “optimal” companding quantizers, the
distortion-rate expressions themselves are restricted to quan-
tizer point density functions that satisfy UF4'-UF6’. Some
of these conditions may be verified quite easily: for instance,
UF4’ for m = 0 is equivalent to the asymptotic distortion
expression being finite. Additionally, if the distribution and
functional sensitivities satisfy certain properties—e.g., if the
sensitivities possess a positive lower bound over the dis-
tribution’s support—these conditions may be automatically
satisfied. In general, the conditions must be checked on a
case-by-case basis for the asymptotic analysis to rigorously
hold. As demonstrated in Example 5 of Section V, design
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Fig. 3. (a) Codeword placement under simple, MMSE, and fMMSE decoders.
The simple decoder performs midpoint reconstruction followed by the applica-
tion of the computation ¢. The MMSE decoder applies ¢ to the conditional ex-
pectation of X within the cell. Finally, the f/MMSE decoder determines (10) for
the cell. In this example, the source distribution is exponential and the computa-
tion is concave. (b) Performance loss due to the suboptimal codeword placement
with respect to rate. We can see that relative excess fMSE decreases linearly
with rate and hence the fMSE of the resulting quantizers are asymptotically
equivalent.

based on the asymptotic analysis can be sensible even when
the technical requirements are not satisfied. Further care is
needed in the entropy-constrained setting. Many computations
yield ~ that is not integrable over R, making (18) invalid;
for example, a linear computation leads to constant v. When
the source has finite support, the integral in the denominator
of (18) can be reduced to one on that finite support, again
yielding a valid, optimal normalized point density. Otherwise,
one must use an unnormalized point density to represent the
asymptotically-optimal companding quantizer sequence. We
leave this generalization as future work.

B. Negligible Suboptimality of Simple Decoder

Recall that the decoder analyzed in this work is the computa-
tion ¢ applied to midpoint reconstruction as formulated in (2).
One may do better by applying g after finding the conditional
MMSE estimate of X (using knowledge of the source distribu-
tion only) and would do best with the fMMSE estimator (10)
(incorporating knowledge of the function as well). The code-
word placements of the three decoders are visualized through
an example in Fig. 3(a). The asymptotic match of the perfor-
mance of the simple decoder to the optimal estimator (10) is a
main contribution of this paper.

The simple decoder is suboptimal because it does not con-
sider the source distribution at all, or equivalently assumes the
distribution is uniform and the functional sensitivity profile is
constant over the cell. High-resolution analysis typically ap-
proximates the source distribution as uniform over small cells
[30], and the proof of Theorem 1 uses the fact that the sensitivity
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is approximately flat over very small regions as well. Hence, the
performance gap between the simple decoder and the fMMSE
estimator becomes negligible in the high-resolution regime.

To illuminate the rate of convergence, we study the perfor-
mance gap as a function of quantization cell width, which is de-
pendent on the communication rate [Fig. 3(b)]. Through exper-
imental observation, we see the relative excess fMSE (defined
as (Daec — Dopt )/ Dopt, appears exponential in rate, meaning

Dsimple
Dopt

~ 14 e @F

for some constants ¢; and ¢s. The speed at which the perfor-
mance gap shrinks contributes greatly to why the high-resolu-
tion theory is successful even at low communication rates.

IV. MULTIVARIATE FUNCTIONAL QUANTIZATION

We now describe the main result of the paper for the scenario
shown in Fig. 1, where N random scalars (X1,..., Xx) are
individually quantized and a scalar computation g(X?") is per-
formed. We will use a codebook size parameter ~ and fractional
allocations «{’ such that every o, > 0 and >, @, = 1; the
codebook size for quantizer n is then K,, = |, ]. Since we
are concerned with an asymptotic result, the use of x ensures all
codebooks grow at the same rate.

Assume the following conditions on the multivariate joint
density, computation and quantizers:

MF1’. The joint pdf fy~ is continuous and positive on R
MF2’. For every n € {1,..., N}, the point density },, is
continuous and positive on R

MF3’. The multivariate function g is continuous and twice
differentiable in every argument over R™ ; that is, the first
partial derivative g; = 0¢/0x; and second partial deriva-
tive g; ; = 0%g/0x; Ox; are well-defined for every i, j €
{1,2,...,N}

MF4'. Forany n € {1,..., N},

s

Fx (@) 1gn(@)))? /A2 (@) (20)

is integrable over R. Moreover, for any ¢,7.n €
{1,...,N},

N |9n($11v)| 9i J(Ti\)|
(X : 21
T )y e x ) =
is integrable over R
MF5 . for i, j.m,n € {1,...,N},
: / |!]i i("L.llV)| |gmn(LiV)‘
Fow () : ' (22)
X1 ( ! ))\’i(xi))\j(Ij))‘m(mm))\n(mn)

is integrable over RV . Fori,j € {1,..., N},
E[(X; — Qa x (X)) (X — Qu, ik, (X5))]

VD; Dj

— 0
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as k — oo, where D,, = E[|X,, — Qx, x, (Xn)|%]

MF6’. We adopt the notation z,, for #" with the nth el-
ement removed; the inverse operator Z(z,,, a:\n) outputs a
length-N vector with x,, inserted as the nth element. Then
for every index n, the following holds for every x\,,:

f;o|g(l(L "L‘\n)) 79(‘%(% 17\%)) |2inV (‘Z(‘L "l"\'n)) dx _
5 =
(S Anl) do)

An analogous condition holds for the corresponding nega-
tive-valued tails.

MF7'. Define s,, as the derivative of the expander function
¢}, meaning s, (c,(2)) = 1/An(x). There exists some
B > 0 such that s,,(¢(x)) is decreasing for z < —B, s, is
increasing for z > B, and the tails of s,, satisfy

0.

on(=B) 2 :
[ @) fx, () ds <

/m 2 ((en() + 1)/2)22(x) fx, (x) da < o0,
Cn(B)

foralln € {1,..., N'}. This condition is a generalization
of UF6’ for m = 0 applied to (20). Effectively, it bounds
the tail contributions of an integral with the integrand being
a modified version of (20). We also require similar condi-
tions for (21) and (22), which are analogous to UF6’ for
m = 1 and m = 2 respectively. We omit the exact form
here for brevity.

Recalling Qgcx sn and A’ represent a set of N quantizers
and point densities respectively, we present a theorem similar
to Theorem 1:

Theorem 2: Assume fx N g and Al satisfy conditions
MF1'-MF7’. Also assume a fractional allocation ' such that
every «,, > 0 and Zn o, = 1, meaning a set of quantizers
Q KN AN will have K,, = |a, ]| for some total allocation .
Then the fMSE

Dfmse(Kiwv )\1N) =k [|9(X:fv)—9(QKiV,AiN(Xiw))ﬂ

satisfies the following limit:

N 2
7 N 1 n Xn,
lim 72 Dguse (KT, AY)= Y E [(7 ( ))

—00 2
* — 1207, An(X0)
(23)
Proof: See Appendix B ]

Remarks

1) Like in the univariate case, the simple decoder has perfor-
mance that is asymptotically equivalent to the more com-
plicated optimal decoder (10).

2) Here, the computation cannot generally be performed be-
fore quantization because encoders are distributed. The ex-
ception is when the computation is separable, meaning it
can be decomposed into a linear combination of compu-
tations on individual scalars. As a result, for each n the
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partial derivative of g depends only on X,, and the func-
tional sensitivity profile simplifies to the univariate case,
as demonstrated in Example 2 of Section V.

3) The strict requirements of MF1’ and MF3’ could poten-
tially be loosened. However, simple modification of in-
dividual quantizers like in the univariate case is insuffi-
cient since discontinuities may lie on a manifold that is
not aligned with the partition boundaries of the Cartesian
product of N scalar quantizers. As a result, the error from
using a planar approximation through Taylor’s theorem
may decay at the same rate as in (23), which would invali-
date Theorem 2. However, based on experimental observa-
tions, such as in Example 5 of Section V, we believe that
when these discontinuities exist on a manifold of Jordan
measure zero their error may be accounted for. Techniques
similar to those in the proofs from [2] could potentially be
useful in showing this rigorously.

4) Condition MF5 is known as the asymptotic whiteness
property (AWP). For uniform quantization with midpoint
reconstruction and nonuniform quantization with centroid
reconstruction, it is shown in [31], [32] that the quantiza-
tion error for each cell converges to a uniform density suf-
ficiently fast such that the correlation of the quantization
error components vanishes faster than the distortion under
mild regularity conditions. We leave the AWP as a condi-
tion, but mention that establishing it under general condi-
tions for companding quantizers with midpoint reconstruc-
tion is an interesting open problem. The solution may rely
on extending Theorem 1 of [31] to hold after the expan-
sion step of the compander. To prove the convergence of
the quantization error correlation to zero, it may be neces-
sary to consider midpoint reconstruction both before and
after expansion using techniques developed in [33].

A. Asymptotically Optimal Quantizer Sequences

As in the univariate case, the optimal quantizers match those
in previous DFSQ work since the distortion equations are the
same. Using Holder’s inequality, the optimal point density for
fixed-rate quantization for each source n (communicated with

rate RR,,) is asymptotically
1/3

(V2 (=) fx, ()

)\Z,fmse.fr(‘/[‘.) = > (24)
T RO )
over the support of X,,, with fMSE
N
V 2R,
Dfmse fr(Rl 12 nz:l ”Wn ]LY,, 1/3 2 . (25)

Similarly, the best point density for the entropy-constrained case
is asymptotically

* Yo (T)
== 26
n,fmse,ec (33) f_oo 'Yn,(t) dt ( )
over the support of X,,, leading to a fMSE of
Dinlse e (Ri\ Z 22h(X,,)+2E[10g’y(X,, )}9—21?,, . (27)

n=1
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We present performance while leaving the fractional alloca-
tion o] as a parameter. Given a total communication rate con-
straint R, we can also optimize ¥ . Rather than repeat the re-
sults here, we point to similar work in [2, Lemma 4].

As in the univariate case, this optimization arrives with the
caveat that conditions MF4'-MF7’ must be satisfied by the re-
sulting point density functions. In general this must be verified
in a case-by-case basis, but as noted in Section III-B, the re-

quirements can often be too strict.

B. Vector-Valued Functions

In Theorem 2, we assumed the computation g is scalar-
valued. For completeness, we now consider vector-valued
functions, where the output of ¢ is a vector in R™ . Here, the
distortion measure is a weighted fMSE:

Dfmse (KiV 3 )‘i\v s ﬂi‘l)
M

= 3 B [Jg" () = g @y sy (X))
m=1
where 8 is a set of scalar weights and g™ is the ynth entry

of the output of g. Through a natural extension of the proof
of Theorem 2, we can find the limit of the weighted fMSE
assuming each entry of the vector-valued function satisfies
MF1-MF7'.

Corollary 1: The weighted fMSE of a source inw, compu-
tation g, set of scalar quantizers () KN AN, and fractional alloca-
tion a}¥ satisfies the following limit:

,‘ILI)I,}O szfmse(KiN7 )‘iV’ [ iM)
N -y 2
- 1 'Yn()(n: /3{\1)
nz:l 1202 l( An(X0) - @9

where the combined functional sensitivity profile is

M

1/2
771(177 Biw) = (Z /ij [|g(rr1) (XA/ )|2 ‘Xn = Ti|> .

m=1

The point densities given in (24) and (26) are again optimal
under this new definition of v, .

V. EXAMPLES

In this section, we present examples for both univariate and
multivariate functional quantization using asymptotic expres-
sions and empirical results from sequences of real quantizers.
The empirical results are encouraging since the convergence to
asymptotic limits is fast, usually when the quantizer rate is about
4 bits per source variable. This is because the Taylor remainder
term in the distortion calculation decays with an extra # factor,
which is exponential in the rate.

A. Examples for Univariate Functional Quantization

Below we present an example of functional quantization in
the univariate case. The theoretical results follow directly from
Section III.
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Fig. 4. Empirical and theoretical performance for the ordinary and functional quantizers for: (a) a scalar Gaussian source and g(2) = z?; (b) jointly Gaussian
sources with correlation coefficient 0.5 and g({x1,22) = /27 + 23; (c) exponential sources with parameter A\ = 1 and g(z1,22) = 21/(1 + 22); and (d)
N = 10 exponential sources and g(x{') = min(x{’ ). Note that we also include empirical results for uniform quantizers that have different granular regions
depending on the quantization rate and the case when the computation is performed before quantization in (a), labeled “Encoder.” Theoretical performance is
determined using Theorem 2 and are represented by solid lines. Experimental validation is determined by designing real quantizers using the compander model
and running Monte Carlo simulations; the resulting fMSE is represented by markers. To emphasize the gap between the results and to illustrate convergence to the
high-resolution approximation, we normalize the plots by multiplying fMSE by 22#,

Example 1: Assume X ~ N(0,1) and g(z) = 22, yielding a
functional sensitivity profile v(2:) = 2|z|. We consider uniform
quantizers, optimal “ordinary” quantizers (quantizers optimized
for distortion of the source variable rather than the computa-
tion) given in Section II-B, and optimal functional quantizers
given in Section III-C, for a range of rates. The point densities
of these quantizers, the source density fx, and computation g
satisfy UF1’-UF6’ and hence we use Theorem 1 to find asymp-
totic distortion performance. We also design practical quantizers
for a range of R and find the empirical fMSE through Monte
Carlo simulations. In the fixed-rate case, theoretical and em-
pirical performance are shown Fig. 4(a). The distortion-min-
imizing uniform quantizer has a granular region that depends
on I?, which was explored in [34]. Here, we simply perform a
brute-force search to find the best granular region and the cor-
responding distortion. Surprisingly, this choice of the uniform
quantizer performs better over moderate rate regions than the
MSE-optimized quantizer. This is because the computation is
less meaningful where the source density is most likely and the
MSE-optimized quantizer places most of its codewords. Hence,
one lesson from DFSQ is that using standard high-resolution
theory may yield worse performance than a naive approach for
some computations. Meanwhile, the functional quantizer opti-
mizes for the computation and gives an additional 3 dB gain
over the optimal ordinary quantizer. There is still a loss in using
regular quantizers due to the computation being non-monotonic.

In fact, if the computation can be performed prior to quantiza-
tion, we gain an extra bit for encoding the magnitude and thus
6 dB of performance. This illustrates Remark 2 of Section III-A.
In the fixed-rate case, the empirical performance approaches the
distortion limit described by Theorem 1. The convergence is
fast and the asymptotic results predict practical quantizer per-
formance at rates as low as 4 bits/sample.

B. Examples for Multivariate Functional Quantization

We next provide four examples that follow from the theory
of Section IV.

Example 2: Let N sources be iid standard normal random
variables and the computation be g(z)) = ||z1'||2. Since the
computation is separable, the functional sensitivity profile of
each source is v, (z) = 2|z|, and the quantizers are the same
as in Example 1. The distortion is also the same, except now
scaled by V.

Example 3: We now consider a more interesting extension
of Example 2 where the sources are correlated and the compu-
tation is g(x1’) = |2’ ||2. Because the norm is not squared, the
computation is no longer separable. For two jointly Gaussian
random variables distributed A(0, 1), a correlation coefficient
of p implies that

Xo = pX1+ /1 - p2N,
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where /V is standard normal and independent of X;. The func-
tional sensitivity profile then becomes

Vo(x) = (Bllgr (X1, X2)|* | X1 = a])/*
X?

:E 7X:.;
{X5+X§| ' T]

=En

22
2 + (pz + \/1p2N)2] '

In Fig. 4(b), we demonstrate the convergence of the distortion
from sequences of companding quantizers to the asymptotic be-
havior for p = 0.5. Similar results can be obtained for other
choices of p.

Example 4: Consider two iid exponential sources X; and
Xo with parameter A = 1; we wish to compute g(z1,x2) =
z1/(a + z3), where we let @ = 1. Using (11), the functional
sensitivity profiles are

oC
w(z) = / e ™2 (14 29) *dug = 0.635
Jo

and y2(z) = (1+x)~2/V/3. In Fig. 4(c), we experimentally
verify that sequences of real quantizers approach the predicted
distortion-rate trade-off.

Example 5: Let N sources be iid exponential with param-
eter A = 1 and the computation be g(29) = min(z]). In this
case, Condition MF3' is not satisfied since there exists N (N —
1)/2 two-dimensional planes where the derivative is not de-
fined. However, as discussed in the remarks on Theorem 2, we
strongly suspect we can disregard the distortion contributions
from these surfaces. The overall performance, ignoring the vio-
lation of condition MF'3’, may be analyzed using the functional
sensitivity profile:

(@) = (Ellgn (X)) | X0 = 2])
= (Pr{min(X{") = X, | X,, = =}
— (CfAm)(lVfl)/Q’

1/2

)1/2

where the third line follows from the cdf of exponential random
variables.

In Fig. 4(d), we experimentally verify that the asymptotic pre-
dictions are precise. This serves as evidence that MI'3’ may be
loosened.

VI. CONCLUSION

In this paper, we have extended distributed functional scalar
quantization to a general class of finite- and infinite-support dis-
tributions, and demonstrated that a simple decoder, performing
the computation directly on the quantized measurements,
achieves asymptotically equivalent performance to the fIMMSE
decoder. Although there are some technical restrictions on the
source distributions and computations to ensure the high-reso-
lution approximations are legitimate, the main goal of the paper
is to show that DFSQ theory is widely applicable to distributed
acquisition systems without requiring a complicated decoder.
Furthermore, the asymptotic results give good approximations
for the performance at moderate quantization rates.
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DFSQ has immediate implications in how sensors in acqui-
sition networks collect and compress data when the designer
knows the computation to follow. Using both theory and exam-
ples, we demonstrate that knowledge of the computation may
change the quantization mapping and improve fMSE. Because
the setup is very general, there is potential for impact in areas of
signal acquisition where quantization is traditionally considered
as a black box. Examples include multi-modal imaging tech-
nologies such as 3D imaging and parallel MRI. This theory can
also be useful in collecting information for applications in ma-
chine learning and data mining. In these fields, large amounts
of data are collected but the measure of interest is usually some
nonlinear, low-dimensional quantity. DFSQ provides insight on
how data should be collected to provide more accurate results
when the resources for acquiring and storing information are
limited.

APPENDIX A
PROOF OF THEOREM 1

Taylor’s theorem states that a function ¢ that is n» + 1 times
continuously differentiable on a closed interval [a, x] takes the
form

"0y _
g(z) = g(a) + (Z g ( )(T - (L)‘) + R, (z,a),

7!
i=1

with a Taylor remainder term

g ()

Rl 0) = (n+ 1)!

(z —a)™™!

for some £ € [a,x]. More specific to our framework, for any
2 € [ck, pr), the first-order remainder is bounded as

Rifr,a)| < 5 max 6" e - el @9)

£€[cr pi]
We will denote the length of the partition corresponding to the
kth codeword as I = pp — pr_1 and let I(x) = Iy, if z € Py.
Moreover, we define g as a piecewise-constant upper bound to
the second derivative of g over the partition of Qx x:

g(x)y =sup |¢"(O)] fx € P, k=1,...,K.
tely,

(30)

Since ¢;, is at the midpoint between p;. and py,_1, we can rewrite
the Taylor remainder term as
|[Ri(z,cr)| <

§(z) I (). 31

oc| =

Consider expansion of Dy, (K, A) by total expectation:

Phk+1

K-1 .
Dinel KN = Y [ lgte) - sfcn) Px(a) d

k=0 Pk

We would like to eliminate the first and last components of the
sum because the unbounded interval of integration would cause
problems with the Taylor expansion employed later. The last
component is

/C)O
YPK-—1

lg(z) — g(pre 1)) fx () da, (32)



3504

where we have used cx = px_1. By Condition UF5’
asymptotically negligible in comparison to

, this is

Thus (32) does not contribute to lim g~ K2 Dimse(K, X). We
can similarly eliminate the first term, yielding

K-2

Dhnbe K )\ Z /

Pr41

g(ck)|2fX (z)dz, (33)

where we recall ~ indicates that the ratio of the two expressions
approaches 1 as K increases. Effectively, UF5’ promises that
the tail of the source distribution is decaying fast enough that
we can ignore the distortion contributions outside the extremal
codewords.

Assuming UF3’, further expansion of (33) using Taylor’s the-
orem Yyields:

Kszmse(K7 A)
K-2

Pr4+1
=Y [ e - a) + Bao o) (o) do
k=1 Pk
K-2 Pr+1
K2 [ P e - P ds (34)
k=1 " Pk
A
PE+1

[R1(x; ci)l |9 (ci)l v — x| fx () da

o

KQZ/

(35)

(36)

Of the three terms, only term A has a meaningful contribution,
which has the following asymptotic form:

Pk+1

o — cil® fx(2) du

q (cx)]?

hm K2 Z/

PK—1
@ im K2 / 19/ ()2 |r = Qra(x))? fx(z)dz
p

K—oo
1

by . '
© tiw K [ 4@ e - Qua) fx(e) ds
—00 JR

oL (52) o

where (a) follows from the definition of () »; (b) from p; —
—o¢ and px 1 — o0; and (c) from an extension of the proof
by Linder [25], which is given in Theorem 3 in Appendix C.

(37
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Conditions UF2’, UF4’ and UF6’ for m =
Noting that v(z) = |¢'(x)]| gives (15).

The higher-order error terms become negligible with in-
creasing K using the bound reviewed in (29):

0 are used here.

Phk+1
Jim K z/ 2] Ig' (o) [« — ex] fx @) dr
(@) . _2 o 2
2 dim = [ )| ) o @) |- Qxa@)] fx ) d

K2 P1
2 him = / 0P ) |g'<:c>\|wfczk-,x<w>|f4\r<x> du

C
= lim

19@)[" |g'@)] | Iq
,id,w
ﬁoo4K/ fxte) do

) 0,

where (a) follows from bounding R; («, ¢k ) using (31); (b) from
p1 — —oo and px_1 — oc; (¢) from a similar extension of
Theorem 3 (see Appendix D), using UF2’ and UF6’ form = 1;
and (d) from UF4’ for m = 1. Compared to (37), there is an
extra 1/K factor arising from the second-order Taylor error,
which drives term B to 0. A similar analysis can be used to show
that expansion term C' scales as 1/ K2 with growing codebook
size and is therefore also negligible. Here, conditions UF4’ and
UF6’ for m = 2 are needed.

APPENDIX B
PROOF OF THEOREM 2

We parallel the proof of Theorem 1 using Taylor expansion
and bounding the distortion contributions of each granular cell.
By the first-order version of the multivariate Taylor’s theorem,
a function that is twice continuously differentiable on a closed
ball containing ai¥ takes the form

[ gn (02 ) (2,
1
(o)),
where we recall that ¢, (1) is the partial derlvatlve of g with

respect to the nth argument evaluated at the point 3" . The re-
mainder term is bounded by

ZZI%:—%IILJ ajllgi (=)l (38)

i=1 j=1

(a1) = g(al’) + — an)]

mﬁ

’Rl 'Ll ,al

where g, ; is the second-order partial derivation with respect to
x; first and then ; evaluated at 7 .

Let 7y be an indexing of the cells in the Cartesian product of
N scalar quantizers, excluding the overload regions. By total
expectation, we find the distortion of each partition cell and
sum their contributions. By Condition MF3', the distortion from
overload cells become negligible with increasing « and can be
ignored. Using Taylor’s theorem and MF4’, the scaled total dis-
tortion becomes

K Dimse (KT, AT ) < A+ 2B+ C,
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where
N N
A= S [ S S e ()
t€Tn ‘Ll et1—1_7 1
cogl fron (2 da,

= HQ Z / Z |gn Ct | |Tn Cg, n|

teTn ¥ ™1 n=1

|1y (T1 7(Ct)1 )|f¥V(

—HZZ/ oY () Fp (o]

te€Tn

i = el Im,- -

) (lTl .

) day’
Let us consider the summands of A where i = j:

55 ) ot

te€Tn n=1
(39)
We note that these distortion contributions are equivalent to
those in the univariate case and can apply the derivations in
Theorem 1. Using Conditions MF2', MF3’ and MF7’, (39) ap-

proaches the integral expression
ilEKmmﬂ
2
— 12a2 An(X0)
- Z 1202

n=1

< Yn(Xn) ) ?

n(X 'n) 7

where the expectation on the left-hand side is with respect to the
joint density in” . Using the definition of functional sensitivity
profile in (11), we get the right-hand side, where the expectation
is only with respect to X,,.

We now consider the remaining summands of A where¢ # j,
corresponding to the correlation between quantization errors in
the granular region. Under the asymptotic whiteness property
MF5’, the distortion contributions from these terms decay faster
than in the terms in (39) in the granular region; therefore, they
do not contribute to the asymptotic distortion. In Remark 3 of
Section IV-A, we discuss generalizing to discontinuous densi-
ties and computations. Some care is needed so that this does not
violate the validity of the asymptotic whiteness property.

We will now parallel the results of Appendix A to show the
higher-order error terms I3 and C' are negligible with large «.
We denote the length of the partition corresponding to the kth
codeword of the nth quantizer as I, , and let I,(z) = I,
if z € P, ». Moreover, we define g; ; as a piecewise-constant
upper bound to the second-order partial derivative of g over the
partition of Q)i z:

M| if

"y = sup g (i1 et

=Ll et

Gij(z]

where t is an N -dimensional cell in 7. We can then bound
(38):

N
LA IES D 9 SEACHIATHI NI NTL)
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We now consider B:
N
/ehj};o h Z / Z ‘Jn Ct | |[n — Ctn
t€TN yet n=1
<[ (*Tl 7((}) ) |fAV($1 )d$1 )
(a) /4',
< lim = f (Z |9n (1) [ — QK,,,,A,,,(%,N)
n=1
N N
A DD T i) oy (a) | fxp (a1 day
i=1 j=1
N N N
= ngg — [ DY 1) e — Qron, (20)]
n=11i=1 3=1

Li(z;) I; (fj)gu('ﬁ )) fxw(’ﬁ )dT1 )

Y |qn Tl ||qu< V)
Z Z/ i '])/\n(in)

1i=1j=1

®)

= lim
K—00 4f<aoz Gy,
n—=

fX\ (Tl )dT1 ;
=0,

where (a) follows from bounding Ry (3, ¢;) using (30) and the
fact that the limits of integration converge to R ; and (b) from
a generalization of the proof by Linder [25], which relies on the
dominated convergence theorem to show how interval lengths
can converge to the reciprocal of the point density. For this case,
there is an extra 1/ factor which drives B to 0, using conditions
MF4’ and MF7’. Note that for general vector quantizers, a com-
panding function may not exist. However, the simple structure
arising from a Cartesian product of V scalar quantizers is nicely
represented, which allows Linder’s method to be adequate.

Remainder term C' is negligible in a similar manner (van-
ishing with 1/x?), which proves the theorem.

APPENDIX C
WEIGHTED DISTORTION OF COMPANDING QUANTIZERS

In this section, we prove a modest extension to Linder’s rig-
orous results [25] on the distortion of companding quantizers on
sources with infinite support. The addition here is a weighting
function w inside the integral of the MSE distortion:

/R 2 — Qra(x)Pw(@) fx(x)dz. (41)
Linder’s result for MSE relies heavily on the dominated conver-
gence theorem and its generalization. We will follow a similar
strategy, except on a “weighted” probability density that is not
required to integrate to 1.

Recall that a scalar companding quantizer Jx » is specified
by the codebook size K and point density A, where A is the
derivative of the compressor function ¢. In this section, we will
be explicit that we are considering a sequence of quantizers in-
dexed by K that are constructed using the companding model.
The partition points of ¢ » are defined as px x = ¢ ' (k/K)
and the codewords are determined using midpoint reconstruc-
tion, ¢k x = (Pr—1,K5 + Pr.x )/ 2, except for the extremal code-
words. We additionally define the derivative of the expander
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function ¢! as s, where s(c(x)) = 1/A(x), and the interval

that is mapped to codeword ci i as I x = [Pr—1.K:Pk K )-
We let i+ denote the Lebesgue measure.
We impose the following conditions on fx, w, and A:

LCI1. The point density A is continuous and positive on R.
LC2. fx(z)w(x)/X?(z) is Lebesgue integrable over R.
LC3. There exists some B > 0 such that A(x) is increasing
for x < —B and is decreasing for z > B.
LC4. The inverse of A, s, satisfies

[

/zs?(( (x) +1)/2)w(z) fx(z)dz < co.

2(e(w)/2) w() fx(x) dr < 0,

Before stating the main result, we define several sequences of
functions that will be needed in the proof.

Definition 2: Consider a function / that is continuous, pos-
itive and integrable. The piecewise constant and truncated ap-
proximation to h over the partition induced by quantizer Q) x x
is defined as

. AA’(}")/lL(IIc,K) j}k.K h(f) dt, forx e Ik’K’
hi(x)= k=2,...,(K—-1);
0, otherwise,
where
;1";1"" h(z) dz
Ag(h) = ——.
x(h) oo M) da

Using the Lebesgue differentiation theorem, hyx — h as
K — oo a.e. with respect to y.
Definition 3: We define as an approximation to s a function

st {0,1) — (0,00):
SUPjeh_t k) s(t), fory e Ik,
sic(y) = k=2, (K-1);
s(y), otherwise.

The approximation s g is the piecewise-constant function that
most tightly upper bounds s on the granular region. We note that
sg — s as K — oc by the continuity of s, which follows from
LCI1. Notice a slight modification in the definition of sy from
that in [25], due to the different placement of codewords in the
extremal quantization cells.

Definition 4. We define as an approximation to s a function
x:(0,1) = (0,0¢):

8 () — KM(I]@,K), fOI'yEIk.YK,kZZ,...,
Si(y) {0 otherwise.

(K —1);

Intuitively, §x is a piecewise-constant approximation of s
with points of discontinuity determined by the partition Pk .

We now introduce some lemmas that we will combine to
prove the theorem. First, we relate the distortion integrals with
respect to s and sg:
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Lemma 1: The integral with respect to s converges to the
integral with respect to s in the following manner:

/R s (c()) w(w) fx(x) da
:/QqZ(p(I))qu( ) fx () da.
JR

lim
K—oc

Proof: The change of variables y = c(x) yields an alter-
native form for the LHS integral:

/gs%a c(z)) w(z) fx(x)dz
- / 2 () w(c™ () ply) dy.
where p(y) = fx(c'(y)) / Mc ()

Note that LC3 implies that there ex1sts some ¢ = ¢(B) such
that s(y) is decreasing on y € (0, £). Using the inequality (k +
1)/(2K) < k/K and the definition of sx , we can see s(y/2) >
sk (y) forall y € (0, ¢). Using the continuity of s and LC4, we
can use the Lebesgue Dominated Convergence Theorem [35,
Section 4.4] and sx — s as K — oo to show

lim
K—oc

/ ") wle () ply) dy

= /(;5 s2(y) we 1 (y)) ply) dy. 42)

Similarly, we can parallel the above proof fory € (1 — ¢,1) to
show

lim
K—oc

/;_ si(y)w(c™ (y) ply) dy

-/ 15 () wie™ () ply) dy. @3)
Because s is bounded on [£,1 — ¢] by LCl,
Jim lls«ei(y)ﬂfl(y))p(y) dy

= / - s* (1) ¥ (e () ply) dy. (44)
Combining (42)—(44) proves the lemma. [ |

Next we relate quantization error and s :
Lemma 2: Forlarge K andx € I ir, k=1,..., K,

s2-(c(x)).

Proof: The left inequality is trivial. By the mean-value the-
orem of differentiation, there exists some vy € I gk such that

s(e(v)) = cil(k/K) — Cil((k - 1)/K)
ST kK — (k- 1)/K
= K Iy, k).

K2|JL‘ — Qrale)] K2,LL2(I]€7K) <

Using the definition of s yields the right inequality for K large
enough such that Condition LC3 ensures s is monotonic in the
extremal partitions. [ |
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Finally, we introduce a lemma that relates the truncated
source to the integrable form of the distortion:
Lemma 3: The following limit holds:

. ] 1 " h(z
. 2 o . 2 T = — A
Aim K | o= Q@) hac (@) do = /H ()

Proof: We can show that

K? / & — Qren(@)]? P () de
JR
K—-1 1

_ 2 1 s - ‘ x)dx
= K23 o iy . M

k=2

- 12141%/ % (c(x)) h(z) dz,

where the first line comes from variance of uniform noise on
an interval and the definition of A , and the second line comes
from the definition of §x . From Lemma 2, we find s i () domi-
nates S5 (y), i.e., S (y) < sx(y) fory € (0,1). Using Lemma
1, we see 8% (¢(x))h(x) is Lebesgue integrable. Combining the
General Dominated Convergence Theorem [35, Section 4.4]

and the fact that 5 — s as K — oc forally € (0,1),

L §2 ; ) dx
Jim_ s [ ety d |

1
= o5 [ 2t ) do
e,
=12 o2 ™

where we use LC2 to ensure the existence of the right-hand side.
|
We now prove the main theorem:
Theorem 3: Suppose the source density fx, weighting
function w, and point density A satisfy Conditions LC1-4 .
Then

Jim K7 [ o= Qua@) uto) fle) de
! w(z) N

Proof: Let h(x) = w(z) fx(x). We want to show that

lim KQ/ |z — Qg .A(x)]* h(z) d
K—oco 3 :

= lim K2 [ |& — Qgi(x))? hg () da. (45)
K—oo R

To prove (45), we note
K? / |z — Qi A(z)? |h(x) — hy(x)| dx
R
[ siteta Ibe) o)l do

<1i+Aﬁ1<h>> [ swteta))? ) da
<3 / sic(e()? h(x) da,
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where the last inequality holds only for large K since A (h)
approaches 1 from above. We also recall hx — has K — oo
a.e. with respect to 1. Hence, we can again employ the General
Lebesgue Dominated Convergence Theorem, this time using the
fact |h(z) — hx ()] < f(z), along with Lemma 1 to show (45).

To complete the proof of the theorem, we combine Lemma 3
and (45).

APPENDIX D
GENERALIZING THEOREM 3

We also need a Linder-style proof to bound the higher-order
distortion terms (35) and (36). Here, we provide only a brief
sketch on how to extend Theorem 3. Consider the integral

K [ P@)uls) o - Qualn)| fx(@) d.
JR
where I(x) = u(Iy x) if # € I . We can rewrite (46) as

[ Flelad) wle) o = Quao)] fx (o) da

< [ sk fx ) da

where the first line uses the definition of $x and the second
uses Lemma 2. Ensuring that the right-hand side is integrable is
sufficient to show that (46) becomes negligible as K becomes
large. The success of convergence with K depends on a condi-
tion analogous to LC4.

(46)
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