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a b s t r a c t

TheWeber–Fechner law states that perceived intensity is proportional to physical stimuli on a logarithmic
scale. In this work, we formulate a Bayesian framework for the scaling of perception and find logarithmic
and related scalings are optimal under expected relative error fidelity. Therefore, the Weber–Fechner
law arises as being information theoretically efficient under the constraint of limited representability. An
even stronger connection is drawn between the Weber–Fechner law and a Bayesian framework when
neural storage or communication is the dominant concern, such as for numerosity. Theoretical results
and experimental verification for perception of sound intensity are both presented.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Psychophysical scales relate stimulus intensity to perceptual
intensity and are central to understanding how the external
world is internally represented. For example, the logarithmic
scale described by the Weber–Fechner law is consistent with
observations in audition, vision, haptics and numerosity (Dehaene,
2003; Fechner, 1860;Moore, 1992; Shen, 2003). Alternatives to the
Weber–Fechner scaling have also been proposed, e.g. a power law
(Fullerton & Cattell, 1892; Stevens, 1957, 1961). Although there is
some debate over the validity of various psychophysical laws for
different perceptual modalities (Krueger, 1989), many researchers
suggest the psychophysical predictions of these models are
essentially equivalent (Dehaene, 2003; MacKay, 1963).

A psychophysical scale is described by an increasing function
C(s) such that P = C(S), where S and P are random variables
corresponding to stimulus and perceptual intensities respectively.
The Weber–Fechner law specifies C(s) as P ∝ ln(S/s0), where s0
is the threshold below which a stimulus is not perceived (making
P a nonnegative quantity). Thus under the Weber–Fechner law, a
multiplicative increase in stimulus intensity leads to an additive
increase in perceived intensity.

Several principles have been advanced to explain psychophysi-
cal scales, but these are formulated purely at the implementational
or algorithmic levels (Marr, 1982) without consideration of com-
putational purpose. In particular, arguments based on the physical
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chemistry of sensory receptors (Cope, 1976) and based on the in-
formational properties of individual neurons (MacKay, 1963) also
yielded theWeber–Fechner law, but these arguments did not con-
sider perceptual fidelity. On the other hand, Fechner (1860) solved
a differential equation arising fromWeber’s ‘just noticeable differ-
ence’ experimental procedure, yielding a logarithmic scale, but did
not relate it to neurobiology.

In this paper, we propose that psychophysical scales arise at
the computational level as optimizations under neurobiological
constraints (at the implementational and algorithmic levels). Two
threads of theoretical work in neuroscience have emerged that at-
tempt to connect physical properties and constraints of the ner-
vous system to psychological and behavioral properties. The first
argues that the physical substrate of perception in the nervous
system is algorithmically well-matched to the statistical proper-
ties of the natural environment (Olshausen & Field, 2004) and
that therefore operation of the brain is probabilistically efficient,
i.e. Bayes-optimal (Friston, 2010; Jacobs & Kruschke, 2011; Knill
& Pouget, 2004). The second thread argues that internally, brains
have remarkable biophysical efficiency when performing informa-
tion and communication tasks (Laughlin & Sejnowski, 2003) and
therefore achieve information theoretically-optimal signal trans-
mission (Borst & Theunissen, 1999). In both threads, design princi-
ples governing the nervous system are said to be similar to those
in optimized electronic information systems.

Building on these neurobiological insights and therefore adopt-
ing the view of optimal information processing and transmission,
this paper provides a mathematical framework for understand-
ing psychophysical scales as Bayes-optimal and information
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theoretically-optimal representations of time-sampled continu-
ous-valued stimuli. Specifically, for statistical distributions that
correspond to natural stimuli, the Weber–Fechner law and related
scales minimize the expected relative error of representing the
stimulus intensity under two models, each motivated by informa-
tional limitations. In the first model, each representation of a stim-
ulus takes one of a finite set of values, corresponding to digital
signaling. We also discuss an analog information system that has
an equivalent formulation. The second model extends the first by
allowing for compressed representations andmaybemore suitable
when neural storage or communication has a high cost.

The discretization of a continuous scalar is called quantization
and is well-studied under a Bayesian framework (Gray & Neuhoff,
1998). Quantization leads to stability in information representa-
tion and robustness to additive noise and mismatch while allow-
ing for efficient reduction in communication rate or storage cost
(Sarpeshkar, 1998). The choice of the discrete set representing con-
tinuous stimuli is called the quantization mapping and is opti-
mized by minimizing some error criterion that takes into account
the statistical distribution of the stimulus intensity.

In measuring quantization error for stimuli that span orders
of magnitude, expected relative error (ERE) is a suitable measure
of accuracy. For a particular quantization mapping Q between a
random variable S and its quantized value Ŝ, ERE is defined as

ERE(Q ) = E


|S − Ŝ|2

S2


, (1)

where the expectation is taken with respect to the probability
density function (pdf) of S, denoted fS(s). Since ERE corresponds
to squared error divided by the energy of S, the resulting error
term is scale-invariant. Relative error has been used for perceptual
coding in media applications (Gersho & Gray, 1992; Motta, Rizzo,
& Storer, 2006). More recently, we have generalized the design of
Bayes-optimal quantizationmappings for ERE (Sun & Goyal, 2011).

Another quantization model was recently proposed to show
that a logarithmic scaling can result when minimizing worst-
case relative error (Portugal & Svaiter, 2011). However, there are
fundamental differences between ERE and worse-case error in
their psychological predictions and performance guarantees. For
example, it is intuitive that a worst-case relative error criterion
yields a logarithmic scaling, but we will show that the logarithmic
scaling arises in a Bayesian formulation only when the stimulus
distribution takes a certain form or when the quantized values are
compressed. Moreover, worst-case quantizers generally perform
poorly because they do not utilize information about the stimulus
distribution and thus have lower information transmission rates.
Hence, the theory presented here is more biologically plausible
and provides meaningful insights regarding how the brain might
exploit the distributions of natural stimuli.

One may wonder if relative error, either expected or worst-
case, has psychological significance. Before making the worst-case
assumption, Portugal and Svaiter (2011) motivated their work by
noting that relative error is prominent in numerical analysis and
physics, and hence has significant value in computations that may
occur at a cognitive level. Sun and Goyal (2011) formalized the
use of expected relative error for compression of audio and video,
benefiting from decades of psychophysical studies for the purpose
of matching data compression to perceptual processes in the brain
(Jayant, Johnston, & Safranek, 1993). Often, perception appears
to be sensitive to ratios between stimulus intensities rather than
absolute stimulus intensities—the outputs of many perceptual
processes appear to be independent of scale—hence relative error
is the natural fidelity criterion. The quantization models proposed
here can be generalized to account for other distortion measures,

a

b

Fig. 1. (a) Block diagram of the quantization model for perception. Stimulus
intensity S is transformed by a nonlinear scaling C(s), resulting in perceptual
intensity P . Since biological constraints limit perception, only a discrete set of
levels {P̂} are distinguishable. The corresponding discrete stimulus set has elements
Ŝ = C−1(P̂). (b) The discrete mapping induced by quantization. On the vertical
axis, quantization reduces the real line to a discrete set of points (indicated by
crosses) called the perception dictionary. Because the scaling C(S) is invertible, the
quantization of perception also induces quantization in the stimulus intensity on
the horizontal axis (indicated by circles). For example, any two stimulus intensities
in the gray region are indistinguishable.

cf. Appendix B, and we will briefly discuss how to experimentally
test the validity of error criterion assumptions.

The remainder of the paper is organized as follows. First, we
introduce the two quantization models in Sections 2 and 3. Next,
we present examples under which the Weber–Fechner law is
Bayes-optimal in Section 4. Finally, we provide a discussion of the
main results in Section 5.

2. A Bayes-optimal model for limited perception

We begin by formulating the first quantization model for per-
ception. Like in earlier work, we abstract away neural circuitry
and underlying communication mechanisms at the implementa-
tion level. By considering cognitive responses to stimuli, we show
that perception fits naturally into a quantization framework.

Recall the psychophysical scale is denoted P = C(S). Since per-
ception lies on a subjective scale, we normalize the minimal and
maximal perceptual intensities to be 0 and 1 respectively. For nat-
ural stimuli, the space of S is continuous. In most psychophysi-
cal studies, the space of P is assumed to have such fine resolution
that it can be approximated as continuous. However, assuming that
perception is limited, the brain only distinguishes a discrete set of
levels. Abstractly, this means that a range of P is mapped to a sin-
gle representative point P̂ (Fig. 1). This discretemapping, called the
quantizer, is denoted P̂ = Q (P), with output space the set of per-
cepts {P̂}, which is the perception dictionary. Using the invertible
function C(s), the equivalent representative stimulus intensities
are Ŝ = C−1(P̂).

Since the spacings between elements in the perception
dictionary, called perceptual uncertainty, are equidistant, the only
flexibility in this model is C(s). The Bayesian optimization is
therefore

argmin
C(s)

ERE (Q (C(S), K)) , (2)
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where Q is the quantization mapping with scale C(s) and
perception dictionary size K . For a given stimulus pdf fS(s), what
choice of C(s) minimizes the ERE between S and Ŝ? How does the
size of the set of P̂ affect this choice?

First we study how the stimulus distribution affects C(s). If fS(s)
is bounded such that 0 < s0 ≤ S ≤ s1 < ∞, where s0 and s1 are
constants, then according to quantization theory, to minimize ERE,
the optimal relationship between C(s) and fS(s) satisfies

dC(s)
ds

∝ s−2/3f 1/3S (s) for s ∈ [s0, s1], (3)

with constraints C(s0) = 0 and C(s1) = 1. The proof of (3) relies on
certain approximations for large dictionary sizes and uses calculus
to show optimality (Sun & Goyal, 2011); see also Appendix B. We
emphasize that (3) holds approximately even for dictionaries of
moderate size.

Next, we address how the size of the perception dictionary
affects C(s) and ERE. If the set {P̂} has K equally-spaced elements
between 0 and 1, then

P̂k =
k − 1/2

K
, k = 1, 2, . . . , K . (4)

The equivalent stimulus representation is simply Ŝk = C−1(P̂k).
As K increases, so does the resolution of perception, leading to a
more accurate approximation of stimulus intensity and reducing
the squared error factor in ERE. Asmentioned above, the optimiza-
tion of C(s) is unaffected by K in the limit of large K , and the con-
vergence is fast enough such that the asymptotic scaling can be
considered with little loss of optimality.

Therefore, C(s) is heavily dependent on fS(s) and less dependent
on K . Moreover, C(s) is also explicitly dependent on the error
measure to be minimized, which is ERE. Indeed, the optimal scale
C(s), stimulus pdf fS(s), and error measure are intertwined under
quantization theory such that knowledge of any two can predict
the third.

That the psychophysical scale C(s) adapts to the statistical
properties of the stimulus pdf fS(s) implies that C(s) should change
when fS(s) changes. Such plasticity would allow individuals to
adapt to long-term changes in their perceptual environment. For
example, this phenomenon has been observed for perception of
sound intensity in individuals after long-term use of auditory
prostheses that modify fS(s) (Philibert, Collet, Vesson, & Veuillet,
2002; Thai-Van, Philibert, Veuillet, & Collet, 2009).

We briefly mention an analog model for limited perception; a
more formal discussion is given in Appendix A. This analog model
leads to the same expression for the psychophysical scale that
minimizes ERE, making the conclusions we draw from (3) not
contingent on discretization in the encoding of stimuli. Suppose
that rather than quantization, zero-mean additive noise corrupts
P , leading to P̂ (Fig. 2). If this additive noise is independent of
the stimulus intensity and has variance of the same order as the
perceptual uncertainty, then the Bayes-optimal C(s) has the same
form as (3) in the limit of high signal-to-noise ratio (SNR). Note that
the notion of SNR here is at the cognitive level, which may be high
even when the SNRs of single neurons are substantially lower.

3. A Bayes-optimal model for limited perception with coding

We now formulate the second quantization model, motivated
by stimuli for which psychophysical scales are not affected by
sensing mechanisms or communication channels from sensory
systems. One such example is numerosity, which has been shown
experimentally to follow theWeber–Fechner law (Dehaene, 2003;
Nieder & Miller, 2003). As an abstract sensation, numerosity is of
particular interest since it does not suffer from physical limitations

Fig. 2. Block diagram of an analog model for perception that provides equivalent
asymptotic results as the model in Fig. 1. Stimulus intensity S is transformed by a
nonlinear scaling C(s), resulting in perceptual intensity P . Biological constraints are
modeled by limiting the range of C(s) to [0, 1] and by including additive noise η

that is independent of S.

like resolution or saturation. Note that small numbers may be
qualitatively different in how they are perceived (Le Corre &
Carey, 2007). Since numbers can be observed directly with very
fine precision, why should numerical perception suffer from the
indistinguishability of quantization?

The reason may be coding. In the previous model, the quan-
tized values were not represented more efficiently through cod-
ing. However, representing more likely values in the perception
dictionary with compact representations leads to reduced overall
information transmission or storage at the expense of increased
computational complexity and delay. An information-theoretic
concept called entropy gives the fundamental limits of compress-
ibility through coding (Cover & Thomas, 1991). Efficient entropy-
based codes have been suggested for transmission of sensory
information (Fairhall, Lewen, Bialek, & de Ruyter van Steveninck,
2001; Ganguli & Simoncelli, 2010), for short-termmemory (Brady,
Konkle, & Alvarez, 2009), and in the context of learning (Barlow,
1989), where compressed representationsmay helpmeetmemory
capacity constraints (Varshney, Sjöström, & Chklovskii, 2006).

In variable-rate quantization, values from the discrete set {P̂} (or
equivalently, the set {Ŝ}) are entropy-coded based on the probabil-
ities of occurrence of the entries in the set (Fig. 3). As the result of
coding, the best choice of C(S) is no longer the same as in the previ-
ous model (Gish & Pierce, 1968). The Bayesian optimization is now

argmin
C(s)

ERE (Q (C(S), K)) such that H(Q (S)) < R, (5)

where R is the communication/storage rate andH(·) is the entropy
function.1 For a random stimulus S bounded as 0 < s0 ≤ S ≤ s1 <
∞, the optimal scale for ERE has the property

dC(s)
ds

∝ 1/s for s ∈ [s0, s1], (6)

with additional normalization constraints C(s0) = 0 and C(s1) = 1
(Sun & Goyal, 2011); see also Appendix B. Unlike in (3), there is no
dependence on the pdf fS(s) in (6). The scaling that satisfies the
above conditions is

C(s) =
ln(s/s0)
ln(s1/s0)

if s ∈ [s0, s1], (7)

for any pdf fS(s). In fact, the scale is only dependent on the endpoint
values of the distribution. For unbounded random variables, an
analogous result holds under mild conditions on the decay of the
tail of the pdf. Hence, quantization followed by efficient coding
leads naturally to the logarithmic relationship in the Weber–
Fechner law. This holds for all well-behaved stimulus distributions
and the resolution can be tuned easily by the level of compression.

We suggest that coding is an essential part of perceiving
numbers, which need not have distributions of a particular form.

1 For a discrete random variable X with probability mass function fX (x), the
entropy function is defined as H(X) = −


x fX (x) log fX (x). Since the output of

a quantizer Q can only take a discrete set of values, its output is a discrete random
variable if the input S is random.
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Fig. 3. Block diagram of the quantization model with coding. An entropy coder
(EC) is used to code quantized values P̂ and is then stored into memory. Later, the
perception is fetched from memory, decoded using an entropy decoder (ED). The
EC and ED steps include no noise, and no information is lost in these steps.

Furthermore, since the optimal psychophysical scales for entropy-
coded representations do not depend on the statistical properties
of the source, there is task independence and constancy (Ganguli
& Simoncelli, 2010).

4. Examples

In this section, we connect the proposed Bayesian quantization
models to the Weber–Fechner law. This relationship is clear in the
secondmodel since the logarithmic scale is optimal for all stimulus
distributions, as shown in (7). However, in the first model, the
optimized scale depends explicitly on the stimulus distribution
through (3).

Thus, it is not obvious that theWeber–Fechner lawwill be real-
ized using the first model. However, the sensations corresponding
tomanynatural phenomenahave statistical distributions that obey
a power law over a range of intensities that are of behavioral in-
terest (Mandelbrot, 1982; Rocchesso & Fontana, 2003; Zipf, 1949),
and we will demonstrate that such distributions do yield a loga-
rithmic scale. As a case study, we present empirical evidence that
the computed scalings of natural sounds are well approximated by
the Weber–Fechner law.

4.1. Power-law stimulus distributions

We begin by developing psychophysical scales for the Pareto
distribution. Given parameters α > 0 and s0 > 0, the Pareto pdf is

fS(s) =
α

s0


s
s0

−α−1

if s ≥ s0; and 0 otherwise, (8)

where s0 corresponds to the lowest perceivable stimulus intensity.
The pdf decays with an exponent of −(α + 1) and intensity is not
upper-bounded, i.e. there is no upper threshold to perception.

Using (3), the derivative of C(s) is

dC(s)
ds

=
α

3s0


s
s0

−α/3−1

if s ≥ s0; and 0 otherwise. (9)

The psychophysical scale that results from the above expression
and satisfies the boundary conditions is

C(s) = 1 −


s
s0

−α/3

if s ≥ s0 . (10)

In general, the psychophysical scales generated by (10) are
concave on a logarithmic scale and hence are inconsistent with
theWeber–Fechner law. However, a bounded pdf is more practical
because there are usually lower and upper limits to what is

Fig. 4. Sample scaling C(s) for bounded power-law densities with three choices
for α. Perception intensity on the vertical axis is normalized to lie between 0
and 1, corresponding to the smallest and largest perceivable stimulus intensities,
respectively. Logarithmic scaling results when α = 0.

perceivable.With parametersα, s0 and s1, the bounded power-law
distribution is

fS(s) ∝ s−α−1 if s ∈ [s0, s1]; and 0 otherwise, (11)

normalized to have unit integral. Here, s0 and s1 are the lower and
upper thresholds of perception, yielding a more psychophysically
reasonable model. Note that α is no longer restricted to be positive
as in (8). Repeating the same analysis as above, the derivative of
C(s) is

dC(s)
ds

∝ s−α/3−1 if s ∈ [s0, s1]; and 0 otherwise. (12)

For the special case of α = 0, or equivalently an exponent of −1 in
the decay of the pdf, (12) simplifies to

C(s) =
ln(s/s0)
ln(s1/s0)

if s ∈ [s0, s1], (13)

which is precisely the Weber–Fechner law. For other choices of α,
the scaling is

C(s) =
s−α/3

− s−α/3
0

s−α/3
1 − s−α/3

0

if s ∈ [s0, s1] , (14)

providing a generalization to logarithmic scaling accounting for a
large class of scales. Fig. 4 demonstrates how three choices of α
affect the Bayes-optimal C(s).

Thus, there is an intimate match between the Weber–Fechner
lawand aboundedpower-lawdistribution. Indeed, such adistribu-
tion with α = 0 matches precisely with logarithmic scaling. How-
ever, other exponents yield minor deviations which may also be
observed experimentally.

4.2. Natural sounds

The above results predict experimentally falsifiable psycho-
physical scales based on power-law stimulus distributions. In gen-
eral, while natural stimuli may not be easily identified as exactly
power-law distributed, many are approximately power-law over
relevant ranges. One such example is the intensity of speech,which
is oftenmodeled as Gaussian-distributed on a dB scale (lognormal).
Indeed, lognormal and power-law distributions are often empiri-
cally indistinguishable (Mitzenmacher, 2004). We test datasets of
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animal vocalizations and human speech and find the optimal psy-
chophysical scale to be well-approximated by a logarithmic rela-
tionship where the intensity is most probable.

Animal vocalizations and human speech comprise complex
harmonic and transient components that convey behaviorally-
relevant meaning. For example, many animals vocalize to convey
information related to mating rituals, predator warnings, or the
locations of food sources. The individuals that best process these
soundsmay be those that aremost likely to survive and reproduce.
In this way, the auditory system may have evolved to optimally
process natural sounds like vocalizations in order to efficiently
extract relevant acoustic cues. One such cue is the perceived
intensity of a sound, or its loudness. In particular, the normal
human ear perceives sound intensities with roughly 1 dB JND
across nearly the entire range of perceivable levels (Fay, 1988),
with only slight variation near the extremes, which is consistent
with the logarithmic relationship in the Weber–Fechner law
(Florentine, Buus, & Mason, 1987; Viemeister, 1983).

We employ two datasets comprising animal vocalizations and
human speech sounds. The animal vocalization data (DS1) includes
55 rain forest mammals (33 min) taken from commercially avail-
able CDs (Emmons, Whitney, & Ross, 1997). The human speech
data (DS2) corresponds to a male speaker reciting a corpus of 280
English sentences (8 min) (Wen, Wang, Dean, & Delgutte, 2009).

Silence intervals, defined as intervals of 50 ms in which the sig-
nal did not exceed 10% of the maximum magnitude of the record-
ing, were removed from the recordings. The resulting sound files
were broken into successive intervals of 100ms, and the rootmean
square (rms) was computed for each interval. The empirical sound
level distributions of the rms values were used to compute C(s).

For both DS1 and DS2, the predicted psychophysical scales are
well-approximated by a straight line where the intensity is most
probable (Fig. 5); since the horizontal axis is logarithmic, this in-
dicates a logarithmic relationship. Moreover, the deviation from a
logarithmic scaling is most prominent at the extremes of the stim-
ulus pdf, where experimental studies also demonstrate breakdown
of the Weber–Fechner law (Atkinson, 1982; McBride, 1983).

We also varied several parameters that affect the empirical dis-
tribution. These parameters included the thresholds and interval
lengths used to calculate the silence intervals, lengths of the inter-
val over which the rms values were computed, and histogram bin
widths. To account for gain control mechanisms, we also used an
rms gain parameter to horizontally shift the empirical distribution.
We found that the scales induced by these parameter changes did
not vary greatly and had similar goodness-of-fit characteristics on
a linear regression.

To summarize, sound intensity perception scales determined
from animal vocalization data and our optimality principles are
consistent with the basic Weber–Fechner law.

5. Discussion

Through quantization frameworks for perception, we have de-
termined that scaling laws observed in psychophysical studies
are Bayes-optimal for expected relative error. Sensations that are
measured by sensory mechanisms in the periphery and ones that
are abstract are both considered. Although they have different
costs, both situations have optimized scalings that include theWe-
ber–Fechner law. Moreover, other scaling laws may be consistent
under the first model, and this theory provides an experimentally
testable hypothesis for them.

There are several key assumptions that anchor this framework.
The first and most fundamental assumption is that the acquisition
of information in the stimulus is Bayes-optimal at a computational
level (Marr, 1982). This is well-motivated since numerous studies
suggest that there exist neural mechanisms for adaptation to

a

b

Fig. 5. Empirical distribution of stimulus intensities (blue dashed line, left axis)
and corresponding psychophysical scaling function, based on (3) (green solid line,
right axis) for (a) mammalian vocalizations (DS1) and (b) human speech (DS2). The
near linearity of the scaling functions in log scale indicates an approximation to the
Weber–Fechner law. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

the stimulus distribution as well as numerous feedback and
feedforward channels (Lamme, Supèr, & Spekreijse, 1998; Wen
et al., 2009).

The second assumption is that perception is algorithmically
discrete and the mapping is simply a deterministic function of
the stimulus intensity, as illustrated in Fig. 1. This framework
is inspired by engineering systems and information-theoretic re-
sults on Bayes-optimal data acquisition. Although it is debatable
whether this type of discretization occurs in individual neurons,
quantization is plausible at the cognitive level. Moreover, we have
described how equivalent asymptotic scalings occur with an ana-
log coding scheme. In the context of this framework, the adapta-
tion mechanisms discussed above better estimate the distribution
shape and thresholds to precisely predict C(s).

A third assumption is that the accuracy measure to minimize
is ERE. We have motivated this choice through related research in
numerical computation and perceptual coding, as well as the gen-
eral perceptual principle of scale-invariance. However, ERE may
be too simple to fully capture the goals of information acquisi-
tion and may provide only a crude first-order approximation. In
Appendix B, we show that the psychophysical implications of this
framework are robust within a large class of error criteria. More
generally, the true costmay be a combination of several errormea-
suresweighted differently depending on behavioral context. In this
case, our framework is still useful since the error measure, stim-
ulus distribution and optimizing psychophysical scale are inter-
related such that the observation of any two predicts the third.
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Therefore one can predict the error measure optimized by the sys-
tem using the experimentally observed stimulus distribution and
psychophysical scale.

Finally, although the analysis and optimality results presented
apply to any stimulus signal that is stationary in time (see
Theorems 1 and 2), the scalar system model does not exploit the
memory or correlation in timeof natural stimuli. Our systemmodel
takes acquisition to be independent across intensity samples.
Indeed, one could code over blocks of samples or apply a causal
filter to improve compression, which may change the optimal
choice of C(s) (Gray & Neuhoff, 1998). However, such coding
will increase signal acquisition delay. For external stimuli such as
sound or vision, speed of perception may be more important than
improved compression. For this reason, themodels presented here
are psychologically reasonable under latency constraints.

An interesting question is whether either of the two quantiza-
tion models proposed here can be applied to the stimulus class
of the other. For example, can coding occur for stimuli sensed by
the periphery? Alternatively, many numerical quantities, such as
salaries or populations have been proposed to approximately fol-
low Pareto distributions. Could numerosity scaling laws be loga-
rithmic without the need for coding? We feel affirmative answers
to these questions are less plausible than what is proposed here
but they remain topics of worthwhile exploration.

In conclusion, we show that the Weber–Fechner law arises
as the Bayes-optimal mapping in two quantization frameworks.
In the first model, when stimulus intensity is simply discretized,
Weber–Fechner is intimately tied to stimulus distributions that
decay as power-law functions. In the second, when discrete
percepts are coded, theWeber–Fechner lawbecomesmore general
and is optimal for all statistical distributions. These results are
dependent on several assumptions which are well-supported by
neuroscientific and information scientific principles. This work
points out at least three psychophysical ideas: the importance
of stimulus statistics in interpreting scaling laws, the necessity
of adaptation to stimulus distributions in neural circuitry, and
the possibility of information theoretically-optimal acquisition
structures at a cognitive level.
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Appendix A. Mathematical methods for analog model

In Section 2, we introduced a quantization model (QM) and
determined the psychophysical scale that minimizes ERE for a
given stimulus distribution. Here, we summarize an analog model
(AM) based on suppression of additive noise and relate the
optimization of the scale in the two models (Fig. 2). Most of the
details below on QM were originally derived in Sun and Goyal
(2011); the parts related to AM are new.

We first give some insight into how (3) was derived. We use
a concept called the point density function λ(s), defined to be the
derivative of the scale:

λ(s) = C ′(s). (A.1)

Since C(s) is strictly monotonic and has specified boundary
conditions, C(s) and λ(s) have a one-to-one correspondence. One
interpretation of the point density for large K is that λ(s)δ is the
approximate fraction of perception dictionary entries in a range
centered at s with width δ. The point density function facilitates

understanding of the dependence of ERE on C(s). For stimulus
distribution fS(s) and quantizer Q with point density λ(s) and
dictionary size K , the ERE satisfies

lim
K→∞

ERE(Q ) · K 2
=

1
12

E[S−2λ−2(S)]. (A.2)

Thus, ERE decreases approximately as the square of the increase in
dictionary size, and this approximation becomesmore precise as K
increases. Experimental results in quantization theory suggest that
(A.2) is accurate even formoderate values ofK (Neuhoff, 1993). The
expectation on the right-hand side of (A.2) is a simple function of
the point density and stimulus distribution; one can optimize over
λ(s) to find the asymptotically best scaling C(s) (Gray & Neuhoff,
1998). Direct application of Hölder’s inequality yields (3).

Now consider the error arising from AM when η is bounded
noise independent of the stimulus and has variance σ 2(η). The
noisy stimulus intensities take the form Ŝ = C−1(C(S) + η). Be-
cause C(s) is continuous and strictly monotonic (hence differen-
tiable), we use Taylor’s theorem to describe Ŝ through a linear
approximation. Taylor’s theorem states a function g(x) that is n+1
times continuously differentiable on a closed interval [a, x] takes
the form

g(x) = g(a) +


n

k=1

g(k)(a)
k!

(x − a)k


+ Rn(x, a), (A.3)

with a Taylor remainder term

Rn(x, a) =
g(n+1)(ξ)

(n + 1)!
(x − a)n+1 (A.4)

for some ξ ∈ [a, x]. Therefore, Ŝ ≈ W (C(S))+W ′(C(S))η for small
η, where W (s) = C−1(s). By the definition of W (s),W (C(s)) = s
andW ′(C(s)) = 1/C ′(s), so we can simplify the above equation to
Ŝ ≈ S + η/λ(S).

Using (1) while noting the expectation is taken with respect to
both S and η, the ERE in the AM is

ERE ≈ E[S−2λ−2(S)] σ 2(η), (A.5)

with approximation error corresponding to the first-order Taylor
remainder term. Since the remainder decays as η2 while the ERE
decays as η, we can be more mathematically precise about the
behavior of the ERE.

Theorem 1. Consider a stimulus intensity S following a stationary
random process with probability density fS(s) that is smooth and
positive on R (or a compact interval). The intensity is scaled through
function C(s) and then perturbed by independent additive noise η
that is bounded and has variance σ 2(η). The expected relative error
between the stimulus and its noisy version satisfies

lim
σ 2(η)→0

ERE · σ 2(η) = E[S−2λ−2(S)]. (A.6)

Noting that the right-hand sides of both (A.2) and (A.6) have
the same form, the choice of λ(s) that minimizes ERE is the
same for both. Hence, QM and AM have equivalent asymptotic
psychophysical scales.

Appendix B. Robustness of the ERE criterion

In (2) and (5), the optimal psychophysical scales are found with
respect to the expected relative error criterion as defined in (1).
In this supplementary discussion, we investigate the sensitivity of
the psychophysical implications to the choice of error criterion.
In particular, we find that similar optimal psychophysical scales

Please cite this article in press as: Sun, J. Z., et al. A framework for Bayesian optimality of psychophysical laws. Journal of Mathematical Psychology (2012),
doi:10.1016/j.jmp.2012.08.002



J.Z. Sun et al. / Journal of Mathematical Psychology ( ) – 7

arise for a wide class of error criteria, demonstrating the Bayesian
framework is robust to this choice.

For a particular quantization mapping Q between a random
variable S and its quantized value Ŝ, we define the rth-power
expected relative error to be

rERE(Q ) = E


|S − Ŝ|r

Sr


, (B.1)

where the expectation is taken with respect to S. Using similar
analysis to the derivation of (A.2) and the theorems of Cambanis
and Gerr (1983), we can show the following:

Theorem 2. Consider a stimulus intensity S following a stationary
random process with probability density fS(s) that is smooth and
positive on R (or a compact interval). The intensity is scaled through
function C(s) and then discretized using a scalar quantizer Q defined
by a point density λ(s) and codebook size K . The rth-power expected
relative error between the stimulus and its quantized version satisfies

lim
K→∞

rERE(Q ) · K r
=

1
(r + 1)2r

E[S−rλ−r(S)]. (B.2)

Utilizing Hölder’s inequality, we can show the solution to

argmin
C(s)

rERE (Q (C(S), K)) , (B.3)

satisfies

dC(s)
ds

∝ s−r/(r+1)f 1/(r+1)
S (s) for s ∈ [s0, s1] (B.4)

for K large if S bounded as 0 < s0 ≤ S ≤ s1 < ∞. In Section 4.1,
we considered the best scale for the class of bounded power-law
distributions. In contrast to (12), the optimal scale has the property

dC(s)
ds

∝ s−α/(r+1)−1 if s ∈ [s0, s1]; and 0 otherwise. (B.5)

However, we can see that the choice of α = 0, corresponding to
fS(s) ∝ s−1 still yields the logarithmic scale. Hence, this distribu-
tion is invariant to the choice of r .

Similarly, for a random variable S bounded as 0 < s0 ≤ S ≤

s1 < ∞, the solution to

argmin
C(s)

rERE (Q (C(S), K)) such that H(Q (S)) < R, (B.6)

satisfies

dC(s)
ds

∝ 1/s for s ∈ [s0, s1] (B.7)

for K large just like (6). This suggests that when entropy coding
is allowed, the optimal psychophysical scale is again logarithmic
regardless of r .
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