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Estimating Signals With Finite Rate of Innovation
From Noisy Samples: A Stochastic Algorithm
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Abstract—As an example of the recently introduced concept of
rate of innovation, signals that are linear combinations of a finite
number of Diracs per unit time can be acquired by linear filtering
followed by uniform sampling. However, in reality, samples are
rarely noiseless. In this paper, we introduce a novel stochastic al-
gorithm to reconstruct a signal with finite rate of innovation from
its noisy samples. Even though variants of this problem have been
approached previously, satisfactory solutions are only available for
certain classes of sampling kernels, for example, kernels that satisfy
the Strang–Fix condition. In this paper, we consider the infinite-
support Gaussian kernel, which does not satisfy the Strang–Fix
condition. Other classes of kernels can be employed. Our algorithm
is based on Gibbs sampling, a Markov chain Monte Carlo method.
Extensive numerical simulations demonstrate the accuracy and ro-
bustness of our algorithm.

Index Terms—Analog-to-digital conversion, Gibbs sampling,
Markov chain Monte Carlo, sampling.

I. INTRODUCTION

T HE celebrated Nyquist–Shannon sampling theorem [1],
[2]1 states that a signal known to be bandlimited

to is uniquely determined by samples of spaced
1 (2 ) apart. The textbook reconstruction procedure is to
feed the samples as impulses to an ideal lowpass (sinc) filter.
Furthermore, if is not bandlimited or the samples are
noisy, introducing prefiltering by the appropriate sinc sampling
kernel gives a procedure that finds the orthogonal projection to
the space of -bandlimited signals. Thus the noisy case is
handled by simple, linear, time-invariant processing.

Sampling has come a long way since the sampling theorem,
but until recently the results have mostly applied only to signals
contained in shift-invariant subspaces [4]. Moving out of this
restrictive setting, Vetterli et al. [5] showed that it is possible to
develop sampling schemes for certain classes of nonbandlimited
signals that are not subspaces. As described in [5], for recon-
struction from samples, it is necessary for the class of signals to
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1A more expansive term could be the Whittaker–Nyquist–Kotelnikov–
Shannon sampling theorem; see, e.g., [3] and [4].

Fig. 1. Block diagram showing our problem setup. x(t) is a signal with FRI
given by (2) and h(t) is the Gaussian filter with width � given by (3). Discrete-
time sequence e[n] is i.i.d. Gaussian noise with standard deviation � and y[n]
are the noisy samples. From y[n], we will estimate the parameters that describe
x(t), namely, f(c ; t )g , and the standard deviation of the noise � .

have finite rate of innovation (FRI). The paradigmatic example
is the class of signals expressed as

(1)

where is some known function. For each term in the sum,
the signal has two real parameters and . If the density of

s (the number that appear per unit of time) is finite, the signal
has FRI. It is shown constructively in [5] that the signal can be
recovered from (noiseless) uniform samples of (at a
sufficient rate) when is a sinc or Gaussian function.
Results in [6] are based on similar reconstruction algorithms and
greatly reduce the restrictions on the sampling kernel .

In practice, though, acquisition of samples is not a noiseless
process. For instance, an analog-to-digital converter (ADC) has
several sources of noise, including thermal noise, aperture un-
certainty, comparator ambiguity, and quantization [7]. Hence,
samples are inherently noisy. This motivates our central ques-
tion: Given a signal model (i.e., a class of signals with FRI) and
a noise model, how well can we approximate the parameters that
describe the signal and hence the signal itself? In this paper, we
address this question and develop a novel algorithm to estimate
the signal from the noisy samples, which we will denote
(see Fig. 1).

A. Related Work and Motivation

Signals with FRI were initially introduced by Vetterli et
al. [5]. The reconstruction schemes hinged on identifying
algebraically independent parameters of the signals, e.g., the
weights and time locations in (1). In the seminal
paper on FRI, the sampling kernel for finite signals was chosen
to be either the sinc or the Gaussian. An annihilating filter
approach led to an elegant algebraic solution via polynomial
root finding and least squares. The authors alluded to the noisy
case and suggested the use of the singular value decomposition
(SVD) for dealing with noisy samples. We will show that, in
fact, this method is ill-conditioned because root-finding is itself
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not at all robust to noise. Thus it is not amenable to practical
implementations, for instance, on an ADC.

Subsequently, Dragotti et al. [6] examined acquisition of
the same signals with an eye toward implementability of the
sampling kernel. Instead of using the sinc and Gaussian kernels
(which do not have compact support), the authors limited
the choice of kernels to functions satisfying the Strang–Fix
conditions [8] (e.g., splines and scaling functions), exponential
splines [9], and functions with rational Fourier transforms.
They combined the moment-sampling and annihilating filter
approaches to solve for the parameters. Somewhat analogous
for multidimensional signals is the extension of work by
Maravić and Vetterli [10] by Shukla and Dragotti [11].

In this paper, we use the Gaussian sampling kernel. Though
the Gaussian has infinite support, it can be well approximated
by its truncated version. Hence, we believe that one can draw
general insights from the analysis of using Gaussian filters and
the subsequent reconstruction of the signal from its noisy sam-
ples . More importantly, unlike with previous approaches,
the sampling kernel plays no fundamental role in the recon-
struction algorithm. We use the Gaussian kernel because of its
prominence in earlier work and the intuitiveness of its informa-
tion spreading properties.

For the noisy case, Maravić and Vetterli [12] and Ridolfi et al.
[13] proposed and solved a related problem. Instead of mod-
eling the noise at the output, they considered the scenario where

, the signal in question, is corrupted by additive white noise
. Clearly, does not belong to the class

of signals with FRI. However, in [12], novel algebraic/subspace-
based approaches solve the sampling problem in the Laplace do-
main, and these methods achieve some form of optimality. Even
though the models differ, we have also applied the technique de-
scribed in [12] for comparison. In [13], various algorithms such
as ESPRIT and MUSIC were used and comparisons made. The
authors concluded that, in the noisy signal case, the parameters
can be recovered when the signal is sampled at a rate below
that prescribed by the Shannon–Nyquist theorem but at a factor
above the critical rate.

Our algorithm is based on Gibbs sampling (GS) [14], [15], a
Markov chain Monte Carlo (MCMC) method used to sample
from multivariate densities. It is assumed that while it may be
too complex to sample directly from a given multivariate den-
sity, it may be easier to sample from univariate (or conditional
densities with lower dimensions). The Hammersley–Clifford
theorem guarantees that after the burn-in period (i.e., upon
convergence to the stationary distribution of the Markov chain),
iterates of the Gibbs sampler are, in fact, samples drawn from
the original density. In particular, this convergence implies that
GS techniques are robust to initialization.

B. Our Contributions

In this paper, we model acquisition imperfection as additive
noise affecting the samples (not a continuous-time
noise affecting directly) and use the Gaussian sampling
kernel. We demonstrate that with a fully Bayesian approach
based on Gibbs sampling, we are able to estimate signal param-
eters and hence the signal itself. In particular, our stochastic

approach effectively circumvents the ill-conditioning of the
problem, whereas algebraic methods do not.

Importantly, our algorithm is not constrained to work with the
Gaussian kernel. Any kernel can be employed because the for-
mulation of the Gibbs sampler does not depend on the specific
form of the kernel . Also, our approach is able to estimate
the standard deviation of the noise process .

C. Paper Organization

The rest of this paper is organized as follows. In Section II,
we will formally state the problem and define the notation to be
used in the rest of this paper. We proceed to delineate our algo-
rithm in Section III: a stochastic optimization procedure based
on Gibbs sampling followed by least squares estimation. We
report the results of extensive numerical experiments on syn-
thetic as well as real data in Section IV. Also in Section IV we
highlight some of the main deficiencies in [5], which motivate
the need for new algorithms for recovering the parameters of a
signal with FRI given noisy samples . We conclude our dis-
cussion in Section V and provide directions for further research.

II. PROBLEM DEFINITION AND NOTATION

The basic setup is shown in Fig. 1. As mentioned in the
Introduction, we consider a class of signals characterized by a
finite number of parameters. In this paper, similar to [5], [12],
and [6], the class is the weighted sum of Diracs2

(2)

The signal to be estimated is filtered using a Gaussian low-
pass filter

(3)

with width to give the signal . Even though does
not have compact support, it can be approximated well by a
version that is truncated to have compact support. The filtered
signal is uniformly sampled with period to obtain

for . Finally, additive white Gaussian
noise is added to to give . Therefore, the whole
acquisition process from to can be represented
by the model

(4)

for . The amount of noise added is a func-
tion of . We define the signal-to-noise ratio (SNR) in decibels
as

SNR dB (5)

2The use of a Dirac delta simplifies the discussion. It can be replaced by a
known pulse g(t) and then absorbed into the sampling kernel h(t), yielding an
effective sampling kernel g(t) � h(t).



TAN AND GOYAL: ESTIMATING SIGNALS WITH FINITE RATE OF INNOVATION FROM NOISY SAMPLES 5137

In the sequel, we will use boldface to denote vectors. In
particular

(6)

(7)

(8)

We will sometimes use to denote the complete
set of decision variables. We will be measuring the performance
of our reconstruction algorithms by using the normalized recon-
struction error

(9)

where is the reconstructed version of . By construc-
tion ; the closer is to zero, the better the reconstruction
algorithm. The problem can be summarized as follows.Given

and the model , estimate the
parameters . Also estimate the noise variance .

Ideally, we would like to minimize in (9) directly, but this
does not seem to be tractable since the dependence of on

is highly nonlinear. Thus, we propose the use of a sto-
chastic algorithm (known as the Gibbs sampler) for the max-
imum likelihood estimation of . The Gibbs sampler is a
proxy for minimizing . This is followed by linear least squared
error (LLSE) estimation of as a tractable and effective
means for approximate minimization of .

III. PRESENTATION OF THE GIBBS SAMPLER AND LEAST

SQUARES ESTIMATION

In this section, we will describe the stochastic optimization
procedure based on Gibbs sampling to estimate .
The overall procedure is given in Algorithm 1. We will first
present a self-contained introduction of Gibbs sampling for
readers who may not be familiar with this technique.

Algorithm 1: Parameter Estimation and Signal
Reconstruction Algorithm

Require: Data , Model

1: Obtain estimates and using the Gibbs
sampler detailed in Algorithm 2 with the data and the
model given in (4). This is elaborated in Section III-A
and -B.

2: Obtain estimates using a linear least squares
estimation procedure and from the Gibbs
sampler. This is elaborated in Section III-C.

3: Compute given the parameters
and the known pulse .

4: Compute reconstruction error given in (9).

A. Gibbs Sampling (GS)

Gibbs sampling is an algorithm used to generate samples
from any multivariate distribution. It falls under the class of al-
gorithms known as MCMC methods, which were first studied
by the statistical physics community [16] and then later in the
statistics community [14], [17], [18]. In particular, Gibbs sam-
pling has been used extensively and successfully in image [14]
and audio restoration [15]. The basis for Gibbs sampling is the
Hammersley–Clifford theorem [19], which states that given the
data , the conditional densities contain
sufficient information to produce samples from the joint density

. These samples can then be used to compute min-
imum mean squared error (MMSE) estimates for the parameters

. Furthermore, the joint density can be directly de-
rived from the conditional densities .

1) An Example of Gibbs Sampling at Work: We now
present an example to show how the Gibbs sampler works.
For simplicity, we choose to be a two-dimensional
zero-mean Gaussian distribution with covariance
matrix

(10)

where . We wish to sample from
this distribution.3 It is well known that the posterior distributions
are also Gaussian and are given by

(11)

and similarly for . We use Gibbs sampling
to obtain samples from the joint distribution by successively
drawing from the distributions

(12)

(13)

where the superscript denotes the iteration count. A contour
plot of and the samples are shown in Fig. 2. We
observe that even though we initialized the Gibbs sampler far
from the mode at , samples eventually are
drawn from the joint distribution and are concen-
trated around the mode at .

2) Overview of the Gibbs Sampling Algorithm: In this sec-
tion, we give a high-level overview of the Gibbs sampler that
will be used to estimate . The algorithm is de-
tailed in Algorithm 2.

We will now derive the posterior distribution of the parame-
ters given the data. We will first focus on the priors assigned to
the parameters . We place a Jeffrey’s (improper) noninforma-
tive prior [20], [21] on the standard deviation of the noise such
that

(14)

3Of course, Gibbs sampling is not the usual method to perform such a simple
task. One would typically take the Cholesky factorization of � = R R and
use the matrixR to linearly transform a white Gaussian random vector.
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Fig. 2. Illustration of the Gibbs sampler for a zero-mean Gaussian distribu-
tion with covariance matrix given in (10). The Gibbs sampler is initialized at
(�10,10) (bottom right) and iterates converges to samples from the joint distri-
bution p(��� jy;M). The triangles (blue), circles (green), squares (red), and stars
(yellow) are samples 1:5, 6:10, 11:15, and 16:20, respectively. The ellipses are
contours of log p(��� jy;M).

The remaining parameters and are
treated as deterministic parameters so the prior of the parameters
satisfies

(15)

One can also regard and as having uniform densities over
a prespecified compact domain. Thus, Gibbs sampling serves
to obtain maximum likelihood estimates of and . As an addi-
tional feature of our algorithm, unlike in other known algorithms
[5], [12], [13], we estimate the standard deviation of the noise

. This parameter—unlike and —has a prior distribution;
thus we are in fact obtaining its maximum a posteriori (MAP)
estimate. We adopt the standard principle (amongst Bayesians)
to use a noninformative prior (14) for situations in which we
want to make minimal assumptions.

Having established the prior over the parameters, we use
Bayes’s rule to write the posterior in terms of the likelihood
and the prior

(16)

The independent identically distributed (i.i.d.) Gaussian noise
assumption and the model in (4) allow us to express the posterior
distribution of the parameters (given the data) as

(17)

In the Gibbs sampling algorithm, as soon as a variate is drawn, it
is inserted immediately into the conditional probability density
function and remains there until being substituted in the next

iteration like in (12) and (13). This is further emphasized in
Algorithm 2.4

In the algorithm, means that is a random
draw from the distribution . After iterations,5 the
Markov chain approximately reaches its stationary distribution

. MMSE estimates can then be approximated by
taking averages of the samples from the next iterations

, i.e.,

(18)

Algorithm 2 : The Gibbs Sampling Algorithm

Require:

1: for do

2:

3:

4:
...

...

5:

6:

7:

8:
...

...

9:

10:

11: end for

12: Compute using (18)

13: return

B. Presentation of the Posterior Densities in the GS

We will now derive the conditional densities. In the sequel,
we will use the notation to denote the set of parameters
excluding the th parameter. It follows from Bayes’s theorem
that

(19)

Thus, the required conditional (posterior) distributions are pro-
portional to the likelihood of the data times the priors on the
parameters. We can easily calculate the posterior distributions
of the parameters given the rest of the parameters. The parame-
ters conditioned on are taken as constant and can be left out
of each posterior distribution . We will sample
from these posterior densities in the GS iterations as shown in
the above algorithm.

We will now proceed to present the posterior densities. The
derivations are provided in the Appendix.

4For brevity, the dependence on the modelM and data y is omitted from the
conditional density expressions in Algorithm 2.

5I is also commonly known as the burn-in period in the Gibbs sampling and
MCMC literature [15].
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1) Sampling : is sampled from a Gaussian distribution
given by

(20)

where

(21)

(22)

It is easy to sample from Gaussian densities when the parame-
ters have been determined.

2) Sampling : is sampled from a distribution of the form

(23)

where

(24)

(25)

It is not straightforward to sample from this distribution. We
can sample from a uniform grid of discrete values with
probability masses proportional to (23). But in practice, and
for greater accuracy, we used rejection sampling [22], [23] to
generate samples from . The proposal
distribution was chosen to be an appropriately scaled
Gaussian, since it is easy to sample from Gaussians. This is
shown in Algorithm 3.

In general, rejection sampling is not tractable for high-dimen-
sional distributions since most of the samples will be discarded.
However, since we sample from univariate distributions at each
step, rejection sampling is tractable here.

Algorithm 3: Rejection Sampling

Require:

1: Select and s.t.

2:

3: repeat

4:

5: until

3) Sampling : is sampled from the square-root in-
verted-gamma [21] distribution ,6

(26)

where

(27)

(28)

Thus the distribution of the variance of the noise is inverted
gamma, which corresponds to the conjugate prior of in the
expression of [21], and thus it is easy to sample
from. In our simulations, we sampled from this density using the
Matlab function gamrnd and applied the inverted square-root
transformation.

C. Further Improvements via Linear Least Squares Estimation

We can perform an additional postprocessing step to improve
on the estimates of . We noted from our preliminary exper-
iments (see Fig. 3) that the variance of the stationary distribu-
tion of the s is smaller than that of the s. This results in
better estimates for the locations s as compared to the magni-
tudes s. Now, we observe that the observations are linear
in the s once the s are known. A natural extension to the
Gibbs sampler algorithm is to estimate the weights using an
LLSE procedure given the data and the MMSE estimates of

. Equation (4) can be written as

(29)

with , the Gaussian sampling kernel, given in (3). Given the
set of estimates of the time locations , we can rewrite
(29) as a matrix equation, giving

(30)

where and
. We now minimize the square of

the residual , giving the normal equations
and the least squares solution [24]

(31)

From our experiments, we found that, in general, using as
estimates for the magnitudes of the impulses provided a lower
reconstruction error .

In summary, in order to approximately minimize in (9), we
use the Gibbs sampler to estimate the time locations

6X follows a square-root inverted-gamma distribution if X follows a
gamma distribution.
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Fig. 3. Note that the variance of the stationary distribution of the t s is smaller
than that of the c s after convergence of the Markov chain. Histogram of the
samples of (a) c and (b) t .

and the noise standard deviation . The Gibbs sampler max-
imizes the log-likelihood of the parameters given
the observations . The Gibbs sampler also returns the MAP
estimate for . Following the use of Gibbs sampling, we use
a least squares procedure to estimate the magnitudes of the
Gaussian kernels . Note that given estimates of the
locations , this step exactly minimizes the squared
error .

IV. NUMERICAL RESULTS AND EXPERIMENTS

In this section, we will first review the annihilating filter and
root-finding algorithm [5] for solving for the parameters of a
signal with FRI. This algorithm provides a baseline for compar-
ison. We also comment briefly on the applicability of [12] to our
setup. Then we will provide extensive simulation results to val-
idate the accuracy of the algorithm we proposed in Section III.
In addition, to demonstrate that the reconstruction algorithm can
also work on real signals, we apply the same GS algorithm to an
audio signal. We show empirically that if the number of compo-
nents increases, the reconstruction error decreases.

A. Problems With Annihilating Filter and Root-Finding

We will now describe two existing algorithms for estimating
a signal with FRI in the presence of noise.

1) Comparison to Vetterli et al. [5]: In [5], for signals of
the form (2) and certain sampling kernels, the annihilating filter

Fig. 4. Demonstration of the instability of annihilating filter/root-finding ap-
proach. (a) The annihilating filter approach reconstructs the signal exactly in
the noiseless scenario. (b) The reconstruction completely breaks down when
noise of a small standard deviation � = 10 (SNR = 137 dB) is added.

was used as a means to locate the values. Subsequently, a
least squares approach yielded the weights . It was shown that
in the noiseless scenario, this method recovers the parameters
exactly [see Fig. 4(a)]. For completeness, we will briefly outline
their method here. Denoting the noiseless samples by , (4)
can be written as

(32)

with the identifications

(33)

(34)

(35)

where . Now, since is a linear
combination of exponentials, we find the annihilating filter
such that

(36)

This can be written in matrix/vector form as , where
. This system will admit a solution when

rank . Thus is a vector in the nullspace of .
As suggested in [5], this is solved using an SVD where
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TABLE I
PARAMETER VALUES FOR DEMONSTRATION OF THE ANNIHILATING

FILTER AND ROOT-FINDING ALGORITHM

, and is a length-( 1)
vector with “1” in position and “0” elsewhere. Now,
once the coefficients are found, the values are simply
the roots of the filter

(37)

The s can then be determined from (35), and the solution for
the s essentially parallels the development in Section III-C.

In the same paper, it was suggested that to deal with the noisy
samples , we can minimize , where
corresponds to the matrix with elements

(38)

In this case, is the eigenvector that corresponds to the smallest
eigenvalue of . Here, we provide three reasons to argue that
this method is inherently ill-conditioned and thus not robust to
noise.

1) Minimizing involves finding the eigenvector
that corresponds to the largest eigenvalue . Because
computing eigenvalues and eigenvectors are essentially
root-finding operations, this is ill-conditioned.

2) Even if the vector can be found, the zeros of
the filter have to be found. This again involves root
finding, which is ill-conditioned.

3) From (38), any noise added to will be exponentially
weighted by in the observations . We feel that this
is the greatest source of ill-conditioning.

Because of the three reasons highlighted above, there is a need to
explore new algorithms for finding the parameters. In Fig. 4, we
show a simulation with the parameters as tabulated in Table I,
but we varied the noise ( gives SNR dB, a
very low noise level). We observe from Fig. 4(b) that (even with
an oversampling factor of ), the annihilating filter
and root-finding method is not robust even when a miniscule
amount of noise is added.
Remark. The root-finding method is so unstable that, at times,
even for low levels of noise, we obtain complex roots for the lo-
cations . To solve this problem, we orthogonally pro-
jected the polynomial described by the filter coefficients to
the closest polynomial that belongs to the space of polynomials
with only real roots.

2) Comparison to Maravić and Vetterli [12]: We empha-
size that, in our setup (Fig. 1), we consider adding discrete-time
white noise sequence to the filtered and sampled signal

. In [12] and [13], the authors considered the situation when
the signal was corrupted by continuous-time additive white
Gaussian noise . Hence, the samples of are, in
fact, colored. Despite the discrepancy in the setups, we applied

Fig. 5. Evolution of the GS algorithm. The iterates of the parameters
f(c ; t )g and � are shown. The true values are indicated by the broken
red lines. In Fig. 5(d), we see that the negative log-posterior converges to the
global minimum in fewer than 20 iterations for this problem size (K = 5).
Evolution of the (a) c s, (b) t s, and (c) � . (d) Reduction of the (negative)
log-posterior � log p(c; t; � jy;M).
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Fig. 6. Comparison between z(t) and z (t) using the GS algorithm. For this
run, E = 0:0072.

the algorithm suggested in [12] to the toy problem in this sec-
tion. To partially ameliorate the ill-conditioning of , the au-
thors suggested to replace the matrix with another matrix

(39)

where the diagonal matrices and are defined as

(40)

(41)

for integers . Now, since the condition number of
is reduced by the preconditioners and , the SVD can more
accurately be applied to to find the principal components

, which correspond to the clean signal . The de-
noised data matrix is then given by .
The same root-finding procedure can then be applied to in
the hope that it will be close to , the matrix with as its
entries, where is defined in (32) and (33).

We implemented this preconditioning step but realized that
the performance as compared to [5] (described earlier in the
section) did not improve. We surmise that this is due to two
reasons.

1) Because of the exponential weights , not all the noise
components were removed in the denoising step. Thus,
and are, in fact, not close. To quantify this, we used
the toy example in the previous section and computed the
Frobenius norm of the difference between the two matrices

. This large value implies that the
subsequent root-finding step will be extremely unstable.

2) The two setups are intrinsically different—we modeled
the noise as discrete-time white noise applied to the ,
whereas [12] applied continuous-time white noise to the
signal .

We now turn our attention to our results.

B. Performance of Our Gibbs Sampling Algorithm

Clearly, the annihilating filter/root-finding algorithm is not
robust to noise. We have suggested an alternative reconstruc-
tion algorithm in Section III and, in this section, will present

Fig. 7. SNR (dB) against � for (a) experiment A (K = 5) and (b) experiment
B (K = 10).

our results on several synthetic examples.7 Experiments on an
audio signal will also be presented in this section to investigate
our reconstruction algorithm on a real signal—one that may not
exactly be modeled as a sum of Diracs.

Initial Demonstration: To demonstrate the evolution the
Gibbs sampler, we performed an initial experiment and chose
the parameters to be those in Table I, with the exception that the
noise standard deviation was increased to , giving an
SNR of 10.2 dB. We plot the iterates in Fig. 5. The true filtered
signal and its estimate are plotted in Fig. 6. Note
the close similarity between and .

We observe that the sampler converges in fewer than 20 itera-
tions for this run, even though the parameter values were initial-
ized far from their optimal values. We emphasize that as Gibbs
sampling is essentially a stochastic optimization procedure (not
unlike simulated annealing or genetic algorithms), it is insen-
sitive to the choice of starting point . The Markov chain is
guaranteed to converge to the stationary distribution after the
burn-in period [22].

1) Further Experiments on Simulated Data: To further vali-
date our algorithm, we performed extensive simulations (experi-
ments A and B) on two different problem sizes. For consistency,
each experiment was repeated using 100 different random seeds
and the means of [see (9)] taken. The parameters are chosen
according to Table II. The unknown parameters were initialized
as and . Plots of the SNR
against is for experiments A and B shown in Fig. 7 and the
results of the two experiments are shown in Fig. 8. We noted the
following from these experiments.

7All the code, written in MATLAB, can be found at http://web.mit.edu/~vtan/
frimcmc.
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Fig. 8. Plots of E against � for various oversampling factors and problem sizes. In Fig. 8(a) and (c), the fc g from the sampler was used directly. In Fig. 8(b)
and (d), better estimates of fc g were obtained by performing the LLSE postprocessing step as described in Section III-C. Errors E against � for (a) experi-
ment A (K = 5) without LLSE postprocessing, (b) experiment A (K = 5)with LLSE postprocessing, (c) experiment B (K = 10)without LLSE postprocessing,
and (d) experiment B (K = 10) with LLSE postprocessing.

TABLE II
PARAMETER VALUES FOR NUMERICAL SIMULATIONS

• The Gibbs sampler algorithm is insensitive to initializa-
tion. It always finds approximately optimal estimates from
any starting point because the Markov chain provably con-
verges to the stationary distribution [22].

• The LLSE postprocessing step in the Gibbs sampler algo-
rithm reduces the reconstruction error . This is a conse-
quence of using the (more accurate) s from the sampler
to estimate the s via LLSE, instead of using the s from
the sampler directly.

• From Fig. 8(b) and (d), we observe that, if the problem
size doubles (from to ), with corre-
sponding doubling of and remains approximately
constant, assuming are obtained from the least
squares postprocessing instead of from the Gibbs sampler
alone. This demonstrates scalability of the algorithm. For
example,

.
• The noise standard deviation can be estimated accu-

rately as shown in Fig. 5(c). This may be important in some
applications, e.g., in an ADC.

Fig. 9. Comparison between z(t) and z (t) using the GS algorithm for the
audio signal. Because there can only be a maximum of K = 9 modes, the clean
signal cannot be exactly modelled using a sum of K = 9 Gaussian kernels.
Thus, the parts of the signal z(t) with small but nonzero magnitudes (e.g., in
sample locations 5000–6000) are effectively reduced to zero in z (t). In this
experiment, E = 0:023.

To conclude, although our approach is more computationally
demanding than the annihilating filter approach of [5], it is much
more amenable to a scenario where noisy samples are acquired.

2) Experiments on a Real Audio Signal: In this section,
we investigate efficacy of our algorithm on a real audio signal

that does not exactly meet the sum-of-Diracs model. This
2-s-long signal8 is a recording of a person clapping his/her
hands five times in the 2-s interval. is filtered with a

8The signal can be downloaded from http://web.mit.edu/~vtan/frimcmc.
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Fig. 10. Evolution of Gibbs sampler for the audio signal. We chose K = 9

for this experiment. The sampler converges in about 40 iterations. (a) The noisy
signal. Evolution of (b) c , (c) t , and (d) � . The true value of � = 4.

Gaussian filter of width samples. The resulting
is plotted in Fig. 9. Discrete-time additive white Gaussian

noise with standard deviation was added to the
signal, giving an SNR of 5.03 dB. The noisy signal is
shown in Fig. 10(a).

In Fig. 10(b)–(d), we plot the evolution of the Gibbs sampler
for the various parameters using . The sampler converges
to the stationary distribution in about 40 iterations. In Fig. 9,

Fig. 11. Performance plots for the audio signal. (a) SNR (dB) against � for
the audio signal. (b) Errors E against K for the audio signal.

we compare and . Although the primary modes cor-
responding to the five claps have been correctly located, the
samples with smaller magnitudes are not well modelled since
there is a model mismatch: the audio signal does not meet the
sum-of-Diracs model.

Finally, we varied both the noise level and the number of
components . Intuitively, when increases, the modelling
power of the FRI model improves and hence the error should
also be reduced. This is indeed the case as shown in Fig. 11(b),
where we plot the reconstruction error as a function of
for several values of with LLSE postprocessing. The results
of the experiments are averaged over 100 independent runs. A
plot of SNR against is also shown in Fig. 11(a). As usual,
we observe that as the noise level increases, the reconstruction
worsens. However, for this experiment, it seems that the fidelity
of reconstruction is not very sensitive to the noise level.

This set of experiments on a real audio signal suggests that the
finite-rate-of-innovation model can, in principle, approximate
some real signals.

V. CONCLUSION

In this paper, we addressed the problem of reconstructing a
signal with FRI given noisy samples. We showed that it is pos-
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sible to circumvent some of the problems of the annihilating
filter and root-finding approach [5], [12]. We introduced the
Gibbs sampling algorithm to find the locations and augmented
this with a least squares approach to find the weights. From the
performance plots on both synthetic and real signals, we observe
the Gibbs sampler performs very well as compared to the anni-
hilating filter method, which is not robust to noise.

Perhaps the most important observation we made is the fol-
lowing: The success of the Gibbs sampling algorithm does not
depend on the choice of kernel , but rather the i.i.d. Gaussian
noise assumption. The formulation of the Gibbs sampler does
not depend on the specific form of . In fact, we used a
Gaussian sampling kernel to illustrate that our algorithm is not
restricted to the classes of kernels considered in [6].

A natural extension to our work here is to assign structured
priors to , , and . These priors can themselves be depen-
dent on their own set of hyperparameters, giving a hierarchical
Bayesian formulation. In this way, there would be greater flex-
ibility in the parameter estimation process. We can also seek to
improve on the computational load of the algorithms introduced
here and, in particular, the sampling of via rejection sampling.

A question that remains is: How well can other real-world
signals (including natural images such as in [11]) be modeled as
signals with FRI, possibly with different sampling kernels? We
believe the answer will have profound ramifications for areas
such as sparse approximation [25] and compressed sensing [26],
[27].

APPENDIX

DERIVATION OF THE CONDITIONAL DENSITIES

For brevity, we define

We start from the log-likelihood of the parameters given the
data and model [see (17)]. To obtain ,
we treat the other parameters as constant, giving

Comparing this expression in to the Gaussian distribution
with mean and variance

and equating coefficients, we obtain (21) and (22). The distribu-
tion can be obtained similarly and is omitted.
Finally, for the noise standard deviation

where is defined in (28). Taking the antilog on both sides
yields

which is the square-root inverted-gamma distribution with pa-
rameters given by (27) and (28). All the densities have been
derived.
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