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Abstract

The problem of communicating (unordered) sets, rather than (ordered) se-
quences is formulated. Elementary results in all major branches of source cod-
ing theory, including lossless coding, high-rate and low-rate quantization, and
rate distortion theory are presented. In certain scenarios, rate savings of log n!
bits for sets of size n are obtained. Asymptotically in the set size, the entropy
rate is zero and for sources with an ordered parent alphabet, the (0, 0) point is
the rate distortion function.

1 Introduction
In launching information theory, Shannon [1] wrote:

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.

What is a “message” in this formulation? Shannon dismisses the meaning of the
message as “irrelevant to the engineering problem,” and proceeds to develop a theory
that applies to (ordered) sequences of samples. This paper explores the limits of
communication when messages are (unordered) sets of samples.

Though we are accustomed to the processing of vectors and time series, order is
not always relevant in a communication problem. The list of ingredients in a recipe,
for example, can be rearranged with no ill effect. In a more technological realm, a
communication link in a packet network might be free to reorder packets within the
scope of the packet headers. An application is the compression of databases. It is
known that reordering techniques can significantly improve compression efficiency [2],
but achievable performance limits are not known. Other applications are mentioned
in the final section.

Communicating a set of size n should, of course, require fewer bits than commu-
nicating a vector of length n since there is no need to distinguish between vectors
that are permuted versions of each other. How many bits can be saved? Since there
are n! possible permutations, it would seem that log2 n! bits would enter the picture;
indeed for continuous-valued sources and high rates we establish that this is precisely
the savings. But starting with an nR-bit source code for a vector of length n and
saving log2 n! bits does not make sense if nR < log2 n!, so there must be more to the
story.

Notation and basic concepts. Let X be a (possibly multivariate) random vari-
able that takes values in X . We refer to X and X as the parent random variable
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and parent alphabet, respectively. We are interested in communicating multisets
{xi}n

i=1 = {x1, x2, . . . , xn}, where each xi is an independent realization of X. In some
instances, the i.i.d. assumption is relaxed. Rates are measured in bits per parent
letter, and distortion measures are also normalized by set size.

Since a multiset of samples {xi}n
i=1 can be seen as a letter drawn from an alphabet

of multisets, our theory does not lie outside of Shannon’s theory. However, we obtain
scaling with respect to n that is quite different than the problem of communicating
the vector (xi)

n
i=1 = (x1, x2, . . . , xn).

We have not thus far assumed that there is a total order defined on X . When X
is discrete (Section 2), an order is not important. Our results for continuous X (Sec-
tion 3) requires a total order. Then distortion measures for multiset communication
are naturally transformed into distortion measures on the vector of order statistics.
Order statistics are detailed in Section 3.

Relationship with permutation codes. Permutation source codes are codes that
only preserve a partial ordering relationship among elements of a vector; see [3] and
references therein. As we show in (1), the ordering information and the value infor-
mation of a vector are independent. Hence the residual uncertainty associated with
the distortion-minimizing permutation code is exactly the uncertainty that is coded
in multiset communication. The complementarity of permutation codes and multiset
communication may be used for multiple descriptions or successive refinement.

2 Sets with a Discrete Parent
Sets of any size. Lossless coding of a multiset is equivalent to lossless coding of
a sequence that has the same elements ordered in a deterministic way. We can de-
compose the entropy of an arbitrary sequence source into two independent parts: the
entropy of the multiset (values) and the entropy of the ordering. Define H((Xi)

n
i=1) as

vector entropy, H({Xi}n
i=1) as multiset entropy, Jn as a random variable representing

ordering, and H(Jn) its entropy. Suppressing subscripts,

H((X))
(a)
= H((X)) + H({X})−H((X)|J) (1)

= H({X}) + I((X); J)

(b)
= H({X}) + H(J)−H(J |(X))

= H({X}) + H(J),

where (a) follows from noting that H({X}) = H((X)|J) and (b) from H(J |(X)) = 0.
Since there are only n! possible orderings, an upper bound on H(Jn) leads to the
lower bound

H({Xi}n
i=1) ≥ H((Xi)

n
i=1)− log n!. (2)

The lower bound is not tight due to the positive chance of ties among members
of a multiset drawn from a discrete parent. If the chance of ties is small (if |X | is
sufficiently large and n is sufficiently small), the lower bound is a good approximation.

One interpretation of sequence entropy reduction by order entropy to yield multi-
set entropy is of a multiset as an equivalence class of sequences. Since an error event
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only occurs when a sequence is represented by a sequence outside of its equivalence
class, uncertainty within the class is allowable without incurring error.

Rather than bounding H({X}), we can compute it exactly. Notice that the num-
ber of occurrences of each x ∈ X fully specifies a multiset, i.e. the type (empirical
frequency) is sufficient to describe a multiset. If the multiset is drawn i.i.d., the
distribution of types is given by a multinomial distribution. Suppose xi ∈ X has
probability pi and let Ki be the number of occurrences of xi in n independent trials.
Then

Pr[Ki = ki] =

(
n

k1, k2, . . . , k|X |

) |X |∏
i=1

pki
i , for i = 1, . . . , |X |,

for any type (k1, k2, . . . , k|X |) of non-negative integers with sum n. Thus,

H({X}n
i=1) = H(K1, K2, . . . , K|X |; n), (3)

where dependence on n is made explicit. Denote the alphabet of distinct types as
K(X , n); its size may be computed and bounded through simple combinatorics [4]:

|K(X , n)| =
(

n + |X | − 1

|X | − 1

)
≤ (n + 1)|X |. (4)

By the source coding theorem [1, Theorem 9], we need a rate of at least H({X}) =
H((K); n) to code the multiset with arbitrarily small probability of error.

Large-set asymptotics. The previous entropy calculation was for fixed and finite
n; now we turn to coding properties asymptotic in n. Define the entropy rate of a
multiset as

H(X) = lim
n→∞

1
n
H({Xi}n

i=1). (5)

We can show that the entropy rate is in fact zero.

Theorem 1. The entropy rate for any multiset drawn from a finite-symbol parent is
zero.

Proof. The entropy rate is given by H(X) = limn→∞
1
n
H(K1, K2, . . . , K|X |; n), because

of the equivalence relation (3). Using the logarithm of the alphabet size upper bound
and the bound on the number of types (4),

H(X) ≤ lim
n→∞

1
n

log |K| ≤ lim
n→∞

1
n

log
(
(n + 1)|X |

)
.

Since |X | is a finite constant, evaluating the limit yields H(X) ≤ 0. Furthermore, by
the information inequality H(X) ≥ 0, so H(X) = 0.

Note that the theorem holds for any multiset, not just for multisets drawn i.i.d. In
fact, if the multiset is drawn i.i.d., the bounding technique yields an upper bound that
is quite loose. To achieve the bound with equality, each of the types would have to
be equiprobable; however by the strong AEP [5], collectively, all non-strongly typical
types will occur with probability as close to zero as desired. The number of types in
the strongly typical set is polynomial in n, so we cannot get a rate of convergence to
the zero entropy rate faster than O(log n/n).
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Example 1. Consider a set of size n drawn i.i.d. from a Bernoulli parent with param-
eter p. The entropy of the set is equal to the entropy of a binomial random variable
with parameters n and p. An asymptotic expression for this entropy is given in [6] as

H({Xi}n
i=1) ∼ 1

2
log2 (2πenp(1− p)) +

∑
k≥1

akn
−k,

for some constants ak. Thus the entropy rate is

H(X) = lim
n→∞

log2(2πenp(1−p))
2n

+
∑
k≥1

akn
−k−1 = 0.

Evidently, the rate of convergence is O(log n/n) as in the universal case of Theorem 1.

We know that if we can make the multiset large enough, we will require zero
average rate to achieve arbitrarily small probability of error, but what if we cannot
take large multisets and we have rate constraints tighter than entropy? Returning
to the fixed and finite n regime, we find the rate distortion function for multisets
with error frequency distortion. Through the equivalence of multisets and types,
this is simply an i.i.d. discrete source with error frequency distortion, so the reverse
waterfilling solution of Erokhin [7] applies. The rate distortion function is given
parametrically as

Dθ = 1− Sθ + θ(Nθ − 1)

Rθ = −
∑

k:p(k)>θ

p(k) log p(k) + (1−Dθ) log(1−Dθ) + (Nθ − 1)θ log θ,

where Nθ is the number of types whose probability is greater than θ and Sθ is the
sum of the probabilities of these Nθ types. The parameter θ goes from 0 to p(k‡) as
D goes from 0 to Dmax = 1 − p(k†); the most probable type is denoted k† and the
second most probable type is denoted k‡.

3 Sets with a Continuous Parent

Distributions and entropies. Although the method of types does not extend
well to continuous alphabets, the intuition that number of occurrences fully specify
multisets continues to hold. When multisets are drawn i.i.d. from a continuous parent,
however, the probability of ties is zero and multisets are sets with no multiplicity.
Moreover, uncountably many distinct sets may occur. Rather than working directly
from types, we use the sequence in which the elements are in ascending order, the
natural representative of a permutation-invariant equivalence class. This canonical
sequence representation is equivalent to type representation and naturally leads to
the framework of order statistics. Assuming that the parent alphabet consists of the
real line, the basic distribution theory of order statistics can be used [8].

When the sequence of random variables X1, . . . , Xn is arranged in ascending order
as X(1) ≤ . . . ≤ X(n), X(r) is called the rth order statistic. Suppose that X1, . . . , Xn
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are i.i.d. from the parent with density f(x). Then the marginal density of X(r) is
well-known in closed form [8] and the joint density of all n order statistics is

f(1)···(n)(x1, . . . , xn) =

{
n!f(x1) · · · f(xn), for x1 ≤ · · · ≤ xn;
0, otherwise.

(6)

The order statistics have the Markov property with transition probability

fX(r+1)|X(r)=x(y) = (n− r)

[
1− F (y)

1− F (x)

]n−r−1
f(y)

1− F (x)
, for y > x.

Based on these basic distributional properties of order statistics, we can derive the
differential entropies of order statistics. The individual marginal differential entropies
cannot be simplified from their integral forms unless the parent is specified. The
average marginal differential entropy, however, can be expressed in terms of the parent
differential entropy and a constant that depends only on n [9]:

h̄(X(1), . . . , X(n)) =
1

n

n∑
i=1

h(X(i)) = h(X1)− log n− 1

n

n∑
i=1

log

(
n− 1

i− 1

)
+

n− 1

2
. (7)

The subtractive constant is positive and increasing in n. The individual conditional
differential entropies also cannot be simplified much without parent specification.
Again, as in the marginal case, the total conditional differential entropy can be ex-
pressed in terms of the parent differential entropy and a constant that depends only
on n. Due to Markovianity, the sum of the individual conditional differential entropies
is in fact the joint differential entropy.

h(X(1), . . . , X(n)) = h(X(1)) +
n−1∑
i=1

h(X(i+1)|X(i)) = nh(X1)− log n!.

Notice that an analogous statement (2) was a lower bound in the discrete parent
case; equality holds in the continuous case since there are no ties. If we generalize the
expression log n! to H(J), this equality holds for all sets, not just those drawn i.i.d.

High rate quantization. Having computed marginal and conditional differential
entropies of order statistics, asymptotic high rate quantization results follow directly.
We introduce four quantization schemes in turn, focusing on high rate quantizer
approximations under squared error fidelity. In particular, we sequentially introduce
a shape advantage, a memory advantage, and a space-filling advantage as in [10].1 As
a baseline, take the näıve scheme of directly scalar quantizing the randomly ordered
sequence. The average rate and distortion per source symbol of the näıve scheme are
R1 = h(X) − log ∆, and D1 = ∆2/12, where ∆ is the quantization step size. Now
scalar quantize the deterministically ordered sequence (the order statistics). This

1Note that vector quantizer advantages are discussed in terms of distortion for fixed rate in [10],
but we discuss some of these advantages in terms of rate for fixed distortion.
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Table 1: Comparison between the Scheme 1 and several other quantization schemes. The symbols
(s),(m), and (f) denote shape, memory, and space-filling advantages.

Rate Reduction (−) Distortion Reduction (×)
Scheme 1 0 1

Scheme 2 (s) log n + 1
n

n∑
i=1

log
(
n−1
i−1

)
− n−1

2 1

Scheme 3 (s,m) log n!/n 1
Scheme 4 (s,m,f) log n!/n 1/G(n)

changes the shape of the marginal distributions resulting in shape advantage. The
average rate per source symbol for this scheme is

R2 = h̄(X(1), . . . , X(n))− log ∆ = R1 − log n− 1

n

n∑
i=1

log

(
n− 1

i− 1

)
+

n− 1

2
. (8)

The distortion is the same as the näıve scheme, D2 = D1. As a third scheme, scalar
quantize the order statistics sequentially, using the previous order statistic as a form
of side information (assuming perfect side information). Since the order statistics
form a Markov chain, this single-letter sequential transmission exploits all available
memory advantage. The rate for this scheme is

R3 = 1
n
h(X(1), . . . , X(n))− log ∆ = R1 − 1

n
log n!. (9)

Again, D3 = D1. Finally, the fourth scheme would vector quantize the entire sequence
of order statistics collectively, exploiting space-filling gain. The rate is the same as
the third scheme, R4 = R3, however the distortion is less. This distortion reduction
is related to the best packing of polytopes and is not known in closed form for most
values of n; see Table I of [10] and more recent work. We denote the distortion
as D4 = D1/G(n), where G(n) is a function greater than unity. The performance
improvements of the presented schemes are summarized in Table 1. Notice that all
values in Table 1 depend only on the set length n and not on the parent distribution.

Low rate quantization. Having characterized the high rate regime, we mention
some properties of optimal MSE quantization of order statistics. Optimal MSE
(Lloyd-Max) quantization for order statistics was studied in [11] for the separate
scalar quantization of order statistics, like Scheme 2. Here we comment on full vector
quantization, like Scheme 4. Unlike scalar quantization, where the operations of sort-
ing and quantizing can always be interchanged without loss of optimality [11], this is
true only under certain conditions for vector quantization. As given in (6), the joint
density of the n order statistics is a scaled version of the n-fold product of the parent
density supported over a cone. The cone of support is one of n! cones that form a
disjoint partition of Rn such that each equivalence class consists of one point from
each cone; the geometry is related to permutation polyhedra. Now if the representa-
tion points for an MSE-optimal (k bit, n dimension) order statistic quantizer are the
intersection of the representation points for an MSE-optimal (k + log n!, n) quantizer
for the unordered variates and the cone of support, then we can interchange sorting
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Figure 1: Quantization and rate distortion for bivariate standard normal order statistics. (a) Op-
timal one-bit quantizer (white) achieves

(
R = 1, D = 2π−4

π

)
. Optimal two-bit quantizer (black)

for unordered variates achieves
(
R = 2, D = 2π−4

π

)
. Since representation points for order statistic

quantizer are the intersection of the cone (shaded) and the representation points for the unordered
quantizer, the distortion performance is the same. (b) Shannon upper and lower bounds for the order
statistic rate distortion function. The point achievable by quantizer in (a) is also shown connected
to the zero rate point, which is known to be tight. Note that this is not normalized per source letter.

and quantization without loss of optimality. This condition can be interpreted as a
requirement on permutation polyhedral symmetry of the quantizer of the unordered
variates. In fact, the distortion performance of the MSE-optimal (k, n) order statistic
quantizer is equal to the distortion performance of the best (k + log n!, n) unordered
quantizer constrained to have the required permutation symmetry. An example where
the symmetry condition is met is shown in Figure 1(a).

Rate distortion for large sets. In our discussion of multisets from discrete parents,
we established that the entropy rate is zero. In a similar vein we will make the average
distortion negligible using zero rate, with asymptotically large set size. In particular,
we will look at the squared error distortion measure

D =
1

n

n∑
i=1

E
[
(X(i) − X̂(i))

2
]
.

Since there is no rate, the best choice is X̂(i) = E[X(i)], thus the distortion reduces to

Dn(R = 0) =
1

n

n∑
i=1

var[X(i)],

where dependence on n is explicitly noted. We will show that limn→∞ Dn(0) = 0 for
a very large class of parent distributions, but first an example.

Example 2. Consider a parent distribution, pX ∼ U(−
√

3,
√

3). The average vari-
ance may be computed in closed form as Dn(0) = 2/(n + 1), so limn→∞ Dn(0) = 0.

The general theorem on zero rate, zero distortion will be based on the parent
quantile function, the generalized inverse of the distribution function

Q(u) = F−1(u) = inf{x : F (x) ≥ u},
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and the empirical quantile function, defined in terms of order statistics,

Qn(u) = X(bunc+1) = F−1
n (u),

where Fn(·) is the empirical distribution function. The quantile function Q(·) is
continuous if and only if the distribution function has no flat portions in the interior,
i.e. the density is strictly positive over its region of support except perhaps on isolated
points. The main step of the proof will be a Glivenko-Cantelli like theorem for
empirical quantile functions [12].

Theorem 2. Let X1 satisfy

E |min(X1, 0)|1/v1 < ∞ and E(max(X1, 0))1/v2 < ∞ (10)

for some v1 > 0 and v2 > 0 and have continuous quantile function Q(u). Then for
the coding of size-n sets drawn with parent distribution of X1 we have

lim
n→∞

Dn(R = 0) = 0. (11)

Proof. For any nonnegative function w defined on (0, 1), define a weighted Kolmogorov-
Smirnov like statistic ∆n(w) = sup0<u<1 w(u) |Qn(u)−Q(u)|. For each v1 > 0,
v2 > 0, and u ∈ (0, 1), define the weight function wv1,v2(u) = uv1(1−u)v2 . Assume that
Q is continuous, choose any v1 > 0 and v2 > 0, and define γ = lim supn→∞ ∆n(wv1,v2).
Then by the result of Mason [12], γ = 0 with probability 1 when (10) holds. Our
assumptions on the parent meet this condition, so γ = 0 with probability 1. This
implies that

lim sup
n→∞

|X(bunc+1) −Q(u)| ≤ 0 for all u ∈ (0, 1) w.p.1,

and since the absolute value is nonnegative, the inequality holds with equality. So we
have almost sure convergence of all order statistics to associated deterministic quantile
function constants. The bounded moment condition on the parent, (10), implies a
bounded moment condition on the order statistics. Almost sure convergence together
with the bounded moment condition implies convergence in moment. Since there is
convergence in moment to a Dirac delta function distribution, the variance of each
order statistic is zero, and thus the average variance is zero.

We have established that asymptotically in n, the point (R = 0, D = 0) is achiev-
able; combining with the information inequality lower bound, this is in fact the rate
distortion function. Due to the generality of the Glivenko-Cantelli like theorem that
we used, the result will stand for a very large class of distortion measures.

Rate distortion for a small set. Returning to the fixed and finite n regime, we give
some bounds on the rate distortion function for the independent bivariate standard
normal order statistics. For distortion

d(~x, ~̂x) = (x(1) − x̂(1))
2 + (x(2) − x̂(2))

2,
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the Shannon lower bound is simply RSLB(D) = log(1/D), the usual Gaussian rate
distortion function reduced by log n! bits (one bit). Note that since the order statistic
source cannot be written as the sum of two independent processes, one of which has
the properties of a Gaussian with variance D,2 the Shannon lower bound is loose
everywhere [13], though it becomes asymptotically tight in the high rate limit.

The covariance matrix of the Gaussian order statistics can be computed as

Λ =

[
1− 1/π 1/π

1/π 1− 1/π

]
,

with eigenvalues 1 and 1− 2/π. Reverse waterfilling yields the Shannon upper bound

RSUB(D) =


1
2
log

(
2−4/π

D

)
+ 1

2
log

(
2
D

)
, 0 ≤ D ≤ 2− 4/π

1
2
log

(
1

D−1+2/π

)
, 2− 4/π ≤ D ≤ 2− 2/π

0, D ≥ 2− 2/π.

This bound is tight at the point achieved by zero rate. Since the Gaussian order
statistics for n = 2 have small non-Gaussianity, the Shannon lower bound and the
Shannon upper bound are close to each other, as shown in Figure 1(b). For moderately
small distortion values, we can estimate the rate distortion function quite well.

4 Comments
An assumption in basic information theory is that the encoder and decoder share a
knowledge of a code, which is essentially the same as sharing a probabilistic model
for messages. Given this shared knowledge and the relative frequency interpretation
of probability, with associated laws of large numbers and Glivenko-Cantelli theorems,
our asymptotic results in set size are not unexpected. After all, if the empirical fre-
quency converges to the true density (known to the decoder), then it makes sense that
for large n, little rate is required to achieve low distortion: the decoder can produce
a good estimate just by generating samples according to the known distribution. If
the encoder does not know the model of the source, then universal source coding
schemes that learn the source are necessary. In fact, the problem of learning a fixed
but unknown parent distribution and the problem of coding sets are related. The
asymptotic results on the redundancy of universal source codes going to zero [14] are
quite similar to our results on the entropy rate itself going to zero.

One avenue for building upon this work was mentioned in the introduction: to
develop a theory for database compression. Another is to consider cases in which
encoder and decoder do not share perfect knowledge of the source distribution.

In the introduction, it was suggested that there are many source-destination
pairs that have the order irrelevance property. If the destination is to perform a
permutation-invariant function on the received sequence, then the order is irrelevant.

2Even though X(1) = 1
2 (X1 + X2)− 1

2 |X1 −X2| and X(2) = 1
2 (X1 + X2) + 1

2 |X1 −X2|, and the
first terms are Gaussian, the troublesome part is the independence.
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If a database is used for simple recall tasks, the order of the retrieved records is irrele-
vant, so vectors of records can be stored as multisets of records. As another example,
suppose that a continuous-time signal can be decomposed into the sum of n shifted
versions of a kernel function, φ; the signal reconstruction f̂ (t) =

∑n
i=1 φ (t− ti) from

[t1, t2, . . . , tn] ∈ Rn is clearly permutation invariant. This is exploited in [15] for the
transportation of kernel density estimates. Thus in this class of examples, the mul-
tiset communication problem offers savings not only due to the nature of the source,
but also due to what Shannon [1] called “the nature of the final destination of the
information.”

Acknowledgment. The authors thank the reviewers for constructive comments and
referring them to [6].
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