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i INFORMATION TRANSMISSION SYSTEMS AND INFORMATION
storage systems are fundamental to almost all aspects of life.
Whether one is recalling one’s name, storing scientific data on a
DVD, or flipping through a magazine, there is an underlying
information system at work. The fundamental nature of the
communication problem solved by these systems is captured in
the celebrated Fig. 1 of Claude Shannon’s “A Mathematical
Theory of Communication.” Following Fig. 1, one can define a
communication system to have five parts: source, transmitter,

channel, receiver, and destination. In
statistical characterizations of com-
munication, messages and signals
are modeled probabilistically. For
consistency with the figure, the
received signal is independent of the
source message given the transmit-
ted signal, and the destination mes-
sage is independent of the source
message and transmitted signal given
the received signal. 

Communication systems must
meet performance objectives, such
as ensuring that the destination
message is a reproduction of the
source message within specified
fidelity. These systems must also
operate with limited resources, such
as bounded transmission energy.
There is usually a tradeoff between
the amount of resources consumed,
B, and the level of distortion that
can be achieved, �. Since it is desir-

able to operate at an optimal tradeoff
point between these two fundamental

parameters of communication systems, a char-
acterization of optimality is needed. Casting both the

fidelity criterion, which is a potentially semantic quality,
and the resource criterion, which is a physical quality, in

mathematical terms allows the use of mathematical techniques
to determine optimality.

Information theory deals precisely with the problem of
minimizing average distortion � under a constraint on average
resource consumption B, over the design of transmitters and
receivers. The theory divides communication problems into
two sets: those that can be solved and those that cannot.
Optimality lies at the boundary. Although Shannon’s seminal
works in 1948, 1949, and 1959 provided very general expres-
sions for the optimal (�, B) tradeoff, evaluating the expres-
sions for specific cases has been a formidable task. The chal-
lenge has been particularly stymieing for fidelity criteria that
are subjectively significant and for resource criteria that mean-
ingfully quantify the physical costs of signal transmission.Digital Object Identifier 10.1109/MPOT.2007.913550

Local fidelity, constrained codes, 
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In engineering theory, there are
often two distinct practices: the devel-
opment of a theoretical paradigm and
the performance of computations within
the paradigm. In this article, the basic
paradigm of information theory is first
reviewed and interpreted. The main
focus, however, is on the practice of
computing and showing that computa-
tion is possible even under meaningful
fidelity and resource criteria. Precise
computations of optimal tradeoff points
for some context-dependent fidelity cri-
teria and resource criteria that arise in
optical and magnetic recording are pro-
vided; some of these results do not
appear to have surfaced explicitly in the
literature before. Interestingly, ancient
Indian combinatorial results are useful
in this setting. Moreover, we point out
that the strong relationship between the
capacity of constrained codes for
recording channels and rate distortion
for sources with respect to context-
dependent fidelity criteria may be use-
ful in the computation of other rate-dis-
tortion functions.

INFORMATION THEORY
Information theory establishes fun-

damental bounds on the tradeoff
between the average distortion and the
average cost for a communication prob-
lem. Mathematizing the description of a
communication system proceeds as fol-
lows. Model the information source as
an infinite sequence of random vari-
ables, U1, U2, . . . , Uk, . . . , which are
drawn from a common alphabet
according to some distribution, pU(u ).
The transmitter converts the source
symbols into channel input symbols
X1, X2, . . . , Xn, . . . , whose distribution

is determined by the source and the
transmitter transition probability assign-
ment, pX|U(x|u ). The channel provides
the physical link between the source
and destination and may be restricted
to allow only a finite number of states
or may introduce noise or both. The
mathematical model of the channel is
defined as a sequence of transition
probability assignments between the
channel input space and the channel
output space, pY|X(y |x) , where the
channel output letters are denoted
Y1, Y2, . . . , Yn, . . . . A cost function,
b(x1, . . . , xn), is defined on the channel
input alphabet; formally all that we
require is that it is a nonnegative func-
tion. However, it is desirable that it be
based on some fundamental system
resource such as energy, bandwidth,
volume, or money. The last step before
the destination is the receiver. In revers-
ing the operations of the transmitter,
the receiver converts the received signal
into the form of the original message. It
is a transition probability assignment,
pV|Y (v |y ), that yields the reconstructed
message V1, V2, . . . , Vk, . . . . A distortion
function d(u1, . . . , uk; v1, . . . , vk) that
measures how bad of a reconstruction
V is for U is defined for the source-
destination pair. 

Now returning to our fundamental
system parameters, average resource
consumption B is defined to be the
expected value of b and the average
distortion � is defined to be the expect-
ed value of d, the fidelity criterion. For
a given source, fidelity criterion, chan-
nel, and resource criterion, and over the
choice of the transmitter and receiver, if
an information system satisfies the fol-
lowing conditions:

1) � cannot be decreased without
increasing B, and

2) B cannot be decreased without
increasing �,
then it is optimal. The optimization over
the transmitter and receiver does not
impose any further design restrictions
on these transducers. A cost distortion
curve may be drawn, which gives all
system performances (�, B) that are
optimal. This curve is given by the set
of points that simultaneously satisfies
the two optimization problems derived
from the definition of optimality.
Although there is a definition and, in
some sense, a formula for an optimal
communication system, this description
is not at all tractable. 

Shannon, however, came to the res-
cue and provided a much more
tractable characterization of optimality.
One can think of a transmitter as acting
to both compress the source data and
to protect it against channel noise; what
Shannon showed was that separating
the steps of compression and error pro-
tection does not reduce the set of
achievable (�, B). By promulgating
what is now called the separation theo-
rem, he suggested an architecture for
communication systems where the
notion of information rate emerged.
This notion of information rate, mea-
sured through the mutual information
functional in units of bits, has become
the primary commodity for communica-
tion systems. As Jerry Wiesner of MIT
once said, “Before we had the theory,
. . . we had been dealing with a com-
modity that we could never see or real-
ly define. We were in the situation
petroleum engineers would be in if
they didn’t have a measuring unit like
the gallon. We had intuitive feelings
about these matters, but we didn’t have
a clear understanding.”

The separation principle splits the
problem of optimal transmitter/receiver
design into two subproblems: the
design of optimal source encoders and
decoders for compression and the
design of optimal channel encoders
and decoders for error protection.
Source coding and channel coding are
very closely related problems: the first
removes redundancy whereas the sec-
ond adds redundancy back. To take an
example from the comics section of
the newspaper, one can think about
the puzzle Sudoku in both source cod-
ing and channel coding terms. As a
source code, one thinks of the source
message as the fully completed grid of

Fig. 1. Schematic diagram of a general communication system, adapted from
Shannon’s “A Mathematical Theory of Communication,” redrawn by author.
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numbers; since a small subset of these
numbers uniquely determines the grid,
the rest can be erased and not repre-
sented, thereby reducing the rate
requirement. Alternatively, one can
think of the completed grid as a chan-
nel code word generated from a small
subset of numbers, which passes
through an erasure channel to yield
the puzzle; then the grid constraints
help recover the completed grid from
the puzzle, thereby providing error
protection. (In fact Sudoku has strong
connections to low-density parity
check codes and related satisfiability
problems in computer science.)

The coding theorems of information
theory show that the performance of
optimal solutions to the source-coding
and channel-coding problems can be
expressed in terms of the rate distortion
function and the capacity cost function,
respectively. The rate distortion func-
tion of a source-destination pair repre-
sents the minimum information rate of
the source message required to repro-
duce the destination message with aver-
age distortion not exceeding �. The
capacity cost function of a channel rep-
resents the maximum information rate
of the transmitted signal that can be
received across the channel with aver-
age cost not exceeding B. To express
these two functions, we need to intro-
duce the mutual information functional
by which information rate is defined.
The mutual information between two
random variables W and Z with joint
distribution pW,Z is

I(W; Z ) =∑
w

∑
z

pW,Z(w, z) log
pW,W(w, z)

pW(w)pZ(z)
,

where the sums are taken over the
alphabets on which the distributions are
defined. The rate distortion function is
the minimum information rate between
the source and destination messages
while still meeting the average distor-
tion constraint. Mathematically, 

R(�) = min
pV|U(v|u )E [d(u ;v )]≤�

I(U; V ).

The capacity cost function is the maxi-
mum information between the transmit-
ted and received signals while staying
within the average cost constraint.
Mathematically,

C(B) = max
pX(x)E [b(x)]≤B

I(X; Y).

Combining these two functions yields a

characterization of the performance of
an optimal communication system. A
communication system is optimal if and
only if R(�) is equal to C(B).

For point-to-point communication,
the problem of optimal communication
may be reduced to the problem of
matching the information rate of the
source to the information rate of the
channel. Note, however, that such a
separation-based scheme implied by the
basic result is not required for optimali-
ty, and even uncoded transmission may
be optimal in certain scenarios. In a
separation-based approach, all of the
distortion is incurred in the source
encoder, whereas in other system archi-
tectures, some of the distortion may be
incurred in the channel or elsewhere.
The notion of information rate, howev-
er, is directly tied to a separation-based
architecture of communication. 

As a consequence of the rate match-
ing interpretation of optimal communi-
cation, information may be understood
in the same manner as fluid flow. The
paradigm of electricity as a fluid has
been central to the development of
electrical engineering theory and has
allowed connections with other branch-
es of engineering theory such as
acoustics, mechanics, thermics, and
hydraulics. Although the rate matching
characterization will be further devel-
oped in the sequel, the reader must be
warned that there are several communi-
cation scenarios where this characteri-
zation does not apply. To use the termi-
nology of electricity theory, the field
problem cannot always be reduced to a
circuit problem, as it is for simple point-
to-point communication. 

MEANINGFUL FIDELITY 
AND RESOURCE CRITERIA

Optimal point-to-point communica-
tion requires R(�) to equal C(B). The
requirement of equality seems to settle
the entire question of optimal commu-
nication, but there are still several out-
standing questions. Rate distortion has
been defined in terms of a distortion
function d and capacity cost has been
defined in terms of a cost function b,
but where do these come from?
Moreover, once we define the distortion
and cost functions, how might one go
about performing the mutual informa-
tion optimizations? We address the first
question in this section and the second
question in later sections.

As Shannon noted in his 1949 paper,
“various different points may represent

the same message, insofar as the final
destination is concerned. For example,
in the case of speech, the ear is insensi-
tive to a certain amount of phase distor-
tion. Messages differing only in the
phases of their components (to a limit-
ed extent) sound the same. This may
have the effect of reducing the number
of essential dimensions in the message
space. All the points that are equivalent
for the destination can be grouped
together and treated as one point.” This
is the basic essence of distortion func-
tion design: determining how much the
destination cares and using this knowl-
edge to compress.

Gray has listed several desirable
properties for distortion functions to
possess. These desiderata include
tractability, computability, and subjec-
tive significance. If one is compressing
a database, it seems reasonable not to
care about the order of the records, as
long as each is preserved without error.
Such an unordered distortion function
is easy to compute, since it simply
involves sorting into some prespecified
order and then comparing record by
record. Not only is this distortion mea-
sure computable, it is quite tractable so
an information theory for unordered
data follows.

If one is compressing an image, one
would want the distortion measure to
reflect how objectionable a human
observer finds the compressed version
as compared to the original version.
Making such an evaluation of human
perception, however, requires actually
testing with humans and is thus not
computable. One might approximate
human perception with a mathematical
function, as several so-called perceptu-
al distortion measures do, to obtain
computability. Unfortunately, distortion
functions that match perception often
do not lead to tractable information
theory.

A similar story plays out with respect
to cost functions. Computable and
tractable functions that also reflect the
true costs of signal transmission are
desired. In the case of signal transmis-
sion, simple functions such as signal
power may actually turn out to be the
true cost, but often this is not the case.
For example, if an amplifier has a maxi-
mum value, then a signal power above
that level would presumably have very
large costs.

To ensure tractability, almost all
work in information theory has concen-
trated on single-letter distortion func-



30 IEEE POTENTIALS

tions and single-letter cost functions.
Examples of distortion functions include
squared error and absolute error, where-
as examples of cost functions include
amplitude and energy. Theoretical work
using nonsingle-letter cost and distortion
functions has been rare, but includes
our work on distortion functions where
order is irrelevant as well as scenarios
described in the sequel. 

THE COMBINATORICS OF 
THE MERU PRASTARA

Before embarking on a development
of rate distortion and capacity cost the-
ory for meaningful nonsingle-letter
functions, we take an aside to present
some ancient combinatorial results. As
noted by Singh, the basic results were
first given in Pingala’s book on rhythm
and meter in Sanskrit poetry, dated to
perhaps 450 B.C. The basic idea is that

several recurrent sequences can be
formed by summing numbers along
parallel diagonals of Pingala’s Meru
prast

_
ara, as shown in Fig. 2. Meru

prast
_
ara may be translated as the stair-

case of Mount Meru and perhaps less
lyrically as the triangle expansion; it is
also known as Pascal’s triangle.

Taking a shallow set of diagonals
we obtain the sequence 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, 89,..., which is called the
first Meru sequence am; it is also known
as the Fibonacci sequence. Taking a
steeper set of diagonals yields the sec-
ond Meru sequence bm = 1, 1, 1, 2, 3,
4, 6, 9, 13, 19, 28, 41, 60,…. Finally,
taking an even steeper set of diagonals
yields the fourth Meru sequence cm =
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19,
26,….The Meru sequences are some-
times called generalized Fibonacci
sequences.

One can show that these Meru
sequences have nice recurrence formu-
las and limiting values that will be
denoted as the Meru constants. These
are well known for the first Meru
sequence, considering the mystical quali-
ties attached to it in popular works such
as The Da Vinci Code. The first Meru
constant is also known as the golden
ratio. The expressions may be less well
known for the second and fourth Meru
sequences, so we provide them here. A
shifted version of the second Meru
sequence satisfies the recurrence formula

bm = bm−1 + bm−3,

with initial conditions b1 = 1, b2 = 2,

b3 = 3. It satisfies the limiting relation
m−1 log bm → log meru2 , where

meru2 = 1

3

×
⎛
⎝3

√
29 + 3

√
93

2
+ 3

√
29 − 3

√
93

2
+ 1

⎞
⎠

= 1.465571 . . . .

A shifted version of the fourth Meru
sequence satisfies the recurrence formula

cm = cm−1 + cm−4,

with initial conditions c1 = 1, c2 = 2,

c3 = 3, c4 = 4. It satisfies the limiting
relation m−1 log cm → log meru4 , where
meru 4 = 1.3802775691 . . . . These
asymptotic values will be useful for
computing capacity and rate distortion.

Of course, combinatorics and num-
ber theory have developed significantly
since the time of Pigala. Several other
information theoretically relevant
asymptotic formulas in combinatorial
analysis are given by Guibas and
Odlyzko as well as by Immink.

RATE DISTORTION FOR CONTEXT-
DEPENDENT FIDELITY CRITERIA

As first suggested by Shannon in
1959 and further developed by Berger
and Yu, local distortion functions,
which are defined on sliding windows
of letters, may be semantically signifi-
cant as well as computable and
tractable. When storing phone numbers,
every digit is equally important, but
when storing scientific measurements, a
mistake like 3215 → 3219 is probably
not as bad as a mistake like
5123 → 9123. Certain kinds of errors
must be avoided more stringently in
compression than others, much like

Fig. 2. The Meru sequences are found by summing all the numbers along parallel
diagonals of the Meru prast

_
ara of Pingala.  Diagonals are shown by outlining boxes

with the same color.  (a) The Meru prast
_
ara of Pingala, (b) shifted first Meru sequence:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . (c) second Meru sequence: 1, 2, 3, 4, 6, 9, 13, 19, 28,
41, 60, …, and (d) Fourth Meru sequence: 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, . . ..
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unequal error protection in error-
control coding. Distortion functions that
take such considerations into account
are not single letter; rather they yield
context-dependent fidelity criteria. In
general, a local distortion measure of
span s is any function ρs : U s × V s

→ [0,∞) and for block lengths k > s,
the local distortion measure induces a
block distortion function, dk : U k×
Vk → [0,∞) of the form 

d
(
u k

1 ; v k
1

) =
k−s+1∑

i=1

ρs
(
u i−s+1

i , v i−s+1
i

)
,

the sliding sum of ρs. Berger and Yu
considered in detail the case of binary
source and reproduction alphabets with
the local distortion function of span 2
given in Table 1 for d > 0. This distor-
tion function is derived from the desire
to avoid two consecutive mistakes but
without worrying about isolated errors;
this seems quite reasonable for many
applications. For example, in a tracking
or navigation application, one might
lose track of what is going on when
errors burst together too closely.

Using various information theoretic
arguments, Berger and Yu showed that
determining R(� = 0) reduces to a
combinatorics problem; the value R(0)
is essentially independent of the source
distribution. To find this value, binary
strings that avoid the patterns that
induce nonzero distortion must be enu-
merated. Taking the logarithm and nor-
malizing will then directly yield R(0).
For the context-dependent fidelity crite-
rion generated by ρ2 , the number of
binary strings of length n is exactly
2−n an, where an is first Meru sequence.
Thus an exact computation of the rate
distortion function follows readily from
the Meru combinatorics. R(0) is
log(2/meru1). 

Rather than just caring about two
consecutive errors and not worrying
about isolated errors, one might want to
avoid two mistakes within three source
letters but allow other mistakes. This
leads to the context-dependent fidelity
criterion associated with the local dis-
tortion function of span 3, ρ3, shown in
Table 2. Extending the work of Berger
and Yu, it can be shown that the zero
distortion point R(0) is log(2/meru2).
This is because the second Meru
sequence corresponds to the enumera-
tion of binary strings that avoid the pat-
terns “11” and “101.”

Similarly, if ρ4 is defined such that
there is positive distortion only when
there are two errors within four source let-

ters, the enumeration problem is one of
binary strings that avoid substrings “11,”
“101,” and “1001.” This distortion measure
is a natural extension to the previous two.
As one might guess, this enumeration
problem corresponds to the fourth Meru
sequence and so the rate distortion value
is R(0) = log (2/meru 4). Thus we see
there are instances where the rate distor-
tion function can be evaluated for non-
single-letter distortion functions. 

CONSTRAINED CODES
Just as for rate distortion, there are

cases where capacity cost evaluation
reduces to a combinatorial problem.
This is notably the case for the noise-
less channels that Shannon first
described in 1948 and is discussed in
great depth by Immink in the context of
optical and magnetic information stor-
age. Although not the standard descrip-
tion of constraints for recording chan-
nels, local cost functions paralleling
local distortion functions can be defined
so as to impose constraints. A local cost
measure of span s is any function
υs : X s → [0,∞) and for block
lengths n > s, the local cost measure
induces a block cost function,
bn : X n → [0,∞) of the form 

b
(
xn

1
) n−s+1∑

j =1

νs

(
x

j −s +1
j

)
,

the sliding sum of υs. 

The most common form of constraint
imposed on noiseless magnetic or opti-
cal recording channels is a run length
constraint. Run length-limited sequences
are characterized by two parameters that
specify the minimum and maximum
lengths of runs of zeros or of ones that
are allowed. The choice of these para-
meters implicitly take channel properties
such as channel response, jitter, and
noise into account; optimal codes for
these channels are used to store infor-
mation on CDs and DVDs. In the tradi-
tional notation of run length limited
sequences, a d constraint imposes that
two ones are separated by a run of con-
secutive zeros of length at least d. The
local cost function υ2 corresponding to
a (d = 1)-sequence is given in Table 3.
Similarly, the local cost function υ3 cor-
responding to a (d = 2)-sequence is
given in Table 4 and the local cost func-
tion υ4 corresponding to a (d = 3)-
sequence is given in Table 5.

Table 2. Local distortion measure ρ3 for binary strings reproduced by
binary strings.  A penalty is charged only if two errors occur in a
row or for an error pattern error–no error–error.

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) (v1, v2, v3)

(0,0,0) 0 0 0 d 0 d d d

(0,0,1) 0 0 d 0 d 0 d d

(0,1,0) 0 d 0 0 d d 0 d

(0,1,1) d 0 0 0 d d d 0

(1,0,0) 0 d d d 0 0 0 d

(1,0,1) d 0 d d 0 0 d 0

(1,1,0) d d 0 d 0 d 0 0

(1,1,1) d d d 0 d 0 0 0

(u1, u2, u3)

Table 3. Local cost function ν2

for binary input channel corre-
sponding to a (d=1) runlength
constrained sequence.

(x1, x2) b (x1, x2)

(0,0) 0

(0,1) 0

(1,0) 0

(1,1) b

Table 1. Local distortion measure ρ2 for binary strings reproduced by
binary strings.  A penalty is charged only if two errors occur in a
row; isolated errors are not penalized.

(0,0) (0,1) (1,0) (1,1) (v1, v2)

(0,0) 0 0 0 d

(0,1) 0 0 d 0

(1,0) 0 d 0 0

(1,1) d 0 0 0

(u1, u2)
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To meet the cost constraint B = 0, for
any b > 0, only channel inputs that use
zero-cost channel input sequences will be
used. Moreover, to maximize the rate,
C(B = 0), these will be used equiproba-
bly. The problem reduces to an enumera-
tion of zero-cost strings. As essentially
shown by Immink, the enumeration of
binary strings with zero-cost for υ2 is the
first Meru sequence, for υ3 is the second
Meru sequence, and for υ4 is the fourth
Meru sequence. Consequently, using the
asymptotic properties of the Meru
sequences, it follows that the zero-cost
capacities of the noiseless channels
are C(0) = log meru 1 , C(0) = log meru 2 ,
and C(0) = log meru 4 for υ2, υ3, and υ4,
respectively.

For cost constraints B > 0, codes that
Immink calls weakly constrained run
length limited could be used. Just as for
the rate distortion problem with context-
dependent fidelity criteria that we pre-
sented earlier, closed form expressions
for these nonsingle-letter, capacity cost
points are available.

CONCLUSION
Information theory provides funda-

mental bounds on the tradeoff between
achievable distortion in communication
and the amount of resources that are
allocated to the communication system.
For optimal point-to-point communica-
tion, this is a condition on rate match-
ing. Most theoretical computation work
has focused on single-letter fidelity and
resource criteria due to tractability.
However, these may not reflect true
system objectives and constraints. So, it
is desirable to extend analysis to non-
single-letter fidelity and resource crite-
ria. In certain cases, the problem can be
reduced to combinatorics and becomes
tractable.

Once the problem is reduced to
combinatorics, there are all kinds of
asymptotic enumeration methods that
can be used to compute capacity and
rate distortion: Shannon’s original spec-
tral methods, the Delést-Schützenberger-
Viennot method from automata theory,
techniques based on generating func-
tions, or even ancient techniques involv-
ing the Meru constants. It is perhaps
surprising that the Meru constants make
appearances here, as they do in several
other communications problems such as
group testing and other forms of search,
distributed consensus in sensor net-
works, and many others.

Finally, we saw that there are strong
connections between the enumeration
of run length constrained sequences
and rate distortion problems. There is a
duality relation between the problems
so that  R (0) + C (0) = log (2/meru 1)
+ log meru 1 = 1 for ρ2 and υ2 and
similarly for the other local distortion
and cost functions we defined.
Considering that methods of comput-
ing noiseless channel capacity are
reasonably well developed, perhaps
the resu l t s  can be used to shed
more light on source coding with
respect to context-dependent fidelity
criteria.
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Table 4. Local cost function ν3

for binary input channel corre-
sponding to a (d=2) runlength
constrained sequence.

(x1, x2, x3) b (x1, x2, x3)

(0,0,0) 0

(0,0,1) 0

(0,1,0) 0

(0,1,1) b

(1,0,0) 0

(1,0,1) b

(1,1,0) b

(1,1,1) b

Table 5. Local cost function ν4

for binary input channel corre-
sponding to a (d=3) runlength
constrained sequence.

(x1, x2, x3, x4) b (x1, x2, x3, x4)

(0,0,0,0) 0

(0,0,0,1) 0

(0,0,1,0) 0

(0,0,1,1) b

(0,1,0,0) 0

(0,1,0,1) b

(0,1,1,0) b

(0,1,1,1) b

(1,0,0,0) 0

(1,0,0,1) b

(1,0,1,0) b

(1,0,1,1) b

(1,1,0,0) b

(1,1,0,1) b

(1,1,1,0) b

(1,1,1,1) b
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