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Performance of LDPC Codes Under
Faulty Iterative Decoding
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Abstract—Departing from traditional communication theory
where decoding algorithms are assumed to perform without
error, a system where noise perturbs both computational devices
and communication channels is considered here. This paper
studies limits in processing noisy signals with noisy circuits by
investigating the effect of noise on standard iterative decoders
for low-density parity-check (LDPC) codes. Concentration of
decoding performance around its average is shown to hold when
noise is introduced into message-passing and local computation.
Density evolution equations for simple faulty iterative decoders
are derived. In one model, computing nonlinear estimation
thresholds shows that performance degrades smoothly as decoder
noise increases, but arbitrarily small probability of error is not
achievable. Probability of error may be driven to zero in another
system model; the decoding threshold again decreases smoothly
with decoder noise. As an application of the methods developed,
an achievability result for reliable memory systems constructed
from unreliable components is provided.

Index Terms—Communication system fault tolerance, de-
coding, density evolution, low-density parity-check (LDPC) codes,
memories.

I. INTRODUCTION

T HE basic goal in channel coding is to design encoder-de-
coder pairs that allow reliable communication over noisy

channels at information rates close to capacity [1]. The primary
obstacle in the quest for practical capacity-achieving codes has
been decoding complexity [2]–[4]. Low-density parity-check
(LDPC) codes have, however, emerged as a class of codes that
have performance at or near the Shannon limit [5], [6] and yet
are sufficiently structured as to have decoders with circuit im-
plementations [7]–[9].

In addition to decoder complexity, decoder reliability may
also limit practical channel coding.1 In Shannon’s schematic di-
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1One may also consider the effect of encoder complexity [10], however en-
coder noise need not be explicitly considered, since it may be incorporated into
channel noise, using the noise combining argument suggested by Fig. 3.

agram of a general communication system [1, Fig. 1] and in the
traditional information and communication theories that have
developed within the confines of that diagram, noise is localized
in the communication channel. The decoder is assumed to op-
erate without error. Given the possibility of unreliable compu-
tation on faulty hardware, there is value in studying error-prone
decoding. In fact Hamming’s original development of parity-
check codes was motivated by applications in computing rather
than in communication [11].

The goal of this paper is to investigate limits of communi-
cation systems with noisy decoders and has dual motivations.
The first is the eminently practical motivation of determining
how well error control codes work when decoders are faulty.
The second is the deeper motivation of determining fundamental
limits for processing unreliable signals with unreliable compu-
tational devices, illustrated schematically in Fig. 1. The motiva-
tions are intertwined. As noted by Pierce, “The down-to-earth
problem of making a computer work, in fact, becomes tangled
with this difficult philosophical problem: ‘What is possible and
what is impossible when unreliable circuits are used to process
unreliable information?’” [12].

A first step in understanding these issues is to analyze a par-
ticular class of codes and decoding techniques: iterative mes-
sage-passing decoding algorithms for LDPC codes. When the
code is represented as a factor graph, algorithm computations
occur at nodes and algorithm communication is carried out over
edges. Correspondence between the factor graph and the algo-
rithm is not only a tool for exposition but also the way decoders
are implemented [7]–[9]. In traditional performance analysis,
the decoders are assumed to work without error. In this paper,
there will be transient local computation and message-passing
errors, whether the decoder is analog or digital.

When the decoder itself is noisy, one might believe that
achieving arbitrarily small probability of error (Shannon reli-
ability) is not possible, but this is indeed possible for certain
sets of noisy channels and noisy decoders. This is shown by
example. For other sets of noisy channels and noisy decoders,
Shannon reliability is not achievable, but error probability
tending to extremely small values is achievable. Small prob-
ability of error, , is often satisfactory in practice, and so

-reliable performance is also investigated. Decoding thresh-
olds at -reliability decrease smoothly with increasing decoder
noise. Communication systems may display graceful degrada-
tion with respect to noise levels in the decoder.

The remainder of the paper is organized as follows. Section II
reviews motivations and related work. Section III formalizes
notation and Section IV gives concentration results that allow
the density evolution method of analysis, generalizing re-
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Fig. 1. Schematic diagram of an information system that processes unreliable
signals with unreliable circuits.

sults in [13]. A noisy version of the Gallager A decoder for
processing the output of a binary symmetric channel is ana-
lyzed in Section V, where it is shown that Shannon reliability
is unattainable. In Section VI, a noisy decoder for AWGN
channels is analyzed. For this model, the probability of error
may be driven to zero and the decoding threshold degrades
smoothly as a function of decoder noise. As an application of
the results of Section V, Section VII precisely characterizes the
information storage capacity of a memory built from unreliable
components. Section VIII provides some conclusions.

II. BACKGROUND

A. Practical Motivations

Although always present [11], [14], recent technological
trends in digital circuit design bring practical motivations to
the fore [15]–[17]. The 2008 update of the International Tech-
nology Roadmap for Semiconductors (ITRS)2 points out that
for complementary metal-oxide-silicon (CMOS) technology,
increasing power densities, decreasing supply voltages, and
decreasing sizes have increased sensitivity to cosmic radia-
tion, electromagnetic interference, and thermal fluctuations.
The ITRS further says that an ongoing shift in the manufac-
turing paradigm will dramatically reduce costs but will lead
to more transient failures of signals, logic values, devices,
and interconnects. Device technologies beyond CMOS, such
as single-electron tunnelling technology [18], carbon-based
nanoelectronics [19], and chemically assembled electronic
nanocomputers [20], are also projected to enter production, but
they all display erratic, random device behavior [21], [22].

Analog computations are always subject to noise [23], [24].
Similar issues arise when performing real-valued computations
on digital computers since quantization, whether fixed-point or
floating-point, is often well-modeled as bounded, additive sto-
chastic noise [25].

B. Coding and Computing

Information and communication theory have provided limits
for processing unreliable signals with reliable circuits [1], [13],
[26], whereas fault-tolerant computing theory has provided
limits for processing reliable signals (inputs) with unreliable
circuits [12], [27]–[31]. This work brings the two together.

A brief overview of terms and concepts from fault-tolerant
computing, based on [32], [33], is now provided. A fault is a

2The overall objective of the ITRS is to present the consensus of the semicon-
ductor industry on the best current estimate of research and development needs
for the next fifteen years.

physical defect, imperfection, or flaw that occurs within some
hardware or software component. An error is the informational
manifestation of a fault. A permanent fault exists indefinitely
until corrective action is taken, whereas a transient fault appears
and disappears in a short period of time. Noisy circuits in which
the interconnection pattern of components are trees are called
formulas [34], [35].

In an error model, the effects of faults are given directly in
the informational universe. For example, the basic von Neu-
mann model of noisy circuits [27] models transient faults in
logic gates and wires as message and node computation noise
that is both spatially and temporally independent; this has more
recently also been called the Hegde–Shanbhag model [36], after
[37]. This error model is used here. Error models of permanent
faults [38], [39] or of miswired circuit interconnection [28], [40]
have been considered elsewhere. Such permanent errors in de-
coding circuits may be interpreted as either changing the factor
graph used for decoding or as introducing new potentials into
the factor graph; the code used by the encoder and the code used
by the decoder are different.

There are several design philosophies to combat faults. Fault
avoidance seeks to make physical components more reliable.
Fault masking seeks to prevent faults from introducing errors.
Fault tolerance is the ability of a system to continue performing
its function in the presence of faults. This paper is primarily
concerned with fault tolerance, but Section VII considers fault
masking.

C. Related Work

Empirical characterizations of message-passing decoders
have demonstrated that probability of error performance does
not change much when messages are quantized at high res-
olution [26]. Even algorithms that are coarsely quantized
versions of optimal belief propagation show little degradation
in performance [13], [41]–[46]. It should be emphasized,
however, that fault-free, quantized decoders differ significantly
from decoders that make random errors.3 The difference is
similar to that between control systems with finite-capacity
noiseless channels and control systems with noisy channels
of equal capacity [50]. Seemingly the only previous work on
message-passing algorithms with random errors is [51], which
deals with problems in distributed inference.4

The information theoretic problem of mismatch capacity [52]
and its analog for iterative decoding [53] deal with scenarios
where an incorrect decoding metric is used. This may arise, e.g.,
due to incorrect estimation of the channel noise power. For mes-
sage-passing decoding algorithms, mismatch leads to incorrect
parameters for local computations. These are permanent faults
rather than the kind of transient faults considered in this paper.

Noisy LDPC decoders were previously analyzed in the con-
text of designing reliable memories from unreliable components
[54], [55] (revisited in Section VII), using Gallager’s original

3Randomized algorithms [47] and stochastic computation [48] (used for de-
coding in [49]) make use of randomness to increase functionality, but the ran-
domness is deployed in a controlled manner.

4If the graphical model of the code and the graph of noisy communication
links in a distributed system coincide, then the distributed inference problem
and the message-passing decoding problem can be made to coincide.
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Fig. 2. Schematic diagram of a factor graph-based implementation of a noisy
decoder circuit. Only one variable-to-check message and one check-to-vari-
able message are highlighted. Other wires, shown in gray, will also carry noisy
messages.

methods [26]. Several LPDC code analysis tools have since
been developed, including simulation [56], expander graph ar-
guments [57], [58], EXIT charts [59], [60], and density evolu-
tion [13], [61], [62]. This work generalizes asymptotic charac-
terizations developed by Richardson and Urbanke for noiseless
decoders [13], showing that density evolution is applicable to
faulty decoders. Expander graph arguments have also been ex-
tended to the case of noisy decoding in a paper [63] that ap-
peared concurrently with the first presentation of this work [64].
Note that previous works have not even considered the possi-
bility that Shannon reliability is achievable with noisy decoding.

III. CODES, DECODERS, AND PERFORMANCE

This section establishes the basic notation of LDPC channel
codes and message-passing decoders for communication sys-
tems depicted in Fig. 1. It primarily follows established nota-
tion in the field [13], [65], and will therefore be brief. Many of
the notational conventions are depicted schematically in Fig. 2
using a factor graph-based decoder implementation.

Consider the standard ensemble of � � -regular LDPC
codes of length , � � , defined by a uniform measure on
the set of labeled bipartite factor graphs with variable node de-
gree � and check node degree �.5 There are variable nodes
corresponding to the codeword letters and � � check nodes
corresponding to the parity check constraints. The design rate
of the code is � �, though the actual rate might be higher
since not all checks may be independent; the true rate con-
verges to the design rate for large [65, Lem. 3.22]. One may
also consider irregular codes, characterized by the de-
gree distribution pair . Generating functions of the vari-
able node and check node degree distributions, and ,
are functions of the form and

, where and specify the fraction of edges

5A factor graph determines an “ordered code,” but the opposite is not true
[66]. Moreover, since codes are unordered objects, several “ordered codes” are
in fact the same code.

that connect to nodes with degree . The design rate is
.

In the communication system of Fig. 1, a codeword is se-
lected by the transmitter and is sent through the noisy channel.
Channel input and output letters are denoted and .
Since binary linear codes are used, can be taken as .
The receiver contains a noisy message-passing decoder, which
is used to process the channel output codeword to produce an
estimate of that is denoted . The goal of the receiver is
to recover the channel input codeword with low probability of
error. Throughout this work, probability of bit error is used
as the performance criterion6

The message-passing decoder works in iterative stages and
the iteration time is indexed by . Within the de-
coder, at time , each variable node has a realization of ,

. A message-passing decoder exchanges messages between
nodes along wires. First each variable node sends a message to
a neighboring check node over a noisy messaging wire. Gener-
ically, sent messages are denoted as � �, message wire noise
realizations as � �, and received messages as � �: assume
without loss of generality that � �, � �, and � � are drawn
from a common messaging alphabet .

Each check node processes received messages and sends back
a message to each neighboring variable node over a noisy mes-
sage wire. The noisiness of the check node processing is gener-
ically denoted by an input random variable � . The check
node computation is denoted � . The no-
tations � �, � �, and � � are used for signaling from check
node to variable node; again without loss of generality assume
that � �, � �, � � .

Each variable node now processes its and the messages it
receives to produce new messages. The new messages are pro-
duced through possibly noisy processing, where the noise input
is generically denoted � . The variable node computation
is denoted � . Local computations
and message-passing continue iteratively.

Message passing induces decoding neighborhoods, which in-
volve nodes/wires that have communicated with one another.
For a given node , its neighborhood of depth is the induced
subgraph consisting of all nodes reached and edges traversed
by paths of length at most starting from (including ) and
is denoted . The directed neighborhood of depth of a wire

, denoted by
� �

, is defined as the induced subgraph
containing all wires and nodes on paths starting from the same
place as but different from . Equivalently for a
wire ,

� �
is the induced subgraph containing all wires

and nodes on paths starting from the same place as but
different from . If the induced subgraph (corresponding
to a neighborhood) is a tree then the neighborhood is tree-like,
otherwise it is not tree-like. The neighborhood is tree-like if and
only if all involved nodes are distinct.

6An alternative would be to consider block error probability, however an exact
evaluation of this quantity is difficult due to the dependence between different
symbols of a codeword, even if the bit error probability is the same for all sym-
bols in the codeword [67].
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Note that only extrinsic information is used in node compu-
tations. Also note that in the sequel, all decoder noises ( �, �,

� �, and � �) will be assumed to be independent of each
other, as in the von Neumann error model of faulty computing.

A communication system is judged by information rate, error
probability, and blocklength. For fixed channels, information
theory specifies the limits of these three parameters when op-
timizing over the unconstrained choice of codes and decoders;
Shannon reliability is achievable for rates below capacity in the
limit of increasing blocklength. When decoders are restricted
to be noisy, tighter information theoretic limits are not known.
Therefore comparing performance of systems with noisy de-
coders to systems using identical codes but noiseless decoders
is more appropriate than comparing to Shannon limits.

Coding theory follows from information theory by restricting
decoding complexity; analysis of noisy decoders follows from
coding theory by restricting decoding reliability.

IV. DENSITY EVOLUTION CONCENTRATION RESULTS

Considering the great successes achieved by analyzing the
noiseless decoder performance of ensembles of codes [13], [61],
[65] rather than of particular codes [26], the same approach is
pursued for noisy decoders. The first mathematical contribution
of this work is to extend the method of analysis promulgated in
[13] to the case of decoders with random noise.

Several facts that simplify performance analysis are proven.
First, under certain symmetry conditions with wide appli-
cability, the probability of error does not depend on which
codeword is transmitted. Second, the individual performances
of codes in an ensemble are, with high probability, the same
as the average performance of the ensemble. Finally, this
average behavior converges to the behavior of a code defined
on a cycle-free graph. Performance analysis then reduces to
determining average performance on an infinite tree: a noisy
formula is analyzed in place of general noisy circuits.

For brevity, only regular LDPC codes are considered in this
section, however the results can be generalized to irregular
LDPC codes. In particular, replacing node degrees by maximum
node degrees, the proofs stand mutatis mutandis. Similarly,
only binary LDPC codes are considered; generalizations to
non-binary alphabets also follow, as in [68].

A. Restriction to All-One Codeword

If certain symmetry conditions are satisfied by the system,
then the probability of error is conditionally independent of the
codeword that is transmitted. It is assumed throughout this sec-
tion that messages in the decoder are in belief format.

Definition 1: A message in an iterative message-passing de-
coder for a binary code is said to be in belief format if the sign
of the message indicates the bit estimate and the magnitude of
the message is an increasing function of the confidence level.
In particular, a positive-valued message indicates belief that a
bit is whereas a negative-valued message indicates belief
that a bit is . A message of magnitude 0 indicates complete
uncertainty whereas a message of infinite magnitude indicates
complete confidence in a bit value.

Note, however, that it is not obvious that this is the best format
for noisy message-passing [65, Appendix B.1]. The symmetry
conditions can be restated for messages in other formats.

The several symmetry conditions are:

Definition 2 (Channel Symmetry): A memoryless channel is
binary-input output-symmetric if it satisfies

for all channel usage times .

Definition 3 (Check Node Symmetry): A check node message
map is symmetric if it satisfies

� � �

�

�

for any sequence
�

. That is to say, the signs of
the messages and the noise factor out of the map.

Definition 4 (Variable Node Symmetry): A variable node
message map is symmetric if it satisfies

and

�

�

for . That is to say, the initial message from the variable
node only depends on the received value and internal noise and
there is sign inversion invariance for all messages.

Definition 5 (Message Wire Symmetry): Consider any mes-
sage wire to be a mapping . Then a message
wire is symmetric if

where is any message received at a node when the message
sent from the opposite node is and is message wire noise
with distribution symmetric about 0.

An example where the message wire symmetry condition
holds is if the message wire noise is additive and symmetric
about 0. Then and is symmetric
about 0.

Theorem 1 (Conditional Independence of Error): For a given
binary linear code and a given noisy message-passing algorithm,
let denote the conditional probability of error after the
th decoding iteration, assuming that codeword was sent. If

the channel and the decoder satisfy the symmetry conditions
given in Definitions 2–5, then does not depend on .

Proof: Modification of [13, Lem. 1] or [65, Lem. 4.92].
Appendix A gives details.

Suppose a system meets these symmetry conditions. Since
probability of error is independent of the transmitted codeword



VARSHNEY: PERFORMANCE OF LDPC CODES UNDER FAULTY ITERATIVE DECODING 4431

and since all LDPC codes have the all-one codeword in the code-
book, one may assume without loss of generality that this code-
word is sent. Doing so removes the randomness associated with
transmitted codeword selection.

B. Concentration Around Ensemble Average

The next simplification follows by seeing that the average
performance of the ensemble of codes rather than the perfor-
mance of a particular code may be studied, since all codes in
the ensemble perform similarly. The performances of almost
all LDPC codes closely match the average performance of the
ensemble from which they are drawn. The average is over the
instance of the code, the realization of the channel noise, and
the realizations of the two forms of decoder noise. To simplify
things, assume that the number of decoder iterations is fixed
at some finite . Let be the number of incorrect values held
among all � variable node-incident edges at the end of the th
iteration (for a particular code, channel noise realization, and
decoder noise realization) and let be the expected value of

. By constructing a martingale through sequentially revealing
all of the random elements and then using the Hoeffding-Azuma
inequality, the following holds.

Theorem 2 (Concentration Around Expected Value): There
exists a positive constant � � such that for any

�

Proof: Follows the basic ideas of the proofs of [13, Th. 2]
or [65, Th. 4.94]. Appendix B gives details.

A primary communication system performance criterion is
probability of error ; if the number of incorrect values con-
centrates, then so does .

C. Convergence to the Cycle-Free Case

The previous theorem showed that the noisy decoding algo-
rithm behaves essentially deterministically for large . As now
shown, this ensemble average performance converges to the per-
formance of an associated tree ensemble, which will allow the
assumption of independent messages.

For a given edge whose directed neighborhood of depth is
tree-like, let be the expected number of incorrect messages re-
ceived along this edge (after message noise) at the th iteration,
averaged over all graphs, inputs and decoder noise realizations
of both types.

Theorem 3 (Convergence to Cycle-Free Case): There exists
a positive constant � � such that for any and

,

� �

The proof is identical to the proof of [13, Th. 2]. The basic
idea is that the computation tree created by unwrapping the code
graph to a particular depth [69] almost surely has no repeated
nodes.

The concentration and convergence results directly imply
concentration around the average performance of a tree
ensemble.

Theorem 4 (Concentration Around Cycle-Free Case): There
exist positive constants � � and � �

such that for any and ,

� �

Proof: Follows directly from Theorems 2 and 3.

D. Density Evolution

With the conditional independence and concentration results,
all randomness is removed from explicit consideration and all
messages are independent. The problem reduces to density evo-
lution, the analysis of a discrete-time dynamical system [62].
The dynamical system state variable of most interest is the prob-
ability of bit error, .

Denote the probability of bit error of a code after
iterations of decoding by , where is a channel

noise parameter (such as noise power or crossover probability)
and is a decoder noise parameter (such as logic gate error
probability). Then density evolution computes

where the expectation is over the choice of the code and the
various noise realizations. The main interest is in the long-term
behavior of the probability of error after performing many
iterations. The long-term behavior of a generic dynamical
system may be a limit cycle or a chaotic attractor, however
density evolution usually converges to a stable fixed point.
Monotonicity (either increasing or decreasing) with respect to
iteration number need not hold, but it often does. If there is a
stable fixed point, the limiting performance corresponds to

In channel coding, certain sets of parameters lead to
“good” performance, in the sense of small , whereas other
sets of parameters lead to “bad” performance with large . The
goal of density evolution analysis is to determine the boundary
between these good and bad sets.

Though it is natural to expect the performance of an algo-
rithm to improve as the quality of its input improves and as
more resources are allocated to it, this may not be so. For many
decoders, however, there is a monotonicity property that lim-
iting behavior improves as channel noise decreases and
as decoder noise decreases. Moreover, just as in other non-
linear estimation systems for dimensionality-expanding signals
[70]–[72], there is a threshold phenomenon such that the lim-
iting probability of error may change precipitously with the
values of and .

In traditional coding theory, there is no parameter , and the
goal is often to determine the range of for which is zero.
The boundary is often called the decoding threshold and may
be denoted . A decoding threshold for optimal codes
under optimal decoding may be computed from the rate of the
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code and the capacity of the channel as a function of , .
Since this Shannon limit threshold is for optimal codes and de-
coders, it is clearly an upper bound to for any given code
and decoder. If the target error probability is non-zero, then
the Shannon limit threshold is derived from the so-called -ca-
pacity, , rather than .7

In the case of faulty decoders, the Shannon limits also
provide upper bounds on the -boundary for the set of
that achieve good performance. One might hope for a Shannon
theoretic characterization of the entire -boundary, but as
noted previously, such results are not extant. Alternately, in
Sections V–VIII, sets of that can achieve -reliability
for particular LDPC codes are characterized using the
density evolution method developed in this section.

V. EXAMPLE: NOISY GALLAGER A DECODER

Section IV showed that density evolution equations de-
termine the performance of almost all codes in the large
blocklength regime. Here the density evolution equation for
a simple noisy message-passing decoder, a noisy version of
Gallager’s decoding algorithm A [26], [74], is derived. The
algorithm has message alphabet , with messages
in belief format simply indicating the estimated sign of a bit.
Although this simple decoding algorithm cannot match the
performance of belief propagation due to its restricted mes-
saging alphabet , it is of interest since it is of extremely low
complexity and can be analyzed analytically [74].

Consider decoding the LDPC-coded output of a binary sym-
metric channel (BSC) with crossover probability . At a check
node, the outgoing message along edge is the product of all
incoming messages excluding the one incoming on , i.e., the
check node map is the XOR operation. At a variable node, the
outgoing message is the original received code symbol unless
all incoming messages give the opposite conclusion. That is

if
�

otherwise.

Proposition 1: There is no essential loss of generality by
combining computation noise and message-passing noise into
a single form of noise.

Proof: It is possible to integrate stochastic kernels and dis-
integrate joint measures in a well-defined and almost surely
unique way, [75, Prop. 7.28] and [75, Cor. 7.27.2].

The desired result, demonstrated schematically in Fig. 3, is a
special case and holds since the computation noise kernel and
wire noise kernel can be integrated in a well-defined and almost
surely unique way.

This noise combining is performed in the sequel to reduce the
number of decoder noise parameters and allow a clean exami-
nation of the central phenomenon. Thus, each message in the

7The function � ��� is the binary entropy function. The � -capacity ex-
pression is obtained by adjusting capacity by the rate-distortion function
of an equiprobable binary source under frequency of error constraint � ,
��� � � � � � �� � [73].

Fig. 3. Local computation noise may be incorporated into message-passing
noise without essential loss of generality.

Gallager algorithm A is passed over an independent and iden-
tical BSC wire with crossover probability .

The density evolution equation leads to an analytic character-
ization of the set of pairs, which parameterize the noisi-
ness of the communication system.

A. Density Evolution Equation

The density evolution equation is developed for general ir-
regular LDPC ensembles. The state variable of density evolu-
tion, , is taken to be the expected probability of bit error at
the variable nodes in the large blocklength limit, denoted here
as .

The original received message is in error with probability ,
thus

The initial variable-to-check message is in error with proba-
bility , since it is passed through a .
For further iterations, , the probability of error, , is
found by induction. Assume for .
Now consider the error probability of a check-to-variable mes-
sage in the th iteration. A check-to-variable message
emitted by a check node of degree � along a particular edge is
the product of all the � incoming messages along all other
edges. By assumption, each such message is in error with proba-
bility and all messages are independent. These messages are
passed through before being received, so the proba-
bility of being received in error is

Due to the XOR operation, the outgoing message will be in
error if an odd number of these received messages are in error.
The probability of this event, averaged over the degree distribu-
tion, yields the probability

Now consider , the error probability at the vari-
able node in the th iteration. Consider an edge which is
connected to a variable node of degree �. The outgoing vari-
able-to-check message along this edge is in error in the th
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iteration if the original received value is in error and not all in-
coming messages are received correctly or if the originally re-
ceived value is correct but all incoming messages are in error.
The first event has probability

�

The second event has probability

�

Averaging over the degree distribution and adding the two
terms together yields the density evolution equation in recursive
form:

(1)

The expressions

and are used to define the density
evolution recursion.

B. Performance Evaluation

With the density evolution equation established, the perfor-
mance of the coding-decoding system with particular values of
quality parameters and may be determined. Taking the bit
error probability as the state variable, stable fixed points of the
deterministic, discrete-time, dynamical system are to be found.
Usually one would want the probability of error to converge to
zero, but since this might not be possible, a weaker performance
criterion may be needed. To start, consider partially noiseless
cases.

1) Noisy Channel, Noiseless Decoder: For the noiseless de-
coder case, i.e., , it has been known that there are thresh-
olds on , below which the probability of error goes to zero as
increases, and above which the probability of error goes to some
large value. These can be found analytically for the Gallager A
algorithm [74].

2) Noiseless Channel, Noisy Decoder: For the noisy Gal-
lager A system under consideration, the probability of error does
not go to zero as goes to infinity for any . This can
be seen by considering the case of the perfect original channel,

, and any . The density evolution equation reduces
to

(2)

with . The recursion does not have a fixed point at zero,
and since error probability is bounded below by zero, it must
increase. The derivative is

which is greater than zero for and ; thus
the error evolution forms a monotonically increasing sequence.
Since the sequence is monotone increasing starting from zero,
and there is no fixed point at zero, it follows that this converges
to the smallest real solution of since the fixed point
cannot be jumped due to monotonicity.

3) Noisy Channel, Noisy Decoder: The same phenomenon
must also happen if the starting is positive, however the value
to which the density evolution converges is a non-zero fixed
point solution of the original (1), not of (2), and is a function
of both and . Intuitively, for somewhat large initial values
of , the noisy decoder decreases the probability of error in
the first few iterations, just like the noiseless one, but when the
error probability becomes close to the internal decoder error, the
probability of error settles at that level. This is summarized in
the following proposition.

Proposition 2: Final error probability for any LDPC
ensemble decoded using the noisy Gallager A system defined
in Section V, for every decoder noise level and every
channel noise level .

The fact that probability of error cannot asymptotically be
driven to zero with the noisy Gallager decoder is expected yet
is seemingly displeasing. In a practical scenario, however, the
ability to drive to a very small number is also desirable. As
such, a performance objective of achieving less than is
defined and the worst channel (ordered by ) for which a decoder
with noise level can achieve that objective is determined. The
channel parameter

is called the threshold. For a large interval of values, there is a
single threshold value below which -reliable communication is
possible and above which it is not. Alternatively, one can deter-
mine the probability of error to which a system with particular
and can be driven, , and see whether
this value is small.

In order to find the threshold in the case of and ,
the real fixed point solutions of density evolution recursion (1)
need to be found. The real solutions of the polynomial equation
in ,

are denoted .8 The
final probability of error is determined by the , since these
are fixed points of the recursion (1).

8The number of real solutions can be determined through Descartes’ rule of
signs or a similar tool [76].
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Fig. 4. Thick line shows final error probability, � , after decoding a � ��� ��
code with the noisy Gallager A algorithm, � � �����. This is determined by
the fixed points of density evolution, � ��� ��, shown with thin lines.

The real solutions of the polynomial equation in

(3)

are denoted .8 The threshold as
well as the region in the plane where the decoder improves
performance over no decoding are determined by the , since
(3) is obtained by solving recursion (1) for and setting equal to
zero. For particular ensembles of LDPC codes, these values can
be computed analytically. For these particular ensembles, it can
be determined whether the fixed points are stable or unstable.
Moreover, various monotonicity results can be established to
show that fixed points cannot be jumped.

Analytical expressions for the and are deter-
mined for the (3, 6) regular LDPC code by solving the appro-
priate polynomial equations and numerical evaluations of the
expressions are shown as thin lines in Fig. 4 as functions of
for fixed . The point where is and the point
where is . In Fig. 4, these are points where
the thin lines cross.

By analyzing the dynamical system equation (1) for the (3,
6) code in detail, it can be shown that and are
stable fixed points of density evolution. Contrarily, is an
unstable fixed point, which determines the boundary between
the regions of attraction for the two stable fixed points. Since

and are stable fixed points, the final error prob-
ability will take on one of these two values, depending on the
starting point of the recursion, . The thick line in Fig. 4 shows
the final error probability as a function of initial error proba-
bility . One may note that is the desirable small error
probability, whereas is the undesirable large error prob-
ability and that delimits these two regimes.

The points determine when it is beneficial to use the
decoder, in the sense that . By varying (as if in a
sequence of plots like Fig. 4), an region where the decoder
is beneficial is demarcated; this is shown in Fig. 5. The function

is the -reliability decoding threshold for large ranges
of .

Fig. 5. Decoding a � ����� code with the noisy Gallager A algorithm. Region
where it is beneficial to use decoder is below � and above � .

TABLE I
PERFORMANCE OF NOISY GALLAGER A ALGORITHM FOR (3, 6) CODE

Notice that the previously known special case, the decoding
threshold of the noiseless decoder, can be recovered from these
results. The decoding threshold for the noiseless decoder is de-
noted and is equal to the following expression [74]:

where

and

This value is recovered from noisy decoder results by noting
that for , which are the ordinate
intercepts of the region in Fig. 5.

To provide a better sense of the performance of the noisy Gal-
lager A algorithm, Table I lists some values of , , and (nu-
merical evaluations are listed and an example of an analytical
expression is given in Appendix C). As can be seen from these
results, particularly from the curve in Fig. 5, the error prob-
ability performance of the system degrades gracefully as noise
is added to the decoder.
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Fig. 6. �-thresholds (gray lines) for decoding a � ��� �� code with the noisy
Gallager A algorithm within the region to use decoder (delimited with red line).

Returning to threshold characterization, an analytical expres-
sion for the threshold within the region to use decoder is:

which is the solution to the polynomial equation in ,

The threshold is drawn for several values of in Fig. 6. A
threshold line determines the equivalence of channel noise and
decoder noise with respect to final probability of error. If for
example, the binary symmetric channels in the system are a re-
sult of hard-detected AWGN channels, such a line may be used
to derive the equivalent channel noise power for decoder noise
power or vice versa. Threshold lines therefore provide guide-
lines for power allocation in communication systems.

C. Code Optimization

At this point, the bit error performance of a system has simply
been measured; no attempt has been made to optimize a code
for a particular decoder and set of parameters. For fault-free de-
coding, it has been demonstrated that irregular code ensembles
can perform much better than regular code ensembles like the (3,
6) LDPC considered above [74], [77]. One might hope for sim-
ilar improvements when LDPC code design takes decoder noise
into account. The space of system parameters to be considered
for noisy decoders is much larger than for noiseless decoders.

As a first step, consider the ensemble of rate 1/2 LDPC codes
that were optimized by Bazzi et al. for the fault-free Gallager A
decoding algorithm [74]. The left degree distribution is

and the right degree distribution is

Fig. 7. Region to use decoder for Bazzi et al.’s optimized rate 1/2 LDPC code
with noisy Gallager A decoding (black) is contained within the region to use
decoder for a rate 1/2 LDPC code in Bazzi et al.’s optimal family of codes with
� � ���� (green) and contains the region to use decoder for the � ��� �� code
(gray).

where the optimal is specified analytically. Numerically,
. Measuring the performance of this code

with the noisy Gallager A decoder yields the region to use
decoder shown in Fig. 7; the region to use decoder for the (3, 6)
code is shown for comparison. By essentially any criterion of
performance, this optimized code is better than the (3, 6) code.

Are there other codes that can perform better on the faulty
decoder than the code optimized for the fault-free decoder? To
see whether this is possible, arbitrarily restrict to the family of
ensembles that were found to contain the optimal degree dis-
tribution for the fault-free decoder and take . Also
let be fixed. The numerical value of the threshold

, whereas the numerical value of
the threshold . In this sense, the

code is better than the code. In fact, as
seen in Fig. 7, the region to use decoder for this code
contains the region to use decoder for the code.

On the other hand, the final error probability when operating
at threshold for the code

, whereas the final error probability when operating at
threshold for the code is

. So in this sense, the code is better than
the code. The fact that highly optimized ensembles
usually lead to more simultaneous critical points is the main
complication.

If both threshold and final bit error probability are perfor-
mance criteria, there is no total order on codes and therefore
there may be no notion of an optimal code.

VI. EXAMPLE: NOISY BELIEF PROPAGATION DECODER

It is also of interest to analyze a noisy version of the belief
propagation decoder applied to the output of a continuous-al-
phabet channel. Density evolution for belief propagation is dif-
ficult to analyze even in the noiseless decoder case, and so a
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Gaussian approximation method [78] is used. The state vari-
ables are one-dimensional rather than infinite-dimensional as
for full analysis of belief propagation. The specific node com-
putations carried out by the decoder are as in belief propaga-
tion [13]; these can be approximated by the functions and
defined below. The messages and noise model are specified in
terms of the approximation.

Section V had considered decoding the output of a BSC with a
decoder that was constructed with BSC components and Propo-
sition 2 had shown that probability of bit error could never be
driven to zero. Here, the probability of bit error does in fact go
to zero.

Consider a binary input AWGN channel with variance .
The output is decoded using a noisy belief propagation decoder.
For simplicity, only regular LDPC codes are considered. The
messages that are passed in this decoder are real-valued,

, and are in belief format. Thus one should think of
the decoder as an analog device, although many digital imple-
mentations can also be described this way.

The variable-to-check messages in the zeroth iteration are the
log-likelihood ratios computed from the channel output sym-
bols, ,

� �

The check node takes the received versions of these mes-
sages, � �, as input. The node implements a mapping whose
output, � �, satisfies:

� �

�

� �

where the product is taken over messages on all incoming edges
except the one on which the message will be outgoing, and

The check node mapping is motivated by Gaussian likelihood
computations. For the sequel, it is useful to define a slightly
different function

which can be approximated as

with , , [78].
For iterations , the variable node takes the received

versions of the messages, � �, as inputs. The mapping
yields output � � given by

� �

�

� �

where the sum is taken over received messages from the neigh-
boring check nodes except the one to which this message is out-
going. Again, the operation of the variable node is motivated by
Gaussian likelihood computations.

As in Section V, local computation noise is combined into
message-passing noise (Proposition 1). To model quantization
[25] or random phenomena, consider each message passed in the
decoder to be corrupted by signal-independent additive noise
which is bounded as . This class of noise
models includes uniform noise, and truncated Gaussian noise,
among others. If the noise is symmetric, then Theorem 1 applies.
Following the von Neumann error model, each noise realization

is assumed to be independent.

A. Density Evolution Equation

The definition of the computation rules and the noise model
may be used to derive the approximate density evolution equa-
tion. The one-dimensional state variable chosen to be tracked is
, the mean belief at a variable node. The symmetry condition

relating mean belief to belief variance [13], [78] is enforced.
Thus, if the all-one codeword was transmitted, then the value
going to implies that the density of � � tends to a “mass
point at infinity,” which in turn implies that goes to 0.

To bound decoding performance under any noise model in
the class of additive bounded noise, consider (nonstochastic)
worst-case noise. Assuming that the all-one codeword was sent,
all messages should be as positive as possible to move towards
the correct decoded codeword (mean beliefs of indicate
perfect confidence in a bit being 1). Consequently, the worst
bounded noise that may be imposed is to subtract from all
messages that are passed; this requires knowledge of the trans-
mitted codeword being all-one. If another codeword is trans-
mitted, then certain messages would have added instead of
subtracted.

Such a worst-case noise model does not meet the conditions
of Theorem 1, but transmission of the all-one codeword is
assumed nonetheless. If there were an adversary with knowl-
edge of the transmitted codeword imposing worst-case noise
on the decoder, then probability of bit error would be condi-
tionally independent of the transmitted codeword, as given in
Appendix A1.

Note that the adversary is restricted to selecting each noise
realization independently. More complicated and devious error
patterns in space or in time are not possible in the von Neumann
error model. Moreover, the performance criterion is probability
of bit error rather than probability of block error, so complicated
error patterns would provide no great benefit to the adversary.

Since the noise is conditionally deterministic given the trans-
mitted codeword, derivation of the density evolution equation is
much simplified. An induction argument is used, and the base
case is

where is the channel noise power. This follows from the log-
likelihood computation for an AWGN communication channel
with input alphabet .

The inductive assumption in the induction argument is .
This message is communicated over message-passing noise to
get
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Next the check node computation is made to yield

�

By the inductive assumption, all messages will be equivalent;
that is why the product is a � -fold product of the same
quantity. This value is communicated over message-passing
noise to get

�

Finally the variable-node computation yields

�

�

Again, all messages will be equivalent so the sum is a �

-fold sum of the same quantity. Thus the density evolution
equation is

�

�

�

(4)

B. Performance Evaluation

One might wonder whether there are sets of noise parameters
and such that . Indeed there are, and

there is a threshold phenomenon just like Chung et al. showed
for [78].

Proposition 3: Final error probability for LDPC en-
sembles decoded using the noisy belief propagation system de-
fined in Section VI, for binary-input AWGN channels with noise
level .

Proof: Substituting into (4) demonstrates that it is
a stable fixed point. It may further be verified that the dynamical
system proceeds toward that fixed point if .

Unlike Section V where the thresholds could be eval-
uated analytically, only numerical evaluations of these
thresholds are possible. These are shown in Fig. 8 for three reg-
ular LDPC ensembles with rate 1/2, namely the (3, 6) ensemble,
the (4, 8) ensemble, and the (5, 10) ensemble. As can be ob-
served, thresholds decrease smoothly as the decoder noise level
increases. Moreover, the ordering of the codes remains the same
for all levels of decoder noise depicted. Code optimization re-
mains to be done.

The basic reason for the disparity between Propositions 3 and
2 is that here, the noise is bounded whereas the messages are
unbounded. Thus once the messages grow large, the noise has
essentially no effect. To use a term from [67], once the decoder
reaches the breakout value, noise cannot stop the decoder from
achieving Shannon reliability.

Perhaps a peak amplitude constraint on messages would pro-
vide a more realistic computation model, but the equivalent of
Proposition 3 may not hold. Quantified data processing inequal-
ities may provide insight into what forms of noise and message
constraints are truly limiting [34], [35].

Fig. 8. Thresholds for decoding the � ��� �� code (triangle), the � ��� ��
code (quadrangle), and the � ��� �	� (pentangle), each with the noisy belief
propagation algorithm. Notice that the ordinate intercepts are � ����� 

	�����, � ����� 
 	�����, and � ����	� 
 	��
�	, [78, Table I].

VII. APPLICATION: RELIABLE MEMORIES CONSTRUCTED

FROM UNRELIABLE COMPONENTS

In Section I, complexity and reliability were cast as the pri-
mary limitations on practical decoding. By considering the de-
sign of fault masking techniques for memory systems, a com-
munication problem beyond Fig. 1, both complexity and reli-
ability may be explicitly constrained. Indeed, the problem of
constructing reliable information storage devices from unreli-
able components is central to fault-tolerant computing, and de-
termining the information storage capacity of such devices is
a long-standing open problem [79]. This problem is related to
problems in distributed information storage [80] and is inti-
mately tied to the performance of codes under faulty decoding.
The analysis techniques developed thus far may be used directly.

In particular, one may construct a memory architecture with
noisy registers and a noisy LDPC correcting network. At each
time step, the correcting network decodes the register con-
tents and restores them. The correcting network prevents the
codeword stored in the registers from wandering too far away.
Taylor and others have shown that there exist non-zero levels
of component noisiness such that the LDPC-based construction
achieves non-zero storage capacity [54], [55], [63]. Results
as in Section V may be used to precisely characterize storage
capacity.

Before proceeding with an achievability result, requisite def-
initions and the problem statement are given [54].

Definition 6: An elementary operation is any Boolean func-
tion of two binary operands.

Definition 7: A system is considered to be constructed from
components, which are devices that either perform one elemen-
tary operation or store one bit.

Definition 8: The complexity of a system is the number of
components within the system.
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Definition 9: A memory system that stores information bits
is said to have an information storage capability of .

Definition 10: Consider a sequence of memories , or-
dered according to their information storage capability (bits).
The sequence is stable if it satisfies the following:

1) For any , must have allowed inputs denoted ,
.

2) A class of states, , is associated with each input
of . The classes and must be disjoint for
all and all .

3) The complexity of , , must be bounded by ,
where redundancy is fixed for all .

4) At , let one of the inputs from be stored in each
memory in the sequence of memories , with no
further inputs in times . Let denote the partic-
ular input stored in memory . Let denote the
probability that the state of does not belong to
at and further let . Then
for any and , there must exist a such that

.
The demarcation of classes of states is equivalent to demarcating
decoding regions.

Definition 11: The storage capacity, , of memory is a
number such that there exist stable memory sequences for all
memory redundancy values greater than .

Note that unlike channel capacity for the communication
problem, there is no informational definition of storage capacity
that is known to go with the operational definition.

The basic problem then is to determine storage capacity,
which is a measure of the circuit complexity required to achieve
arbitrarily reliable information storage. The circuit complexity
must be linear in blocklength, a property satisfied by systems
with message-passing correcting networks for LDPC codes.

Although Proposition 2 shows that Shannon reliability is not
achievable for any noisy Gallager A decoder, the definition of
stable information storage does not require this. By only re-
quiring maintenance within a decoding region, the definition im-
plies that either the contents of the memory may be read out in
coded form or equivalently that there is a noiseless output de-
vice that yields decoded information; call this noiseless output
device the silver decoder.

Consider the construction of a memory with noisy registers
as storage elements. These registers are connected to a noisy
Gallager A LDPC decoder (as described in Section V), which
takes the register values as inputs and stores its computational
results back into the registers. To find the storage capacity of
this construction, first compute the complexity (presupposing
that the construction will yield a stable sequence of memories).

The Gallager A check node operation is a � -input XOR

gate, which may be constructed from � two-input XOR

gates. A variable node determines whether its � inputs are
all the same and then compares to the original received value.
Let

�
denote the complexity of this logic. The output of the

comparison to the original received value is the value of the
consensus view. One construction to implement the consensus
logic is to OR together the outputs of a � -input AND gate
and a � -input AND gate with inverted inputs. This is then

XORed with the stored value. Such a circuit can be implemented
with � components, so

� � . The storage
is carried out in registers. The total complexity of the memory

,
� �

, is

� �
� � � � �

The information storage capability is times the rate of the
code, . The complexity of an irredundant memory with the
same storage capability is . Hence, the redundancy
is

� � � � � �

� �

which is a constant. By [65, Lem. 3.22], the inequality almost
holds with equality with high probability for large . For the

regular LDPC code, the redundancy value is 34, so
, if the construction does in fact yield stable memories.

The conditions under which the memory is stable depends
on the silver decoder. Since silver decoder complexity does not
enter, maximum likelihood should be used. The Gallager lower
bound to the ML decoding threshold for the regular LDPC
code is [81, Table II]. Recall from Fig. 5
that the decoding threshold for Gallager A decoding is

.
If the probability of bit error for the correcting network in the

memory stays within the decoding threshold of the silver de-
coder, then stability follows. Thus the question reduces to deter-
mining the sets of component noisiness levels for which
the decoding circuit achieves -reliability.

Consider a memory system where bits are stored in regis-
ters with probability of flipping at each time step. An LDPC
codeword is stored in these registers; the probability of incorrect
storage at the first time step is . At each iteration, the variable
node value from the correcting network is placed in the register.
This stored value is used in the subsequent Gallager A variable
node computation rather than a received value from the input
pins. Suppose that the component noise values in the correcting
network may be parameterized as in Section V. Then a slight
modification of the analysis in Section V yields a density evo-
lution equation

where . There is a “region to use
decoder” for this system, just as in Section V. If , this
region is shown in Fig. 9, and is slightly smaller than the region
in Fig. 5. Denote this region and its hypograph as . It follows
that -reliability is achieved for . Since -re-
liability is achievable, -reliability is achievable by mono-
tonicity. Thus the construction yields stable memories.

Proposition 4: Let be the set of memory component noise
parameters within the region to use decoder or its hypo-
graph corresponding to a system with a Gallager A correcting
network for the (3, 6) LDPC code, depicted in Fig. 9. Then a
sequence of memories constructed from -components have a
storage capacity lower bounded as .
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Fig. 9. For a memory system constructed with noisy registers and a (3, 6) LDPC
Gallager A correcting network, the region (delimited by black line) comprises
the “region to use decoder” and its hypograph.

This may be directly generalized for any choice of code en-
semble as follows.

Theorem 5: Let be the (computable) set of memory com-
ponent noise parameters within the region to use decoder
or its hypograph corresponding to a system with a Gallager A
correcting network for the LDPC code. Then a sequence
of memories constructed from -components have a storage ca-
pacity lower bounded as

The bound reduces to � � � � for regular
codes.

This theorem gives a precise achievability result that bounds
storage capacity. It also implies a code ensemble optimization
problem similar to the one in Section V-C. The question of
an optimal architecture for memory systems however remains
open.

VIII. CONCLUSION

Loeliger et al. [7] had observed that decoders are robust to
nonidealities and noise in physical implementations, however
they had noted that “the quantitative analysis of these effects is
a challenging theoretical problem.” This work has taken steps to
address this challenge by characterizing robustness to decoder
noise.

The extension of the density evolution method to the case of
faulty decoders allows a simplified means of asymptotic per-
formance characterization. Results from this method show that
in certain cases Shannon reliability is not achievable (Proposi-
tion 2), whereas in other cases it is achievable (Proposition 3).
In either case, however, the degradation of a suitably defined
decoding threshold is smooth with increasing decoder noise,
whether in circuit nodes or circuit wires. Due to this smooth-
ness, codes optimized for fault-free decoders do work well with
faulty decoders, however optimization of codes for systems with
faulty decoders remains to be studied.

No attempt was made to apply fault masking methods to de-
velop decoding algorithms with improved performance in the
presence of noise. One approach might be to use coding within
the decoder so as to reduce the values of . Of course, the
within-decoder code would need to be decoded. There are also
more direct circuit-oriented techniques that may be applied [82],
[83]. Following the concept of concatenated codes, concate-
nated decoders may also be promising. The basic idea of using a
first (noiseless) decoder to correct many errors and then a second
(noiseless) decoder to clean things up was already present in
[61], but it may be extended to the faulty decoder setting.

Reducing power consumption in decoder circuits has been an
active area of research [37], [84]–[90], however power reduction
often has the effect of increasing noise in the decoder [91]. The
tradeoff developed between the quality of the communication
channel and the quality of the decoder may provide guidelines
for allocating resources in communication system design.

Analysis of other decoding algorithms with other error
models will presumably yield results similar to those obtained
here. For greater generality, one might move beyond simple
LDPC codes and consider arbitrary codes decoded with very
general iterative decoding circuits [90] with suitable error
models. An even more general model of computation such as
a Turing machine or beyond [92] does not seem to have an
obvious, appropriate error model.

Even just a bit of imagination provides numerous models of
channel noise and circuit faults that may be investigated in the
future to provide further insights into the fundamental limits of
noisy communication and computing.

APPENDIX A
PROOF OF THEOREM 1

Let be a codeword and let denote the corre-
sponding channel output (where the notation means
pointwise multiplication on length vectors). Note that is
equal to the channel output observation when is all-one.
The goal is to show that messages sent during the decoding
process for cases when the received codeword is either or

correspond.
Let be an arbitrary variable node and let be one of its

neighboring check nodes. Let and denote the
variable-to-check message from to at the respective ter-
minals in iteration , assuming received value . Similarly, let

and be the check-to-variable message from
to at the respective terminal in iteration assuming received
value .

By Definition 2, the channel is memoryless binary-input
output-symmetric and it may be modeled multiplicatively as

(5)

where is a sequence of i.i.d. random variables and is the
channel usage time. The validity of the multiplicative model is
shown in [13, p. 605] and [65, p. 184].

The proof proceeds by induction and so the base
case is established first. By the multiplicative model
(5), . Recalling that ,
by the variable node symmetry condition (Definition 3)



4440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

which includes computation noise , it follows that

.

Now take the wire noise on the message from to

into account. It is symmetric (Definition 5) and so

implies a similar property for . In particular

(6)

where the last step follows because and so it can be
taken outside of by Definition 5, when it is put back in for the
wire noise. Now since and since the wire noise is

symmetric about 0 by Definition 5, will

correspond to , in the sense that error event probabil-
ities will be identical.

Assume that corresponds to for all
pairs and some as the inductive assumption. Let be
the set of all variable nodes that are connected to check node

. Since is a codeword, it satisfies the parity checks, and so
. Then from the check node symmetry condition

(Definition 3), corresponds to . Further,
by the wire noise symmetry condition (Definition 5) and the
same argument as for the base case, corresponds to

. By invoking the variable node symmetry condition

(Definition 4) again, it follows that corresponds to

for all pairs.
Thus by induction, all messages to and from variable node
when is received correspond to the product of and the

corresponding message when is received.
Both decoders proceed in correspondence and commit ex-

actly the same number of errors.
1) Worst-Case Noise: The same result with the same basic

proof also holds when the wire noise operation is symmetric
but is not symmetric stochastic, but is instead worst-case. The
only essential modification is in (6) and the related part of the
induction step. Since wire noise is dependent on , it can be
written as . Thus

where step (a) follows because and so it can be
taken outside of by the symmetry property of . Thus the two
decoders will proceed in exact one-to-one correspondence, not
just in probabilistic correspondence.

APPENDIX B
PROOF OF THEOREM 2

Prior to giving the proof of Theorem 2, a review of some def-
initions from probability theory [93] and the Hoeffding-Azuma
inequality are provided.

Consider a measurable space consisting of a sample
space and a -algebra of subsets of that contains the
whole space and is closed under complementation and count-
able unions. A random variable is an -measurable function
on . If there is a collection of random variables

, then

is defined to be the smallest -algebra on such that each
map is -measurable.

Definition 12 (Filtration): Let be a sequence of -al-
gebras with respect to the same sample space . These are
said to form a filtration if are ordered by refine-
ment in the sense that each subset of in is also in for

. Also .
Usually, is the natural filtration

of some sequence of random variables , and then
the knowledge about known at step consists of the values

.
For a probability triple , a version of the conditional

expectation of a random variable given a -algebra is a
random variable denoted . Two versions of conditional
expectation agree almost surely, but measure zero departures are
not considered subsequently; one version is fixed as canonical.
Conditional expectation given a measurable event is denoted

and conditional expectation given a random variable
is denoted .

Definition 13 (Martingale): Let be a fil-
tration on and let be a sequence of random vari-
ables on such that is -measurable. Then is
a martingale with respect to the filtration if

.
A generic way to construct a martingale is Doob’s

construction.

Definition 14 (Doob Martingale): Let be
a filtration on and let be a random variable on . Then
the sequence of random variables such that

is a Doob martingale.

Lemma 1 (Hoeffding–Azuma Inequality [13], [94], [95]):
Let be a martingale with respect to the filtration

such that for each , the following bounded
difference condition is satisfied

Then for all and any ,
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Now to the proof of Theorem 2; as noted before, it is an ex-
tension of [13, Th. 2] or [65, Th. 4.94]. The basic idea is to
construct a Doob martingale about the object of interest by re-
vealing various randomly determined aspects in a filtration-re-
fining manner. The first set of steps is used to reveal which code
was chosen from the ensemble of codes; the � edges in the bi-
partite graph are ordered in some arbitrary manner and exposed
one by one. Then the channel noise realizations are revealed.
At this point the exact graph and the exact channel noise realiza-
tions encountered have been revealed. Now the decoder noise
realizations must be revealed. There are variable nodes, so
the computation noise in each of them is revealed one by one.
There are � edges over which variable-to-check communi-
cation noise is manifested. Then there are � � check nodes
with computation noise, and finally there are � check-to-vari-
able communication noises for one iteration of the algorithm.
The decoder noise realizations are revealed for each iteration.
At the beginning of the revelation process, the average (over
choice of code, channel noise realization, and decoder noise re-
alization) is known; after the � � � �

revelation steps, the exact system used is known.
Recall that denotes the number of incorrect values held

at the end of the th iteration for a particular .
Since is a graph in the set of labeled bipartite factor graphs
with variable node degree � and check node degree �,

� � ; is a particular input to the decoder, ;
is a particular realization of the message-passing noise,

� ; and is a particular realization of the local
computation noise, � � , the sample space is

� �

� � � .
In order to define random variables, first define the following

exposure procedure. Suppose realizations of random quantities
are exposed sequentially. First expose the � edges of the
graph one at a time. At step � expose the particular check
node socket which is connected to the th variable node socket.
Next, in the following steps, expose the received values
one at a time. Finally in the remaining � � �

steps, expose the decoder noise values and that were
encountered in all iterations up to iteration .

Let , , be a sequence of equivalence
relations on the sample space ordered by refinement.
Refinement means that
implies . The equiv-
alence relations define equivalence classes such that

if and only if the real-
izations of random quantities revealed in the first steps for
both pairs is the same.

Now, define a sequence of random variables .
Let the random variable be , where the expec-
tation is over the code choice, channel noise, and decoder
noise. The remaining random variables are constructed as
conditional expectations given the measurable equivalence
events ,

Note that and that by construction is
a Doob martingale. The filtration is understood to be the natural
filtration of the random variables .

To use the Hoeffding-Azuma inequality to give bounds on

� �

bounded difference conditions

need to be proved for suitable constants that may depend on
�, �, and .
For the steps where bipartite graph edges are exposed, it was

shown in [13, p. 614] that

� � �

It was further shown in [13, p. 615] that for the steps when the
channel outputs are revealed that

� �

� � (7)

It remains to show that the inequality is also fulfilled for steps
when decoder noise realizations are revealed. The bounding
procedure is nearly identical to that which yields (7). When
a node noise realization is revealed, clearly only something
whose directed neighborhood includes the node at which the
noise causes perturbations can be affected. Similarly, when
an edge noise realization is revealed, only something whose
directed neighborhood includes the edge on which the noise
causes perturbations can be affected. In [13, p. 603], it is shown
that the size of the directed neighborhood of depth of the node

associated with noise is bounded as � �

and similarly the size of the directed neighborhood of length
of the edge associated with noise is bounded as

� � . Since the maximum depth that can be af-
fected by a noise perturbation is , a weak uniform bound for
the remaining exposure steps is

� �

� �

Since bounded difference constants have been provided for
all , the theorem follows from application of the Hoeffding-
Azuma inequality to the martingale.

One may compute a particular value of to use as follows.
The bounded difference sum is

� � � � �

� � � � �

� �

�

�

� �
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Setting constants in the theorem and in the Hoeffding-Azuma
inequality equal yields

� � � � � �

� � � �

� �

Thus can be taken as � � .

APPENDIX C
AN ANALYTICAL EXPRESSION

An analytical expression for is

where is the second root of the polynomial in

and constants are defined as follows.

As given in Table I, the numerical value of
is 0.0266099758.

Similarly complicated analytical expressions are available
for the other entries of Table I and the values used to create
Figs. 4–6.
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