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Bayesian Post-Processing Methods for Jitter
Mitigation in Sampling
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Abstract—Minimum mean-square error (MMSE) estimators of
signals from samples corrupted by jitter (timing noise) and addi-
tive noise are nonlinear, even when the signal parameters and ad-
ditive noise have normal distributions. This paper develops a sto-
chastic algorithm based on Gibbs sampling and slice sampling to
approximate the optimal MMSE estimator in this Bayesian formu-
lation. Simulations demonstrate that this nonlinear algorithm can
improve significantly upon the linear MMSE estimator, as well as
the EM algorithm approximation to the maximum likelihood (ML)
estimator used in classical estimation. Effective off-chip postpro-
cessing to mitigate jitter enables greater jitter to be tolerated, po-
tentially reducing on-chip ADC power consumption.

Index Terms—Analog-to-digital conversion, Gibbs sampling,
jitter, Markov chain Monte Carlo, sampling, slice sampling, timing
noise.

I. INTRODUCTION

R EDUCING the power consumption of analog-to-digital
converters (ADCs) would improve the capabilities of

power-constrained devices like medical implants, wireless
sensors and cellular phones. Clock circuits that produce jittered
(noisy) sample times naturally consume less power than those
with low phase noise, so allowing high phase noise is one
avenue to reduce power consumption. However, increasing
jitter in an ADC reduces the effective number of bits (ENOB)
(rms accuracy on a dyadic scale) by one for every doubling of
the jitter standard deviation, as described in [1] and [2]. Com-
pensating for the reduced ENOB by designing more accurate
comparators increases power consumption by a factor of four
for every lost bit of accuracy [3]. Thus, to achieve reduced
on-chip power consumption, the lost bits should be recovered
in a different manner.

In [4], the authors postprocess the jittered samples, em-
ploying an EM algorithm to perform classical maximum
likelihood (ML) estimation of the signal parameters. This
nonlinear classical estimation technique is capable of tolerating
between 1.4 and 2 times the jitter standard deviation that can
be mitigated by linear estimation. In this work, nonlinear post-
processing is extended to the Bayesian framework, where the
signal parameters are estimated knowing their prior distribu-
tion. Here, we do not require that signal and noise variances are
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known a priori; our hierarchical Bayesian model includes prior
distributions on these parameters. The technique presented here
achieves significant improvement over linear estimation for a
wider range of jitter variance than the EM algorithm from [4],
improving the applicability of nonlinear postprocessing.

The block postprocessing of the jittered samples is intended
to be performed off-chip (e.g., on a PC), so we do not attempt
to optimize the total power consumption, including the digital
postprocessing. However, we are concerned with making pru-
dent choices in algorithm design so that the computational com-
plexity of the postprocessing is reasonable. The problem of mit-
igating jitter also can be motivated by loosening manufacturing
tolerances (hence reducing cost) or by problems in which spa-
tial locations of sensors are analogous to sampling times [5].

A. Problem Formulation

Consider the shift-invariant subspace of associated
with a generating function and a signal in that
subspace:

(1)

Assuming is a Riesz basis for the sub-
space, is in one-to-one correspondence with the sequence

and the sequence is in . Examples of
include the function used throughout this

paper, as well as B-splines and wavelet scaling functions as dis-
cussed in [6]. While is used for simulations,
the developments in this paper are not specialized to the form
of in any way. We only require that satisfies the Riesz
basis condition and that the sampling prefilter satisfies the
biorthogonality condition ,
for all , where is the
usual inner product on ( is the complex conjugate of

). The Riesz basis condition allows bounding of error of
in terms of error of ; when

is an orthogonal set, these errors are constant multiples. When
, the shift-invariant subspace is the subspace of

signals with Nyquist sampling period . Without loss of gener-
ality, we assume .

When observing the signal through a sampling system
like an ADC, the analog signal is prefiltered by and sam-
ples are taken of the result at jittered times .
To model oversampled ADCs, we oversample the signal by a
factor of , so the sampling period is . The samples
are also corrupted by additive noise , which models auxiliary
effects like quantization and thermal noise. For ,
the dual is an ideal lowpass filter with bandwidth

. The observation model, depicted in Fig. 1, is

(2)
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Fig. 1. Block diagram of an abstract ADC with off-chip postprocessing. The
signal ���� is filtered by the sampling prefilter ����� and sampled at time � .
These samples are corrupted by additive noise � to yield � . The postpro-
cessor estimates the parameters � of ���� using the vector of � samples �
from the ADC.

We aim to estimate a block of coefficients, assuming the
remaining coefficients are negligible:

(3)

With this model, the observation model becomes

(4)

where . (In the sinc case, ,
and are identical.) Grouping the variables into vec-
tors, let , ,

and . Then, in
matrix form,

(5)

where , for
and . Let be the th row of .
Also, denote the th column of by and the matrix
with the remaining columns by . Similarly, let

be the vector of all
but the th signal coefficient.

In this paper, we assume both the jitter and additive noise are
random, independent of each other and the signal . Specif-
ically, and are assumed to be i.i.d. zero-mean Gaussian,
with variances equal to and , respectively. In keeping
with the Bayesian framework, we also choose a prior for the
signal parameters. For convenience, we use an i.i.d. zero-mean
Gaussian prior with variance because the observation model
is linear in the parameters. Rather than assuming these param-
eters (variances) to be known, we treat them as random vari-
ables and assign a conjugate prior to these parameters. Thus,

, and are inverse Gamma distributed with hyperpa-
rameters , and , respectively. These
hyperparameters may be selected to be consistent with in-fac-
tory measurement of the noise variances or other information.
The hierarchical Bayesian model is shown in Fig. 2.

To simplify notation, the probability density function (pdf)
of is written as and the pdf of conditioned on is
abbreviated as for random and for nonrandom

. The subscripts usually included outside the parentheses will
be written only when needed to avoid confusion. Expectations
will follow the same convention.

The uniform distribution is written in this paper as ;
for instance, is a uniform distribution over the interval

and is a uniform distribution over

Fig. 2. Hierarchical Bayesian model of the problem. The observation � de-
pends on coefficients � � � � � � � and jitter and additive noise � and � .
The coefficients all depend on the signal variance 	 and the jitter and addi-
tive noise depend on 	 and 	 , respectively. Each of these variances depend
on hyperparameters 
 and �. In this model, circled nodes are random variables
and non-circled nodes are fixed parameters.

the set . Writing means that is
a sample generated from this distribution; analogous notation is
used for the other distributions in this paper. The inverse Gamma
distribution has the density function

(6)

The mean and variance of are

and (7)

The density function of the -dimensional normal distribution
with mean and covariance matrix is written as

(8)
When performing simulations, specific values are required

for the ’s and ’s. For the signal variance , consider
an unbiased estimate of that variance from ob-
servations generated from a standard normal distribution:

, where is the
sample mean. Then, we fit the inverse Gamma prior hyperpa-
rameters and to the mean and variance of using (7):

(9)

Solving

(10)

Similarly, for the zero-mean jitter and additive noise variances,
given observations and expected noise variances
and ,

and

(11)

For the examples in this paper, we use the same and as
for our signal; in practical applications, and are prior ob-
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servations performed at a factory (for the noise variances) or
elsewhere (for the signal variance).

The objective of the algorithm presented in this paper
is to find the estimator that minimizes the mean-square
error (MSE) , where the observations are
implicitly functions of . Unlike in the classical estimation
framework, we have a prior on , which allows us to formulate
the minimum mean-square error (MMSE) estimator as
the posterior expectation

(12)

The posterior distribution depends on the likelihood
function , which can be expressed as in [4] as a product
of marginal likelihoods:

(13)

As neither the likelihood nor posterior distribution has a simple
closed form, the majority of this paper is devoted to approxi-
mating these functions using numerical and stochastic methods.

B. Related Work

Random jitter has been studied extensively throughout the
early signal processing literature (see [7], [8], and [9]). How-
ever, much of the effort in designing reconstruction algorithms
was constrained to linear transformations of the observations.
These papers also analyze the performance of such algorithms;
for example, [9] proves that when the jitter is Gaussian and
small enough, the MSE is approximately , where the
input PSD is flat. Due to the lack of atten-
tion to nonlinear postprocessing, it is not readily apparent from
the literature that these linear estimators are far from optimal.
The effects of jitter on linear MMSE reconstruction of bandlim-
ited signals are discussed in [10] and extended to the asymptotic

case and multidimensional signals in [11].
More recently, [12] uses a second-order Taylor series ap-

proximation to perform weighted least-squares fitting of a
jittered random signal. In [13], two postprocessing methods
are described for the case when the sample times are discrete
(on a dense grid). Similar to the Gibbs sampler presented in
this work, [14] uses a Metropolis–Hastings Markov chain
Monte Carlo (MCMC) algorithm to estimate the jitter and
jitter variance from a sequence of samples. Also, a maximum
a posteriori (MAP)-based estimator is proposed in [15] to
mitigate read-in and write-out jitter in data storage devices.
Finally, a Gibbs sampler is developed in [16] to estimate the
coefficients and locations of finite rate of innovation signals
from noisy samples.

Preliminary versions of the algorithms and results presented
in this work are also discussed, with further background material
and references, in [17].

C. Outline

In Section II, numerical quadrature is revisited and Gibbs
sampling and slice sampling are reviewed. The linear MMSE
estimator is discussed in Section III. In Section IV, the Gibbs
sampler approximation to the Bayes MMSE estimator is derived

and slice sampling is used in the implementation. All these es-
timators, as well as the EM algorithm from [4] approximating
the ML estimator, are analyzed and compared via simulations in
Section V. Conclusions based on these simulations, as well as
ideas for future research directions, are discussed in Section VI.

II. BACKGROUND

In general, the likelihood function in (13) is described in
terms of integration without a closed form. Fortunately, numer-
ical methods such as Gauss quadrature, which approximates the
integration in question with a weighted sum of the integrand
evaluated at different locations (abscissas), are relatively accu-
rate and efficient. A more detailed description of Gauss quadra-
ture can be found in the background section of [4], or in [18] or
[19]. This paper discusses using Gauss–Laguerre quadrature to
approximate integration with respect to and .

However, simply being able to evaluate (approximately) the
likelihood function is insufficient to approximate the Bayes
MMSE estimator. To approximate the expectation in (12), we
propose using a Monte Carlo statistical method combining
Gibbs sampling and slice sampling. Gibbs sampling and slice
sampling are discussed below.

A. Numerical Integration

For integrals of the form , tech-
niques such as Gauss–Legendre and Gauss–Hermite quadra-
ture, Romberg’s method and Simpson’s rule, are described in
[4]. Similarly, Gauss–Laguerre quadrature can approximate
integrals of the form . The abscissas and
weights for Gauss–Laguerre quadrature can be computed using
the eigenvalue-based method derived in [20].

Let and be the abscissas and weights for the Gauss–La-
guerre quadrature rule of length . Then, we can integrate
against the pdf of the inverse Gamma distribution by observing

(14)

where and . The substitutions
and are made in the second step of the

derivation.
Utilizing a combination of Gauss–Laguerre quadrature and

either Gauss–Hermite quadrature or Gauss–Legendre quadra-
ture, we can approximate the likelihood function
using the integral in (13). In particular,

(15)
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Fig. 3. Quadrature approximations are compared to histograms for ��� � ��,
holding the randomly-chosen vector� fixed. The quadrature approximations are
computed for a dense grid of 200 values of � and the histograms are generated
from 100 000 samples of � , computed from realizations of � , � , � , and
� according to (4). Two comparisons are shown, for different expected values
of � and � (�’s, and �’s are computed according to (11)). The multimodal
case (a) favors Gauss–Legendre quadrature and case (b) favors Gauss–Hermite
quadrature; the worst-case � is shown in each. The legend refers to the quadra-
ture method used for the integral over � ; Gauss–Laguerre quadrature is used for
the integrals with respect to � and � (a) 	 � ��, 
 � �, �� � � ��	
 ,
�� � � ��� , � � � � �, � � ���, � � ��. Romberg’s method

and Simpson’s rule (not shown) perform like Gauss–Legendre quadrature (b)
	 � ��, 
 � �, �� � � �� � � ���� , � � � � �, � � ���,
� � �. Simpson’s rule (not shown) performs similarly to Romberg’s method.

In this equation, the innermost quadrature (over ) depends on
the value of , so the values of depend on . Since the
total number of operations scales exponentially with the number
of variables being integrated, we seek to minimize the choices
of , and for this three-dimensional summation. To ex-
plore the accuracy of this approximation as a function of
and (we use from [4]), the quadrature is per-
formed over a dense grid of values of and the results are com-
pared to a histogram generated empirically, by fixing to a ran-
domly chosen vector, generating many samples of , , ,
and from their respective prior distributions and computing
the samples using (4). Comparisons for unimodal and mul-
timodal are shown in Fig. 3. Based on these compar-
isons, we choose Gauss–Laguerre quadrature with
to integrate with respect to and . This is combined with
Gauss–Hermite quadrature with when is small

and Gauss–Legendre quadrature with when
. This hybrid quadrature also is used when com-

puting the expectations in Section III and in the Appendix.

B. Gibbs Sampling

The Gibbs sampler is a Markov chain Monte Carlo method
developed in [21]. Details about the Gibbs sampler and its many
variants, including Metropolis-within-Gibbs sampling, can be

Fig. 4. Slice sampling of ��� illustrated. (a) Sampling is performed by
traversing a Markov chain to approximate ���, the stationary distribution.
(b) Each iteration consists of uniformly choosing a slice � � ��� � �� and
uniformly picking a new sample  from that slice.

found in [22]. When implementing the Gibbs sampler, one must
consider both the number of iterations until the Markov chain
has approximately converged to its stationary distribution (the
“burn-in time”) and the number of samples that should be taken
after convergence to compute the MMSE estimate. According to
[23], separating highly correlated variables slows convergence
of the Gibbs sampler. The number of iterations after conver-
gence is connected to both correlation between successive sam-
ples and the variance of the random variables distributed ac-
cording to the stationary distribution.

To monitor convergence, heuristics such as the potential scale
reduction factor (PSRF) and the inter-chain and intra-chain vari-
ances are developed in [24] and [25]. Consider instances
(chains) of the Gibbs sampler running simultaneously. Define
the vector to be the combined vector of all the samples for
the th chain at the th iteration. For chain , the average at the th
iteration is . Across all chains, the average at

the th iteration is . Then, following the mul-
tivariate extension to the potential scale reduction factor (PSRF)
derived in [25], define the intra-chain covariance

(16)

and the inter-chain covariance

(17)

The posterior variance and the
PSRF , where is the in-
duced matrix 2-norm. Then, the Gibbs sampler’s Markov chain
has converged when approaches one and stabilizes. To
measure the change in , we compute .

C. Slice Sampling

Slice sampling is a Markov chain Monte Carlo method de-
scribed in [26] for generating samples from a distribution by
instead sampling uniformly from the subgraph of the pdf and
framing this sampling procedure as a two-stage Gibbs sampler,
depicted in Fig. 4.

The difficulty of slice sampling is in representing and sam-
pling from the slice. In this problem, we show that any given
slice is bounded and therefore, an interval containing the slice
can be constructed and the “shrinkage” method described in [26]
can be used. The shrinkage method is an accept-reject method,
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where given an interval containing part (or all) of the
slice, a sample is generated uniformly from the interval and ac-
cepted if the sample is inside the slice. If the sample is rejected,
the interval shrinks to use the rejected sample as a new end-
point. Several variants, including shrinking to the midpoint of
the interval instead of or in addition to the rejected sample, are
also described in the rejoinder at the end of [26]. These variants
are compared in the context of the jitter mitigation problem in
Section IV.

III. LINEAR BAYESIAN ESTIMATION

When block postprocessing the samples, the linear Bayesian
estimator with minimum MSE is called the linear MMSE (ab-
breviated LMMSE) estimator. The general form of the linear
MMSE estimator is given in [27]. For estimating the random
signal coefficients using the hierarchical Bayesian model in
Section I, the cross-covariance matrix and covariance ma-
trix are

(18)

(19)

and the mean vectors and are zero. The LMMSE esti-
mator for random jitter is

(20)

The expectations in (20) can be computed off-line using Gauss
quadrature. The error covariance of the LMMSE estimator is
also derived in [27]; for this problem, see (21) at the bottom of
the page.

When no jitter is assumed, the LMMSE estimator simplifies
to

(22)

This linear estimator is the best linear transformation of the
data that can be performed in the absence of jitter. Hence, the
no-jitter LMMSE estimator is the baseline estimator against
which the nonlinear Bayesian estimators derived later are mea-
sured. The error covariance of this estimator is

(23)

IV. NONLINEAR BAYESIAN ESTIMATION

To improve upon the LMMSE estimator, we expand our con-
sideration to nonlinear functions of the data. The Bayes MMSE
estimator, in its general form in (12), is the nonlinear function
that minimizes the MSE. However, since the posterior density
function for this problem does not have a closed form, this esti-
mator can be difficult to compute. Since we are interested in the
mean of the posterior pdf, finding the Bayes MMSE estimator is
an obvious application of Monte Carlo statistical methods, es-
pecially the Gibbs sampler described in Section II.

We propose using Gibbs sampling to produce a sequence
of samples for the random parameters we wish to find, via
traversing a Markov chain to its steady-state distribution and
average the samples to approximate the estimator. To this end,
samples of , , , and are generated according to
their full conditional distributions (i.e., the distribution of one
random variable given all the others). To generate samples of

, we apply slice sampling.

A. Generating Using Slice Sampling

Consider generating samples from the distribution
, where is the random vector of all the

jitter variables except . Using Bayes rule and the indepen-
dence of and ,

(24)

Slice sampling is used for generating realizations of since
no tightly enveloping proposal density or other tuning is neces-
sary; the ability to evaluate an unnormalized form of the target
distribution is sufficient. Each iteration of slice sampling con-
sists of two uniform sampling problems:

1) Choose a slice uniformly from

where is the unnormalized full
conditional density function in (24).

2) Sample uniformly from the slice
.

The first step is trivial, since we are sampling from a single
interval. The second step is more difficult. However, since

for all in the slice,

(25)

Solving for , the range of possible is bounded:

(26)

(21)
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Using these extreme points for the initial interval containing the
slice and the “shrinkage” method specified in [26] to sample
from the slice by repeatedly shrinking the interval, slice sam-
pling becomes a relatively efficient method. The “shrinkage”
method decreases the size of the interval exponentially fast, on
average. To see this, consider one iteration of shrinkage, where
the initial point from the previous step of slice sampling lies
in the interval . This initial point is guaranteed to be in
the slice by construction. The expected size of the new interval

, from choosing a new point , is

(27)

This expectation is quadratic in , so the maximum occurs at
the extreme point . The maximum value is

(28)

Concavity implies that the minima are at the two endpoints
and . In both cases, the expected size of the interval

is . Therefore,

(29)

which implies that at worst, the size of the interval shrinks to 3/4
its previous size per iteration, on average. Then, given the initial
interval and previous point , the expected size of the
interval after iterations of the shrinkage algorithm is

(30)

If the target distribution is continuous, the algorithm is
guaranteed to terminate once the search interval is small enough.
Since the interval size shrinks exponentially fast, on average, the
number of “shrinkage” iterations is approximately proportional
to the log of the fraction of the initial interval contained in the
slice.

In the rejoinder at the end of [26], an alternative binary
search-like midpoint shrinkage algorithm is proposed that can
converge faster on the slice than the original shrinkage algo-
rithm, at the cost of increasing correlation between successive
samples, which reduces the overall Gibbs sampler convergence
speed. In an effort to mitigate the increased correlation, a hybrid
method is proposed in [26] that always shrinks to the rejected

sample, then shrinks to the midpoint of the remaining interval
only if the probability of the rejected sample is sufficiently
small (the threshold) relative to the slice. These algorithms are
applied to both unimodal and multimodal posterior distributions

in Fig. 5.
To compare these methods in the context of the jitter mit-

igation, we monitor the convergence of the complete Gibbs
sampler, using the shrinkage methods described above. While
the combined method obviously shrinks the slice much faster
than the original method, the hybrid method’s increased speed
must offset any increased correlation in the accepted samples in
order to be useful. In Fig. 6, the convergence metrics
and are plotted as a function of the total number of
shrinkage iterations performed. The convergence rates of the
two shrinkage methods are very similar, but in some cases, as
shown in Fig. 6(a), the hybrid method outperforms the original
shrinkage method.

To summarize, pseudocode of the slice sampling algorithm
using either shrinkage method to generate realizations of is
written in Algorithm 1.

Algorithm 1: Algorithm for Computing With Slice
Sampling

Require: Previous value , , , , , , threshold

Choose (see (24)).
Compute initial interval according to (26).
repeat {This is the “shrinkage” algorithm from [26].}

Choose .

if then

if then
.

else
.

end if
end if

if then {(Optional)
midpoint-threshold modification from rejoinder in [26].}

if then

.

else

.

end if

end if

until .

return

B. Generating , , and

The full conditional distribution on does depend on the
other signal parameters :

(31)
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Fig. 5. Comparisons between the original shrinkage method and the modified thresholding-based shrinkage method for unimodal (a) and multimodal (b) posterior
distributions. The unnormalized distribution ���� � �� � � � � � � � � is evaluated for the previous Gibbs sampler iteration’s � and the slice level shown
is selected uniformly from ��� ���� � � � ���. The shrinkage methods proceed according to Algorithm 1. The midpoint threshold shown corresponds to � � �	.
Rejected samples are marked with a “�” and the final accepted sample is marked with a “�”. In both cases, the thresholding-based method reduces the size of the
interval more quickly than the original method. Especially in the unimodal case, the accepted sample � is much closer to the previous iterate � than would
otherwise be expected from the size of the slice (a) � � 
�, � � 
�, � � �	
, � � �	�	, 
 � ��, original (left) and thresholding-based (right) methods (b)
� � 
�, � � , � � �		, � � �	��	, 
 � ��, original (left) and thresholding-based (right) methods.

Grouping correlated variables accelerates Gibbs sampler con-
vergence and the random vector can still be generated in one
simple step since

(32)
implies the posterior distribution of is just multivariate normal
with mean

(33)

and covariance matrix

(34)

The Gibbs sampler easily handles the variances , , or
being random variables. The generation of realizations of and

proceeds using the previous iteration’s estimates of ,
and instead of the true variances. Each cycle of the Gibbs
sampler generates realizations of , and using the ob-

servations and the current iteration’s values of and . The
Gibbs sampler algorithm shown in Algorithm 2 generates real-
izations from the posterior pdfs for , and . Using Bayes
rule and the independence of and , these conditional pdfs
are

(35)

(36)

(37)

The inverse Gamma distribution is the conjugate prior for the
variance parameter of a Normal distribution (see [28]). There-
fore, the posterior distribution is also an inverse Gamma distri-
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Fig. 6. One hundred chains of the Gibbs/slice sampler are run for 1000 itera-
tions each and the convergence as a function of the total number of shrinkage
iterations is measured by the square root of the PSRF and � ��� . The values
of � , � , � , � , � and � are determined for the expected values of � ,
� and � using (10) and (11). For a given number of shrinkage iterations, the
hybrid rejection-midpoint-threshold method �� � ��� outperforms the original
rejection-based shrinkage method in (a) and performs equally well in (b) (a)
� � ��, � � 	, 
� � � ��� , 
� � � ��� (b) � � ��, � � ��,

� � � ���� , 
� � � ��� .

bution. Specifically, ,
where

(38)

Similarly the hyperparameters for the posterior inverse Gamma
distributions on and are

(39)

(40)

Thus, generating realizations of or using such a prior is
as simple as taking the inverse of realizations of a gamma dis-
tribution with the proper choice of hyperparameters. For those
who prefer a non-informative prior, the Jeffreys priors for ,
and are , and .
Although these priors are improper distributions, they are equiv-
alent to inverse Gamma distributions with , so the
associated posterior distributions are proper inverse Gamma dis-
tributed with the parameters described above.

Once enough samples have been taken so that the current state
of the Markov chain is sufficiently close to the steady state, the
Gibbs sampling theory tells us that further samples drawn from
the chain can be treated as if they were drawn from the joint
posterior distribution directly. Thus, these additional samples
can be averaged to approximate the Bayes MMSE estimator. In
the complete Gibbs sampler in Algorithm 2, represents the
“burn-in time,” the number of iterations until the Markov chain
has approximately reached its steady state and represents the

number of samples to generate after convergence, which are av-
eraged to form the MMSE estimates.

Algorithm 2: Pseudocode for the Gibbs Sampler Using Slice
Sampling for the ’s

Require: , ,

; from (22); ;

;

for do

for do

Generate using slice sampling in Algorithm 1.

end for

Generate from using (33) and (34).

Generate from using (38).

Generate from using (39).

Generate from using (40).

end for

return , , , ,

V. SIMULATION RESULTS

In this section, both the convergence behavior and the perfor-
mance of the Gibbs/slice sampler are analyzed. Using Matlab,
a -parameter signal and samples of that signal are
generated with pseudo-random jitter and additive noise; is
the oversampling factor. Then, implementations of the Gibbs/
slice sampler, as well as the linear MMSE estimator in (20),
the no-jitter linear estimator in(22) and the EM algorithm de-
veloped in [4] for approximating the ML estimator are applied
to the samples. The adaptation of the EM algorithm to random

and is described in the Appendix; however, the EM al-
gorithm with known and is used in these simulations
because adapting to random variances dramatically increases
the computational cost and the difference in MSE is negligible.
These algorithms are studied in detail for periodic bandlimited
signals with uniformly distributed signal parameters in [17] and
in this work, a similar analysis is performed to analyze the con-
vergence and sensitivity to initial conditions of the proposed al-
gorithms. This analysis is also similar to that performed in [4]
for the EM algorithm approximation to the ML estimator of the
non-Bayesian version of this paper’s problem formulation.

A. Convergence Analysis

As a Markov chain Monte Carlo method, the Gibbs/slice
sampler converges to the appropriate posterior distribution
under certain conditions (see [22]); as long as the sequence
generated by sampling from the steady-state distribution

is ergodic, the samples can be averaged
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Fig. 7. The convergence of the Gibbs/slice sampler (100 chains, 1500 samples)
as a function of the number of samples � � � is measured by the ����
and � ��� convergence metrics. The � ��� values are normalized by the
final value for each curve. The parameters � , � , � , � , � and � are
determined using (10) and (11). The rate of convergence depends on the choice
of parameters, as demonstrated in the above plots (a)� � �	, 
� � � 	�� ,

� � � 	�� , � varies (b) � � �	, � � �, 
� � � 	�� , 
� � varies

(c) � � �	, � � �, 
� � � 	�� , 
� � varies.

to approximate the Bayes MMSE estimate of the signal param-
eters. In addition, the steady-state distribution of an irreducible
chain is unique, so the choice of initialization should not impact
the final estimate generated from the steady-state samples. Of
course, since the chain only converges to the steady-state in
the limit, small transient effects from the initial conditions are
evaluated.

The rate of convergence of the Gibbs/slice sampler, as mea-
sured by the and the square root of the PSRF, is shown
in Fig. 7. The results suggest that increasing the oversampling
factor or the jitter variance or decreasing the additive
noise variance slows the rate of convergence. In most cases,
the Markov chain appears to reach a steady state within 500 it-
erations; thus, we set iterations (see Algorithm 2) for
the tests that follow.

To establish the number of iterations needed after burn-in,
we observe the squared error , where is the th
estimate of , as a function of , for up to 1000 and is the

Fig. 8. The convergence of the estimator for � from the Gibbs/slice sampler
�� � 		� � � � � �			 �������� is measured from 1000 trials by the
MSE of the Gibbs sampler estimate of �; the MSE is normalized so the MSE
for � � �			 samples is 0 dB. The parameters � , � , � , � , � and � are
determined using (10) and (11). The rate of convergence (when the error line
stabilizes) depends on the choice of parameters, as demonstrated in the above
plots (a) � � �	, 
� � � 	�� , 
� � � 	�� , � varies (b) � � �	,
� � �, 
� � � 	�� , 
� � varies (c) � � �	, � � �, 
� � � 	�� ,

� � varies.

true value of . Examining the plots in Fig. 8, approximately
500 iterations are sufficient to achieve a squared error within
0.5 dB of the asymptotic MSE (as measured by ) for
all cases.

The sensitivity to initial conditions of the Gibbs/slice sampler
is shown in Fig. 9 for . For 50 trials, the average
squared errors of the Bayes MMSE estimates are measured for
ten different choices of initial conditions. The ten choices of ini-
tial conditions used are 1) , and all

and equal to zero, 2) , ,
equal to zero and the no-jitter LMMSE estimate for , 3) the
true values of , , , and and 4)–10) seven choices of
random values of , , , and the corresponding fixed-
jitter LMMSE estimates for . The squared errors displayed are
normalized so that the squared error for the no-jitter LMMSE es-
timate starting point equals one. Although the Gibbs/slice sam-
pler becomes more sensitive to initial conditions as increases,
in all cases, the squared errors for the majority of initial condi-
tions are close to one. Thus, even though the algorithms are still
sensitive to initial conditions after the burn-in period, especially
for larger jitter variance, the choice of no-jitter LMMSE esti-
mate is about average.

B. Performance Comparisons

In Fig. 10, the performance of the Gibbs/slice sampler is com-
pared against the linear MMSE and no-jitter linear MMSE es-
timators and the EM algorithm approximation to the ML es-
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Fig. 9. The effects of varying initial conditions of the Gibbs/slice sampler as
a function of (a) oversampling factor, (b) jitter variance, and (c) additive noise
variance are studied by computing the squared errors of the results, for multiple
initial conditions, across 50 trials. The squared errors of the results are normal-
ized relative to the result for initialization with the zero-jitter LMMSE in (22),
so that the squared error of the result for initialization with this linear estimator
is 0 dB. The parameters � , � , � , � , � , and � are determined using
(10) and (11): (a) � � ��, �� � � ���� , �� � � ���� , � varies;
(b) � � ��, � � �, �� � � ���� , �� � varies; (c) � � ��, � � �,
�� � � ���� , �� � varies.

timator derived in [4]. The MSE performances are plotted for
different values of , and to demonstrate the effect of
increasing , increasing , or decreasing on the relative
MSE performances. Comparing the Gibbs/slice sampler Bayes
MMSE estimate against the linear estimator, the Gibbs/slice
sampler outperforms the linear MMSE estimator for a large
range of , a difference that becomes more pronounced with
higher oversampling . In addition, the results suggest that the
Gibbs/slice sampler outperforms classical estimation, especially
for higher jitter variances.

We also compare computation times for the EM algorithm
and the Gibbs/slice sampler. Both converge more slowly for
higher jitter and lower additive noise and greater oversampling
also lengthens computation. In the case of , ,

and , the EM algorithm with
known and requires 1.6 s/trial on average, the EM
algorithm for random noise variances requires 24 s and the
Gibbs/slice sampler requires 3.1 s on average. In only an
eighth the time, the Gibbs/slice sampler achieves greater MSE
performance than the EM algorithm.

Fig. 10. The MSE performance of the Bayes MMSE estimator as computed
using the Gibbs/slice sampler is compared against both the unbiased linear
MMSE estimator (20) and the no-jitter linear MMSE estimator (22), as well
as the EM algorithm approximation to the ML estimator from [4]. The values
of � , � , � , � , � , and � are determined for the average � , � , and
� using (10) and (11). The EM algorithm uses the true values of � , � ,
and � , while the linear estimators and the Gibbs/slice sampler treat � , � ,
and � as random variables. The error bars above and below each data point
for the estimators delineate the 95% confidence intervals for those data points:
(a)� � ��,� � 	, �� � � ���� , ���� � �� � � ���; (b)� � ��,
� � �
, �� � � ���� , ���� � �� � � ���; (c) � � ��, � � �
,
�� � � ����� , ���� � �� � � ���.

To understand the effectiveness of these methods in miti-
gating jitter, the difference in jitter variance as a function of
target MSE is computed based on the performance results and
the maximum observed differences (for ,
to avoid the region where the MSE plots are flat) are compared
for different values of and . The resulting trends
portrayed in Fig. 11 demonstrate that greater improvement is
achievable with increased oversampling and small additive
noise variance . In addition, the Gibbs/slice sampler out-
performs the classical ML estimator (as approximated by the
EM algorithm in [4]) at high jitter, increasing the factor of im-
provement, especially in the high oversampling and low additive
noise variance regimes.
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Fig. 11. Jitter improvement from using MMSE (Gibbs/slice sampler) and
ML estimators (EM algorithm with known � , � and � ) is measured
by interpolating the maximum factor of improvement in jitter tolerance,
measured by �� � , relative to using no-jitter LMMSE reconstruction.
Holding �� � fixed, (a) shows the trend in maximum improvement as �
increases and (b) shows the trend in maximum improvement as �� �
increases while holding � fixed. The jitter standard deviation � corre-
sponding to this maximum improvement for the MMSE and ML estimators
is plotted on the same axes: (a) � � ��, � varies, �� � � ����� ,
��� �� � � �� � � ���; (b) � � ��, � � ��, �� � varies,
��� �� � � �� � � ���.

VI. CONCLUSION

The results displayed in this paper suggest that postpro-
cessing jittered samples with a nonlinear algorithm like
Gibbs/slice sampling mitigates the effect of sampling jitter
on the total sampling error. In particular, the expected jitter
standard deviation can be increased by as much as a factor of
2.2, enabling substantial power savings in the analog circuitry
when compared against linear postprocessing or classical
nonlinear postprocessing (the EM algorithm). Such power
savings may enable significant improvements in battery life for
implantable cardiac pacemakers and enable the inclusion of
ADCs in ultra-low power devices.

Like the EM algorithm proposed in [4], the Gibbs/slice sam-
pler proposed here suffers from relatively high computational
complexity and an iterative nature, which may be unsuitable for
embedded applications. Developments in polynomial estima-
tors, such as the Volterra filter-like polynomial estimators de-
scribed in [29], may yield similar performance to the Gibbs/
slice sampler proposed here, at least for low levels of over-
sampling, without such high online computational cost. Further
investigation is warranted in developing these and similar ap-
proaches for postprocessing jittered samples in ADCs. Never-
theless, for off-chip postprocessing of jittered samples, the non-
linear Bayesian Gibbs/slice sampler presented here outperforms
both linear MMSE estimator and the nonlinear classical EM al-
gorithm approximation to the ML estimator.

APPENDIX

ML ESTIMATION WITH RANDOM VARIANCES

In [4], the EM algorithm approximation to the ML estimator
is derived in the classical setting for known variances and

. To adapt the method for random variances, we introduce
and as latent variables:

(41)

By conditional independence,

(42)

The terms not involving are unnecessary, since we are differ-
entiating with respect to in the next step. The derivative of the
expectation in (41) is

(43)

Setting the derivative equal to zero yields a linear system in :

(44)
As is done in [4], the expectations in (44) become;

(45)

(46)

The hybrid quadrature method discussed in Section II can be
used to compute the expectations in (45) and (46):

(47)

(48)

Hybrid quadrature is also used to compute [see
(15)]. Then, the EM algorithm becomes iteratively solving(44)
for , using the above hybrid quadrature formulas. However,
due to the three-dimensional nature of the hybrid quadrature
formulas, computational cost can increase dramatically.
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Due to the increased computational cost of adapting the EM
algorithm to random variances, we compare the MSE perfor-
mance of both EM algorithms for the same choices of param-
eters used in the performance plots in [4] (1000 trials,

, ). The MSE performances for both algo-
rithms are almost identical, up to only 0.54 dB apart. Thus, to
reduce computation time when comparing performance against
the Gibbs/slice sampler, the EM algorithm with known vari-
ances is used as a proxy for the EM algorithm with random
variances.
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