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Abstract—We introduce a novel algorithm for the design of
fast slice-selective spatially-tailored magnetic resonance imaging
(MRI) excitation pulses. This method, based on sparse approx-
imation theory, uses a second-order cone optimization to place
and modulate a small number of slice-selective sinc-like radio-fre-
quency (RF) pulse segments (“spokes”) in excitation -space,
enforcing sparsity on the number of spokes allowed while si-
multaneously encouraging those that remain to be placed and
modulated in a way that best forms a user-defined in-plane target
magnetization. Pulses are designed to mitigate � inhomogeneity
in a water phantom at 7 T and to produce highly-structured exci-
tations in an oil phantom on an eight-channel parallel excitation
system at 3 T. In each experiment, pulses generated by the spar-
sity-enforced method outperform those created via conventional
Fourier-based techniques, e.g., when attempting to produce a uni-
form magnetization in the presence of severe � inhomogeneity, a
5.7-ms 15-spoke pulse generated by the sparsity-enforced method
produces an excitation with 1.28 times lower root mean square
error than conventionally-designed 15-spoke pulses. To achieve
this same level of uniformity, the conventional methods need to
use 29-spoke pulses that are 7.8 ms long.

Index Terms— � inhomogeneity mitigation, high field strength,
magnetic resonance imaging (MRI) radio-frequency (RF) pulse se-
quence design, parallel transmission, sparse approximation, three-
dimensional (3-D) RF excitation.

I. INTRODUCTION

S LICE-SELECTIVE radio-frequency (RF) excitation
pulses are ubiquitous throughout magnetic resonance

imaging (MRI). They are widely used to excite only those
magnetic spins within a thin slice of tissue while leaving spins

Manuscript received November 23, 2007; revised February 4, 2008. First
published March 14, 2008; current version published August 27, 2008.
This work was supported in part by the National Institutes of Health under
Grant 1P41RR14075, Grant 1R01EB000790, Grant 1R01EB006847, and
1R01EB007942, in part by the National Science Foundation under Grant
CCF-643836, in part by the United States Department of Defense National
Defense Science and Engineering Graduate Fellowship F49620-02-C-0041,
in part the MIND Institute, in part the A. A. Martinos Center for Biomedical
Imaging, and in part by the R. J. Shillman Career Development Award. Asterisk
indicates corresponding author.

*A. C. Zelinski is with the Research Laboratory of Electronics, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA 02139 USA (e-mail: zelinski@MIT.edu).

K. Setsompop and V. K. Goyal are with the Research Laboratory of Elec-
tronics, Department of Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology (MIT), Cambridge, MA 02139 USA.

L. L. Wald is with the HST and the Department of Radiology, Harvard Med-
ical School, Longwood, MA 02115 USA.

E. Adalsteinsson is with the Research Laboratory of Electronics, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology (MIT), Cambridge, MA 02139 USA and also with the Harvard-MIT
Division of Health Sciences and Technology (HST), Cambridge, MA 02139
USA.

Digital Object Identifier 10.1109/TMI.2008.920605

outside the slice in alignment with , the system’s magnetic
main field. This type of excitation is extremely useful because
it simplifies the encoding stage of the MRI experiment by
permitting the system to record and reconstruct an image from
only two dimensions of data. RF pulses that are not only able
to excite a thin slice, but able to spatially-tailor the in-plane
excitation (i.e., produce a varying in-plane flip angle) are also
highly useful because they are able to reduce field of view
(FOV) requirements in dynamic imaging applications [1],
decrease susceptibility artifacts in functional MRI [2], and
mitigate transmit profile inhomogeneity occurring at high
field [3].

A. Spoke-Based Slice-Selective Pulses

In this work we focus on a class of slice-selective pulses com-
prised of segments that resemble sine cardinal (sinc) functions,
which are applied in the presence of oscillating gradients.
We refer to these pulse segments as “spokes” [3]–[5] because
as each is played, its trajectory in -space is a straight line.
These pulses rely on the small-tip angle approximation, where a
Fourier relationship (approximately) holds between the energy
deposited by the RF pulse and the resulting transverse magne-
tization, giving rise to excitation -space [6]. In this regime, a
rectangle-like slice profile along a logical axis is achieved by
placing a sinc-like RF pulse segment (a spoke) in the di-
rection of excitation -space [7]. In practice, a true sinc func-
tion along is replaced by a finite-length waveform [8], e.g.,
a Hanning-windowed sinc [5]. The time-bandwidth product of
the pulse segment and its extent in influence the thickness
and transition edges of the resulting thin-slice excitation.

Playing a single sinc-like spoke at (dc)
in -space is one way to excite a thin slice. This approach,
where each of the system’s excitation channels encodes a
single amplitude and phase along the spoke, is known as RF
shimming [4], the goal of which, typically, is to mitigate an
inhomogeneous field profile. A single frequency sample in

, however, does not provide any ability to tailor the re-
sulting in-plane excitation pattern when using a single-channel
excitation system; even with a multichannel excitation system,
significant tailoring is not possible with this approach. To
strongly influence the in-plane excitation flip angle in each
of these cases, one must place a number of spokes at various
locations in , modulating the amplitude and phase of
each to form a desired in-plane transverse magnetization [3].
Unlike RF shimming, this approach does not alter the field
profile—rather, it is the gradient modulation of the excita-
tion process that produces the desired magnetization. In this
multiple-spoke case, the complex weightings in form
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the in-plane excitation, while the sinc-encoded traversals
provide slice selectivity in . Simultaneous slice selection
and in-plane tailoring are possible due to the separability of
the 3-D Fourier transform that relates the spatial excitation
to the deposition of energy in -space. Unfortunately, using
multiple spokes has the negative consequence of increasing
pulse duration. Thus, an ideal spoke-based pulse is one that not
only achieves the user-specified in-plane excitation, but does so
using as few spokes as possible.

B. Spoke-Based Pulse Applications

To date, spoke-based waveforms (also referred to as echo-
volumnar trajectories) have been used to mitigate inhomo-
geneity on a single-channel excitation system at 3 T [3] and
perform spatially-tailored slice-selective excitations on multi-
channel excitation systems [5], [9]–[11]. In these cases, only
small numbers of spokes were placed at low spatial frequencies
because only smoothly-varying in-plane excitations were nec-
essary.

There are many applications, however, where more than a few
spokes are needed. For example, 25-spoke pulses were needed
for signal recovery in -weighted functional MRI [12]. An-
other application of multispoke pulses is the mitigation of in-
homogeneity [13] that occurs in the human body at 4 T [14] and
in the head at 7 T due to wavelength interference effects [15],
[16] and tissue-conductive RF amplitude attenuation [17]. The
presence of inhomogeneity causes a system’s transmit and
receive profiles to exhibit high-frequency spatial variations. The
nonuniformity of the transmit profile causes standard slice-se-
lective pulses to produce a nonuniform flip angle across space,
one that varies widely throughout the field of excitation (FOX),
causing images to exhibit severe center-brightening, spatial con-
trast variation, and SNR nonuniformity despite the use of “ho-
mogeneous” excitation and reception coils [18]–[20]. In this sit-
uation, an ideal slice-selective mitigation pulse is one that pro-
duces a spatially-tailored excitation across the FOX that is the
exact multiplicative inverse of the inhomogeneity, strongly flip-
ping those regions where the -effect causes under-flipping of
the magnetization and vice versa, such that when the pulse is
applied, a uniform flip angle arises across the FOX. In prac-
tice, forming such a high-spatial-variation excitation requires
spokes to be placed with care at both low and high frequencies
throughout .

C. Conventional Spoke Placement

One way to achieve a desired high-variation in-plane excita-
tion is to place a large number of spokes throughout ,
but this leads to lengthy, impractical pulses. A more intuitive
approach is to compute the Fourier transform of the desired
in-plane excitation and place spokes at frequencies
where the Fourier coefficients are largest in magnitude [12],
[21]. We will show shortly, however, that this method yields
suboptimal placements.

D. Sparsity-Enforced Spoke Placement

In this paper we introduce a spoke-based pulse design frame-
work based on sparsity and simultaneous sparsity [22]–[27].
Our method is applicable to all of the problems mentioned

above, yet general enough to apply to both conventional
single-channel and multichannel parallel transmission systems
[5], [9]–[11], [28], [29]. In our approach, we pose optimization
problems that determine the minimal number of spokes needed
to produce a user-defined in-plane excitation, the placement of
these spokes in , and their proper amplitudes and phase
modulations. For computational tractability, we use a convex
relaxation [25], [26], [30]–[32], formulating a second-order
cone (SOC) program [33] that promotes sparsity on a
grid of candidate spoke locations. This sparsity-enforcement
algorithm discourages the use of many spokes while simul-
taneously encouraging those that remain to be placed and
modulated in a way that best achieves the desired in-plane
excitation. Preliminary results of this technique were presented
in [34] and [35]. This design method automates spoke-based
RF pulse design and frees the designer from the task of spoke
placement. The method has several control parameters that
allow designers to easily trade off pulse duration (number of
spokes) with excitation fidelity (squared error relative to a
target). This technique automatically generates echo-volumnar
thin-slice excitation pulses, differing greatly from other au-
tomated design algorithms that optimize 2-D trajectories and
produce pulses incapable of slice selection [36].

E. Overview of Experiments

The utility of the sparsity-enforced spoke placement method
is demonstrated by conducting a mitigation experiment
in a head-shaped water phantom on a human scanner at 7 T,
along with a spatially-selective excitation experiment on an
eight-channel parallel transmission system at 3 T. In each
experiment, the sparsity-enforced placement algorithm is com-
pared to the conventional Fourier-based placement method and
to an extension of the latter, which we call “inversion-based”
placement. After demonstrating the superior performance of
the sparsity-enforced placement algorithm, we proceed to
characterize it in detail by exploring its sensitivity to its control
parameters. Results for these various experiments are first ob-
tained via Bloch-equation simulations and then validated with
trials on the 7 T and 3 T systems; thus the sparsity-enforced
method is investigated in both theory and practice.

F. Organization of the Paper

Section II covers background material on parallel excitation
systems, RF excitation pulse design, transmit and receive profile
estimation, and sparse approximation. Section III presents the
conventional Fourier-based spoke placement method, the inver-
sion-based technique, and the proposed sparsity-enforced algo-
rithm. Section IV discusses how to design a set of RF pulses and
gradients based on a chosen spoke placement pattern. Section V
describes the 7 T and 3 T systems and their associated experi-
ments, while Section VI presents and discusses the experimental
results. Concluding remarks appear in Section VII.

II. BACKGROUND

A. Parallel Excitation RF Pulse Design

1) System Overview: A parallel excitation system differs
from a standard single-channel system in that its RF exci-
tation coil is comprised of multiple elements, each capable
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of independent, simultaneous transmission. The presence of
multiple elements allows one to undersample a given excitation
trajectory and yet in many cases still form a high-fidelity
version of the desired excitation; undersampling the trajec-
tory is greatly beneficial because it reduces the distance one
travels in -space, which in turn reduces the duration of the
corresponding pulse [5], [9]–[11], [28], [29]. This ability to
“accelerate” in the Fourier domain and reduce pulse duration
arises due to the extra degrees of freedom provided by the
system’s multiple transmit elements, in direct analogy with the
concept of readout-side acceleration where the use of multiple
reception coils permits one to undersample readout -space and
substantially reduce readout time [37], [38]. We now describe
one way to design a set of RF pulses to play through the
elements of a -channel parallel excitation system in order
to generate a user-defined target excitation. This formulation,
largely due to Grissom et al. [39], holds for and thus
applies to both single- and multichannel systems.

2) Linearization: To establish a design methodology for
RF pulses, assume for now that the set of gradient waveforms,

, is fixed, i.e., the -space
trajectory, , is predetermined,
and that the spatial transmit profile (a map) of each array
element is known. Finally, in order to make the design process
tractable, we impose the small-tip angle approximation on the
problem, enabling a Fourier-based design [6]. This results in
the following system of linear equations:

(1)
where is the steady-state magnetization,
a spatial variable, a temporal variable (sec), the approx-
imate transverse magnetization due to the transmission of the
RF pulses in the presence of the time-varying gradients (rad),

the gyromagnetic ratio (rad/T/s), the complex-valued
transmit profile of the th coil (T/V), the RF pulse

played along the th coil (volts), a field map of
inhomogeneity (rad/s), the phase accrual due to
this inhomogeneity, the duration of each waveform (sec), and

[39].
3) Discretization: Discretizing (1) in space and time leads to

... (2)

Here, is a diagonal matrix comprised of sam-
ples of the th spatial profile taken within a user-defined FOX,
which in many cases is smaller than the FOV. The next matrix,

, incorporates the effect of main field nonunifor-
mity and brings energy placed in -space into the spatial do-
main at the locations where each coil profile is sampled. For-
mally, . Each of
the are comprised of samples of the th RF wave-
form, , spaced by . Finally, and are implic-
itly defined in (2) [39]. Users are free to choose how finely to

sample the spatial and temporal variables in (1) and thus control
whether is under- or over-determined [40], [41].
Furthermore, by sampling only within the FOX, (2) becomes
blind to the rest of the FOV and is freed from needless spatial
constraints.

4) RF Waveform Generation: To excite a pattern using a
-channel system, RF pulses are needed. To determine these

pulses, one may form samples of the desired pattern into
the vector . Then, by estimating a map and each
spatial coil profile, one may generate , the s, and in turn

. Finally, a set of RF pulses that (approximately) achieves
the desired excitation may be generated by solving

(3)

for . Solving (3) via direct inversion (or pseudoinversion) of
tends to result in poorly-conditioned vectors [42], so

we instead solve the following Tikhonov-regularized problem
[43] that penalizes the energy of the solution:

(4)

Setting to a small positive value and then solving (4) typically
produces a with reasonable and voltages without
seriously impacting the residual error [39], [40], [44]. In our
work, we use the LSQR algorithm [45] to solve (4), which has
been shown in practice to yield favorable multichannel pulse
designs [42].

5) Spoke-Based RF Pulse Generation: For most spoke-based
pulse designs, one fixes not only and , but desired
slice thickness and spoke type as well. In this work, slice thick-
ness is fixed at 10 mm and each spoke is a Hanning-windowed
sinc. For all -spoke pulses, the spoke at dc in has a
time-bandwidth product of 4, while the off-dc spokes
have -lengths half that of the former. (Using shorter off-dc
spokes lets one reduce the duration of a pulse without notice-
ably impacting slice selection performance [5].) Overall, these
constraints fix the shape of the RF pulses and all properties
of the slice profile (e.g., sidelobes and sharpness) [3], [5], while
still letting the user retain control over the amplitude and phase
each channel encodes along each spoke.

For a -spoke pulse on a -channel system, these constraints
cause major changes to (2) and (3). First, all but columns of

are discarded, since only locations in -space (those
where the spokes are located) are available for weighting. Fur-
ther, each reduces from to elements. Finally, the FOX
reduces to a 2-D in-plane region, leading to a far smaller than
in a 3-D case. The system now has only unknowns, giving
the user control over weights to influence the in-plane ex-
citation pattern.

B. Transmit and Receive Profile Estimation

In order to generate RF pulses for use on a -channel system,
one sees from (1) and (2) that estimates of the spatial transmit
profiles, , are first required. In our work, we only
need coil profile estimates in the 2-D plane where the thin-slice
excitation occurs, so here indexes samples only within a 2-D
FOX.



1216 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 9, SEPTEMBER 2008

1) Magnitude Estimation: Here we use a parametric fitting
method to obtain in T/V. This technique also estimates

, the system’s receive profile magnitude. For fixed , the
following steps are performed: first, intensity images are
collected. Each is obtained by playing a standard slice-selective
pulse with duration through channel (leaving all other
channels dormant) and reading out the result on the receive coil
with a gradient-recalled echo (GRE). This pulse’s peak transmit
voltage, , is varied from one image to another, and increased
enough so that several high-flip images are obtained. Then, for
all coordinates in the FOX, the intensities of these images
are fit to

(5)

where is the intensity image due to playing the pulse with
peak voltage through channel , , and

[46]–[48]. In this work, experiments are
conducted in uniform- phantoms, so is known.

2) Phase Estimation: To estimate the phase of each channel
profile, we keep constant and collect one low-flip image per
channel; each phase profile is then simply the phase of each
respective image. This yields the phase relative to the receive
coil, which is sufficient [5], [42].

C. Sparse Approximation

1) Single-Vector Case: Consider a linear system of equations
, where , , , and

and are known. It is common to use the pseudoinverse of ,
denoted , to determine as an (approximate) solution
to the system of equations. When is in the range of , is the
solution that minimizes , the Euclidean or norm of .
When is not in the range of , no solution exists; minimizes

among the vectors that minimize . In the design
problems in this paper, it is necessary for the analogue to to
have only a small fraction of its entries different from zero. We
are faced with a sparse approximation problem of the form

(6)

where equals the number of nonzero elements of a vector.
The subset of where there are nonzero entries in

is called the sparsity profile. For general , solving (6) es-
sentially requires a search over the nonempty sparsity
profiles. The problem is thus computationally infeasible except
for very small systems of equations (e.g., even for ,
one may need to search 1 073 741 823 subsets). Formally, the
problem is NP-complete [22], [23].

For problems where (6) is intractable, a large body of research
supports the relaxation of (6) [25]

(7)

This is a convex optimization and thus may be solved effi-
ciently [49]. The solution of (7) does not always match the
solution of (6)—if it did, the intractability of (6) would be
contradicted—but certain conditions on guarantee a match

[26], [31] and (7) is generally a useful heuristic [50]. The
optimization

(8)

has the same set of solutions as (7). The first term of (8) keeps
residual error down, whereas the second promotes sparsity of
[25], [51]. As the control parameter, , is increased from zero
to one, the algorithm yields sparser solutions and the residual
error increases; sparsity is traded off with residual error.

2) Multiple-Vector Case (Simultaneous Sparsity): Now sup-
pose we have the system of equations

... (9)

where and the are known. In the de-
sign problems posed in this paper, it is natural to constrain the
number of positions in which any of the s are nonzero. Thus
we seek approximate solutions in which the s are not only
sparse, but the union of their sparsity patterns is small; this is
called simultaneous sparsity [30], [32]. Unfortunately, optimal
approximation with a simultaneous sparsity constraint is even
harder than (6). Thus, we propose to use a relaxation similar to
(8)

(10)

where and

, i.e., the norm of the norms
of the rows of . This latter operator is a simultaneous
sparsity norm: it penalizes the program (produces large
values) when the columns of have dissimilar sparsity
profiles [30]. An equivalent way of writing (10), which will
be useful later, is to replace with , where

, , and
, i.e., the th element of this vector contains the

norm of the th row of . Finally, by setting , one sees
that (8) is a base case of (10).

To the best of our knowledge, (10) is a novel instance where
simultaneous sparsity is required. To date, others have sought
simultaneously sparse s such that
holds [30], [32], [52], whereas here we are seeking simultane-
ously sparse s that solve (9). In other words, in prior work,
there are many different s and a single , whereas here, we
have a single and many different s.

3) Solution via Second-Order Cone Programming: One
may solve (10) using second-order cone (SOC) programming,
a method that encapsulates conic, convex-quadratic [33], and
linear constraints. Quadratic programming is not an option
because the terms of (10) are complex. Second-order conic
constraints are of the form , and
the generic format of an SOC program is

(11)
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where , is the complex conjugate,
is the -dimensional positive orthant cone, and the s are

second-order cones [33]. SOC programs are useful because they
can be solved via efficient interior point algorithms [53], [54].
To convert (10) into the SOC format, we first write

(12)

This makes the objective function linear, as required. Now we

change variables, rewriting as

, for , and , where is an vector
of ones and . Letting ,
we arrive at

(13)

With these steps, the problem is a fully-defined SOC program
that may be implemented and solved numerically. In our work,
we implement (13) in SeDuMi (self-dual-minimization) [53],
and find that it is capable of solving problems in a reasonable
amount of time (e.g., 3–25 min) when the number of unknowns,

, is in the thousands. It is possible that a more efficient
method for solving (10) can be found, but techniques for (10)
lag behind those for (7) and (8).

III. SPOKE PLACEMENT AND WEIGHTING METHODS

We now describe three methods for determining the place-
ment of spokes in when designing a spoke-based RF
waveform whose goal is to produce a user-defined in-plane
target excitation, , using a -channel system whose
coil profiles are known. The second and third methods will
suggest spoke weights in addition to placement. Assume that
the FOV is a rectangle, so when is sampled, its
samples may be assembled into . Furthermore,
assume the FOX is smaller than the FOV and not necessarily
rectangular. It is discretized and comprised of
samples, which are a proper subset of the FOV samples. (The

pixels in the FOV but not in the FOX comprise
a “don’t care” region.) Finally, assume the system’s coil
profiles are sampled within the FOX and assembled into the
diagonal matrices , . The
goal now is to place spokes at locations in such that
the resulting in-plane excitation is close (in the sense) to

within the FOX (not the entire FOV).

A. Fourier-Based Spoke Placement

An intuitive way to determine where to place each spoke is
to compute the discrete Fourier transform (DFT) of and from
the resulting discrete grid of frequencies, choose the
whose Fourier coefficients are largest in magnitude [12], [21]. If
the complex weights at these locations are brought back into
the spatial domain via an inverse transform, Plancherel’s the-
orem implies that this image, , is the best approximation
of within the FOV [7], [55]. Unfortunately, there are problems

with this method. 1) The FOX is typically smaller than the FOV,
and the RF profile in the “don’t care” region is not important.
The Fourier method, however, has no concept of the FOX or
the “don’t care” region. This FOX–FOV mismatch means that
the chosen locations do not necessarily yield the best rep-
resentation of within the FOX. 2) The influence of each
spatial profile, , is not accounted for, even though each has
a major impact on the in-plane excitation. 3) There is no concept
of transmit channels, so the method cannot suggest a weight for
each channel to place at each spoke location.

B. Inversion-Based Spoke Placement

Single-Channel Derivation: This method retains the logic of
the Fourier technique while accounting for its shortcomings.
For now, assume the system has a single channel and imagine
a grid of arbitrarily-spaced points in located at

. Each is a Dirac delta that produces a complex
exponential in the spatial domain. An arbitrary choice of com-
plex weights at different points on this grid results in a nom-
inal spatial domain excitation, which is related to the weighted
grid by a Fourier transform. The nominal excitation is then mul-
tiplied (pointwise) by the coil profile to yield the actual ex-
citation, . One may sample this excitation within the
FOX at and arrange the samples into

. Likewise, the weights on the grid may be formed into
. The relation between and is represented by

, where , where
the th column of describes how the excitation at the s is
influenced by the weight at . When samples of the coil profile
are arranged into , this leads to

(14)

This is analogous to the derivation in Section II-A, In short, (14)
expresses the excitation that forms at a set of points in the FOX
when an arbitrary set of complex weights is placed on an arbi-
trary -space grid. For fixed , the column of here is nearly
identical to the column of its counterpart in Section II-A, except
now there is no notion of time. For the most part, this is tolerable:

is known rather than at time . The difference here is
that time-dependent phase accrual cannot be incorporated
because ’s dependence on is not yet known. Fortunately, if

is nearly homogeneous or pulse duration is short, then the
column of here (nearly) equals the column of its counterpart
in Section II-A.

By sampling analogously to , it is possible to
form , and by solving for , the weighting
of the grid that best achieves the target excitation in
the sense within the FOX may be obtained. This solution is
generated via regularization rather than direct pseudoinversion

(15)

This yields a well-conditioned that (approximately) solves the
system and provides a set of grid weights that form the desired
excitation. At this point, two pitfalls of the Fourier method have
been mitigated: the coil profile has been explicitly incorporated
and the unnecessary constraints on the excitation outside the
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FOX have been removed. Now, using the intuition that moti-
vated the Fourier method, we decide to place spokes at the
points on the grid that correspond to the largest-magnitude
elements of .

1) Multichannel Derivation: For multichannel systems, (14)
generalizes to

(16)

analogously to (2). A regularization analogous to (15) is then
applied to solve , yielding a well-conditioned
solution, , which is disassembled into , where
contains the weights for channel . When an element of is
large in magnitude, channel is using the corresponding grid
point to strongly influence the resulting excitation, so placing
a spoke here may be worthwhile. However, at this same loca-
tion, imagine that the other channels have weights of
zero; should a spoke still be placed here, if only one channel
suggests doing so, or should it be placed at an alternate loca-
tion, one where each channel contributes toward the formation
of ?

The presence of multiple channels has led to a quandary
about how to choose the best spoke locations. A solution
to this problem is to “compress” the energy of the resulting

-weighted grids along the channel dimension using the
norm. This produces a single grid that represents the overall
energy placed at each location by all channels,
denoted , where . Using
this norm to combine the energy deposited by all channels at
the th grid location has no sparsifying effects, so will
not radically differ if one channel deposits a large amount of
energy at the th grid point, or if this same amount of total en-
ergy is contributed by many channels. Forming is sensible
because when performing excitations using a multichannel
system, it does not matter if it is one or many channels that
place energy at a given point if such a deposition improves the
excitation. Based on this reasoning, we reapply the intuition
that inspired the Fourier-based method, and decide to place
spokes at the locations corresponding to the largest-magni-
tude elements of .

Unfortunately, using Tikhonov regularization to find
yields a dense solution, leading to a dense , one where all
grid locations experience moderate amounts of energy deposi-
tion. Frequently, the energies at each of the chosen locations
are not much greater than the energies present at most other
points. Up until this point, the magnitude of energy at a grid
point has been used as proxy for whether that point is a good
spoke location, but since the energies being deposited across
all candidate locations are now similar, it is no longer clear if
this intuition is useful. The ideal weights for each channel to
place on the candidate grid have indeed been determined, but
this process has not restricted the number of points at which a
channel may deposit energy.

This is a serious drawback, because when spokes are
chosen, only locations in remain for the channels
to modulate and attempt to form . Thus in practice, when
all weights are zeroed out except those weights associated
with the chosen locations, the resulting excitation does not

closely resemble the desired one. The achieved excitation is
of low quality because the chosen weights relied on the
weights placed at all other grid locations to form an accurate
excitation. To mitigate this problem, the weights need to
be retuned (see Section IV). In short, this method does not
encourage the channels to form the excitation by modulating
only a small number of locations, despite the fact that only a
small subset of candidate grid points are able to be retained for
the final pulse design.

C. Sparsity-Enforced Spoke Placement

This method—our main contribution—resolves the problem
of the former by finding a sparse that reveals a small set
of spoke locations (and weights) that alone form a high-fidelity
excitation. In Section VI, we demonstrate that this approach is
superior to the inversion method at revealing a small number of
locations at which to place spokes.

1) Single-Channel Derivation: Since , there is only
one grid vector, , and the system of equations we desire to
solve is . Rather than using Tikhonov regularization
to reveal spoke locations, we instead promote the sparsity of

(17)

Because of the relationship between sparsity and regulariza-
tion [25], [51], this optimization yields a sparse that approx-
imately solves the system.

2) Multichannel Derivation: With channels, the re-
sulting excitation may be expressed as (16), so we again arrive at

. To mitigate the inversion-based method’s dense
grid problem, we rely on sparse approximation and pose

an optimization that promotes the sparsity of

(18)

This is equivalent to (10), the only difference being notational
( is used rather than ). With large enough , this
method produces s that approximately solve the system while
also yielding a sparse . Typically, solving (18) yields a
with many elements close to zero, with only several high-energy
grid points. (The small grid weights are not exactly zero; this is
because an regularization is used to promote sparsity rather
than an ideal but computationally intractable penalty.)

In this way, the sparsity-enforced spoke placement reveals a
small subset of the overall grid that alone is able to form the exci-
tation. At this stage, spoke locations are selected by choosing
those points on the grid corresponding to the largest-magnitude
elements of . In contrast with the inversion-based method,
the weights associated with these locations alone are typ-
ically able to generate a reasonable version of the desired exci-
tation when other weights are zeroed out. This does not occur
by chance. Rather, it is because the columns of in are
nearly identical to the columns of the similarly-named matrix
in Section II-A. (This claim holds if is small or the pulse
will be of short duration, the latter of which is always the case
for small .) Thus this method determines a small set of spoke
locations and weightings that form an acceptable-quality exci-
tation. Like the inversion-based method, the weights undergo
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retuning (discussed next), but in many cases they do not radi-
cally change.

3) Necessity of Simultaneous Sparsity: What if rather than
promoting the sparsity of , we simply promote that of ?
This would produce a sparse , and thus individually-sparse

. But this does not encourage simultaneous sparsity among
the s, so their sparsity profiles differ, and thus when is
formed, it is not necessarily sparse, contradicting our goal. Fur-
ther, discourages solutions where many channels de-
posit energy at a single location, and thus penalizes solutions
which are in fact useful.

4) Variants: One may modify (18) so that an rather than
penalty is imposed on the system. Furthermore, if the con-

ditioning of the s is a concern, constraints may be placed on
their and energies. These variants and their combinations
are still SOC programs.

IV. GENERATION OF GRADIENTS, RETUNED WEIGHTS,
AND RF PULSES

At this point, we have a -channel system whose profiles
are known and have used one of the methods to determine

locations at which to place spokes. Assume that
and the gradient coil’s amplitude and slew rate constraints are
known, all spoke parameters are fixed, and the assumptions
from Section III are in effect. To begin, a set of gradients must
be designed to visit and traverse a spoke at each location in
an efficient manner. To accomplish this, a genetic algorithm
is used to find a near-optimal minimal-length Euclidean path
through the points. Knowing this short path allows us to
design the gradients, , to drive to each coordinate
in a way that minimizes pulse duration. The time-dependent

-space trajectory, , is obtained in turn by integrating these
gradients. Additionally, because the spoke parameters have
been fixed, the shape of each channel’s RF pulse is known.

The next task is to obtain the weight each channel should en-
code along each spoke location, i.e., to find weights that
best generate . If the Fourier method is used for place-
ment, this step is necessary because it does not generate weights
during the placement stage. If the inversion method is used,
weight retuning is also a necessity (see Section III-B). If the
sparsity-enforced method is used, the weights it generates often
do form a reasonably-accurate excitation, but still benefit from
retuning because they have a slight reliance on the various small
weights that get discarded when only locations are retained.
Further, if , retuning helps the inversion and spar-
sity-enforced methods because the weights these techniques ini-
tially determine cannot take inhomogeneity into account
(see Section III-B).

We now apply the pulse design method of Section II-A. With
, the coil profiles, and , we update the columns of

to account for phase accrual and then generate in
(2). We then solve (4), generating the weights that the RF
pulses should use to best produce the excitation. This concludes
the design process. (Note that the weights may be obtained
via an alternative approach, e.g., [9], [28], [56].)

V. SYSTEM AND EXPERIMENT SETUP

A. Mitigation in a Head-Shaped Water Phantom on a
Single-Channel 7 T Scanner

1) Overview: Each placement method will design pulses
that mitigate inhomogeneity present in a head-shaped water
phantom at 7 T using different numbers of spokes. Here, the
ideal mitigation pulse is one that excites the multiplicative
inverse of the inhomogeneity [3] and produces a uniform
magnetization across the FOX. Each method will attempt to
produce this ideal excitation.

2) Hardware: Work is conducted on a 7 T whole-body
human scanner (Siemens Medical Solutions, Erlangen, Ger-
many). The scanner is built around a 90-cm-diameter magnet
(Magnex Scientific, Oxford, U.K.). The amplitude and slew
rate of the system’s head gradient coils are always constrained
to 35 mT/m and 600 T/m/s, respectively. Potential gradient
imperfections are minimized by operating at amplitude and
slew rates below the hardware’s maximum specifications
and performing a one-time RF-gradient delay calibration. A
single-channel, 28-cm-diameter, quadrature bandpass birdcage
coil is used for transmission and reception [57], [58].

3) Spatial Profiles, Target Pattern, and Spoke Parameters:
A GRE magnitude image of the head-shaped water phantom is
obtained using a conventional low-flip slice-selective pulse with
a repetition time (TR) of 20 ms, an echo time (TE) of 5 ms, a
bandwidth (BW) of 390 Hz/pixel, and a FOV of 25.6 cm in each
dimension. The dielectric properties of the water in the phantom
cause its transmit and receive profiles to exhibit significant spa-
tial variation, causing the resulting image intensity to be highly
nonuniform. One sees from (5) that this image is linearly related
to both the transmit profile and the receive profile when in the
small-tip angle regime, because for small .

We use this image—the combination of the transmit and
receive profiles—as proxy for the transmit profile. Naturally,
when one implements a mitigation pulse for in vivo use,
one should mitigate only the transmit profile, as this achieves
optimal contrast and SNR, but here we will mitigate the com-
bination of profiles, for three reasons: 1) The combination
exhibits more spatial variation than the transmit profile alone,
making the spoke selection problem more challenging. 2) A
pulse designed to mitigate this combination, rather than simply
the transmit profile, produces a result that is easy to understand
and evaluate, since it ideally will produce a uniformly image,
whereas a pulse that mitigates only the transmit profile still
produces a nonuniform image because the receive profile is not
mitigated. 3) Evaluating the performance of a pulse that miti-
gates only the transmit profile is difficult because to do so we
must quantify the postmitigation flip angle. In order to obtain a
flip angle map via fitting, the pulse must be played at increasing
voltages to obtain high-flip images (cf. Section II-B), but the
spoke-based pulse does not maintain its intended excitation
profile in this regime, because like all spoke-based designs, it
relies on the small-tip angle approximation. This is in contrast
with conventional RF pulses, which may be used to estimate
the maps for each coil, but not to validate the flip angles of
spoke-based pulses.
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Fig. 1. Quantitative� map of the head-shaped water phantom at 7 T (nT/V).
This hypothetical transmit profile is generated by collecting a GRE magnitude
image and scaling the resulting pixels.

The hypothetical transmit profile to be mitigated appears in
Fig. 1 in nT/V, with a 25.6 cm 25.6 cm FOV and 4-mm reso-
lution. The FOX is where the phantom is present. The in-plane
target magnetization magnitude is a uniform 10 flip and target
phase is zero. (We have no desire to shape the nearly-constant
phase that occurs naturally across the target.) Spoke parameters
for all designs are given in Section II-B. Based on these param-
eters and gradient constraints, the duration of a -spoke pulse,

, is close to ms, i.e., each spoke adds roughly
1/4 ms to pulse duration. The in-plane traversals take
negligible time because most time is spent playing spokes in .
Finally, is estimated from the phase of two GRE images
( ms, ms).

4) Experiment Details: Simulations, Quality Metrics,
and Validation Trial on Real System: First, simulations are
conducted as a function of to demonstrate the superior perfor-
mance of the sparsity-enforced technique; here, we assume we
know a good value for the sparsity-enforced method’s param-
eter. The quality of the in-plane excitation produced by each
method is evaluated by computing the within-FOX, in-plane
root mean square error (RMSE) and maximum error between
each resulting excitation and the desired magnetization. Be-
cause the desired pattern is in degrees, each of these error terms
are in degrees as well. Further, because the resulting pulses
are in volts, we calculate the rms and peak voltage

of each. After the simulations, a sparsity-enforced
pulse is played on the scanner to show that the experimental
result closely matches the one predicted via simulation. We
then return to simulations and characterize how the sparsity-en-
forced placement algorithm behaves when provided grids of
oversampled candidate spoke locations. Finally, we investigate
how RMSE varies as a function of and . Results appear in
Section VI.

B. Phase-Encoded, Spatially-Selective Excitation in an Oil
Phantom on an Eight-Channel 3 T Scanner

1) Overview: Here we evaluate how well the spoke place-
ment methods design pulses that form a highly-structured ex-
citation pattern in a 17-cm oil phantom, where the FOX is the
phantom itself and transmission is conducted using an eight-
channel parallel excitation system.

2) Hardware: The parallel system is built around a 3 T Mag-
netom Trio scanner (Siemens Medical Solutions, Erlangen, Ger-
many). The coil array is composed of eight circular surface
coils arranged on a 28-cm-diameter acrylic tube [59]. After a
set of pulses is designed for use on the scanner, the eight re-
sulting waveforms are transmitted simultaneously through their
respective coils and modulated in magnitude and phase as dic-
tated by the pulse design. The system’s body coil is used for
reception. The amplitude and slew rate constraints of the gradi-
ents are 35 mT/m and 150 T/m/s, respectively. Gradient imper-
fections are mitigated by operating in a region well within the
hardware’s maximum specifications; RF-gradient mismatch is
prevented via a one-time delay calibration.

3) Spatial Profiles, Target Pattern, and Spoke Parameters:
Spatial profiles are obtained by collecting ten images per
channel and fitting the results to (5) using the Powell method
[60]. The images are obtained by sending ten pulses through
each of the eight transmit elements, one at a time, and re-
ceiving on the body coil using a GRE readout ( ms,

ms, ). This yields 25.6 cm 25.6
cm FOV, 4-mm resolution magnitude and phase maps, half of
which are in the high-flip regime. The profile magnitudes, in
nT/V, are illustrated in Fig. 2. The smooth variations exhibited
by each profile occur without smoothing the fitted results,
leading us to believe that the fitting method is robust and ac-
curate. Further, the method determines that the receive profile
is smooth, varying less than 5% within the FOX. Spoke type
and thickness are the same as in the single-channel case. The
duration of a -spoke pulse, , fits well to ms;

is again obtained from two phase maps.
With the profiles of Fig. 2, it is possible to run the spoke

placement algorithms and produce pulses. For all experiments,
is the phase-encoded bifurcation depicted in Fig. 3. This

target has a high degree of spatial selectivity, experiencing a 10
flip within only two thin “veins” and no flip across the rest of
the FOX. The left vein is 90 out of phase with the right vein.
Exciting this pattern is worthwhile because highly-structured
excitations may have applications to clinical MRI. Furthermore,
the strength of multichannel excitation will be demonstrated.
Finally, the phase-encoded nature of this excitation may have
applications to phase-contrast magnetic resonance angiography
(MRA) [61], [62], perhaps allowing MRA concepts to be ported
to general MRI.

4) Experiment Details: Simulations, Quality Metrics,
and Validation Trial on Real System: Analogously to the
single-channel system experiments, simulations are first con-
ducted and RMSE and metrics are used to evaluate the
performance of the different methods as a function of .
Voltages of the resulting pulses are also analyzed. Each design
consists of eight RF pulses, so to succinctly present the data, the
maximum peak and maximum RMS voltages observed across
each set of eight waveforms are recorded. After the Bloch-sim-
ulated trials, a sparsity-enforced pulse is played on the scanner
and the resulting excitation is compared to the one predicted
via simulation. We then return to simulations, analyzing how
the sparsity-enforced algorithm behaves when provided grids
of candidate spoke locations with different extents in -space,
along with the method’s sensitivity to its control parameter, .
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Fig. 2. Quantitative � transmit profile magnitudes of the 3 T, eight-channel parallel excitation system (nT/V) obtained by collecting ten intensity images per
channel and fitting to (5).

Fig. 3. Dual-phase bifurcation target excitation used for all 3 T eight-channel
system experiments. Within the two veins the target commands a 10 flip and
zero flip elsewhere. Each branch is phase encoded: the left vein is 90 out of
phase with the right. The ability to achieve this structured excitation pattern will
show the strength of both multichannel excitation and sparsity-enforced spoke
placement.

VI. RESULTS AND DISCUSSION

1) Single-Channel System: Bloch-Simulated Spoke
Placement Analysis: Here, each method is used to place

spokes. Based on Section V, we are able to
generate all matrices and vectors needed to run the placement
and pulse design routines, e.g., 1138 within-FOX samples
of the transmit profile, , are used to form the spatial
profile matrix, , all elements of are set to 10 based on the
desired excitation , etc. The pointwise inverse of the
inhomogeneity, , is provided as the desired excitation
to the Fourier placement method (see Section III-A). The inver-
sion-based method’s Tikhonov parameter in (15) is set to 0.1,
and the pulse design Tikhonov parameter in (4) is set to 0.001.

The frequency grid of candidate spoke locations provided
to the inversion-based and sparsity-enforced methods is cen-
tered at dc, Nyquist-spaced at , extends outward
equally in both and , and is comprised of points,
leading to . Providing this same grid to the inver-
sion and sparsity-enforced methods promotes fair comparisons
between the algorithms. Ideally, this grid would extend further
out in -space to reach the maximum and minimum frequencies
suggested by the transmit profile’s 4-mm sample spacing, but
using such a large grid increases the sparsity-enforced method’s

runtime to 25 min (versus 3 min for the -point grid). The
smaller grid is acceptable, however, because the Fourier-based
method—which selects spokes on the large, ideal grid—never
chooses to place a spoke outside of this region when

, i.e., the majority of -space energy lies on the small grid.
(Later we will show how grid extent affects the sparsity-en-
forced method’s performance.)

The final step is to run the sparsity-enforced routine for
values of , solving (17) each time and storing each re-

sulting weighted grid, . When the sparsity-enforced method
is used to place spokes, possible placements are evalu-
ated—spoke locations being chosen based on the maximum
values of each —and the placement yielding the smallest
residual error, , is retained. Thus when the
sparsity-enforced method’s results are presented, they implic-
itly assume that a good value for is known. (Later on, we will
analyze sensitivity to .) We do not find it necessary to loop
over the inversion-based method’s Tikhonov term because we
observe that once it is tuned past a certain threshold, all resulting
solutions suggest essentially the same set of spoke locations.

Each method designs pulses with spokes,
which are then simulated. The RMSE and maximum error of
each resulting excitation pattern with respect to the uniform
target are computed, along with the voltage characteristics of
each corresponding pulse. Fig. 4 depicts these results, illus-
trating how each metric varies with . For each method, RMSE
decreases with , because using more spokes allows for more
spatial tailoring and inhomogeneity mitigation. For fixed , the
Fourier method is outperformed by the inversion-based method,
which in turn is outperformed by the sparsity-enforced tech-
nique. For all , the sparsity-enforced placement method pro-
duces the lowest RMSE.

When , the RMSE for each method is large, and
the resulting magnetization still highly nonuniform. When

, the sparsity-enforced method, on average, produces an
excitation with 1.32 times lower RMSE relative to the inversion
method. The inversion-based method’s excitations, in turn, have
on average 1.06 times lower RMSE than those due to the Fourier
method. For , the RMSE of the sparsity-enforced and
inversion methods converges, but the resulting pulses are over
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Fig. 4. Bloch-simulated spoke placement algorithm comparisons for mitigating � inhomogeneity in the head-shaped water phantom at 7 T. Error and voltage
statistics versus number of spokes used �� � are shown for the Fourier, inversion, and sparsity-enforced spoke placement methods. Upper-left: RMSE versus � .
Lower-left: maximum error versus � . Upper-right: � versus � . Lower-right: � versus � . For all three algorithms, the duration of a � -spoke pulse is close
to ����� � ���� ms.

8-ms long and thus impractical. Overall, it is clear that the spar-
sity-enforced method produces higher-quality excitations than
the other methods for all practical pulse durations. To see the
strength of the sparsity-enforced method, consider its 21-spoke
5.7-ms pulse with 0.68 RMSE. In order for the inversion method
to produce the same quality excitation, a 29-spoke, 7.8-ms pulse
is required. In other words, the sparsity-enforced pulse achieves
the same quality excitation yet is 1.37 times shorter.

Unlike RMSE, maximum error does not vary smoothly with
, because the algorithms do not explicitly penalize error.

In general, the maximum error curves of the inversion and spar-
sity-enforced methods are similar. The RMS voltages of pulses
generated by each method exhibit a downward trend as in-
creases, because with more spokes, each individual spoke does
not need to be modulated as intensely to form the excitation.
Further, the peak voltages behave more erratically than the RMS
voltages, analogously to how the error fluctuates more than
RMSE. Finally, for , the sparsity-enforced method
often has the lowest voltages among all methods, whereas for

, its voltages are higher.
Fig. 5 depicts the results of each method when .

The left, center, and right columns show the Fourier, inversion,
and sparsity-enforced method’s results, respectively. The top,
middle, and bottom rows depict the simulated excitation be-
fore accounting for transmit profile nonuniformity, the resulting
magnetization after accounting for inhomogeneity, and a 2-D

view of -space showing where each method places its spokes
and how they are traversed in-plane. Metrics are also given in
correspondence with those in Fig. 4. From the top row, one
sees that each method produces an excitation that approximates
the inverse of the nonuniform profile in Fig. 1. Looking at the
middle row, one appreciates the ability of each method to pro-
duce a relatively flat magnetization. The bottom row shows that
the Fourier and inversion methods cluster spokes around dc.
The sparsity-enforced method, however, places its spokes fur-
ther out on the grid, leading to an excitation with 1.28 times
lower RMSE. This improvement is achieved with no increase in
pulse duration and only a moderate voltage increase. The spoke
placement determined by the sparsity-enforced algorithm is not
obvious, but by placing spokes at slightly higher spatial frequen-
cies, the sparsity-enforced method produces a nominal excita-
tion that is less symmetric, better resembling the pointwise in-
verse of the transmit profile than the excitations produced by the
other methods.

2) Single-Channel System Validation: To validate our sim-
ulations, we play the 21-spoke sparsity-enforced pulse from
Fig. 5 on the scanner and perform a GRE readout. Since the
pulse is designed to mitigate both the transmit and receive
profiles, we validate our simulation by analyzing the magnitude
of the readout image. Fig. 6 shows the RF magnitude and
gradients of the 21-spoke pulse, along with the in-plane and
through-plane result from the real system. The through-plane



ZELINSKI et al.: SPARSITY-ENFORCED SLICE-SELECTIVE MRI RF EXCITATION PULSE DESIGN 1223

Fig. 5. Bloch-simulated 21-spoke pulses designed by the Fourier, inversion, and sparsity-enforced spoke placement algorithms for mitigating � inhomogeneity
in the head-shaped water phantom at 7 T. Columns, from left to right: results of the Fourier, inversion, and sparsity-enforced methods. Top row: excitations produced
by each algorithm. Middle row: magnetizations after accounting for the inhomogeneity. Bottom row: 2-D view of �-space illustrating each spoke placement; each
trajectory ends at the center of �-space. The sparsity-enforced pulse produces the lowest-RMSE excitation.

Fig. 6. Experimental result in the head-shaped water phantom on the single-channel 7 T scanner. Here, the 21-spoke sparsity-enforced RF pulse whose simulations
appear in Fig. 5 is played on the actual system. Left: RF waveform magnitude and gradients. Upper-right: in-plane scanner result. Lower-right: through-plane
scanner result. This experimental result closely resembles the Bloch-simulated image in Fig. 5, validating the simulation methodology and proving that the pulse
design process is feasible for use on real systems.

image demonstrates excellent slice selection. Further, there is
a striking resemblance between the in-plane result and simu-
lation (middle row, right column of Fig. 5). Note how Fig. 5
Fourier and inversion-based simulated patterns have two bright
spots slightly north-west and north-east of center, whereas the
simulated pattern and the scanner result in Fig. 6 have only a

single bright spot northeast of center. This close match between
the experimental and simulated result lends strong support to
the simulation method and results.

3) Multichannel System: Bloch-Simulated Spoke Placement
Analysis: Here, each method places 1–40 spokes, and RMSE,

error, , and are calculated for each of the re-
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Fig. 7. Bloch-simulated spoke placement comparisons for forming the dual-vein target on the eight-channel parallel excitation system at 3 T. Error and voltage
statistics versus number of spokes �� � are shown for the Fourier, inversion, and sparsity-enforced placement methods. Upper-left: RMSE versus � . Lower-left:
maximum error versus� . Upper-right: max � across all eight channels versus� . Lower-right: max� across all eight channels versus� . For all algorithms,
the duration of a � -spoke pulse is close to ����� � ���� ms.

sulting 120 pulses and excitations. The goal here is to produce
the dual-vein target in Fig. 3. Since there are 8 channels, the ma-
trices are 8 times larger, e.g., in (18) is now

. For all trials, the inversion method’s Tikhonov value in (15)
is 0.01 and the pulse design Tikhonov term in (4) is 0.01. The
frequency grid is the same as in the single-channel experiment,
so each vector (see Section III-B) is comprised of 289 ele-
ments. With these variables, it takes about 25 min to solve (18)
for one value of .

Analogously to the single-channel experiment, the sparsity-
enforced routine is run for different values of , so
when the method is requested to place spokes, it evaluates
possible placements and chooses the one yielding the smallest
error. Here, in contrast with the single-channel experiment,

. Small values of are necessary because the ap-
plication of to the s results in grids with barely any
energy when .

After these steps, the algorithms place 1–40 spokes and de-
sign pulses for each. Fig. 7 shows the error and voltage metrics
of each method as a function of . The RMSE plot shows that
the sparsity-enforced routine outperforms the other methods.
For , the sparsity-enforced technique, on average,
has 1.18 times and 1.31 times lower RMSE than the Fourier and
the inversion methods, respectively. Consider the sparsity-en-
forced method’s 15-spoke, 7.5-ms pulse with 2.01 RMSE. For
the Fourier method to attain this RMSE, a 26-spoke, 13-ms

pulse is required, i.e., the sparsity-enforced pulse generates the
same quality excitation yet is 1.73 times shorter in duration. In
terms of voltages, all methods exhibit similar trends; this dif-
fers from the single-channel case where the sparsity-enforced
method at times produced higher-voltage pulses. This means
that the sparsity-enforced method produces pulses that yield
higher-quality excitations without significantly increasing pulse
duration, , or .

These error plots also reveal a surprising result: for all , the
inversion method performs worse than the Fourier one, even
though the former was designed to account for pitfalls of the
latter. This differs from the single-channel case of Fig. 4, where
the inversion method outperformed the Fourier one. The inver-
sion method fails here because of the “grid compression” step
explained in Section III-B. This problem does not occur in the
single-channel experiment because in the latter case there is
only a single vector and the compacting of various grids to
form a dense, problematic never occurs.

Fig. 8 shows each method’s excitation and spoke placement
for . Its left, middle, and right columns show the results
of the Fourier, inversion, and sparsity-enforced techniques. The
rows, from top to bottom, depict the simulated excitation mag-
nitude, excitation phase, and spoke placement in . Each
method succeeds, to some extent, in producing the desired exci-
tation, but the sparsity-enforced method produces one that best
resembles the target. Its excitation is better because it is not only
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Fig. 8. Bloch-simulated 15-spoke pulses designed by the Fourier, inversion, and sparsity-enforced spoke placement algorithms for forming the dual-vein target on
the eight-channel system at 3 T. Columns, from left to right: results of the Fourier, inversion, and sparsity-enforced spoke placement methods. Top row: excitation
magnitudes. Middle row: excitation phases. Bottom row: 2-D view of �-space showing each method’s spoke placement; each trajectory ends at the center of
�-space. The sparsity-enforced excitation has the lowest RMSE, � error, � , and � .

Fig. 9. Experimental result in an oil phantom on the eight-channel 3 T system. Here, the 15-spoke sparsity-enforced RF pulse and gradients whose simulation
results appear in Fig. 8 are played on the actual system followed by a GRE readout. This experimental result closely resembles the Bloch-simulated magnitude and
phase of this same waveform in Fig. 8, validating the simulation methodology and showing that the proposed pulse design process is applicable to real multichannel
systems.

less blurry than the others, its lower vein exhibits a degree of
curvature not present in the veins of the other methods. This
leads to the sparsity-enforced method’s 2.01 RMSE, which is
1.18 and 1.24 times lower than those of the Fourier and inver-
sion techniques. The sparsity-enforced method’s spoke place-
ment exhibits the same trend that it did in the single-channel
case: it places spokes at slightly higher spatial frequencies than
the Fourier method. The discussion about the poor performance
of the inversion method (see Section III-B) is bolstered by its
placement shown here: the dense grid causes the inver-
sion-based technique to tightly cluster its spokes around dc, and
because of this, its resulting excitation completely lacks distinct
edges and is only a “lowpass” version of the target in Fig. 3.

4) Multichannel System Validation: Simulation results are
validated by playing the 15-spoke sparsity-enforced pulse on the
system. The magnitude and phase of the center slice are shown

in Fig. 9, corresponding with the simulated images in the right
column of Fig. 8. The experimental and simulated magnitude
images are quite similar: there is a dark ridge in both images
where the two veins intersect, the left vein in both images has
barely any curvature, and the right vein of each image exhibits
slight curvature. The lower-left of the experimental image con-
tains ghosts of the left vein, an artifact not present in the simula-
tion. We believe this occurs because gradient infidelities cause a
spoke to be slightly misplaced in ; this misplaced spoke
ends up modulating spatial frequencies different from those in-
tended, and because the system’s coil profiles are being driven
and superposed to cancel each other out in the majority of the
FOX, this slight deviation perturbs the intended cancellation of
the profiles and creates noticeable artifacts. In other words, com-
manding no flip in most of the FOX while asking for a 10 flip
within two thin veins is an ill-conditioned problem.



1226 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 9, SEPTEMBER 2008

Fig. 10. A: Single-channel� inhomogeneity mitigation experiment: RMSE versus number of spokes �� � when providing the sparsity-enforced method Nyquist-
sampled, 2�-oversampled, and 3�-oversampled frequency grids of candidate locations. Grid oversampling seems to provide little RMSE benefit. B: Eight-channel
system, dual-vein target: RMSE versus � for Nyquist-sampled frequency grids of candidate spoke locations that are �� �� �� �� � � � � ��� �� in size. Each grid
is centered at DC and candidate points extent outward in � and � . The 11� 11 grid yields reasonable RMSE results, suggesting that smaller grids may be used
to decrease runtime. A: Effect of oversampling on RMSE. B: Effect of grid extent on RMSE.

The phase of the experimental image in Fig. 9 resembles the
phase map predicted by the simulation in Fig. 8. On average,
the phase in the left vein differs from that in the right vein by
81.6 , 8.4 off from the ideal 90 separation. The majority of
this 8.4 error occurs where the two veins intersect. In the ideal
target in Fig. 3, we see there is a sharp 90 phase cutoff between
the left and right veins, whereas in the experimental map, there
is a gradual change in phase in this region. This behavior is rea-
sonable: it is unrealistic to think that the real system is capable
of exciting a target with a discontinuity. Besides this difference,
the observed magnitude and phase maps match closely with the
simulated ones, lending credence to the simulation results and
sparsity-enforced pulse design.

5) Sparsity-Enforced Placement: Grid Oversampling Anal-
ysis: We have seen that the sparsity-enforced placement algo-
rithm is superior to the other methods, yielding improvements in
excitation quality with negligible changes to pulse duration and,
at most, moderate increases in voltage. We now investigate how
oversampling the grid of candidate spoke locations affects the
sparsity-enforced algorithm’s RMSE performance. This is done
via simulations in the context of the single-channel system’s in-
homogeneity mitigation scenario. Here, for ,
we run the sparsity-enforced method using the 17 17 Nyquist
grid discussed earlier, along with a 33 33 2 -oversampled
grid and a 49 49 3 -oversampled grid. These oversampled
grids extend out to nearly identical maximum and minimum
spatial frequencies in -space as does the Nyquist grid, so the
only difference among the grids is their oversampling factor.
With other parameters held constant, we run the sparsity-en-
forced method with various s for each grid, design -spoke
pulses, and compute RMSE. The sparsity-enforced method’s
runtime increases when provided the oversampled grids, be-
cause they have roughly 4 and 8 as many candidate loca-
tions than does the Nyquist grid. Fig. 10(A) shows the results
of this Bloch-simulated experiment. Here, RMSE as a function
of oversampling factor is relatively constant, e.g., for ,

, oversampling the grid has no RMSE benefit. For fixed
, RMSE decreases with increasing oversampling

factor, but only slightly.

6) Sparsity-Enforced Placement: Grid Extent Analysis:
We now investigate whether increasing (reducing) the extent
of the grid out to higher frequencies is of any benefit (detri-
ment). Specifically, we alter the extent of the grid used in the
multichannel experiment and measure RMSE. We run the spar-
sity-enforced algorithm using the original Nyquist-spaced
grid, along with Nyquist-spaced grids that are ,
and in size. In terms of runtime relative to the grid, the
sparsity-enforced algorithm runs 5.9, 3.6, 2.4, 1.7, and 1.3 times
faster when the through grids are used, and 1.2 times
slower when the grid is used. For each grid, we sweep over

(like in the earlier experiments) and then compute the RMSE
of various -spoke pulses for . Fig. 10(B)
shows RMSE as a function of grid extent and . Grids of size

and up yield relatively the same RMSE, which means that
runtime may be reduced without a loss of performance by using
smaller grids.

Based on the grid-extent results in Fig. 10(B) and the over-
sampling results in Fig. 10(A), it is sufficient for our applica-
tions to simply pick a Nyquist-sampled grid that extends out a
moderate rather than far distance into -space. There is no need
to extend the grid to high spatial frequencies or oversample it
by even a factor of two. The strength of the sparsity-enforced
algorithm does not come from placing spokes at high or finely-
sampled frequencies, but in simply tuning placements outward
from low frequencies and making slight—but certainly not ob-
vious—alterations to the placements suggested by the Fourier
method.

7) Sparsity-Enforced Placement: Sensitivity Analysis: The
single-channel simulation results presented in Fig. 4 assumed
that a good choice of was known. We now do away with
this assumption, presenting RMSE as a function of and

in Fig. 11. For small , the choice of is cru-
cial in order to best reduce RMSE, but as increases, the algo-
rithm’s sensitivity to decreases significantly. Further, for fixed

, RMSE does not exhibit a consistent trend across .
Fig. 12 depicts the multichannel experiment’s sensitivity re-

sults, showing RMSE as a function of and .
As increases, the RMSE versus curve moves smoothly
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Fig. 11. Single-channel � inhomogeneity mitigation experiment: � sensitivity analysis. The sparsity-enforced spoke placement algorithm’s sensitivity to � is
analyzed when designing pulses comprised of 11, 15, 21, and 25 spokes. As � increases, sensitivity to � decreases. Further, for fixed �, RMSE does not exhibit a
consistent trend across � .

Fig. 12. Eight-channel system, dual-vein target: � sensitivity analysis. The sparsity-enforced spoke placement algorithm’s sensitivity to � is analyzed when de-
signing pulses comprised of 11, 15, and 21 spokes. For fixed �, RMSE decreases smoothly with � , in contrast with the behavior in Fig. 11.

downward. We are unsure why more erratic behavior occurs in
the single-channel context (see Fig. 11).

A fast technique for finding ideal values of is an open
problem. We are investigating several approaches to automated
selection: the “L-curve” method [63], universal parameter se-
lection [64], and min–max parameter selection [65].

8) Runtime: In the single-channel experiments where a
grid is used, it takes approximately 3 min to solve (18) using our
MATLAB SeDuMi implementation on a Linux-based computer
with a 3.0-GHz Pentium IV processor. In the eight-channel case
with the grid, runtime increases nearly linearly to 25 min. In
general, the random-access memory footprint of the SOC pro-
gram ranges from 200–700 MB.

Runtime may be reduced via a multiresolution approach (as
in [30]) by first running the algorithm with a coarse grid, noting
which spoke locations are revealed, and then running the algo-
rithm with a grid that is finely sampled around the locations
suggested by the coarse result. This is faster than providing the
algorithm a large, finely-sampled grid and attempting to solve
the problem in one step. Further, because the desired solution
to the spoke placement problem is sparse and the matrices in-
volved are dense, solving this problem using iterative shrinkage

techniques [66], [67], greedy-pursuit algorithms [25], [52], or
special-purpose solvers (e.g., [68], [69]) may lead to major run-
time improvements.

VII. CONCLUSION

We have introduced a novel algorithm for the design of fast,
slice-selective MRI excitation pulses. The algorithm uses sparse
approximation theory and a second-order cone optimization to
place and modulate a small number of spokes in -space to pro-
duce excitations that are capable of both exciting a thin slice and
tailoring the in-plane magnetization.

The strength of sparsity-enforced spoke placement was
demonstrated by designing fast, slice-selective RF pulses that
mitigated inhomogeneity present in a head-shaped water
phantom on a 7 T single-channel system and that achieved
a complex-valued target pattern using an eight-channel 3 T
parallel excitation system. In both cases, the sparsity-enforced
method outperformed conventional methods, producing ex-
citations with lower RMSE when pulse duration across the
methods was fixed, and producing pulses with significantly
shorter durations when excitation quality across the methods
was fixed. The simulation results presented throughout this
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paper were validated by experiments on both the single-channel
7 T system and the eight-channel 3 T parallel excitation system
and showed that sparsity-enforced pulses are applicable in real
scenarios. Throughout both experiments, the sparsity-enforced
algorithm automated the task of spoke placement and the design
of the corresponding gradients and RF waveforms, yielding
placement patterns that were not obvious and would be difficult
or impossible to design by hand, freeing the designer from the
task of slice-selective pulse design. The algorithm was shown to
be highly robust to the choice of many of its input parameters,
such as the extent and sample spacing of the grid of candidate
spoke locations, and relatively robust to the choice of its spar-
sity-enforcing control parameter, , when larger numbers of
spokes were placed during the single-channel experiments and
in general during the multichannel experiments.

With further investigation into automated selection and fast
sparsity-enforcement algorithms, the sparsity-enforced pulse
design method will have clinical impact in the areas of
inhomogeneity mitigation, multichannel parallel transmission,
high-field imaging, and spatially-selective excitation, all of
which comprise the vanguard of emerging MRI technology.
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