
Guide to the MATLAB code for total variation-based

deblurring with FISTA

Amir Beck and Marc Teboulle

August 11, 2008

1 Overview

The MATLAB codes in this package are aimed at solving denoising problems of the form

min
X

{‖X − B‖2 + 2λTV(X) : l ≤ Xij ≤ u}, (1.1)

and deblurring problems of the form

min
X

{‖A(X) − B‖2 + 2λTV(X) : l ≤ Xij ≤ u}, (1.2)

where

• B ∈ R
m×n is the observed blurred and noisy image of size m × n.

• A : R
m×n → R

m×n is the linear operator corresponding to a spatially invariant PSF of

the blur operation.

• TV (X) : R
m×n → R is a total variation function. Here we consider two possibilities:

the isotropic TV function:

X ∈ R
m×n, TVI(X) =

∑m−1

i=1

∑n−1

j=1

√

(Xi,j − Xi+1,j)2 + (Xi,j − Xi,j+1)2

+
∑m−1

i=1
|Xi,n − Xi+1,n| +

∑n−1

j=1
|Xm,j − Xm,j+1|

and the l1-based TV function:

X ∈ R
m×n, TVl1(X) =

∑m−1

i=1

∑n−1

j=1
{|Xi,j − Xi+1,j| + |Xi,j − Xi,j+1|}

+
∑m−1

i=1
|Xi,n − Xi+1,n| +

∑n−1

j=1
|Xm,j − Xm,j+1|.

• λ - positive regularization parameter.

The functions are based on the paper

1

A. Beck and Marc Teboulle, ”Fast Gradient-Based Algorithms for Constrained

Total Variation Image Denoising and Deblurring Problems”

The package uses functions from the HNO package of Hansen, Nagy and O’leary available

at

http://www2.imm.dtu.dk/~pch/HNO/

which is based on monograph [1]; thus the above package should be uploaded.

The package contains overall 7 functions.

• The denoising function

denoise_bound.m

• The two deblurring functions

deblur_tv_fista.m

deblur_tv_fista_sep.m

• Four auxiliary functions

denoise_bound_init.

Lforward.m

Ltrans.m

tlv.m

2 Examples

2.1 Denoising

We begin by generating an artificial noisy image. For example, we can upload the camerman

test image

>>X=double(imread(’cameraman.pgm’));

>>X=X/255;

The second command is done for scaling reasons. The observed image is created by

adding a white Gaussian noise with standard deviation 0.02.

>>randn(’seed’,314);

>>Bobs=X +2e-2*randn(size(X));

To see the original and noisy images we can write

2

Figure 1: original and noisy camraman

3

>> subplot(1,2,1)

>> imshow(X,[])

>> subplot(1,2,2)

>> imshow(Bobs,[])

The result can be seen in Figure 1.

To find the solution of (1.1) with λ = 0.02 and without constraints (that is, l = −∞, u =

∞) we can invoke the function deblur_bound.m.

>>X_den=denoise_bound(Bobs,0.02,-Inf,Inf);

which gives the following output:

*Solving with FGP/FISTA**

#iteration function-value relative-difference

1 18033.3983075949 1.0000000000

2 18022.1438169810 0.0322767138

3 18017.8747709622 0.0124521604

4 18015.9814844837 0.0068134439

5 18014.9973032615 0.0044135443

6 18014.4157953842 0.0030907351

7 18014.0419606571 0.0023226418

8 18013.7874166548 0.0018098027

9 18013.6030199019 0.0014670563

10 18013.4638592325 0.0012121462

11 18013.3556857452 0.0010447397

12 18013.2689253970 0.0009272101

13 18013.1977138758 0.0008134316

14 18013.1385397451 0.0007347676

15 18013.0890506207 0.0006775458

16 18013.0473047887 0.0006232717

17 18013.0118160498 0.0005836780

18 18012.9817069677 0.0005283921

19 18012.9563792672 0.0005174258

20 18012.9350679263 0.0004878701

21 18012.9170103799 0.0004524497

22 18012.9017521611 0.0004209502

23 18012.8887621048 0.0004020105

24 18012.8775780455 0.0003725634

25 18012.8680448308 0.0003444192

4

26 18012.8598393359 0.0003335878

27 18012.8527732187 0.0003018124

28 18012.8466713236 0.0002872779

29 18012.8413712468 0.0002664523

30 18012.8367365647 0.0002504271

31 18012.8327273928 0.0002307838

32 18012.8292705867 0.0002235472

33 18012.8262661373 0.0002099719

34 18012.8236516003 0.0001995483

35 18012.8213494920 0.0001824696

36 18012.8193160973 0.0001727765

37 18012.8175257967 0.0001587713

38 18012.8159643619 0.0001516038

39 18012.8145778856 0.0001478936

40 18012.8133372617 0.0001356132

41 18012.8122184607 0.0001266768

42 18012.8112147532 0.0001182781

43 18012.8103143747 0.0001120542

44 18012.8095051710 0.0001036115

45 18012.8087901836 0.0000977979

46 18012.8081557185 0.0000971996

47 18012.8075824940 0.0000899283

48 18012.8070711273 0.0000861907

49 18012.8066086322 0.0000836632

The first column is the iteration number, the second is the function value at the corre-

sponding iteration and the last column is the relative difference between subsequent itera-

tions. The default stopping criteria of the function is that it either reaches 100 iterations or

the relative difference in 5 subsequent iterations is no more than 10−4. The denoised image

can be seen in Figure 2

If we wish to solve the constrained problem (1.1) with l = 0.2, u = 0.6 (doesn’t make

much sense of course...), then one should write

>>X_den=denoise_bound(Bobs,0.02,0.2,0.6);

If the goal is to solve the denoising problem with nonnegativity constraints: Xij ≥ 0,

then the appropriate command should be

>>X_den=denoise_bound(Bobs,0.02,0,Inf);

It is also possible to control different parameters of the algorithm by using a parameter

structure. The parameters are

• MAXITER - maximum number of iterations. The default value is 100.

5

Figure 2: denoised camerman

• epsilon - tolerance parameter for the stopping criteria. The default value is 10−4. If

in 5 subsequent iteration the relative difference of the iterations is less than epsilon,

the algorithm is terminated.

• print - If 1 then information on each iteration is given, otherwise, if 0, this information

is suppressed.

• tv - type of tv regularizer. Either ’iso’ for isotropic (default) or ’l1’ for anisotropic

regularizer.

Suppose that we wish to run the algorithm for no more than 10 iterations with l1-based

total variation regularizer. This is done by writing

clear pars

pars.MAXITER=10;

pars.tv=’l1’;

X_den=denoise_bound(Bobs,0.02,-Inf,Inf,pars);

2.2 Deblurring

Now we wish find a solution of problem (1.2) with A representing a blurring operation that

we employed and B is the observed image Bobs. In this demonstration the regularization

parameter λ is chosen to be 10−4. We begin by defining a PSF array. For example, we can

choose a uniform 3 × 3 blur:

>>P=1/9*ones(3,3);

>>center=[2,2];

The blurred and noisy image is constructed by the commands

6

>>randn(’seed’,314);

>>Bobs=imfilter(X,P,’symmetric’)+1e-4*randn(size(X));

Note that here we used reflexive boundary conditions in the blurring operation. The

function deblur_tv_fista.m solves problem (1.2) when the BC are either reflexive or peri-

odic. In the case of reflexive BC, the PSF is assumed to be doubly symmetric (as is the case

in the above example). The deblurring is made by writing

>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf);

The first argument is the observed image; the second and third arguments are the PSF

and its center. The regularization parameter λ is the fourth argument. Finally, the fifth and

sixth arguments are the lower and upper bounds on the pixels’ values. In this example, the

problem is unconstrained. The output is

* Solving with FISTA **

#iter fun-val tv denoise-iter relative-dif

==

1 12.36849 1959.45247 10 0.01759

2 9.92596 2057.89663 10 0.00903

3 8.45815 2144.33237 10 0.00786

4 7.53438 2216.88941 10 0.00691

5 6.92154 2275.74416 10 0.00616

6 6.49816 2322.18490 10 0.00556

7 6.19813 2357.74397 10 0.00505

8 5.98170 2383.70700 10 0.00460

9 5.82386 2401.63869 10 0.00419

10 5.70793 2413.35300 10 0.00381

: : : : :

95 5.30148 2394.46241 6 0.00007

96 5.30147 2394.45419 6 0.00007

97 5.30147 2394.44667 6 0.00006

98 5.30147 2394.43952 6 0.00006

99 5.30147 2394.43348 6 0.00006

100 5.30147 2394.42835 6 0.00006

The first column is the iteration number, the second column is the function value at the

current iteration. The third column is the value of the total variation, the fourth column is

the number of denoising iterations performed at each deblurring step and the fifth column

is the relative difference of the current and previous iterations. The output X_deblur is the

deblurred image. The blurred and deblurred image are seen in Figure 3.

The default number of iterations is 100. If we want the function to execute a different

number of iterations, say 20, we can change this parameter by defining a parameter structure

7

Figure 3: blurred and deblurred cameraman

8

>>clear pars

>>pars.MAXITER=20;

and then run the function with the pars argument

>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);

It is also possible to obtain an array containing all function values by adding a second

output argument:

>>[X_deblur,fun]=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);

There are many parameters that can be manipulated through the parameter structure

(see also ’help deblur_tv_fista_sep’):

• MAXITER - number of iterations of the FISTA method (default=100).

• fig - when this parameter is set to 1 (default), the image at each iteration is shown in

Figure 314. If the value is 0, the visualization is suppressed.

• BC - boundary conditions. Either ’reflexive’ (default) or ’periodic’. If the boundary

conditions are reflexive, then the PSF is assumed to be doubly symmetric.

• tv - type of total variation regularizer. Either ’iso’ for isotropic (default) or ’l1’ for

anisotropic.

• mon - when set to 1 (default) the monotone version of FISTA, namely MFISTA, is

used. Otherwise, when mon=0, the ”standard” nonmonotone version of FISTA is used.

• denoiseiter - maximum number of denoising iterations used at each iteration of the

method (the actual number might be smaller if a stopping criteria is reached). Default

is 10.

For example, if we want to invoke 13 iterations of the nonmonotone version of FISTA with

at most 5 denoising steps at each iteration and with the l1-based total variation regularizer,

we can write

>>clear pars

>>pars.mon=0;

>>pars.MAXITER=13;

>>pars.tv=’l1’;

>>pars.denoiseiter=5;

>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);

Choosing the wrong BC might produce very poor quality reconstructions. For instance,

the current example can be solved using periodic BC, although it was constructed assuming

reflexive BC:

9

Figure 4: deblurring using periodic boundary conditions

>>clear pars

>>pars.BC=’periodic’

>>pars.MAXITER=20;

>>X_deblur=deblur_tv_fista(Bobs,P,center,0.001,-Inf,Inf,pars);

The result is shown in Figure 4.

Another deblurring function in the package is deblur_tv_fista_sep.m which has the

exact same interface as deblur_tv_fista.m. This function is dedicated to separable PSFs.

Therefore, the second argument in the input of deblur_tv_fista_sep.m should be a separa-

ble PSF. If it is not, the function will use a rank one approximation. An important difference

between the separable and non-separable functions is that in the former it is also possible to

use zero boundary conditions and that in the reflexive BC case, the PSF does not necessarily

has to be doubly symmetric.

References

[1] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring images, volume 3 of Fundamen-

tals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 2006. Matrices, spectra, and filtering.

10

