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Abstract

In conventional transform coding, the importance of preserving desirable quantiza-
tion partition cell shapes prevents one from considering the use of a nonlinear change
of variables. If no linear transformation of a given source would yield independent
components, this means having to encode it at a rate higher than its entropy, i.e. sub-
optimally. This thesis proposes a new transform coding technique where the source
samples are first uniformly scalar quantized and then transformed with an integer-
to-integer approximation to a nonlinear transformation that would give independent
components. In particular, we design a family of integer-to-integer approximations to
the Cartesian-to-polar transformation and analyze its behavior for high rate transform
coding. Among the benefits of such an approach is the ability to achieve redundancy
reduction beyond decorrelation without limitation to orthogonal linear transforma-
tions of the original variables. A high resolution analysis is given, and for source
models inspired by a sensor network application and by image compression, simu-
lations show improvements over conventional transform coding. A comparison to
state-of-the-art entropy-coded polar quantization techniques is also provided.
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Chapter 1

Introduction

Transform coding is the method of choice for lossy compression of multimedia content.

It is central to compression standards for audio, image and video coding. Therefore,

we are interested in understanding and, to whatever extent possible, addressing the

limitations of conventional transform coding. From its introduction up to this day, the

conventional transform coding paradigm has been limited to linear transformations for

reasons pertaining mainly to the effect of nonlinear transformations on quantization

partition cells. This thesis introduces a transform coding framework that accommo-

dates nonlinear transformations of the original variables. Specifically, we consider the

problem of high-rate transform coding of polar-separable sources using an integer-to-

integer approximation to Cartesian-to-polar transformations. A detailed analysis and

simulation results show that such an approach indeed provides an improvement over

the conventional one, which limits itself to orthogonal transformation of the original

variables. The hope is that the ideas developed in this thesis will set the stage for a

more comprehensive theory of nonlinear transform coding that would accommodate

arbitrary nonlinear transformations of the original variables.

The foundations of transform coding were laid down in 1963 by Huang and

Schultheiss [11]: a source vector x undergoes a change of coordinates described by a

linear transformation T , is scalar-quantized and subsequently encoded with a fixed-

rate code. Here, we require that the output of the quantizer be scalar entropy-coded

and refer to the resulting encoding structure, which is depicted in Figure 1-1, as

11



source Q(·)T (·)
x y ŷ scalar

entropy
coder

bits

Figure 1-1: A conventional encoder with a continuous-domain transform T : R
N →

R
N . Q(·) is an unbounded uniform scalar quantizer with step size ∆.

conventional transform coding. By scalar entropy coding, we mean that the rate is

measured by the sum of the entropies of the components of ŷ, which is larger than

or equal to the entropy of the corresponding vector (with equality if and only if the

components are independent).

The main features of conventional transform coding are the low computational

complexity of uniform scalar quantization and scalar entropy coding. The 1963 paper

by Huang and Schultheiss regarded T as an invertible linear transformation that pro-

duces uncorrelated transform coefficients. The contemporary view is that T should be

optimized among orthogonal transforms. Intuitively, this is because nonorthogonal

transforms deform the shape of the quantization partition (although to a lesser extent

than nonlinear transforms do). In either of these cases, for jointly Gaussian sources

and under some mild conditions, a Karhunen–Loève transform (KLT) is optimal [7].

Although limited to a specific class of sources, this result highlights some desirable

properties of a transform code. Loosely, a well-behaved transform code should pre-

serve the shape of the quantization partition cells and yield transform coefficients as

close as possible to independent, so that scalar entropy coding can be used with no

penalty in rate. The KLT happens to satisfy both of these conditions in the jointly

Gaussian case. However, for non-Gaussian sources, these may be competing goals.

Indeed, more often than not, any transformation that gives independent components

is not orthogonal; in fact, it may even be nonlinear. Transform coding inherently

suffers from a packing gain lost by scalar quantization. For non-Gaussian sources,

the situation becomes even worse because one is having to separately encode random

variables that are not independent, which we know, from basic information theory

principles, is suboptimal.
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source Q(·)T1(·) U(·)x y ŷ z scalar
entropy
coder

bits

Figure 1-2: A generic encoder with a continuous-domain transform T1 : R
N → R

N

and a discrete-domain transform U : ∆Z
N → ∆Z

N . Q(·) is an unbounded uniform
scalar quantizer with step size ∆.

The above discussion suggests the need of a more general approach to transform

coding that will accommodate both linear and nonlinear transformations. This thesis

proposes to assess the practicality of a theory for nonlinear transform coding by

considering optimal redundancy reduction for sources that are better suited to polar

rather than rectangular coordinate processing.

We start by taking an expansive view of transform coding in which the encoder

performs some signal transformation, uniform scalar quantization, some further signal

transformation, and then scalar entropy coding, as illustrated in Figure 1-2. This

approach to transform coding is inspired by the integer-to-integer (i2i) framework

introduced in [5] but goes much further by allowing U(·) to be an integer-to-integer

approximation to a continuous-domain nonlinear transformation. Note that choosing

T1(·) to be a KLT and U(·) as the identity operator would lead to ordinary transform

coding as in Figure 1-1.

We hypothesize that, for sources separable in polar coordinates, a system where

T1(·) is the identity operator and U(·) an i2i approximation to a Cartesian-to-polar

transformation will outperform conventional transform coding at high-rate.
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Chapter 2

Background

The aim of this chapter is to give an overview of the literature that is relevant to

the proposed thesis. The connection between the generic encoder of Figure 1-2 and

the integer-to-integer transform coding framework introduced in [5] is made precise.

Moreover, we present previous work on ordinary transform coding of Gaussian Scale

Mixtures, a class of sources amenable to our i2i polar framework. The class of i2i polar

transformations developed in this thesis are also reminiscent of recent developments

in entropy-coded polar quantization. We discuss such work to set the stage for a

comparison with our scheme.

2.1 Integer-to-integer (i2i) Transform Coding

In the usual formulation of transform coding as depicted in Figure 1-1, performance is

limited by two characteristics: scalar quantization and scalar entropy coding. With

scalar quantization, to minimize the distortion at high rate the best one can hope

for is a quantizer partition into hypercubes; and with scalar entropy coding, one

desires independent transform coefficients to minimize the rate. Transform coding

has a clean analytical theory for Gaussian sources because these two virtues can

be achieved simultaneously. For other sources, ideal cell shape and independence

of transform coefficients may be competing, and in fact the optimal transform will

generally give neither.

15



For high-rate transform coding of a jointly Gaussian source, it was shown in [5]

that the performance of conventional transform coding can be matched by a system

that first quantizes the source and then implements an i2i approximation to a linear,

non-orthogonal transformation. This encoding strategy is illustrated in Figure 2-1.

For a k-dimensional jointly Gaussian source, the benefit of such a strategy is a k-fold

reduction in memory requirements with no penalty in rate. Such a result is indeed re-

markable. However, we would like to stress that this is not the feature of i2i transform

coding that the proposed thesis hopes to exploit. The superiority of the i2i framework

to the conventional approach stems from the additional degrees of freedom the former

allows in the design of the transform T2(·). Indeed, by allowing quantization to occur

first, one is no longer restricted to orthogonal linear transformations as is the case in

Figure 1-1. As long as it is invertible, T2(·) may be non-orthogonal and even nonlin-

ear. This is precisely what the proposed thesis hopes to build upon. Specifically, for

sources separable in polar coordinates, we anticipate that choosing U(·) in Figure 1-2

as an i2i polar coordinate transformation will lead to the ideal situation of encoding

independent random variables.

Additional intuition about i2i transform coding can be built by considering the

per-component mean-squared error (MSE) distortion at high rate of the encoder in

Figure 1-1 for an N -dimensional source. The said MSE is given by the following

expression [6]:

D =
1

N

1

12
trace

(
T−1(T−1)′

)

︸ ︷︷ ︸

shape

2
2

N

P

N

i=1
h(yi)

︸ ︷︷ ︸

independence

2−2R. (2.1)

Assuming without loss of generality that T is a linear transform with determinant

equal to 1, the equation above highlights two important facts:

1. Orthogonality is good because it minimizes the shape factor over unit-determinant

matrices T .

2. Independence of transform coefficients is good because it minimizes
∑N

i=1 h(yi).
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source
x

Q(·)
x̂

T2(·)
x̂1 scalar

entropy
coder

bits

Figure 2-1: For x jointly Gaussian, the i2i encoder matches the performance of that in
Figure 1-1. T2 : ∆Z

N → ∆Z
N is a discrete-domain transform. Q(·) is an unbounded

uniform scalar quantizer with step size ∆.

The idea in i2i transform coding is that one can avoid the shape factor in (2.1) by

substituting the system of Figure 1-1 with that of Figure 2-1 and setting T2 equal to

an i2i approximation of T obtained through the lifting scheme described in [5]. Es-

sentially, what such a strategy achieves is independence of transform coefficients with

the best possible MSE, while restricting ourselves to computationally easy operations,

namely scalar quantization and scalar entropy coding.

2.2 Gaussian Scale Mixtures (GSMs)

A straightforward statistical description of any vector source could be in terms of

the first and second-order moments of its components. In various signal process-

ing tasks; however, such characterizations may not be sufficient to fully capture the

dependencies between components. For instance, non-Gaussianity as well as statisti-

cal dependence despite uncorrelatedness are salient features of wavelet coefficients of

natural images. In [17], the authors show that GSM models are well suited to fully

capture the statistical intricacies of wavelet coefficients of natural images. More gen-

erally, GSMs have been used to model a variety of sources whose components mainly

exhibit statistical correlations of order higher than two.

Formally, a random vector Y of size N is a GSM if it can be expressed as the

product of a scalar non-negative random variable z and a zero-mean jointly Gaussian

random vector X: Y = zX. The scalar random variable z is known as the multiplier,

and z and X are independent.1

1From this point on, capital letters are used for vector random variables and lower case letters
for scalar random variables
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As a consequence of the above definition, any GSM has density of the form:

fY (Y ) =

∫ ∞

0

1

(2π)N/2|z2KX |1/2
exp

(

−Y T K−1
X Y

2z2

)

fz(z) dz, (2.2)

where KX is the covariance matrix of X.

In what follows, we focus on the case where KX = I. In the two-dimensional case,

the joint density specializes to:

fY (Y ) =

∫ ∞

0

1

2πz2
exp

(

−y1
2 + y2

2

2z2

)

fz(z) dz. (2.3)

There are a number of well-known distributions that can be expressed as GSMs.

In 1D for instance (N = 1), a Rayleigh prior on z (exponential prior on z2) results in

a random variable y which follows a Laplacian distribution [10]. This is also true in

higher dimensions (N > 1): the components of a GSM vector with a Rayleigh prior

on z are marginally Laplacian. However, they are not independent. This is shown in

Figure 2-2 for N = 2, where the left panel shows contours of equal probability for a

2D GSM vector with a Rayleigh prior on z, while the right panel shows those of a

2D vector with independent identically-distributed (iid) Laplacian components. Note

that the components of the 2D GSM vector are uncorrelated but not independent.

Consider the problem of encoding the sources of Figure 2-2 under the conventional

transform coding framework. The wisdom of conventional transform coding tells

us that they should be encoded the same way since they both have uncorrelated

components. While not separable in rectangular coordinates, the 2D GSM vector,

with probability density function as in Equation 2.3, is clearly separable in polar

coordinates and therefore amenable to the i2i polar transform coding scheme proposed

in this thesis.

Ordinary transform coding for GSMs was considered in [14]. Specifically, the

authors showed that, among orthogonal transforms, a particular class of KLTs are

optimal for high rate transform coding of a GSM. One can easily check that no linear

transformation of a GSM will yield independent components. This means that, after

transformation and quantization of a GSM as in Figure 1-1, some dependencies will

18



(a) Uncorrelated Laplacian Components (GSM) (b) Independent Laplacian Components

Figure 2-2: Contours of equal probability for uncorrelated (left) and independent
(right) Laplacian random variables

remain. The latter can only be removed through nonlinear transformations, which

we know are disliked in conventional transform coding. This thesis shows that the

i2i transform coding formulation coupled with knowledge of the polar separability of

GSMs can overcome such a difficulty. The challenge is to design an i2i approximation

to a Cartesian-to-polar transformation that can be used as U(·) in the generic encoder

of Figure 1-2.

2.3 Parametric Audio Coding and Entropy-coded

Polar Quantization

In [4], parametric audio coding (PAC) is cast as an effective technique to address the

non-scalability of conventional speech and transform coding based audio coders to low

rates. The authors argue that transform coders are not optimal for low-rate coding

of audio signals and that, although speech coders could be used instead, they are

too specialized to be effective over a wide range of audio signals. PAC offers a more

flexible alternative which scales to low rates, while accounting for the variety of audio

signals that one may encounter in practice. In PAC, an audio signal is decomposed as
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the sum of a transient component, a noise component and a sinusoidal components.

The parameters relevant to each component are encoded and transmitted to a decoder

whose task is to reconstruct a perceptually-faithful estimate of the input signal based

on prior knowledge of the decomposition model. Efficient encoding and transmission

of the model parameters is therefore essential to the performance of a parametric

audio coder. The question then comes as to what the optimal encoding schemes

are for each of the three components of an audio signal decomposed as in the PAC

framework. In what follows, we focus on the problem of optimal quantization of the

sinusoidal component.

When dealing with sinusoidal signals, two types of representations naturally come

to mind. The first one is a polar representation where the signal is specified by

its magnitude r and its phase θ. The second one is a rectangular representation

where one specifies the coordinates x and y of the signal in Euclidean space. The

transformation from polar to rectangular coordinates is as follows: x = Re{rejθ} and

y = Im{rejθ}. This naturally leads to two possible formulations of the quantizer

design problem: one where the signal is quantized in polar coordinates and the other

where the quantization is performed in rectangular coordinates.

The quantizer design problem can be formulated in two equivalent ways:

• Given a maximum tolerable distortion D, we want to know what minimum

number of bits, R, is required to represent such a signal and whether this is

achieved by polar or rectangular representation of the signal (or neither).

• Stated otherwise, we want to know what amount of distortion, D, we are bound

to incur given that we are willing to spend at most R bits to represent the

signal, and whether the distortion depends on the type of representation chosen

(Cartesian, polar or other).

The rest of the discussion assumes that the second approach is the one adopted to

tackle the quantizer design problem. This very approach was adopted by the authors

in [16] who compare three different ways of quantizing and encoding signals that lend

themselves to both Cartesian and polar representations. Assuming high rate (large

20



R), they derive three quantizer structures as well as their respective performances,

which are given by expressions relating D to R. Note that the constraint on R is

expressed as one on the entropy of the quantizer output. Below is a description of

the said quantizer structures:

1. Entropy-Coded Rectangular Quantization (ECRQ): The signal is specified by

its coordinates x and y in Euclidean space. The encoding process goes as follows:

x and y are first scalar-quantized and subsequently scalar entropy-coded. Note

that x and y are not necessarily independent or identically-distributed. Letting

x̂ and ŷ be the quantized versions of x and y respectively, the quantizer design

problem amounts to minimizing D subject to a constraint on R = H(x̂)+H(ŷ).

This results in the left-most quantizer structure of Figure 2-3. For such a

quantizer structure, D as a function of R is given as follows:

DECRQ =
2−(R−h(x)−h(y))

6
, (2.4)

where h(x) and h(y) are the differential entropies of x and y respectively.

2. Entropy-Coded Strictly Polar Quantization (ECSPQ): Polar representation of

the signal is assumed. The encoding process goes as follows: r and θ are scalar-

quantized and subsequently scalar entropy-coded. Letting r̂ and θ̂ be the quan-

tized versions of r and θ respectively, the quantizer design problem amounts to

minimizing D subject to a constraint on R = H(r̂) + H(θ̂). This results in the

middle quantizer structure of Figure 2-3. The corresponding expression for D

as a function of R (as derived in [16]) is:

DECSPQ = σr
2−(R−h(r)−h(θ))

6
, (2.5)

where h(r) and h(θ) are the differential entropies of r and θ respectively. De-

noting the probability density r by p(r), σr =
√

∫ ∞
0

r2p(r)dr.
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3. Entropy-Coded Unrestricted Polar Quantization (ECUPQ): Polar representa-

tion of the signal is assumed. The encoding structure is specified as follows: r

and θ are first scalar-quantized and then jointly entropy-coded. The quan-

tizer design problem amounts to minimizing D subject to a constraint on

R = H(r̂, θ̂). This results in the right-most quantizer structure of Figure 2-

3. The corresponding expression for D as a function of R (the derivation of

which can be found in [16]) is:

DECUPQ =
2−(R−h(r)−h(θ)−b(r))

6
, (2.6)

where b(r) =
∫ ∞
0

p(r) log2(r)dr.

Important facts to note about all three quantization schemes are:

• Each of the three quantizer structures can be expressed as the product of two

scalar quantizers. This means that they have low computational complexity,

which makes them attractive when compared to a vector quantizer.

• It is a well-known result that uniform scalar quantizers are optimal for high rate

entropy-coded quantization of a scalar random variable [8]. This latter fact is

reflected in Figure 2-3.

• The authors of [16] show that ECUPQ and ECRQ achieve the same performance

for high rate quantization of a two-dimensional jointly Gaussian source with

independent, identically-distributed components. ECSPQ achieves the worst

performance of all three quantization schemes.

By allowing phase resolution to increase with magnitude, ECUPQ is able to main-

tain close-to-square quantization cells, which, if we restrict our attention to outermost

cells, have lower second moments than their counterparts in ECSPQ. Since distor-

tion is proportional to the second moment of quantization cells, this translates into

lower distortion at a given rate for ECUPQ. The i2i polar transforms developed in

this thesis are able to achieve strictly square quantization cells while allowing polar
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Figure 2-3: As reproduced from [16], partitions of the input space for ECRQ (left),
ECSPQ (middle) and ECUPQ (right)

representation of the data. It would therefore be interesting to compare the i2i polar

transform coding scheme to ECUPQ in terms of their coding performance.
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Chapter 3

I2I Polar Coordinates

In an information-theoretic sense, it is suboptimal to separately encode the compo-

nents of a source whose components are not independent. If no linear transformation

of the source would yield independent components, one may need to consider using a

nonlinear change of variables. However, as developed in Chapter 1, nonlinear trans-

formations are disliked because of their effect on the quantization partition. In that

chapter, we also made the case for i2i transform coding by highlighting its ability

to overcome the undesirable effect of nonlinear transforms on quantization partition

cells in the conventional transform coding framework. In this chapter, we develop

an i2i approximation to the Cartesian-to-polar transformation and show its superior-

ity to the conventional approach for transform coding of sources separable in polar

coordinates.

3.1 Designing the Transform

Consider a two-dimensional vector X with components x1 and x2—these may corre-

spond to pairs of proximate wavelet coefficients modeled by a GSM as in Section 2.2.1

If X has independent or nearly independent radial and angular components, we hy-

pothesized earlier that scalar quantization followed by an i2i approximation to the

1note that restricting KX in (2.2) to be the identity matrix is without loss of generality as we
shall see in Chapter 4.
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Cartesian-to-polar transformation (as in Figure 1-2) could do better at coding such

a source than the conventional approach (Figure 1-1). Note that in Figure 1-2, T1(·)
can be omitted because the components of the source considered are already uncor-

related. Here, we test our hypothesis by considering the design of a family of i2i

approximations to the Cartesian-to-polar transformation.

Let (x̂1, x̂2) = ([x1]∆, [x2]∆), where ∆ is the step size of the uniform scalar quan-

tizer used in both dimensions and [·]∆ denotes rounding to the nearest multiple of

∆. Note that (x̂1, x̂2) ∈ ∆Z
2, which is the same as saying that (x̂1/∆, x̂2/∆) ∈ Z

2.

The design of our i2i polar transform therefore amounts to a relabeling of the integer

coordinate pairs (x̂1/∆, x̂2/∆) into integer pairs (P, A), where P and A represent our

discrete “pseudoradius” and angle variables respectively. In order to avoid loss of

information, the mapping from (x̂1/∆, x̂2/∆) to (P, A) should be invertible.

Note that simply quantizing a polar coordinate representation will not work. Let

r =
√

(x̂1/∆)2 + (x̂2/∆)2 and θ = tan−1 [(x̂2/∆)/(x̂1/∆)]. Further assume A ∈
{0, 1, . . . , M − 1} with M ∈ Z

+. For illustration, one can easily check that

(P, A) = ([r]1,

⌊
M

π
[tan−1 [(x̂2/∆)/(x̂1/∆)] mod π]

⌋

)

is not invertible. Instead of trying to find an approximation to (r, θ) that is invertible

on ∆Z
2, we adopt a sorting approach as follows:

• Divide Z
2 into M disjoint discrete angle regions by choosing

A =
⌊

M
π

[tan−1(x̂2/x̂1) mod π]
⌋
.

• Within each angle region (except the zeroth), the (x̂1/∆, x̂2/∆) pair with small-

est value of r =
√

(x̂1/∆)2 + (x̂2/∆)2 is assigned “pseudoradius” P = 1. In the

case of the zeroth region, the origin is the point with smallest value of r; its

corresponding “pseudoradius” is P = 0. The remaining values of P are assigned

by going through each point in increasing order of r and incrementing the value

of P at each step; ties are broken by any deterministic rule.
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The above construction is illustrated in Figure 3-1 for different values of M . By

construction, such a mapping is invertible. The main drawback of such an approach

is the lack of a simple expression for the mapping from (x̂1/∆, x̂2/∆) to (P, A).

3.2 High Resolution Analysis

The key feature of the i2i approach is that any invertible transformation of ŷ can be

used without affecting the distortion. Thus to consider our performance analytically,

we only need to approximate the rate, i.e., the entropies H(P ) and H(A).

Approximating H(A) is not difficult or interesting. In our examples, A is uniformly

distributed on {0, 1, . . . , M − 1} so H(A) = log2 M .

To evaluate H(P ) directly, we would need the probability mass function of P , but

this is difficult to relate to fx1,x2
precisely because of the complicated mapping from

(x̂1, x̂2) to (P, A). Instead, we relate H(P ) to some relevant differential entropy. This

is summarized in the following theorem:

Theorem: Let X be a two-dimensional vector with components x1 and x2 in rect-

angular coordinates. If the polar coordinate representation (r, θ) has independent

components, then

H(P ) ≈ h(r2) + log2(π/M) − 2 log2 ∆, (3.1)

with vanishing relative error as ∆ → 0.2

Proof : We obtain (3.1) by relating P to the uniform quantization (with unit step

size) of a continuous-valued quantity πr2/(M∆2).

Consider the cell of area ∆2 centered at (x̂1, x̂2) as shown in the left panel of

Figure 3-2, and denote the “pseudoradius” label of the cell by P = k. We associate

it with a section of a ring, also with area ∆2, as shown in the right panel.

2This seems to be a good approximation even if r and θ are not independent; a precise statement
would require M to grow as ∆ shrinks.
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(a) M = 8

(b) M = 11

(c) M = 16

Figure 3-1: Visualizing i2i Polar Coordinates, (a) M = 8, (b) M = 11, (c) M = 16.
The left panel shows cells with equal discrete radius P with the same color. The right
panel shows regions of constant discrete angle A with constant color.
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x̂1x̂1

x̂2x̂2

Figure 3-2: For high-resolution analysis of H(P ), a square cell with area ∆2 (left
panel) is replaced by a portion of a ring with area ∆2 (right panel) as shown. The
analysis finds the radius and thickness of the ring as a function of P .

When (a) ∆ is small; (b) r has a smooth density; and (c) r and θ are indepen-

dent, then the probabilities of the two regions are equal.3 We obtained the desired

approximation by equating two estimates of the area of the wedge bounded by an

arc going through (x̂1, x̂2). First, because of the point density 1/∆2, the area should

be approximately k∆2; we have simply counted points that are assigned smaller P

values. On the other hand, the area is πr2
k/M , where rk is the distance from the

origin to the point of interest. Equating the areas,

k ≈ πr2
k

M∆2
.

Thus, the (integral) P values are approximately the same as what would be obtained

by rounding πr2/(M∆2) to the nearest integer. This completes the proof. We validate

the above proof by considering the case where x1 and x2 are i.i.d, zero-mean Gaussian

random variables with variance σ2.

Example: Suppose x1 and x2 are i.i.d., zero-mean Gaussian with variance σ2. In

polar coordinates we have r2 exponentially distributed with mean 2σ2. Using standard

3Requirements (b) and (c) could be replaced with smoothness of the joint density of r and θ if
the angular extent were small.
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differential entropy calculations [3], one can evaluate as follows:

h(x1) + h(x2) = 1
2
log2(2πeσ2) + 1

2
log2(2πeσ2) bits

[
h(r2) + log2(π/M)

]
+ H(A) = [log2(2eσ

2) + log2(π/M)] + log2 M bits.

Our high-resolution analysis thus implies

H(x̂1) + H(x̂2) ≈ H(P ) + H(A),

as we would expect.

For sources that are independent in polar coordinates but not in Cartesian coor-

dinates, we will obtain H(P ) + H(A) < H(x̂1) + H(x̂2).

In what follows, we use the result from the above proof to compute the distortion-

rate performance of the i2i polar scheme. Let R = H(P ) + H(A) be the entropy

constraint on the encoding and D = E[(x1 − x̂1)
2 + (x2 − x̂2)

2] = ∆2

6
be the mean-

squared error (MSE) resulting from scalar quantization of x1 and x2 (and consequently

from the i2i polar scheme since the transformation from (x̂1, x̂2) to (P, A) is lossless).

Then for large P ,

R = H(P ) + H(A)

= h(r2) + log2(π/M) − 2 log2 ∆ + h(θ) − log2(2π/M)

= h(r2) + h(θ) − 2 log2 ∆ − 1

= h(r) + E

[

log2

∣
∣
∣
∣

d

dr
(r2)

∣
∣
∣
∣

]

+ h(θ) − log2 ∆2 − 1

= h(r) + 1 + E[log2 r] + h(θ) − log2 ∆2 − 1

= h(r) + E[log2 r] + h(θ) − log2 ∆2,

where the fourth equality follows from well-known properties of the differential en-

tropy of functions of a random variable [3].

Rearranging the above equation gives the following expression for D as a function
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of R:

D =
2−(R−h(r)−h(θ)−b(r))

6
, (3.2)

where b(r) =
∫ ∞
0

p(r) log2(r)dr.

Note that the high-rate performance of the i2i polar scheme does not depend on

the number of angle regions M , as can be seen from (3.2).

The analysis, in layman’s terms: An alternative way of deriving the high-

resolution performance of the proposed i2i polar scheme is by considering the area

covered by the event {P ≤ k}. We use Figure 3-2 as a visual aid to estimate the

said area. Loosely, the calculation amounts to finding the aggregate probability of M

wedges with roughly k quantization cells of area ∆2 per wedge and equating it to the

area of a circle with radius rk:

M × k∆2 = πr2
k.

Rearranging the above, we arrive at the same conclusion as in the more sophisti-

cated high-rate analysis,

k ≈ πr2
k

M∆2
.

This completes the analysis of the i2i polar scheme. Next, we present results of

numerical simulations that validate the analysis above.

3.3 Results

In this section, we validate the i2i polar transform coding approach on an idealization

of a class of sources inspired from sensor networks as well as on examples of Gaussian

scale mixtures. We show the superiority of the i2i polar scheme to the conventional

approach through Monte Carlo simulation. We also verify that the simulation results

are in agreement with the performance predicted by the high-rate analysis. Last but

not least, we compare our approach to entropy-coded unrestricted polar quantiza-
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tion (ECUPQ) and entropy-coded strictly polar quantization (ECSPQ) using results

from [16]. The i2i polar scheme achieves the same performance as ECUPQ both for

GSMs and the source inspired from sensor networks. It achieves the same perfor-

mance as ECSPQ on the sensor network example but significantly outperforms it for

GSMs.

3.3.1 Numerical Results for GSM Examples

We present results for two examples of GSMs, one with a Rayleigh prior on z (expo-

nential prior on z2) and the other with an exponential prior on z.

Exponential prior on z2 (Rayleigh prior on z)

If z2 is an exponential random variable with parameter λ, it can be easily shown that

z follows a Rayleigh distribution with parameter 1√
2λ

, denoted as R( 1√
2λ

). Assume

a 2D GSM vector Y with multiplier z ∼ R( 1√
2λ

). Then each of its components, y1

and y2, follows a Laplacian distribution with parameter
√

2λ, which we denote as

L(
√

2λ) [10]. It is straightforward to see, from the definition of a GSM, that y1 and

y2 are uncorrelated but not independent. It can also be easily verified that their joint

pdf is separable in polar coordinates (2.3). In particular, the phase, θ, is uniformly

distributed between 0 and 2π (denoted as U([0,2π])) and the pdf of the radius, r, can

be obtained in closed-form from (2.3):

fr(r) = 2λrK0(
√

2λr),

where K0(
√

2λr) is a modified Bessel function of the second kind.

In what follows, we assume, without loss of generality, that λ = 1. The above infor-

mation on the marginal pdfs allows us to derive h(y1), h(y2) and h(θ) in closed-form.

Using numerical integration when needed, we were able to compute or approximate
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h(r), b(r) and σr. Below is a summary of the values for these parameters:

h(y1) =
1

2
log2(2e

2)

h(y2) =
1

2
log2(2e

2)

h(θ) = log2 2π

h(r) ≈ 1.505

b(r) ≈ −0.338

σr ≈
√

2.

Putting all of the above together yields the following expressions for the perfor-

mance of various entropy-coding techniques applied to a GSM with an E(1) prior on

z2:

DECI2I(R) ≈ 14.11
2−R

6

DECUPQ(R) ≈ 14.11
2−R

6

DECRQ(R) ≈ 14.78
2−R

6

DECSPQ(R) ≈ 25.22
2−R

6
.

Simulation results for the source considered in this sub-section are reported in Fig-

ure 3-3. The figure shows that, at high rate, both ECI2I and ECUPQ (red curve)

outperform the conventional transform coding approach denoted as ECRQ (black

curve) and are very close to optimal (green curve), namely to the performance that

could be obtained by scalar quantization followed by joint entropy coding. At low

rate, the (P, A) = (0, 0) point has high probability and thus merits special attention.

To improve the low-rate performance, we do not encode A when P = 0. The rate of

this encoding strategy is H(P ) + P (P 6= 0)H(A | P 6= 0). Regardless of whether this

adjustment is made, the i2i polar approach outperforms the conventional one at high

rate. While the improvement is relatively small, it should be noted that it is for a

source for which no improvement was thought possible with transform coding [14].
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Figure 3-3: Simulation results. M = 8 and a range of rates is obtained by varying ∆.

In Figure 3-4, we compare simulation results to the performance predicted by the

high-rate analysis. As can be seen, the simulation results agree well with theory.

Figure 3-5 shows a comparison, from analytical results, between ECI2I and EC-

SQPQ. The latter significantly outperforms the former at high rate. In fact, the ratio

of distortions at high rate is given by:

DECSPQ

DECI2I

=
σr

2b(r)
≈ 1.79.

Both ECI2I and ECUPQ aim at maintaining quantization partition cells that are

as close as possible to squares (in ECI2I, the quantization partition cells are exact

squares), while the cells that result from ECSPQ become further away from squares

as one gets further away from the origin. Therefore, the outermost cells resulting

from ECSPQ have higher second-order moments than those induced by ECI2I and

ECUPQ, which translates into higher distortion (at the same rate).

It is also interesting to note that the performance gain does not depend on the

value of the parameter λ of the GSM multiplier z. This is portrayed in Figure 3-6,

which shows that the ratios DECSPQ/DECI2I and DECRQ/DECI2I are constant as a
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Figure 3-4: Comparing Monte Carlo simulation of i2i Polar transform coding (M = 8)
to the performance predicted by the high-rate analysis

function of λ. This is relevant to the image coding motivating example where the

multiplier z of the GSM would depend on the subbands from which parent and child

pairs of wavelet coefficients are extracted. Figure 3-6 essentially tells us that, at high

rate, the ratio of the distortions considered above would be the same regardless of

the subbands from which parent and child are extracted.

Exponential prior on z

Calculations of differential entropies and of the parameters required to compute the

analytical distortion-rate performance were not as tractable for this GSM as they

were for the one considered in the previous subsection. To the best of our knowledge,

the marginal pdfs of y1 and y2 do not admit a closed-form, which means that we were

not able to compute h(y1) and h(y2) or even estimate them. Although the pdf of the

radius, r, has a closed-form, not all of the parameters that depend on it are easy to

obtain, even through numerical integration. Indeed, we were able to estimate b(r)

and σr but not h(r). Below is a summary of the marginal pdfs and parameters we
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Figure 3-5: Analytical Comparison of i2i Polar transform coding to ECSPQ at high
rate
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Figure 3-6: Ratio of distortions at high rate as a function of λ
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were able to obtain for this GSM:

fθ(θ) =
1

2π

h(θ) = log2 2π

fr(r) = G3,0
0,3




λ2r2

8

∣
∣
∣
∣
∣
∣

−
1/2, 1/2, 0





b(r) ≈ −0.749

σr ≈ 2,

where G3,0
0,3



λ2r2

8

∣
∣
∣
∣
∣
∣

−
1/2, 1/2, 0



 is an instance of the Meijer G-function, which is a

very general function that reduces to simpler well-known functions in many cases [15].

Considering all of the above, our results in this section are in the form of Monte

Carlo simulation as well as the ratio of distortions of ECI2I and ECSPQ.

Simulation results are reported in Figure 3-7. The figure shows that, at high rate,

both ECEI2I and ECUPQ (red curve) outperform the conventional transform coding

approach denoted as ECRQ (black curve) and are very close to optimal (green curve),

namely to the performance that could be obtained by scalar quantization followed by

joint entropy coding. We adopted the same strategy as in the previous subsection

to improve the low-rate performance. Note that for this particular GSM, the gain

from ECI2I over ECRQ is much larger than in the previous subsection. This is also

reflected in the ratio of distortions of ECI2I and ECSPQ:

DECSPQ

DECI2I
≈ 3.36.

The intuition behind such a significant gain follows an argument along the lines of

the one put forth in the previous subsection: outermost quantization cells in ECSPQ

are further away from squares than in ECI2I and ECUPQ, which translates into higher

contribution to overall distortion from such cells. The gain is larger in this case (3.36

vs. 1.79) because the pdf of the radius decays slower, which means that outermost
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Figure 3-7: Simulation results. M = 8 and a range of rates is obtained by varying ∆.

ECSPQ quantization cells have more probability mass associated with them than in

the example of the previous subsection.

3.3.2 Numerical Results for Sensor Networks Example

Consider a network of nodes that track one or more objects using a range-only sensing

modality. If the nodes share their (low-quality, range-only) measurements, object

locations can be estimated precisely by multilateration. Suppose a central processing

unit performs the multilateration and sends (high-quality) location estimates back to

non-central nodes. What is the nature of the source coding problem at the central

node (transmitter)?

The most efficient communication is achieved when the transmitter uses the re-

ceiver’s conditional object location density, where the conditioning is on the receiver’s

own measurement. Because range measurements are taken, these conditional densi-

ties are highly non-Gaussian and much more amenable to polar coordinates than

Cartesian coordinates. An example, reproduced from [13], is shown in Figure 3-8.

(This source coding problem is not considered in [13].)
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Figure 3-8: A depiction, reproduced from [13], of a highly non-Gaussian distribution
that arises in a localization problem with ranging sensors. The distribution is very
complicated, but is well-suited to a polar coordinate representation.

Motivated by a localization problem described above, we consider a source with

density similar to that observed in Figure 3-8. Specifically, we chose θ uniformly dis-

tributed on [0, π] and r =|L(5)+ 4|, where L(5) denotes a Laplacian random variable

with parameter equal to 5. The motivation behind such a choice stems from the fact

that we want the joint density to be peaky around some particular radius; a shifted

Laplacian random variable seemed like a reasonable choice. Taking the absolute value

enforces the fact that r must be non-negative.

Below is a summary of pdfs and relevant parameters that we are able to obtain,

either in closed-form or through numerical integration, for the source described above:

fθ(θ) =
1

π

h(θ) = log2 π

fr(r) =
5

2
(e−5|r−4| + e−5|x+4|)

h(r) ≈ −0.121

b(r) ≈ 2

σr ≈ 4.

Simulation results are reported in Figure 3-9. The figure shows that, at high rate,

both ECEI2I and ECUPQ (red curve) outperform the conventional transform coding

approach denoted as ECRQ (black curve) and are very close to optimal (green curve),

namely to the performance that could be obtained by scalar quantization followed by

joint entropy coding. We adopted the same strategy as in the previous subsection to
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Figure 3-9: Simulation results. M = 8 and a range of rates is obtained by varying ∆.

improve the low-rate performance. Note that for this particular source, the gain from

ECI2I over ECRQ is much more important than in the case of GSMs.

In Figure 3-10, we compare simulation results to the performance predicted by

the high-rate analysis. As can be seen, the simulation results agree well with theory.

Figure 3-11 shows a comparison, from analytical results, between ECI2I and EC-

SQPQ. As can be seen, the high-rate performance of both schemes is the same. In

fact, the ratio of distortions at high rate is approximately 1:

DECSPQ

DECI2I

≈ 1.

The model we chose as representative of the distribution shown in Figure 3-8 is

characterized by a peak at r = 4 as well as the low variance of its radial component.

This means that it does not matter whether phase quantization depends on magnitude

or not, which explains why ECI2I/ECUPQ and ECSPQ have approximately the same

performance at high rate. Intuitively, outermost quantization cells of ECSPQ have

very low probability mass associated with them, which means that their not being

close to squares does not affect overall distortion as much as it did for GSMs.
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Figure 3-10: Comparing Monte Carlo simulation of i2i Polar transform coding (M =
8) to the performance predicted by the high-rate analysis
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Figure 3-11: Analytical Comparison of i2i Polar transform coding to ECSPQ at high
rate
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Chapter 4

Generalizations of

Integer-to-integer Polar

Coordinates

Thus far, we have limited our treatment of i2i polar transform coding to two dimen-

sions mainly due to the simplicity of the manipulations involved at that level. We

have also assumed that the sources we wish to encode have uncorrelated components.

In this section, we touch on how i2i polar transform coding may generalize to higher

dimensions and show that the restriction to sources with identity covariance matrix

is without loss of generality. Moreover, the ability to perform lossless polar coding is

presented as a direct application of i2i polar transform coding.

4.1 Generalization to Higher Dimensions

In the general n-dimensional case, a source is said to be spherically symmetric if its

probability density function can be expressed as the product of a term that depends

on the magnitude r only and n−1 angle terms (a latitude term θ1 and n−2 longitude

terms θi, i = 2, 3, ..., n − 1). Mathematically, this is expressed as follows:

p(r, θ1, θ2, ..., θk−1) = p(r)p(θ1)p(θ2)...p(θk−1),
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where

r ∈ [0,∞)

θ1 ∈ [0, 2π]

θi ∈ [0, π], i = 2, 3, ..., n − 1

When going from 2D to higher dimensions, the only difference is that there are

new angle variables that all take values in [0, π].

A 3D Example: Let x1, x2 and x3 be three independent, jointly Gaussian random

variables, each with zero mean and unit variance. Using well-known rules for com-

puting the joint probability density function of transformations of random variables,

it can be shown that, in spherical coordinates, r is a Maxwell random variable with

parameter 1, θ1 is uniformly distributed in [0,2π] and fθ2
(θ2) = sin(θ2)/2. Moreover,

r, θ1 and θ2 are independent.

The idea behind i2i polar coordinates in higher dimensions is to break Z
n into M

disjoint wedges, each corresponding to a discrete angle region as in Figure 3-2 (but

in a higher dimensional space), and repeat the procedure outlined in section 3.1 for

the design of the i2i polar transformation.

4.2 Generalization to Sources Separable in Extended

Polar coordinates

Definition: Assume a two-dimensional source vector X whose components x1 and

x2 are uncorrelated with respective variances σ2
1 and σ2

2 . Further assume a 2 × 2

diagonal matrix D with elements 1/σ1 and 1/σ2. X is said to be separable in extended

polar coordinates if the polar representation of Y = DX has independent components.

Example: Let X in the definition above be jointly Gaussian and (r, θ) be its polar

representation. The Jacobian of the transformation from X to polar coordinates is
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Q(·) D̂(·) U(·)x yx̂ z scalar
entropy
coder

bits

Figure 4-1: An encoder for a polar-separable source with arbitrary covariance matrix
with a discrete-domain transform D̂ : ∆Z

N → ∆Z
N and an integer-to-integer polar

transform U : ∆Z
N → ∆Z

N . Q(·) is an unbounded uniform scalar quantizer with
step size ∆.

given by JX = r. It can be easily checked that the polar representation of X does

not have independent components. The polar representation of Y = DX, on the

other hand, does have independent components. Indeed, the Jacobian of the latter

transformation is given by JX = σ1σ2r, from which it is straightforward to verify that

X is separable in extended polar coordinates.

Let X be an two-dimensional source vector belonging to the class of sources sep-

arable in extended polar coordinates and let KX denote its covariance matrix. To

encode such a source under the i2i polar transform coding framework, we reduce

it, as mathematicians would say, to a previously solved problem (Section 3.1). Let

Y = DX, where D is a transformation of X such that KX = I, the identity operator.

D is a 2×2 matrix which, in general, is nonorthogonal. Just like nonlinear transforms,

nonorthogonal transforms are also disliked in conventional transform coding because

they tend to deform the quantization partition (although to a smaller extent). To

overcome such an issue, we invoke the linear i2i transform coding framework devel-

oped in [5], which is based on the result that any 2 × 2 matrix with determinant 1

can be implemented such that it is invertible on ∆Z
2 through the lifting scheme. A

more extensive treatment of matrix factorizations that are possible through the lifting

scheme can be found in [9].

In summary, a source X separable in extended polar coordinates should first

be quantized and then transformed through an i2i approximation, D̂, to D, which

reduces our problem to that previously solved for polar-separable sources with identity

covariance matrices (Figure 4-1).
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4.3 Lossless Coding with Integer-to-integer Polar

Coordinates

The problem of compressing two-dimensional discrete-domain data is one that has

long been of interest to the source coding community. In their pioneering work [1],

Bruekers and van den Eden proposed a framework that allows perfect inversion and

perfect reconstruction in filter banks. Later work by Calderbank et al. [2] developed

integer-to-integer versions of wavelet transforms and showed promising applications

to image coding. More recently, a general matrix factorization theory for reversible

integer mapping of invertible linear transforms was developed in [9]. Such a theory

forms the basis of the integer-to-integer transform coding framework introduced in [5],

although not available then in the form presented in [9].

This brief, and by no means exhaustive, review of the integer-transforms litera-

ture shows that reversible mappings that map integers to integers play an important

role in transform coding. To our knowledge, prior work on lossless transform cod-

ing has focused on developing integer-to-integer versions of underlying continuous-

domain linear transformations. This is mainly because continuous-domain nonlinear

transformations are not of much interest in conventional transform coding, let alone

integer-to-integer versions of such transformations.

We have previously shown that ECI2I and ECUPQ have the same distortion rate

performance for coding of two-dimensional continuous-domain data that is amenable

to polar coordinates. Consider now the problem of efficiently encoding two-dimensional

discrete-domain data that is amenable to polar coordinates. The standard approach

would be to interpolate the data in polar coordinates, thereby introducing error/loss,

and then use an appropriate entropy-coded polar quantization technique (such as

ECUPQ or ECSPQ). An alternative approach is to employ the family of i2i polar

transformations introduced in this thesis, followed by scalar entropy coding of “pseu-

doradius” and angle. The latter approach has the advantage of being lossless, while

exploiting the suitability of the data to polar-coordinate processing. Indeed, the
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saving in bits would still be:

H(P ) + H(A) − H(x̂1) − H(x̂2) ≈ h(r) + E[log2 r] + h(θ) − h(x1) − h(x2),

as predicted by the high-rate analysis. However, the total distortion is now zero,

as opposed to what is given in (3.2). Note that the bit saving is given in terms of

continuous-domain data because we can assume that the discrete-domain data was

obtained by quantization (with step-size ∆ = 1) of some underlying continuous source

specified by the pairs (x1, x2) in Euclidean space and (r, θ) in polar coordinates.
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Chapter 5

Discussion

In conventional transform coding, the desire to preserve the shape of quantization

partition cells as well as have the luxury of encoding independent quantities are

competing goals. Integer-to-integer transform coding is a method that aims at si-

multaneously achieving both of these goals by allowing quantization to occur first

and then implementing an invertible integer-to-integer approximation to a possibly

nonlinear transformation that will yield independent components. Inspired by the

integer-to-integer (i2i) framework [5], this thesis introduces the generic encoder of

Figure 1-2 for nonlinear transform coding of polar separable sources. Specifically, we

design an integer-to-integer approximation to the Cartesian-to-polar transformation

and analytically show its superiority to the conventional approach (shown in Fig-

ure 1-1) for high-rate transform coding of polar-separable sources. The claim is that

i2i polar transform coding is optimal for high-rate transform coding of sources sep-

arable in polar coordinates, where optimality is measured by the performance that

could be achieved by uniform scalar quantization (in rectangular coordinates) fol-

lowed by joint entropy coding. Our analysis is supported by simulation results on an

example of sources borrowed from sensor networks applications, as well as Gaussian

scale mixtures (GSMs), a class of sources for which no improvement was previously

thought possible under the conventional transform coding paradigm [14]. Moreover,

comparisons to entropy-coded polar quantization techniques show that the high-rate

performance is the same as that of entropy-coded unrestricted polar quantization
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(ECUPQ) at arguably lower complexity [16]. We also show that the i2i polar scheme

outperforms entropy-coded strictly polar quantization (ECSPQ) on two examples of

GSMs and does equally-well on the source inspired from sensor networks applications.

The main drawback of our approach is that the transformation is designed through

a sorting procedure rather than being given by a simple expression.

Our results, however, may set the stage for a more comprehensive theory of non-

linear transform coding. Indeed, a question that is implicitly asked in our treat-

ment is the following: given two independent random variables y1 = f(x1, x2) and

y2 = g(x1, x2), how can one approximate the mapping (x1, x2) 7→ (y1, y2) such that

it is invertible on ∆Z
2? A satisfactory answer to this question will facilitate nonlin-

ear transform coding. Results from nonlinear independent component analysis (ICA)

suggest a way to approach the general problem posed above. If the space of functions

f and g is not limited, the authors in [12] show that there exists infinitely many

functions f and g to choose from. However, under mild conditions on f and g, they

also show that the following mapping will always result in random variables y1 and

y2 that are jointly uniformly distributed on [0, 1]2:

Y1 = Fx1
(X1)

Y2 = Fx2|X1
(X2|X1)

where X1, X2, Y1 and Y2 are realizations of x1, x2, y1 and y2 respectively.

Now that we have reduced the number of candidate functions f and g to the above

two, the nonlinear transform coding problem becomes that of finding a generic way

of approximating the above mapping so that it is invertible on ∆Z
2.
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