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R
ecent results in compressive sampling have shown that sparse signals can be
recovered from a small number of random measurements. This property
raises the question of whether random measurements can provide an effi-
cient representation of sparse signals in an information-theoretic sense.
Through both theoretical and experimental results, we show that encoding a

sparse signal through simple scalar quantization of random measurements incurs a sig-
nificant penalty relative to direct or adaptive encoding of the sparse signal. Information
theory provides alternative quantization strategies, but they come at the cost of much
greater estimation complexity.
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BACKGROUND

SPARSE SIGNALS
Since the 1990s, modeling signals through sparsity has emerged
as an important and widely applicable technique in signal pro-
cessing. Its most well-known success is in image processing,
where great advances in compression and estimation have come
from modeling images as sparse in a wavelet domain [1].

In this article we use a simple, abstract model for sparse
signals. Consider an N-dimensional vector x that can be repre-
sented as x = Vu, where V is some orthogonal N-by-N matrix
and u ∈ RN has only K nonzero entries. In this case, we say
that u is K-sparse and that x is K-sparse with respect to V. The
set of positions of nonzeros coefficients in u is called the spar-
sity pattern, and we call α = K/N the sparsity ratio.

Knowing that x is K-sparse with respect to a given basis V
can be extremely valuable for signal processing. For example, in
compression, x can be represented by the K positions and values
of the nonzero elements in u, as opposed to the N elements of x.
When the sparsity ratio α is small, the compression gain can be
significant. Similarly, in estimating x in the presence of noise,
one only has to estimate K as opposed to N real parameters.

Another important property of sparse signals has recently been
uncovered: they can be recovered in a computationally tractable
manner from a relatively small number of random samples. The
method, known as compressive sampling (sometimes called com-
pressed sensing or compressive sensing), was developed in [2], [3]
and [4] and is detailed in other articles in this issue.

A basic model for compressive sampling is shown in Figure 1.
The N-dimensional signal x is assumed to be K-sparse with
respect to some orthogonal matrix V. The “sampling” of x is rep-
resented as a linear transformation by a matrix � yielding a sam-
ple vector y = �x. Let the size of � be M-by-N, so y has M
elements; we call each element of y a measurement of x. A
decoder must recover the signal x from y knowing V and �, but
not necessarily the sparsity pattern of the unknown signal u.

Since u is K-sparse, x must belong to one of 
(N

K

)
subspaces in

RN . Similarly, y must belong to one of 
(N

K

)
subspaces in RM .

For almost all �s with M ≥ K + 1, an exhaustive search
through the subspaces can determine which subspace x belongs
to and thereby recover the signal’s sparsity pattern and values.
Therefore, in principle, a K sparse signal can be recovered from
as few as M = K + 1 random samples.

Unfortunately, the exhaustive search described above is not
tractable for interesting sizes of problems since the number of
subspaces to search, 

(N
K

)
, can be enormous; if α is held constant

as N is increased, the number of subspaces grows exponentially
with N. The remarkable main result of compressive sampling is
to exhibit recovery methods that are computationally feasible,
numerically stable, and robust against noise while requiring a
number of measurements not much larger than K.

SIGNAL RECOVERY WITH COMPRESSIVE SAMPLING
Compressive sampling is based on recovering x via convex opti-
mization. When we observe y = �x and x is sparse with respect

to V, we are seeking x consistent with y and such that V −1 x has
few nonzero entries. To try to minimize the number of nonzero
entries directly yields an intractable problem [5]. Instead, solv-
ing the optimization problem

(LP reconstruction) x̂LP = argmin
x : y=�x

‖V −1 x‖1

often gives exactly the desired signal recovery, and there are
simple conditions that guarantee exact recovery. Following pio-
neering work by Logan in the 1960s, Donoho and Stark [6]
obtained results that apply, for example, when V is the N-by-N
identity matrix and the rows of � are taken from the matrix rep-
resentation of the length-N discrete Fourier transform (DFT).
Subsequent works considered randomly selected rows from the
DFT matrix [2] and then certain other random matrix ensem-
bles [3], [4]. In this article, we will concentrate on the case when
� has independent Gaussian entries.

A central question is: How many measurements M are need-
ed for linear program (LP) reconstruction to be successful?
Since � is random, there is always a chance that reconstruction
will fail. We are interested in how M should scale with signal
dimension N and sparsity K so that the probability of success
approaches one. A result of Donoho and Tanner [7] indicates
that M ∼ 2K log(N/K ) is a sharp threshold for successful
recovery. Compared to the intractable exhaustive search
through all possible subspaces, LP recovery requires only a fac-
tor 2 log(N/K ) more measurements.

If measurements are subject to additive Gaussian noise so
that ŷ = �x + η is observed, with η ∼ N (0, σ 2), then the LP
reconstruction should be adjusted to allow slack in the con-
straint y = �x. A typical method for reconstruction is the fol-
lowing convex optimization:

(Lasso reconstruction)

x̂ Lasso = argmin
x

(
‖ ŷ − �x‖2

2 + λ‖V −1 x‖1

)
,

where the parameter λ > 0 trades off data fidelity and reconstruc-
tion sparsity. The best choice for λ depends on the variance of the

[FIG1] Block diagram representation of compressive sampling.
The signal x is sparse with respect to V, meaning that u = V−1x
has only a few nonzero entries. y = �x is “compressed” in that it
is shorter than x. (White boxes represent zero elements.)
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V Φ Estimation

x̂



noise and problem size parameters.
Wainwright [8] has shown that the scaling
M ∼ 2K log (N − K ) + K is a sharp
threshold for V −1 x̂ Lasso to have the correct
sparsity pattern with high probability. While
this M may be much smaller than N, it is sig-
nificantly more measurements than required
in the noiseless case.

COMPRESSIVE SAMPLING
AS SOURCE CODING
In the remainder of this article, we will be
concerned with the tradeoff between quality
of approximation and the number of bits of
storage for a signal x that is K-sparse with
respect to orthonormal basis V. An immediate distinction from
the “Background” section is that the currency in which we
denominate the cost of a representation is bits rather than real
coefficients.

In any compression involving scalar quantization, the choice
of coordinates is key. Traditionally, signals to be compressed are

modeled as jointly Gaussian vectors. These vectors can be visu-
alized as lying in an ellipsoid, since this is the shape of the level
curves of their probability density [see Figure 2(a)]. Source cod-
ing theory for jointly Gaussian vectors suggests to choose
orthogonal coordinates aligned with the principal axes of the
ellipsoid (the Karhunen–Loève basis) and then allocate bits to
the dimensions based on their variances. This gives a coding
gain relative to arbitrary coordinates [9]. For high-quality (low
distortion) coding, the coding gain is a constant number of bits
per dimension that depends on the eccentricity of the ellipse.

Sparse signal models are geometrically quite different than
jointly Gaussian vector models. Instead of being visualized as
ellipses, they yield unions of subspaces [see Figure 2(b)]. A nat-
ural encoding method for a signal x that is K-sparse with
respect to V is to identify the subspace containing x and then
quantize within the subspace, spending a number of bits pro-
portional to K. Note that doing this requires the encoder to
know V and that there is a cost to communicating the subspace
index, denoted J, that will be detailed later. With all the proper
accounting, when K � N, the savings is more dramatic than
just a constant number of bits.

Following the compressive sampling framework one obtains
a rather different way to compress x:
quantize the measurements y = �x,
with � and V known to the decoder.
Since � spreads the energy of the
signal uniformly across the measure-
ments, each measurement should be
allocated the same number of bits.
The decoder should estimate x as well
as it can; we will not limit the com-
putational capability of the decoder.

How well will compressive sam-
pling work? It depends both on how
much it matters to use the best basis
(V) rather than a set of random vec-
tors (�) and how much the quantiza-
tion of y affects the ability of the
decoder to infer the correct subspace.
We separate these issues, and our

[FIG2] (a) Depiction of Gaussian random vectors as an ellipsoid.
Classical rate-distortion theory and transform coding results are
for this sort of source, which serves as a good model for discrete
cosine transform (DCT) coefficients of an image or MDCT
coefficients of audio. (b) Depiction of two sparse signals in R3,
which form a union of three subspaces. This serves as a good
conceptual model for wavelet coefficients of images.

(a) (b)

[FIG3] Block diagram representation of the compressive sampling scenario analyzed
information theoretically. V is a random orthogonal matrix, u is a K-sparse vector with
N (0, 1) nonzero entries, and � is a Gaussian measurement matrix. More specifically, the
sparsity pattern of u is represented by J and the nonzero entries are denoted uK. In the initial
analysis, the encoding of y = �x is by scalar quantization and scalar entropy coding.
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ENCODER

(SPARSIFYING (RANDOM 
BASIS) USES V MEASUREMENTS) USES �

KNOWS J c2−2R c2−2(R−R ∗)

A PRIORI
DECODER IS TOLD J c2−2(R−H(α)/α) c2−2(R−H(α)/α−R ∗)

INFERS J cδ(log N)2−2δR

[TABLE 1]  PERFORMANCE SUMMARY: DISTORTIONS FOR SEVERAL SCENARIOS
WHEN N IS LARGE WITH α = K/N HELD CONSTANT. RATE R AND
DISTORTION D ARE BOTH NORMALIZED BY K. J REPRESENTS THE
SPARSITY PATTERN OF u. THE BOXED RED ENTRY IS A HEURISTIC
ANALYSIS OF THE COMPRESSIVE SAMPLING CASE. H(·) REPRESENTS
THE BINARY ENTROPY FUNCTION AND THE ROTATIONAL LOSS R ∗
SATISFIES R ∗ = O(log R).



results are previewed and summa-
rized in Table 1. We will derive the
results in blue and then the result in
red, which requires much more
explanation. But first we establish the
setting more concretely.

MODELING ASSUMPTIONS
To reflect the concept that the orthonormal basis V is not used in
the sensor/encoder, we model V as random and available only at
the estimator/decoder. It is chosen uniformly at random from the
set of orthogonal matrices. The source vector x is also random;
to model it as K-sparse with respect to V, we let x = Vu where
u ∈ RN has K nonzero entries in positions chosen uniformly at
random. As depicted in Figure 3, we denote the nonzero entries
of u by uK ∈ RK and let the discrete random variable J represent
the sparsity pattern. Note that both V and � can be considered
side information available at the decoder but not at the encoder.

Let the components of uK be independent and Gaussian
N (0, 1). Observe that E[‖u‖2] = K, and since V is orthogonal we
also have E[‖x‖2] = K. For the measurement matrix �, let the
entries be independent N (0, 1/K ) and independent of V and u.
This normalization makes the entries of y each have unit variance.

Let us now establish some notation to describe scalar
quantization. When scalar yi is quantized to yield ̂yi, it is con-
venient to define the relative quantization error
β = E[|yi − ŷi|2]/E[|yi|2] and then further define ρ = 1 − β

and vi = ŷi − ρyi . These definitions yield a gain-plus-noise
notation ̂yi = ρyi + vi , where

σ 2
v = E[|vi|2] = β(1 − β)E[|yi|2], (1)

to describe the effect of quantization. Quantizers with optimal
(centroid) decoders result in v being uncorrelated with y [10,
Lemma 5.1]; other precise justifications are also possible [11].

In subsequent analyses, we will want to relate β to the rate
(number of bits) of the quantizer. The exact value of β depends
not only on the rate R but also on the distribution of yi and the
particular quantization method. However, the scaling of β with
R is as 2−2R under many different scenarios (see “Quantizer
Performance and Quantization Error”). We will write

β = c 2−2R (2)

without repeatedly specifying the constant c ≥ 1.
With the established notation, the overall quantizer output

vector can be written as

ŷ = ρ�Vu + v = Au + v, (3)

where A = ρ�V. The overall source coding and decoding
process, with the gain-plus-noise representation for quantiza-
tion, is depicted in Figure 4. Our use of (3) is to enable easy
analysis of linear estimation of x from ̂y.

QUANTIZER PERFORMANCE AND QUANTIZATION ERROR

A quantity that takes on uncountably many values—like a real
number—cannot have an exact digital representation. Thus digi-
tal processing always involves quantized values. The relation-
ships between the number of bits in a representation (rate R),
the accuracy of a representation (distortion D), and properties of
quantization error are central to this article and are developed
in this sidebar.

The simplest form of quantization—uniform scalar quan-
tization—is to round x ∈ R to the nearest multiple of some
fixed resolution parameter � to obtain quantized version
x̂. For this type of quantizer, rate and distortion can be eas-
ily related through the step size �. Suppose x has a smooth
distribution over an interval of length C. Then the quantiz-
er produces about C/� intervals, which can be indexed
with R ≈ log2(C/�) b. The error x − x̂ is approximately uni-
formly distributed over [−�/2,�/2], so the mean-squared
error is D = E[(x − x̂)2] ≈ (1/12)�2 . Eliminating � , we
obtain D ≈ (1/12)C22−2R .

The 2−2R dependence on rate is fundamental for compression
with respect to MSE distortion. For any distribution of x, the best
possible distortion as a function of rate (obtained with high-
dimensional vector quantization [25]) satisfies

(2πe)−122h2−2R ≤ D(R) ≤ σ 22−2R,

where h and σ 2 are the differential entropy and variance of x.
Also, under high resolution assumptions and with entropy cod-
ing, D(R) ≈ (1/12)22h2−2R performance is obtained with uni-
form scalar quantization, which for a Gaussian random variable
is D(R) ≈ (1/6)πeσ 22−2R . Covering all of these variations
together, we write the performance as D(R) = cσ 22−2R without
specifying the constant c.

More subtle is to understand the quantization error e = x − x̂.
With uniform scalar quantization, e is in the interval
[−�/2,�/2], and it is convenient to think of it as a uniform ran-
dom variable over this interval, independent of x.  This is merely
a convenient fiction, since x̂ is a deterministic function of x.  In
fact, as long as quantizers are regular and estimation procedures
use linear combinations of many quantized values, second-order
statistics (which are well understood [11]) are sufficient for
understanding estimation performance. When x is Gaussian, a
rather counterintuitive model where e is Gaussian and inde-
pendent of x can be justified precisely: optimal quantization of a
large block of samples is described by the optimal test channel,
which is additive Gaussian [28].
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[FIG4] Source coding of x with additive noise representation for quantization.
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ANALYSES
Since the sparsity level K is the inherent number of degrees of
freedom in the signal, we will let there be K R bits available for
the encoding of x and also normalize the distortion by
K : D = (1/K)E[‖x − x̂‖2]. Where applicable, the number of
measurements M is a design parameter that can optimized to
give the best distortion-rate tradeoff. In particular, increasing M
gives better conditioning of certain matrices, but it reduces the
number of quantization bits per measurement.

Before analyzing the compressive sampling scenario
(Figure 3), we consider some simpler alternatives, yielding the
blue entries in Table 1.

SIGNAL IN A KNOWN SUBSPACE
If the sparsifying basis V and subspace J are fixed and known to
both encoder and decoder, the communication of x can be
accomplished by sending quantized versions of the nonzero
entries of V −1 x. Each of the K nonzero entries has unit
variance and is allotted R b, so D(R ) = c2−2R performance is
obtained, as given by the first entry in Table 1.

ADAPTIVE ENCODING WITH COMMUNICATION OF J
Now suppose that V is known to both encoder and decoder, but
the subspace index J is random, uniformly selected from the 

(N
K

)
possibilities. A natural adaptive approach is to spend log2

(N
K

)
bits

to communicate J and the remaining available bits to quantize
the nonzero entries of V −1 x. Defining R0 = (1/K) log2

(N
K

)
, the

encoder has K R − K R0 b for the K nonzero entries of V −1 x and
thus attains performance

Dadaptive = c2−2(R−R0), R ≥ R0. (4)

When K and N are large with the ratio α = K/N held constant,
log 2

(N
K

) ≈ NH (α) where H(p) = −p log 2 p− (1 − p) log 2
(1 − p) is the binary entropy function [12, p. 530]. Thus
R0 ≈ H(α)/α, giving a second entry in Table 1.

If R does not exceed R0, then the derivation above does
not make sense, and even if R exceeds R0 by a small amount,
it may not pay to communicate J. A direct approach is to
simply quantize each component of x with K R/N b. Since
the components of x have variance K/N , performance of
E[(xi − x̂i)

2] ≤ c(K/N)2−2K R/N can be obtained, yielding
overall performance

Ddirect(R ) = c2−2K R/N. (5)

By choosing the better between (4) and (5) for a given rate, one
obtains a simple baseline for the performance using V at the
encoder. A convexification by time sharing could also be applied,
and more sophisticated techniques are presented in [13].

LOSS FROM RANDOM MEASUREMENTS
Now let us try to understand in isolation the effect of observing
x only through �x. The encoder sends a quantized version of
y = �x, and the decoder knows V and the sparsity pattern J.

From (3), the decoder has ŷ = ρ�Vu + v and knows which
K elements of u are nonzero. The performance of a linear esti-
mate of the form x̂ = F (J )̂y will depend on the singular values
of the M-by-K matrix formed by the K relevant columns of �V.
(One should expect a small improvement—roughly a multiplica-
tion of the distortion by K/M—from the use of a nonlinear esti-
mate that exploits boundedness of quantization noise [14], [15].
The dependence on �V is roughly unchanged [16].) Using ele-
mentary results from random matrix theory, one can find how
the distortion varies with M and R. (The distortion does not
depend on N because the zero components of u are known.) The
analysis given in [17] shows that for moderate to high R, the dis-
tortion is minimized when K/M ≈ 1 − ((2 ln 2)R )−1. Choosing
the number of measurements accordingly gives performance

DJ(R ) ≈ 2(ln 2)eR · c2−2R = c2−2(R−R∗) (6)

where R∗ = (1/2) log2(2(ln 2)eR ), giving the final blue entry in
Table 1. Comparing to c2−2R, we see that having access only to
random measurements induces a significant performance loss.

One interpretation of this analysis is that the coding rate has
effectively been reduced by R∗ b per degree of freedom. Since R∗
grows sublinearly with R, the situation is not too bad—at least the
performance does not degrade with increasing K or N. The analy-
sis when J is not known at the decoder—i.e., it must be inferred
from ̂y—reveals a much worse situation.

LOSS FROM SPARSITY RECOVERY
As we have mentioned before, compressive sampling is motivated
by the idea that the sparsity pattern J can be detected, through a
computationally tractable convex optimization, with a “small”
number of measurements M. However, the number of measure-
ments required depends on the noise level. We saw
M ∼ 2K log(N − K) + K scaling is required by lasso reconstruc-
tion; if the noise is from quantization and we are trying to code
with K R total bits, this scaling leads to a vanishing number of bits
per measurement.

Unfortunately, the problem is more fundamental than subopti-
mality of lasso decoding. We will show that trying to code with
K R total bits makes reliable recovery of the sparsity pattern
impossible as the signal dimension N increases. In this analysis,
we assume the sparsity ratio α = K/N is held constant as the
problems scale, and we see that no number of measurements M
can give good performance.

To see why the sparsity pattern cannot be recovered, consider the
problem of estimating the sparsity pattern of u from the noisy meas-
urement y in (3). Let Esignal = E[‖Au‖2] and Enoise = E[‖v‖2] be
the signal and noise energies, respectively, and define the signal-to-
noise ratio (SNR) as SNR = Esignal / Enoise. The number of meas-
urements M required to recover the sparsity pattern of u from y can
be bounded below with the following theorem.

THEOREM 1
Consider any estimator for recovering the sparsity pattern of a
K-sparse vector u from measurements y of the form (3), where v
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is a white Gaussian vector uncorrelated with y. Let Perror be the
probability of misdetecting the sparsity pattern, averaged
over the realizations of the random matrix A and noise v.
Suppose M, K, and N−K approach infinity with

M <
K

SNR
[(1 − ε) log(N − K ) − 1] (7)

for some ε > 0. Then Perror → 1,i.e., the estimator will asymp-
totically always fail.

The main ideas of a proof of Theorem 1 are given in “Proof
Sketch for Theorem 1.” Under certain assumptions, the quanti-
zation error v in our problem will be asymptotically Gaussian, so
we can apply the bound (see “Quantizer Performance and
Quantization Error”). The theorem shows that to attain any
non-vanishing probability of success, we need the scaling

M ≥ K
SNR

[(1 − ε) log(N − K) − 1] . (8)

Now, using the normalization assumptions described above, the
expression ρ = 1 − β , and σ 2

v given in (1), it can be shown that
the signal and noise energies are given by Esignal = M(1 − β)2

and Enoise = Mβ(1 − β). Therefore, the SNR is

SNR = (1 − β)/β. (9)

Now, let δ = K/M be the “measurement ratio,” i.e., the ratio of
degrees of freedom in the unknown signal to number of meas-
urements. From (2), β ≥ 2−2δR for any quantizer, and there-
fore, from (9), SNR ≤ 22δR − 1. Substituting this bound for the
SNR into (8), we see that for the probability of error to vanish
(or even become a value less than one) will require 

22δR

(1 − ε)δ
+ 1 > log(N − K). (10)

Notice that, for any fixed R, the left hand side of (10) is bounded
above uniformly over all δ ∈ (0, 1]. However, if the sparsity ratio
α = K/N is fixed and N → ∞, then log (N − K) → ∞ .
Consequently, the bound (10) is impossible to satisfy. We conclude
that: for a fixed rate R and sparsity ratio α, as N → ∞, there is
no number of measurements M that can guarantee reliable spar-
sity recovery. In fact, the probability of detecting the sparsity pat-
tern correctly approaches zero. This conclusion applies not just to
compressive sampling with basis pursuit or matching pursuit
detection, but even to exhaustive search methods.

How bad is this result for compressive sampling? We have
shown that exact sparsity recovery is fundamentally impossible
when the total number of bits scales linearly with the degrees of
freedom of the signal and the quantization is regular. However,
exact sparsity recovery may not be necessary for good perform-
ance. What if the decoder can detect, say, 90% of the elements in
the sparsity pattern correctly? One might think that the result-
ing distortion might still be small.

Unfortunately, when we translate the best known error
bounds for reconstruction from nonadaptively encoded under-
sampled data, we do not even obtain distortion that approaches

PROOF SKETCH FOR THEOREM 1

Since the vector u ∈ R
N has K nonzero components, Au

belongs to one of the 
(N

K

)
subspaces, each subspace being

spanned by K of the N columns of A ∈ R
M×N. Let V be the set

of all such subspaces and let V0 ∈ V be the “true” K-dimen-
sional subspace—the one that contains Au. The detector with
the minimum probability of error would search over all the
subspaces for the one with the maximum energy of the
received noisy vector y. For the estimator to detect the correct
subspace, the true subspace must have the maximum energy.
That is,

‖PV0y‖2 ≥ ‖PVy‖2, ∀ V ∈ V, (13)

where PS denotes the projection operator onto the subspace
S. We can show (7) from (13) as follows.

The true subspace is spanned by K columns of A, which we
will denote by a1, . . . , aK. Since V0 contains Au, it must con-
tain the entire signal energy Esignal. It also contains a fraction
δ = K/M of the noise energy, Enoise. So the average energy in
the subspace V0 is ‖PV0y‖2 = Esignal + δEnoise . Although this
expression is technically only true in expectation, it is asymp-
totically exact for large M. So here and in the remainder of
the proof, we omit the expectations in the formulas.

Now remove the vector a1, and let V1 be the subspace
spanned by the remaining K − 1 vectors {aj}K

j=2. Since the vec-
tors aj are i.i.d. and spherically symmetrically distributed, the
energy of y in V1 relative to the energy in V0 is given by

‖PV0y‖2 − ‖PV1y‖2 = 1 − δ

K
‖PV0y‖2

= 1 − δ

K

[
Esignal + δEnoise

]
. (14)

Now let aj, j = K + 1, . . . , N be the remaining N − K columns
of A. The M − K dimensional subspaceV⊥

0 ⊆ V⊥
1 contains a

fraction 1 − K/M of the noise energy Enoise. Each column aj is
independent of the signal in V⊥

0 . When M is large, it can be
shown that adding one of the columns will add a random
amount of energy described by (1 − K/M )

Enoiseu2
j /(M − K) = Enoiseu2

j /M , where uj is an N (0, 1)

Gaussian random variable. Let V be the subspace spanned by
V1 and the vector aj with the maximum energy. The new sub-
space V is spanned by K columns of A, so V ∈ V. Also, the
energy in V will be

‖PV y‖2 − ‖PV1y‖2 = 1
M

Enoise max
j=K+1,... ,N

u2
j .

For any ε > 0, it can be shown that

Pr
(

max
j=K+1,... ,N

u2
j > (1 − ε) log(N − K)

)
→ 1,

as N − K → ∞. Therefore, as N − K → ∞, with high proba-
bility,

‖PV y‖2 −‖PV1y‖2 >
1
M

(1−ε)Enoise log(N−K). (15)

Combining (13), (14), and (15) shows (7).
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zero as the rate is increased with K, M, and N fixed. [Remember
that without undersampling, one can at least obtain the per-
formance (5).] For example, Candès and Tao [18] prove that an
estimator similar to the lasso estimator attains a distortion

1
K

‖x − x̂‖2 ≤ c1
K
M

(log N)σ 2, (11)

with large probability, from M measurements with noise vari-
ance σ 2, provided that the number of measurements is ade-
quate.  There is a constant δ ∈ (0, 1) such that M = K/δ is
sufficient for (11) to hold with probability approaching one as N
is increased with K/N held constant; but for any finite N, there
is a nonzero probability of failure. Spreading RK bits amongst
the measurements and relating the number of bits to the quan-
tization noise variance gives

D = 1
K

E[‖x − x̂‖2] ≤ c2δ(log N )2−2δR + Derr, (12)

where D err is the distortion due to the failure event. (Haupt and
Nowak [19] consider optimal estimators and obtain a bound simi-
lar to (12) in that it has a term that is constant with respect to the
noise variance. See also [20] for related results.) Thus if Derr is
negligible, the distortion will decrease exponentially in the rate,
but with an exponent reduced by a factor δ. However, as N increas-
es to infinity, the distortion bound increases and is not useful.

NUMERICAL SIMULATION
To get some idea of the possible performance, we performed
the following numerical experiment. We fixed the signal
dimensions to N = 100 and K = 10, so the signal has a sparsi-
ty of α = K/N = 0.1. We varied the quantization rate R from
4 to 12 b per degree of freedom, which spans low to high rate
since (1/K) log2

(N
K

) ≈ 4.4. The resulting simulated perform-
ance of compressive sampling is shown in Figure 5. The per-
formance of direct quantization [D direct (R ) from (5)] and

baseline quantization with time sharing [see (4) and (5)] are
shown for comparison.

The distortion of compressive sampling was simulated as fol-
lows: For both lasso and orthogonal matching pursuit (OMP)
reconstruction and for integer rates R, the number of measure-
ments M was varied from K to N in steps of ten. At each value of
M, the distortion was estimated by averaging 500 Monte Carlo tri-
als with random encoder matrices � and quantization noise vec-
tors v. To give the best-case performance of compressive sampling,
the distortion was taken to be the minimum distortion over the
tested values of M and, for lasso, over several values of the regular-
ization parameter λ. The optimal M is not necessarily the mini-
mum M to guarantee sparsity recovery. Instead, optimizing M
trades off errors in the sparsity pattern against errors in the esti-
mated values for the components. The optimal value does not
result in small probability of subspace misdetection. More exten-
sive sets of simulations consistent with these are presented in [21].

From (4), the distortion with adaptive quantization decreases
exponentially with the rate R through the multiplicative factor
2−2R. This appears in Figure 5 as a decrease in distortion of approx-
imately 6 dB/b. In contrast, simple direct quantization achieves a
distortion given by (5), which in this case is only 0.6 dB/b. Thus,
there is potentially a large gap between direct quantization that
does not exploit the sparsity and adaptive quantization that does.

Both compressive sampling methods, lasso and OMP, are able
to perform slightly better than simple direct quantization,
achieving approximately 1.4–1.6 dB/b. (A finer analysis that
allows computation of the largest possible δ in (12) might predict
this slope.) Thus, compressive sampling is able to exploit the
sparsity to some degree and narrow the gap between linear and
adaptive quantization. However, neither algorithm is able to
come close to the performance of the baseline encoder that can
use adaptive quantization. Indeed, comparing to the baseline
quantization, there a multiplicative rate penalty in this simula-
tion of approximately a factor of four. This is large by source cod-
ing standards, and we can conclude that compressive sampling
does not achieve performance similar to adaptive quantization.

INFORMATION THEORY TO THE RESCUE?
We have thus far used information theory to provide context and
analysis tools. It has shown us that compressing sparse signals
by scalar quantization of random measurements incurs a signifi-
cant penalty. Can information theory also suggest alternatives to
compressive sampling? In fact, it does provide techniques that
would give much better performance for source coding, but the
complexity of decoding algorithms becomes even higher.

Let us return to Figure 3 and interpret it as a communica-
tion problem where x is to be reproduced approximately and the
number of bits that can be used is limited. We would like to
extract source coding with side information and distributed
source coding problems from this setup. This will lead to results
much more positive than those developed above.

In developing the baseline quantization method, we discussed
how an encoder that knows V can recover J and uK from x and
thus send J exactly and uK approximately. Compressive sampling

[FIG5] Rate-distortion performance of compressive sampling
using reconstruction via OMP and lasso. At each rate, the
number of measurements M is optimized to minimize the
distortion. Also plotted are the theoretical distortion curves for
direct and baseline quantization. In all simulations
(K, N) = (10, 100).
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is to apply when the encoder does not know (or want to use) the
sparsifying basis V. In this case, an information theorist would say
that we have a problem of lossy source coding of x with side infor-
mation V available at the decoder—an instance of the Wyner-Ziv
problem [22]. In contrast to the analogous lossless coding prob-
lem (see “Slepian-Wolf Coding”), the unavailability of the side
information at the encoder does in general hurt the best possible
performance. Specifically, let L(D ) denote the rate loss (increased
rate because V is unavailable) to achieve distortion D. Then there
are upper bounds to L(D ) that depend only on the source alpha-
bet, the way distortion is measured, and the value of the distor-
tion—not on the distribution of the source or side information
[23]. For the scenario of interest to us [(continuous-valued source
and mean-squared error (MSE) distortion)], L(D) ≤ 0.5 b for all
D. The techniques to achieve this are complicated, but note the
constant additive rate penalty is in dramatic contrast to Figure 5.

Compressive sampling not only allows side information V to
be available only at the decoder, it also allows the components of
the measurement vector y to be encoded separately. The way to
interpret this information theoretically is to consider
y1, y2, . . . , yM as distributed sources whose joint distribution
depends on side information (V,�) available at the decoder.
Imposing a constraint of distributed encoding of y (while allow-
ing joint decoding) generally creates a degradation of the best
possible performance. (Again, there is no performance penalty in
the lossless case; see “Slepian-Wolf Coding.”) Let us sketch a par-
ticular strategy that is not necessarily optimal but exhibits only a
small additive rate penalty. This is inspired by [23] and [24].

Suppose that each of M distributed encoders performs scalar
quantization of its own yi to yield q(yi). Before this seemed to
immediately get us in trouble (recall our interpretation of
Theorem 1), but now we will do further encoding. The quantized
values give us a lossless distributed compression problem with side
information (V,�) available at the decoder. Using Slepian-Wolf
coding, a total rate arbitrarily close to H(q(y)) can be achieved.
The remaining question is how the rate and distortion relate.

For the sake of analysis, let us assume that the encoder and
decoder share some randomness Z so that the scalar quantization
above can be subtractively dithered (see, e.g., [25]). Then follow-
ing the analysis in [24] and [26], encoding the quantized samples
q(y) at rate H(q(y) | V, Z) is within 0.755 b of the conditional
rate-distortion bound for source x given V. Thus the combination
of universal dithered quantization with Slepian-Wolf coding gives
a method of distributed coding with only a constant additive rate
penalty. These methods inspired by information theory depend on
coding across independent signal acquisition instances, and they
generally incur large decoding complexity.

Let us finally interpret the “quantization plus Slepian-Wolf”
approach described above when limited to a single instance.
Suppose the yi s are separately quantized as described above. The
main negative result of this article indicates that ideal separate
entropy coding of each q (yi ) is not nearly enough to get to good
performance. The rate must be reduced by replacing an ordinary
entropy code with one that collapses some distinct quantized val-
ues to the same index. The hope has to be that in the joint decod-

ing of q (y), the dependence between components will save the
day. This is equivalent to saying that the quantizers in use are
not regular [25], much like multiple description quantizers [27].
This approach is developed and simulated in [21].

CONCLUSIONS—WHITHER COMPRESSIVE SAMPLING?
To an information theorist, “compression” is the efficient repre-
sentation of data with bits. In this article, we have looked at
compressive sampling from this perspective, to see if random
measurements of sparse signals provide an efficient method of
representing sparse signals.

The source coding performance depends sharply on how the
random measurements are encoded into bits. Using familiar
forms of quantization (regular quantizers; see [25]) even very
weak forms of universality are precluded. One would want to

SLEPIAN-WOLF CODING

When two related quantities are to be compressed, there is
generally an advantage to doing the compression jointly.
What does “jointly” mean? On its face, “jointly” would seem
to mean that the quantities are inseparably mapped to a bit
string. However, Slepian and Wolf [29] remarkably showed
that it can be good enough for the decoding to be “joint”—
the encoding can be separate.

To understand the result precisely, suppose a sequence of
independent replicas (X(1)

1 , X (1)

2 ), (X (2)

1 , X (2)

2 ), . . . , of the pair
of jointly distributed discrete random variables (X1, X2) is to
be compressed. The minimum possible rate is H(X1, X2), the
joint entropy of X1 and X2. The normal way to approach this
minimum rate is to treat (X1, X2) as a single discrete random
variable (over an alphabet that is the Cartesian product of the
alphabets of X1 and X2) and apply an entropy code to this
random variable. This requires an encoder that operates on
X1 and X2 together. The main result of [29] indicates that this
total rate can be approached with encoders that see X1 and
X2 separately as long as the decoding is joint. The recovery of
the Xk s is perfect (or has vanishing error probability) without
requiring any excess total rate (or arbitrarily small excess rate):
R1 + R2 = H(X1, X2). The individual rates need only satisfy
R1 ≥ H(X1 | X2) and R2 ≥ H(X2 | X1).

As a very simple example, suppose X1 has any distribution
on the integers; and X2 − X1 equals zero or one with equal
probability, independent of X1. Then (X1, X2) has precisely
one more bit of information than X1 alone. The optimal total
rate R1 + R2 = H(X1) + 1 can be achieved by having Encoder
1 compress X1 as if communicating X1 were the only goal and
having Encoder 2 send only the parity of X2.

Slepian-Wolf coding can be extended to any number of cor-
related sources with no “penalty” in the rate [30, Thm.
14.4.2]. Also, simpler than Slepian-Wolf coding is for one of
the sources (say, X2) to be available to the decoder but not to
the encoder. Then a rate of R1 = H(X1 | X2) is sufficient to
allow the decoder to recover X1, even though the encoding
of X1 is done without knowledge of X2. The main text uses
these results to give information-theoretic bounds for encod-
ing of random measurements.
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spend a number of bits proportional to the number of degrees of
freedom of the sparse signal, but this does not lead to good per-
formance. In this case, we can conclude analytically that recovery
of the sparsity pattern is asymptotically impossible. Furthermore,
simulations show that the MSE performance is far from optimal.

Information theory provides alternatives based on universal
versions of distributed lossless coding (Slepian-Wolf coding)
and entropy-coded dithered quantization. These information-
theoretic constructions indicate that it is reasonable to ask for
good performance with merely linear scaling of the number of
bits with the sparsity of the signal. However, practical imple-
mentation of such schemes remains an open problem.

It is important to keep our mainly negative results in proper
context. We have shown that compressive sampling combined
with ordinary quantization is a bad compression technique, but
our results say nothing about whether compressive sampling is an
effective initial step in data acquisition. A good analogy within the
realm of signal acquisition is oversampling in analog-to-digital
conversion (ADC). Since MSE distortion in oversampled ADC
drops only polynomially (not exponentially) with the oversampling
factor, high oversampling alone—without other processing—leads
to poor rate-distortion performance. Nevertheless, oversampling is
ubiquitous. Similarly, compressive sampling is useful in contexts
where sampling itself is very expensive, but the subsequent storage
and communication of quantized samples is less constricted.
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