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Abstract—We consider the optimal quantization of compressive
sensing measurements along with estimation from quantized
samples using generalized approximate message passing (GAMP).
GAMP is an iterative reconstruction scheme inspired by the belief
propagation algorithm on bipartite graphs which generalizes
approximate message passing (AMP) for arbitrary measurement
channels. Its asymptotic error performance can be accurately
predicted and tracked through the state evolution formalism.
We utilize these results to design mean-square optimal scalar
quantizers for GAMP signal reconstruction and empirically
demonstrate the superior error performance of the resulting
quantizers.

I. INTRODUCTION
By exploiting signal sparsity and smart reconstruction

schemes, compressive sensing (CS) [1], [2] can enable signal
acquisition with fewer measurements than traditional sam-
pling. In CS, an n-dimensional signal x is measured through
m random linear measurements. Although the signal may be
undersampled (m < n), it may be possible to recover x
assuming some sparsity structure.
So far, most of the CS literature has considered signal

recovery directly from linear measurements. However, in many
practical applications, measurements have to be discretized
to a finite number of bits. The effect of such quantized
measurements on the performance of the CS reconstruction
has been studied in [3], [4]. In [5]–[7] the authors adapt
CS reconstruction algorithms to mitigate quantization effects.
In [8], high-resolution functional scalar quantization theory
was used to design quantizers for lasso reconstruction [9].
The contribution of this paper to the quantized CS problem

is twofold: First, for quantized measurements, we propose
reconstruction algorithms based on Gaussian approximations
of belief propagation (BP). BP is a graphical model-based
estimation algorithm widely used in machine learning and
channel coding [10], [11] that has also received significant
recent attention in compressed sensing [12]. Although exact
implementation of BP for dense measurement matrices is
generally computationally difficult, Gaussian approximations
of BP have been effective in a range of applications [13]–[18].
We consider a recently developed Gaussian-approximated

This material is based upon work supported by the National Science
Foundation under Grant No. 0729069 and by the DARPA InPho program
through the US Army Research Office award W911-NF-10-1-0404.

BP algorithm, called generalized approximate message pass-
ing [16], [19], that extends earlier methods [15], [18] to
nonlinear output channels. We show that the GAMP method
is computationally simple and, with quantized measurements,
provides significantly improved performance over traditional
CS reconstruction based on convex relaxations.
Our second contribution concerns the quantizer design.

With linear reconstruction and mean-squared error distortion,
the optimal quantizer simply minimizes the mean squared
error (MSE) of the transform outputs. Thus, the quantizer
can be optimized independently of the reconstruction method.
However, when the quantizer outputs are used as an input to a
nonlinear estimation algorithm, minimizing the MSE between
quantizer input and output is not necessarily equivalent to
minimizing the MSE of the final reconstruction [20]. To
optimize the quantizer for the GAMP algorithm, we use the
fact that the MSE under large random transforms can be
predicted accurately from a set of simple state evolution (SE)
equations [19], [21]. Then, by modeling the quantizer as a
part of the measurement channel, we use the SE formalism to
optimize the quantizer to asymptotically minimize distortions
after the reconstruction by GAMP.
A longer document discusses both undersampling and over-

sampling and both regular and non-regular quantization [22].
Code for GAMP is available online [23].

II. NOTATIONS
We use two sets of indices, with i, j ∈ {1, . . . , n} denoting

signal components and a, b ∈ {1, . . . ,m} measurement com-
ponents. Bold faced variables x,y represent random quantities.
The (a, i) entry of the matrix A is denoted by Aai. The Gaus-
sian probability density function with mean µ and variance σ2
is denoted by φ(· ; µ, σ2).

III. BACKGROUND
A. Compressive Sensing
In a noiseless CS setting the signal x ∈ Rn is acquired via

m < n linear measurements of the type

z = Ax, (1)

where A ∈ Rm×n is the measurement matrix. The objective
is to recover x from (z,A). Although the system of equations
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formed is underdetermined, the signal is still recoverable
if some favorable conditions on x and A are satisfied and
exploited. Generally, in CS the common assumption is that the
signal is exactly or approximately sparse in some orthonormal
basis Ψ, i.e., there is a vector u = Ψ−1x ∈ Rn with most of its
elements equal or close to zero. Additionally, for certain guar-
antees on the recoverability of the signal to hold, the matrix A
must satisfy the restricted isometry property (RIP) [24]. Some
families of random matrices, like appropriately-dimensioned
matrices with i.i.d. Gaussian elements, have been demonstrated
to satisfy the RIP with high probability.
A common method for recovering the signal from the

measurements is basis pursuit. Although it is possible to solve
basis pursuit in polynomial time by casting it as a linear
program, its complexity has motivated researchers to look
for even cheaper alternatives like numerous recently-proposed
iterative methods [12], [16], [17], [25], [26]. Moreover, in
real applications a CS reconstruction scheme must be able
to mitigate imperfect measurements, due to noise or limited
precision [3], [5], [6].

B. Scalar Quantization
A quantizer is a function that discretizes its input by per-

forming a mapping from a continuous set to some discrete set.
More specifically, consider K-point regular scalar quantizer
Q, defined by its output levels C = {ci; i = 1, 2, . . . , K},
decision boundaries {(bi−1, bi) ⊂ R; i = 1, 2, . . . , K}, and
a mapping ci = Q(s) when s ∈ [bi−1, bi) [27]. Additionally
define the inverse image of the output level ci under Q as a
cell Q−1(ci) = [bi−1, bi). For i = 1, if b0 = −∞ we replace
the closed interval [b0, b1) by an open interval (b0, b1).
Typically quantizers are optimized by selecting decision

boundaries and output levels in order to minimize the dis-
tortion between the random vector s ∈ Rm and its quantized
representation ŝ = Q(s). For example, for a given vector s
and the MSE distortion metric, optimization is performed by
solving

Q# = argmin
Q

E

[

‖s−Q (s)‖2
]

, (2)

where minimization is done over all K-level regular scalar
quantizers. One standard way of optimizing Q is via the Lloyd
algorithm, which iteratively updates the decision boundaries
and output levels by applying necessary conditions for quan-
tizer optimality [27].
However, for the CS framework finding the quantizer that

minimizes MSE between s and ŝ is not necessarily equivalent
to minimizing MSE between the sparse vector x and its CS
reconstruction from quantized measurements x̂ [8], [20]. This
is due to the nonlinear effect added by any particular CS
reconstruction function. Hence, instead of solving (2), it is
more interesting to solve

Q∗ = argmin
Q

E

[

‖x− x̂‖2
]

, (3)

where minimization is performed over all K-level regular
scalar quantizers and x̂ is obtained through a CS reconstruction

+A
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n
z ∈ R

m
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n

Q(.) G-AMP
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m

Fig. 1: Compressive sensing set up with quantization of
noisy measurements s. The vector z denotes noiseless random
measurements.

method like basis pursuit or GAMP. This is the approach taken
in this work.

C. Message Passing Algorithms
Consider the problem of estimating a random vector x ∈

Rn from noisy measurements y ∈ Rm, where the noise is
described by a measurement channel py|z(ya | za), which acts
identically on each measurement za of the vector z obtained
via (1). Moreover suppose that elements in the vector x are
distributed i.i.d. according to px(xi). Then we can construct
the following conditional probability distribution over random
vector x given the measurements y:

px|y (x | y) =
1

Z

n
∏

i=1

px (xi)
m
∏

a=1

py|z (ya | za) , (4)

where Z is the normalization constant and za = (Ax)a. By
marginalizing this distribution it is possible to estimate each
xi. Although direct marginalization of px|y(x | y) is compu-
tationally intractable in practice, we approximate marginals
through BP [12], [16], [17]. BP is an iterative algorithm
commonly used for decoding of LDPC codes [11]. We apply
BP by constructing a bipartite factor graph G = (V, F,E)
from (4) and passing the following messages along the edges
E of the graph:

pt+1
i→a (xi) ∝ px (xi)

∏

b %=a

p̂tb→i (xi) , (5)

p̂ta→i (xi) ∝

∫

py|z (ya | za)
∏

j %=i

ptj→a (xj) dx, (6)

where ∝ means that the distribution is to be normalized so
that it has unit integral and integration is over all the elements
of x except xi. We refer to messages {pi→a}(i,a)∈E as vari-
able updates and to messages {p̂a→i}(i,a)∈E as measurement
updates. We initialize BP by setting p0i→a(xi) = px(xi).
Earlier works on BP reconstruction have shown that it

is asymptotically MSE optimal under certain verifiable con-
ditions. These conditions involve simple single-dimensional
recursive equations called state evolution (SE), which predicts
that BP is optimal when the corresponding SE admits a unique
fixed point [15], [21]. Nonetheless, direct implementation of
BP is still impractical due to the dense structure of A, which
implies that the algorithm must compute the marginal of
a high-dimensional distribution at each measurement node.
However, as mentioned in Section I, BP can be simplified
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through various Gaussian approximations, including the re-
laxed BP method [15], [16] and approximate message passing
(AMP) [17], [19]. Recent theoretical work and extensive
numerical experiments have demonstrated that, in the case of
certain large random measurement matrices, the error perfor-
mance of both relaxed BP and AMP can also be accurately
predicted by SE. Hence the optimal quantizers can be obtained
in parallel for both of the methods, however in this paper we
concentrate on design for Generalized AMP, while keeping in
mind that identical work can be done for Relaxed BP as well.
Due to space limitations, in this paper we will limit our

presentation of GAMP and SE equations to the setting in
Figure 1. See [19] for more general and detailed analysis.

IV. QUANTIZED GAMP
Consider the CS setting in Figure 1, where without loss of

generality we assumed that Ψ = In. The vector x ∈ Rn is
measured through the random matrix A to result in z ∈ Rm,
which is further perturbed by some additive white Gaussian
noise (AWGN). The resulting vector s can be written as

s = z+ η = Ax+ η, (7)

where {ηa} are i.i.d. random variables distributed as N (0,σ2).
These noisy measurements are then quantized by the K-level
scalar quantizer Q to give the CS measurements y ∈ Rm.
The GAMP algorithm is used to estimate the signal x from
the corrupted measurements y, given the matrix A, noise
variance σ2 > 0, and the quantizer mapping Q. Note that
under this model each quantized measurement ya indicates
that sa ∈ Q−1(ya), hence our measurement channel can be
characterized as

py|z (ya | za) =

∫

Q−1(ya)
φ
(

t; za, σ
2
)

dt, (8)

for a = 1, 2, . . . , m and where φ(·) is the Gaussian function.
GAMP can be derived by approximating the updates in

(5) and (6) by two scalar parameters each and introducing
some first-order approximations, as discussed in [19]. Then
given the functions Fin, Ein, D1, and D2 described below, for
each iteration t = 0, 1, 2, . . . , the GAMP algorithm produces
estimates x̂t

i of the variables xi. The estimation is performed
as follows:

x̂t+1
i ≡ Fin

(

x̂t
i +

∑m
a=1 Aaiut

a
∑m

a=1 A
2
aiτ

t
a

,
1

∑m
a=1 A

2
aiτ

t
a

)

, (9)

τ̂ t+1
i ≡ Ein

(

x̂t
i +

∑m
a=1 Aaiut

a
∑m

a=1 A
2
aiτ

t
a

,
1

∑m
a=1 A

2
aiτ

t
a

)

, (10)

ut
a ≡ D1

(

ya,
n
∑

i=1

Aaix̂
t
i − ut−1

a

n
∑

i=1

A2
aiτ̂

t
i ,

n
∑

i=1

A2
aiτ̂

t
i + σ

2

)

,

(11)

τ ta ≡ D2

(

ya,
n
∑

i=1

Aaix̂
t
i − ut−1

a

n
∑

i=1

A2
aiτ̂

t
i ,

n
∑

i=1

A2
aiτ̂

t
i + σ

2

)

,

(12)

where σ2 is the variance of the components ηa.

We refer to messages {x̂i, τ̂i}i∈V as variable updates and to
messages {ua, τa}a∈F as measurement updates. The algorithm
is initialized by setting x̂0

i = x̂init, τ̂0i = τ̂init, and u−1
a = 0,

where x̂init and τ̂init are the mean and variance of the prior
px(xi). The nonlinear functions Fin and Ein are the conditional
mean and variance

Fin (q, ν) ≡ E [x | q = q] , (13)
Ein (q, ν) ≡ var (x | q = q) , (14)

where q = x + v, x ∼ px (xi), and v ∼ N (0, ν). Note that
these functions can easily be evaluated numerically for the
given values of q and ν. Similarly, the functions D1 and D2

can be computed via

D1 (y, ẑ, ν) ≡
1

ν
(Fout (y, ẑ, ν)− ẑ) , (15)

D2 (y, ẑ, ν) ≡
1

ν

(

1−
Eout (y, ẑ, ν)

ν

)

, (16)

where the functions Fout and Eout are the conditional mean and
variance

Fout (y, ẑ, ν) ≡ E
[

z | z ∈ Q−1 (y)
]

, (17)
Eout (y, ẑ, ν) ≡ var

(

z | z ∈ Q−1 (y)
)

, (18)

of the random variable z ∼ N (ẑ, ν). These functions admit
closed-form expressions in terms of erf (z) = 2√

π

∫ z

0 e−t2 dt.

V. STATE EVOLUTION FOR GAMP
The equations (9)–(12) are easy to implement, however they

provide us no insight into the performance of the algorithm.
The goal of SE equations is to describe the asymptotic
behavior of GAMP under large measurement matrices. The
SE for our setting in Figure 1 is given by the recursion

τ̄t+1 = Ēin

(

1

D̄2 (βτ̄t,σ2)

)

, (19)

where t ≥ 0 is the iteration number, β = n/m is a fixed
number denoting the measurement ratio, and σ2 is the variance
of the AWGN components which is also fixed. We initialize
the recursion by setting τ̄0 = τ̂init, where τ̂init is the variance
of xi according to the prior px(xi). We define the function Ēin
as

Ēin (ν) = E [Ein (q, ν)] , (20)

where the expectation is taken over the scalar random variable
q = x+v, with x ∼ px(xi), and v ∼ N (0, ν). Similarly, the
function D̄2 is defined as

D̄2

(

ν,σ2
)

= E
[

D2

(

y, ẑ, ν + σ2
)]

, (21)

where D2 is given by (16) and the expectation is taken over
py|z(ya | za) and (z, ẑ) ∼ N (0, Pz(ν)), with the covariance
matrix

Pz (ν) =

(

βτ̂init βτ̂init − ν
βτ̂init − ν βτ̂init − ν

)

. (22)

One of the main results of [19] was to demonstrate the
convergence of the error performance of the GAMP algorithm
to the SE equations under large measurement matrices. The
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following theorem is a corollary of this result; see Section
VI-D of [19].

Theorem 1. Consider the GAMP algorithm under assump-
tions in Sections V-B and V-D of [19]. Then for any fixed
iteration number t and fixed variable index i, the error
variances satisfy the limit

lim
n→∞

E

[

∣

∣xi − x̂t
i

∣

∣

2
]

= τ̄t, (23)

where τ̄t is the output of the SE equation (19).

Another important result regarding SE recursion in (19) is
that it admits at least one fixed point. It has been shown that
as t → ∞ the recursion decreases monotonically to its largest
fixed point [16].
It is important to note that the results on convergence of

GAMP to SE have been demonstrated for large i.i.d. Gaussian
matrices A [18], [19]. Prior analyses of approximate BP
algorithms, like Relaxed BP, were based on certain large sparse
assumptions for the matrix A, which are rarely satisfied in the
CS setting [16].

VI. OPTIMAL QUANTIZATION
We now return to the problem of designing MSE-optimal

quantizers under GAMP presented in (3). By modeling the
quantizer as part of the channel and working out the resulting
equations for GAMP and SE, we can make use of the
convergence results to recast our optimization problem to

QSE = argmin
Q

{τ̄∗} , (24)

where τ̄∗ is the largest fixed point of the SE equations given
by

τ̄∗ = lim
t→∞

τ̄t. (25)

Minimization is done over all K-level regular scalar quan-
tizers. In practice, about 10 to 20 iterations are sufficient to
reach the fixed point of τ̄t. Then by applying Theorem 1, we
know that the asymptotic performance of Q∗ will be identical
to that of QSE. It is important to note that the SE recursion
behaves well under quantizer optimization. This is due to
the fact that SE is independent of actual output levels and
small changes in the quantizer boundaries result in only minor
change in the recursion (see (18)). Although closed-form
expressions for the derivatives of τ̄t for large t’s are difficult
to obtain, we can approximate them by using finite difference
methods. Finally, the recursion itself is fast to evaluate, which
makes the scheme in (24) practically realizable using standard
optimization methods.

VII. EXPERIMENTAL RESULTS
We now present experimental validation for our results.

Assume that the signal x is generated with i.i.d. elements from
the Gauss–Bernoulli distribution

xi ∼

{

N (0, 1/ρ) , with probability ρ;
0, with probability 1− ρ,

(26)
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x
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Fig. 2: Optimized quantizer boundaries for 1 bit/component
of x. Optimal quantizer is found by optimizing boundaries for
each β and then picking the result with smallest distortion.

where ρ is the sparsity ratio that represents the average fraction
of nonzero components of x. In the following experiments we
assume ρ = 0.1. We form the measurement matrix A from
i.i.d. Gaussian random variables, i.e., Aai ∼ N (0, 1/m); and
we assume that AWGN with variance σ2 = 10−5 perturbs
measurements before quantization. Related results with no
additive noise appear in [22].
Now, we can formulate the SE equation (19) and perform

optimization (24). We compare two CS-optimized quantizers:
Uniform and Optimal. We fix boundary points b0 = −∞
and bK = +∞, and compute the former quantizer through
optimization of type (2). In particular, by applying the central
limit theorem we approximate elements sa of s to be Gaussian
and determine the Uniform quantizer by solving (2), but with
an additional constraint of equally-spaced output levels. To
determine Optimal quantizer, we perform (24) by using a
standard SQP optimization algorithm for nonlinear continuous
optimization.
Figure 2 presents an example of quantization boundaries.

For the given bit rate Rx over the components of the input
vector x, we can express the rate over the measurements s
as Rs = βRx, where β = n/m is the measurement ratio.
To determine the optimal quantizer for the given rate Rx

we perform optimization for all βs and return the quantizer
with the least MSE. As we can see, in comparison with
the uniform quantizer obtained by merely minimizing the
distortion between the quantizer input and output, the one
obtained via SE minimization is very different; in fact, it looks
more concentrated around zero. This is due to the fact that by
minimizing SE we are in fact searching for quantizers that
asymptotically minimize the MSE of the GAMP reconstruc-
tion by taking into consideration the nonlinear effects due
to the method. The trend of having more quantizer points
near zero is opposite to the trend shown in [8] for quantizers
optimized for lasso reconstruction.
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Fig. 3: Performance comparison of GAMP with other sparse
estimation methods.

Figure 3 presents a comparison of reconstruction distortions
for our two quantizers and confirms the advantage of using
quantizers optimized via (19). To obtain the results we vary
the quantization rate from 1 to 2 bits per component of
x, and for each quantization rate, we optimize quantizers
using the methods discussed above. For comparison, the figure
also plots the MSE performance for two other reconstruction
methods: linear MMSE estimation and the widely-used lasso
method [9], both assuming a bounded uniform quantizer. The
lasso performance was predicted by state evolution equations
in [19], with the thresholding parameter optimized by the
iterative approach in [28]. It can be seen that the proposed
GAMP algorithm offers dramatically better performance—
more that 10 dB improvement. At higher rates, the gap is
still larger although GAMP performance saturates due to the
AWGN at the quantizer input. Similarly we can see that the
MSE of the quantizer optimized for the GAMP reconstruction
is much smaller than the MSE of the standard one, with more
than 4 dB difference for many rates.

VIII. CONCLUSIONS
We present generalized approximate message passing as

an efficient algorithm for compressive sensing reconstruction
from the quantized measurements. We integrate ideas from re-
cent generalization of the algorithm for arbitrary measurement
channels to design a method for determining optimal quan-
tizers under GAMP reconstruction. Although computationally
simpler, experimental results show that under quantized mea-
surements GAMP offers significantly improved performance
over traditional reconstruction schemes. Additionally, perfor-
mance of the algorithm is further improved by using the state
evolution framework to optimize the quantizers.
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