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Abstract

Compressive sensing theory has demonstrated that sparse signals can be re-
covered from a small number of random linear measurements. However, for
practical purposes, like storage, transmission, or processing with modern dig-
ital equipment, continuous-valued compressive sensing measurements need to
be quantized. In this thesis we examine the topic of optimal quantization
of compressive sensing measurements under reconstruction with message-
passing algorithms by following the work on generalization of relaxed belief
propagation (BP) for arbitrary measurement channels. Relaxed BP is an
iterative reconstruction algorithm proposed for the task of estimation from
random linear measurements. It was inspired by the traditional belief propa-
gation algorithm widely used in decoding of low-density parity-check (LDPC)
codes. One of the aspects that makes relaxed belief propagation so appealing
is the state evolution framework, which predicts asymptotic error behavior
of the algorithm. We utilize the predictive capability of the framework to
design mean-square optimal scalar quantizers under relaxed BP signal re-
construction. We demonstrate that error performance of the reconstruction
can be significantly improved by using state evolution optimized quantiz-
ers, compared to quantizers obtained via traditional design schemes. We
finally propose relaxed BP as a practical algorithm for reconstruction from
measurements digitized with binned quantizers, which further improve error
performance of the reconstruction.
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Chapter 1

Introduction

Compressive sensing (CS) is a framework enabling signal acquisition with
fewer measurements than traditional sampling [4, 7|. Reduction in the num-
ber of measurements is achieved by exploiting the observation that the true
dimension of many practical signals is far lower than their ambient dime-
sion and by using some smart reconstruction scheme. Convex optimization
based methods, like basis pursuit or LASSO [23], represent one family of
standard CS reconstruction schemes providing near-optimal solutions in a
variety of settings. These methods can be cast as linear programming (LP)
problems and solved using standard algorithms in polynomial time. However,
the search for computationally cheaper alternatives to LP-based methods has
motivated much research into iterative reconstruction methods [14, 24]. One
class of such methods were derived from belief propagation (BP), an estima-
tion algorithm on bipartite graphs wiedely applied in the context of LDPC
codes [19]. Although BP has been applied to CS reconstruction [5], its ap-
plication in traditional form is computationally prohibitive, as the number
of computations grow exponentially with density of the measurement ma-
trix. However, it has been found that the mean-square optimality of BP
can be achieved by its simplified version called relaxed BP [11, 16]|. Further-
more, it has been shown that the asymptotic error behaviour of relaxed BP
can be predicted via state evolution (SE) equations. Although, initially the
convergence results for SE required large and sparse measurement matrices
[16], recent theoretical work demonstrated that they hold asymptotically for
matrices with i.i.d. Gaussian entries as well [1].

So far, most of the CS literature considered signal recovery directly from
linear measurements. However, in most practical applications measurements
have to be discretized to finite number of bits using some quantization
scheme. Traditionally, the quality of such schemes are evaluated on their
ability to minimize the error relative to some distortion metric like mean-

11



12 CHAPTER 1. INTRODUCTION

squared error (MSE) [10]. Previously the effect of quantized measurements
on the performance of the CS reconstruction was studied in |3, 9]. In [6, 25
authors adapt CS reconstruction algorithms to mitigate quantization effects.
By contrast in [22]| high-resolution functional scalar quantization theory was
used to design quantizers for LASSO reconstruction. The topic of binning
quantizer output indices has been studied in [15].

In this thesis we utilize the recent work on generalization of relaxed BP
to arbitrary output channels to design optimal scalar quantizers. Since CS
measurements are used as the input to nonlinear relaxed BP, minimizing
MSE between quantizer input and output is not necessarily equivalent to
minimizing the MSE of the reconstruction. By modeling the quantizer as
part of the measurement channel, we use the SE formalism to optimize the
quantizer to asymptotically minimize distortions after the reconstruction by
relaxed BP. We note that identical results can be developed for the approxi-
mate message passing (AMP) [8, 17] reconstruction algorithm closely related
to relaxed BP, but we limit our study to relaxed BP.

This thesis is organized as follows: Chapter 2 gives background on top-
ics considered in this work, including sparse approximations, compressive
sensing, belief propagation, and quantization. Chapter 3 presents the exact
algorithm for implementing relaxed BP reconstruction method for the CS
with quantized measurements. Equations for state evolution to predict the
performance of the reconstruction are found in the Chapter 3 as well. Finally
in Chapter 4 we will present a scheme for designing asymptotically optimal
quantizers for CS framework under relaxed BP reconstruction.



Chapter 2

Background

In this chapter we will develop key concepts related to this thesis work. We
start by introducing the novel acquisition framework called compressive sens-
ing. We will then present the highly successful iterative decoding algorithm
called belief propagation, which in its simplified form has recently been ap-
plied to compressive sensing reconstruction. Finally, we will close this chapter
by discussing the topic of scalar quantization. These topics represent active
areas of research, and it is not possible to present the depth of these topics in
one chapter of a thesis. However along the way we will be providing pointers
to revelant publications covering the topics with more detail and rigor.

2.1 Sparsity, Compression, Compressive Sens-
ing

Theory

Consider the problem of sensing or acquiring the signal f € R" via m-linear
measurements

zo = (fp,), a=1,...,m, (2.1)

where (.) is the inner product between the signal of interest f and measure-
ment vectors ¢, € R™. The equation (2.1) can be rewritten as a matrix
product

z = Of, (2.2)

where z € R™ is called the measurement vector and ® € R™*" is the mea-
surement or sensing matrix. The matrix ® simply consists of the vectors

13



14 CHAPTER 2. BACKGROUND

ot ..., stacked as rows'. The fundamental theorem of linear algebra

states that solving (2.2) requires taking as many measurements as there are
unknowns. This suggests, that to be able to recover the signal f from z we
need at least m = n measurements as (2.1). It is likely that n is a very large
number, for example, n = 10° for a digital image of 1 megapixels. However,
we might find ourselves in a situation where taking each successive measure-
ment a is expensive, or the total number of measurements m is limited due
to the finite number of sensors available.

By extending the fundamental theorem, compressive sensing [4, 7| pro-
vides an unorthodox approach to signal acquisition. It relies on the obser-
vation that many types of signals can be sparsely approximated in some
convenient basis. This implies, that by finding a suitable orthonormal basis
we can approximate f with a small number of non-zero coefficients. Some
well-studied bases, like wavelets, provide sparse expansions for many natural
signals, the property widely used in standard compression techniques such
as JPEG-2000. The compression in such techniques is partly obtained by
storing only the largest coefficients in the sparseness inducing basis. For ex-
ample, consider Figure 2.1, where we obtain the image (¢) by keeping only
largest 10% of all wavelet coefficients of the image (a). This illustrates how
most of the image information is captured by a small number of large wavelet
coefficients.

Using linear algebraic notations the basis expansion of f € R™ can be
expressed as a linear combination of the basis vectors W = [t)11)s . . . 1,,]

i=1

where x; = (f,1);) are coeflicients of f in the basis. The formula (2.3) can be
equivalently rewritten as a matrix product

f = Ux, (2.4)

where x € R" is the vector of coefficients, ¥ € R™*™ is the matrix with basis
vectors i, ...,1, as columns. The k-sparse approximation of the signal f
is obtained by sorting the coefficients of x in descending order and keeping
only largest k, while setting the rest to zero. Denote by x;, € R" the vector
containing only largest k coefficients of x, thus the approximation f;, € R" of
f is obtained as

fk = ‘Ika. (25)

1v* denotes the complex transpose of v. In our case the vector ¢, is real, thus ¢ is
simply its transpose.
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Figure 2.1: Image compression with discrete wavelet transform. (a) origi-
nal image (b) largest 10% of wavelet coefficients sorted in descending order
obtained by taking 4-level Haar wavelet transform of the image (c) image
obtained by zeroing out all the wavelet coefficients but largest 10%. Pixel
intensities of both images are thresholded to the range [0, 255]. As we see
in (b) the amplitude of wavelet coefficients decay very rapidly. Thus (c)
approximates quite well the image (a).

We call the signal compressible if the sorted magnitudes of x; decay quickly.
Typically compressible signals can be well approximated by a small number
of coefficients, i.e. for k < n the error [|f — fi||,, = [[x — x|, is small. With
reference to Figure 2.1 we can say that the image (a) is compressible in a
wavelet basis. Then the compression strategy is quite clear, instead of storing
the n elements of f we can store 2k elements (k largest coefficients of x and
their respective positions). When reconstructing the image we simply obtain
x, from stored coefficients and apply the equation (2.5). This compression
strategy is called adaptive as the algorithm adapts to the knowledge of the
signal f. Exactly this strategy was utilized for obtaining the image (c) of the
Figure 2.1. In this thesis we go one step further and assume that our signals
are exactly k-sparse, hence we assume that the error [|f — fi[[,, = ||x — x|,
is zero.

The adaptive strategy above is definitely appealing, nonetheless it has
one major limitation: it assumes the knowledge of the signal f. This implies
that prior to being compressed the signal f has to be acquired. In fact this
is a standard setup in the modern image acquisition systems, where we first
obtain the full image f via CCD-like device and then compress it with an
algorithm similar to JPEG-2000. Or put another way, the full information
on the signal is obtained, most of which is thrown away at the compression
stage.

Compressive sensing attempts to optimize the acquisition process. By
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taking a small amount m < n of linear and non-adaptive? measurements,
as in (2.2), the signal is directly acquired in the undersampled form. Al-
though, the equation (2.2) has infinitely many solutions, we can still solve it
by assuming that the measured signal is sparse in some basis and that the
measurement matrix satisfies some general conditions. We could recover the
signal by searching for the sparsest vector X € R"™ which is consistent with
the measurements z, i.e. by solving the following fy-minimization problem?

min ||X||,, subject to z; = (pr, ¥X), k=1,...,m . (2.6)

Unfortunately it has been shown that this sparse reconstruction problem
(2.6) is computationally intractable. A few practical alternatives to (2.6)
have been proposed in the literature. One standard way is to solve the basis
pursuit or ¢1-minimization problem

min ||X||,, subject to 2 = (o, ¥X), k=1,...,m, (2.7)

which looks similar to (2.6), but can be recast as a linear program and
solved using convex optimization techniques. It is important to note that
by using (2.7) instead of (2.6) we trade algorithmic feasibility to potential
sub-optimality of the result. However, due to the geometry of the /;-norm, in
many cases, (2.7) offers a good alternative to (2.6). Restricted isometry prop-
erty (RIP) [2| was introduced as a sufficient condition for signal recovery via
¢1-minimization. We can loosely say that ® satisfies RIP if it approximately
preserves the Euclidean length of k-sparse signals, i.e. ]\@kaZ ~ ka”?2
By choosing matrices that satisfy RIP we can obtain some guarantees on
performance of /;-minimization.

Finally there are two other considerations to take into account under
the compressive sensing setup. First is the number of measurements m <
n required to be able to recover our signal f from measurements z. Much
research has been done for deriving bounds for m and the results typically

2In the adaptive scheme one particular realization of f influences the compression and
reconstruction algorithms. In particular, the knowledge of the locations and amplitudes of
largest non-zero coefficients are used. However, in the non-adaptive scheme no such knowl-
edge is required, we use generic compression and reconstruction algorithms independent
of one particular signal realization.

3Define HXHeP = |zk\p)%. For p € [1, 00) this definition satisfies properties of the
norm hence represents a valid vector norm over R™. However, for p € (0,1) this definition
is technically not a norm. The case p = 0 has a special interpretation. It is defined as
[[%l;, = limp—o (Jz1|” + [22|” + ... + 2,|") and it simply counts the number of non-zero
elements of the vector.
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mXn
dcR py|z (¥ | 2)
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Figure 2.2: Generalized CS estimation problem. A random input vector X
with i.i.d. components is transformed by a matrix ® before being corrupted
by some noise. We characterize the noise as a separable measurement channel
given by conditional distribution py|z (y|z). Our goal is to estimate X from
Y given the matrix ®, the prior px (), and the noise py|z (y|z). Note that
without loss of generality we set W = 1I,,.

depend on the recovery algorithm used. For example, it has been shown that
for (2.7) we can recover f with high probability from m ~ O (k log %) random
measurements®.

Secondly, to make the results usable in the real world we should con-
sider the effects of noise on our measurements, which arises due to imperfect
equipment or limited precision. Consider the generalized setting in Figure
2.2 that we are going to study in this thesis. In this setting instead of being
given the measurements z we are given noisy data y. As before given this
data we would like to recover our signal f (or equivalently x). One common
approach for this problem is to use /;-minimization with relaxed constraints

min |||, subject to [|A% —y||,, <e, (2.8)

where A = ®¥ € R™*" is the new measurement matrix obtained by combin-
ing ® and ¥, and € bounds the amount of noise. Similarly to (2.7), (2.8) can
also be solved efficiently using convex optimization techniques. For simplic-
ity and without loss of generality in this thesis we will assume that ¥ =1,
hence A = .

However, ¢;-minimization methods like (2.8) are not the only alternatives
to (2.6). The search for computationally cheap methods for solving (2.2) has
motivated much research into iterative methods for finding sparsest solutions.
One class of these methods were inspired from the message passing algorithms

4One of the remarkable results in compressive sensing, due to RIP, is that all provably
good measurement matrices designed so far are random. This randomness implies that
there is always a chance that for the particular realization ® the reconstruction might fail,
but with sufficiently large m the probability of failure approaches zero.
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on bipartite graphs, widely used in decoding error correction codes. In the
next section we present one class of message passing algorithms called Belief
Propagation, which, in its simplified form, has been successfully applied for
sparse signal recovery.

Illustrative Example

Let us consider a small sample problem to get some more insight into geom-
etry of signal recovery. Consider the setting where we have n = 3, m = 2,
and k = 1. Suppose that we have signal x = [z, 22, 23]". We consider that
¥ = [,, and we measure x through the following measurement matrix

o = (I)ll (1)12 q)13
(I)Ql (I)22 (I)QS ‘

The measurements can be obtained by

z:q)x:[zl}.
22

Now consider the problem of determining x € R3, the estimate of x, from
the measurements z and the measurement matrix ®. One way to look at the
random measurement geometry in CS is in signal space R". In our case, ¢
and z define two planes in the signal space R? each given by

D121 + Pooxo + Pozrs = 24, (2.9)

where a = 1,2. If these two planes are not parallel to each other, then their
intersection defines a line in R®. Consider the line in the Figure 2.3, where
to simplify the visualization we have selected the matrix ® which constraints
possible solution space to (z1,x2) plane. Without any prior information on
the signal x there are infinitely many potential X that satisfy the constraints
z = &x. Note that in Figure 2.3 the solution space defined by the line crosses
two axes, which is undesirable for the recovery of the signal x using (2.6).
Solving the {y-minimization problem is a combinatorial task (Figure 2.4
depicts the process). We proceed by first considering 1-sparse vectors consis-
tent with our measurements. If there would be no 1-sparse vectors satisfying
our constraints, the algorithm would go on to consider k = 2, 3, ... sparse vec-
tors. Similarly we could solve ¢;-minimization problem (2.7), which to our
greatest satisfaction recovers the correct result in Figure 2.4(b). Whereas
typically for the sufficient number of measurements both ¢;- and {y- mini-
mization succeed in recovering sparse vectors x, fo- minimization fails. This
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Figure 2.3: Toy problem illustration. Measurement matrix ® together with
measurement vector z define two planes in signal space R3. (a) intersection
of these planes defines a line in R®. (b) Solution space in (z;,xs) plane. As
we see our matrix ® is not a good compressive sensing matrix, as its solution
space admits two 1-sparse solutions (intersection with axes).

is due to the geometry of the f;-minimization, which in general does not
induce sparse solutions (Figure 2.4(c)). In many scenarios any p € [0,1]
would work for recovering sparse vectors x, however due to convexity and
availability of fast implementations ¢;-minimization is preferred.

Additionally the problem can be analyzed in the measurement space R™,
where by knowing the sparseness k and the matrix ®, we can define

(+)

k-dimensional subspaces where possible measurements lie. For example in
the toy setting we will have 3 lines in the measurement space R? given by

Z9 = %Zh 9 = %Zl’ zZ3 = %Zl. (210)
Figure 2.5 depicts geometry of this. As long as these lines are separate we
can recover our l-sparse signal x. However, in practice, our measurements
are rarely exact, hence the mapping (2.2) might become un-invertible.

Summary of the section

— Some signals can be well approximated in some basis by keeping only a
small number of large coefficients. We refer to such signals as sparse or
compressible. For example, natural images tend to be sparse in wavelet
domain.
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Figure 2.4: Geometry of {,-minimization recovery for (a) p=0 (b) p=1 (c)
p = 2. The orange line is the constraint given by the measurements z and
the measurement matrix ®. The red lines represent the edges of the regions
(o1 P + |x2|p)% < r such that they touch the line. The point where two lines
meet is the solution to the minimization problem.

Measurement Space

10 : : : :
=10 -5 0 5 10

21
Figure 2.5: Illustration of measurement space. Blue lines define possible
solutions to undetermined system of linear equations with sparsity constraint
k = 1. Red cross is the actual measurement (z,22). As we can see in this
case we can find an exact solution to our system.
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— Lossy signal compression techniques rely on sparseness inducing trans-
forms to achieve efficient compression with low distortion of the signal.
As a rule, better compression can be achieved by choosing a sparser
transform. For example, wavelet-based image compression method
JPEG-2000 performs much better than cosine-based JPEG.

— Compressive sensing is a signal acquisition model. It promises that by
taking a small amount of linear and non-adaptive measurements, we
can still reconstruct our signal through practical algorithms.

— One aim of the compressive sensing theory is to design matrices to
obtain suitable measurements. It has been showed that some random
matrices are particularly good for acquisition, due to the property com-
monly referred to as restricted isometry property. For example, a matrix
® with i.i.d. elements from the normal distribution with mean 0 and

variance + is a good sensing matrix with high probability provided

that m ~ O (klog (Z)).

— Finally, another important objective of compressive sensing is to de-
termine efficient recovery algorithms. Many different algorithms have
been proposed in recent years including convex optimization based ba-
sis pursuit and lasso, or iterative algorithms like matching pursuit,
approximate message passing, and relaxed belief propagation.

2.2 Belief Propagation, Relaxed Belief Propa-
gation

Belief Propagation

Consider the joint probability mass function px (x) of n discrete random
variables X = [X, X, ..., X,]. Let us suppose for the moment that each X
takes value in some finite discrete set X', hence px represents a joint proba-
bility distribution over X™. For example, if X represents an image discretized
to 8 bits, then X = {0,1,...,255}. Suppose that we are interested in com-
puting the marginal probabilities of px (x) with respect to each variable X,
i.e. we are interested in computing

px, ()= > px(x), i=1...n, (2.11)
{IJ}»]#Z

where px (.) denotes the marginals of px and {z;},7 # ¢ means that the
summation is over all x; except the element z;. For example, for n = 3 and
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i =1 we can rewrite (2.11) as

px, (z1) = Z Z px (21,22, 73) . (2.12)

T2EX TIEX

Determining py, (z;) for each value of x; € X requires O (]X|") operations,
which is in general very large and impossible to perform in practice. For
instance, if we assume a 1 migapixel image with 8 bit values the cost of
marginalization for the single pixel involves 2561%° a 102498240 gperations.

Now let us suppose that the joint distribution function px admits a fac-
torization of the form

px (%) = [ [ pa (xa) (2.13)

where m is the total number of factors and each factor p, (x,) is a function
of a subset x, of variables that constitute x. In practice factorization can
be achieved by using some prior information on x like interdependence or
independence of variables among themselves. We can then exploit the fac-
torization (2.13) of px to marginalize it efficiently. We do this by associating
to the factorization a factor or Tanner graph, the type of graph often used in
communications and information theory. Factor graphs are undirected and
bipartite, consisting of two types of nodes or vertices (Figure 2.6). The first
type of nodes are variable nodes and they are represented as circles. There
is a variable node in the factor graph for each variable in x. Second types
of nodes are represented as squares and we call them factor nodes. We cre-
ate a factor node for each factor p, in the factorization (2.13). There is an
edge between a variable node x; and factor node p, if and only if the cor-
responding variable appears in this factor. In the literature factor graphs
are typically denoted as G = (V, F, E) where V = {1,2,...,n} are variable
nodes, F' = {1,2,...,m} are factor nodes, and E = {(i,a) € V x F} are
edges. Given this graph, define the neighbor sets of the variable and factor
nodes as

Ny (i) ={a] (i,a) € E}, (2.14)
N (a) = {i] (i,a) € E}, (2.15)

where Ny (i) is the set of neighboors of the variable node z;, and N (a)
is the set of neighboors of the factor node p,. For example in Figure 2.6,

NV (2) = {1} and NF(2)1{1,4, 6} .

5For the sake of comparison, the number of atoms in the observable universe is approx-
imately 1080,
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P Py P3  Ps

Figure 2.6: (a) Sample factorization of px (from [21]) represented as a factor
graph. Circles in the graph are variable nodes and squares are factor nodes.
We connect a variable node to a factor node by an edge if and only if the
corresponding variable appears in this factor. (b) The same factor graph in
(a) represented as a tree.

Let us assume for the moment that the factor graph constructed accord-
ing to (2.13) is a treeS. We will generalize our discussion to graphs with
cycles and continuous random variables later in this section. After con-
structing the factor graph F' we can factorize px via a family of algorithms
commonly referred to as message passing algorithms. In this thesis we are
particularly interested in one of those algorithms, belief propagation (BP),
which has been extensively studied and applied accross many applications.
In communications literature the algorithm is commonly used for decoding
and analyzing LDPC and turbo codes [13, 19, 21|. However, more recently
the algorithm has also been succesfully applied to number of other problems
including sparse signal estimation in compressive sensing [5].

In a nutshell, BP is an iterative algorithm that works by passing messages,
which represent probability mass functions over X, along the edges of the
factor graph. There are two ways to apply BP on a tree. The first method
uses the representation in Figure 2.6(b) and passes messages starting from
leaves of the tree towards the root. Exact equations for this method are
presented in Algorithm 2.1. We denote messages from variable to factor
nodes with u (x) and from factor to variable nodes with /i (x).

Although this method is practical for demonstrating the way BP com-
putes the marginals, like px, (z1), of the joint distribution px (x) in the
Figure 2.6(b), it cannot be easily generalized to arbitrary graphs with loops.
Hence a more practical method for our purpose uses the representation in
Figure 2.6(a) and passes messages according to the Figure 2.7. At each itera-

6Tree is simply an undirected and connected graph without cycles.
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Algorithm 2.1 BP rules on trees.
1. Initialization: At each leaf variable and leaf factor node send the fol-
lowing messages to the parent node:

Wi (zi) = 1, (2.16)

fla—i (1171) = Pa (l’z) ) (2-17)

where p, is the factor of px.

2. Processing: At the inner nodes, after reception of all the messages from
children, process them according to the following equations and send the
resulting messages to the parent nodes:

pia (@) o [T i(ws), (2.18)
beNy (i), b#a

i) o 3 () TI mate) | 229)
xa\{zi} JENF(a), j#i
where the sum is over all the variables in x, except the variable x; and the
product is over all the neighboors except the parent node. The  sign means
that the expression on the right hand side should be normalized to unity.
Execute this step until the root is eventually reached.

3. Marginalization: Finally at the root node we obtain the marginal
distribution of py, (x;) according to the following rule:

beNy (i)

here also the o sign means that the expression on the right hand side should
be normalized to unity.
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Figure 2.7: Notations used for messages passed along the edges of the factor
graph. Messages are probability densities representing the “beliet” for x; to
be of some value. For trees BP converges to consensus after several itera-
tions of message passing returning the marginals for each x;. For general
graphs BP only approximates the marginals, however it has been empirically
demonstrated to work well even in the presense of loops.

tion messages from variable nodes are passed to factor nodes, processed there
and send back to variable nodes. Moreover at each iteration marginals of our
distribution are estimated at the variable nodes. The complete algorithm is
described in Algorithm 2.2. It can be showed that for tree factor graphs both
methods converge to the same true marginals [13]. However, for graphs with
cycles, BP only provides an approximation to the true marginals [12, 21].
We have assumed so far that the random variables X; take values in some
finite discrete set X', however in many signal processing applications variables
naturally take values in continuous spaces. In principle BP can easily be
extended to such models by simply replacing summations in Algorithm 2.1
and Algorithm 2.2 by integrals. However, in practice such an approach is
intractable as messages resulting from updates typically lack closed forms.
One simple approach to avoid this problem is to discretize the probability
densities, but for large number of edges even this approach quickly becomes
computationally infeasible. Another possibility is to simplify the algorithm
by making some assumptions about the probability densities exchanged in
the factor graph. For example, if the messages exchanged are Gaussian then
it is sufficient to track only the means and the variances across the updates.
As noted above when the factor graph contains loops BP provides merely
estimates of the true marginals px,. Despite that, in practice, loopy BP has
performed exceptionally well, in particular its applications for LDPC and
turbo code decoding proved to be effective [13]. Although, precise conditions
under which loopy BP converges are still not well understood, several tech-
niques were proposed for the analysis of the algorithm. Density evolution
(DE) [19, 20] is one of the most wiedely used analysis tools and it works by
tracking distribution of the messages exchanged via BP under the assump-
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Algorithm 2.2 BP rules on general graphs.
1. Initialization: Start at ¢ = 0 by sending:

Hig (2:) = 1, (2.21)

along all edges (i,a) € E.

2. Factor node update: For each edge (i,a) € E compute the marginal
distributions:

i () o Z Pa (Xa) H /”L;—nz (z;) |, (2:22)

xa\{z:} JENF(a), j#i

where the sum is over all the variables in x, except the variable x; and the
product is over all the neighboors except the one the message is being send
to. The o sign means that the expression on the right hand side should be
normalized to unity. Note that if a factor node p, is connected to a single
variable node x;, then it simply sends the message jif_, (x;) = pa (z;).

3. Variable node update: For each edge (i,a) € E compute the marginal

distributions:

pita(r) o [T b (), (2.23)

beN (i), b#a

where o« means normalization to unity and the product is over all the neigh-
boors except the one the message is being send to.

4. Marginalization: For each variable node ¢ compute the current estimate
of the marginal:

Pt @) oo T Ao (), (2.24)
bGNv(l)

where o« means normalization to unity. Go back to the step 2. Execute steps
2, 3, 4 for fixed number of iterations or until convergence.
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tion that n — oo. Tracking the density function through DE gives a very
good picture of the actual behavior of the BP, moreover DE allows to predict
the conditions under which BP decodes the messages successfully.

Illustrative Example

We now present a simple example from [21] illustrating potential computa-
tional savings achivable by using BP. Consider the joint probability mass
function px of n = 6 random variables with the following factorization

px (71,72, 73,74, 75, 76) = P1 (T1, T2, T3) P2 (T1, Ta, T6) P3 (4) Pa (T4, T5) -
(2.25)
Suppose that we are interested in computing the marginal px, (z1), then
direct marginalization of px can be written as

px, (T1) = Z px (21,9, T3, T4, T5, Tg) - (2.26)
x2,T3,T4,T5T6
Assuming that X; € & for all i = 1,...,6, direct computation of (2.26)
for all values of X; requires O (|X |6) operations. However, we can do much
better by using BP. The factor graph for px under (2.25) has already been
presented in Figure 2.6 (b). We perform BP by following the Algorithm 2.1
and obtain the following factorization:

Px, (331> =
(Z P (xl,xz,x3)> (sz (24) (sz (xl,m,xe)) (Zm (a:4,w5)>> ,

which is evaluated in favorable O (|X |3) operations.

Bayesian CS via Message Passing

In this section we motivate the application of BP to compressive sensing
estimation. Consider the problem of estimating a random vector X € R"
from noisy measurements Y € R™, depicted in Figure 2.2, where the noise is
described by a measurement channel py|z (y|2), which acts identically on each
measurement z, of the vector z obtained via (2.2). Moreover suppose that
elements in the vector X are distributed i.i.d. according to py (x). Then we
can construct the following conditional probability distribution over random
vector X given the measurements Y:

pxiv (xly) = [ o (@) T oviz (). 2:27)
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where Z is the normalization constant and z, = (®x),. By marginalizing this
distribution it is possible to estimate each x;. Although direct marginaliza-
tion of px|y (x|y) is computationally intractable, we approximate marginals
through BP. We apply BP following Algorithm 2.2, but replacing sums by
integrals. This results in the following message passing rules

pit (i) o px (o) [ [ s (1) (2.28)
b#a
fla i () / pviz Walza) [ | 15— () do, (2.29)
J#

where o« means that the distribution is to be normalized so that it has unit
integral. The integration is over the support of x and performed over all the
elements of x except z;. Initialization is performed by setting ¥ (x;) =
px ().

Earlier works on BP reconstruction have shown that it is asymptotically
MSE optimal under certain verifiable conditions. These conditions involve
simple single-dimensional recursive equations called state evolution (SE), an
equivalent of density evolution for dense matrices, which predicts that BP is
optimal when corresponding SE admits unique fixed point |11, 16]. However,
we have already noted that application of BP to continuous-valued vector
estimation is impractical. In the CS framework the random vectors X that
we would like to estimate take values in R™, which makes it difficult to keep
track of probability densities across iterations of BP. Specifically due to inte-
grals the factor node updates might lack closed form expressions. However,
as mentioned BP can be simplified through various Gaussian approximations.
Recently two related algorithms have been studied in literature Relazed Be-
lief Propagation (RBP) |11, 16] and Approzimate Message Passing (AMP)
[8, 17]. Despite the fact that these algorithms are only approximations to
the complete BP, they have been shown to asymptotically achieve error per-
formance of BP.

Recent theoretical work and extensive simulations have demonstrated
that the error performance of both RBP and AMP can also be accurately
predicted by SE recursion [1, 16]. In this recursion, the MSE of the re-
construction represents the state and is tracked from iteration to iteration.
Its change across iterations is modeled by a simple scalar mapping, which
depends on underlying parameters of the problem like sparsity ratio, un-
dersampling ratio, noise levels, etc. Besides providing reliable estimates of
the reconstruction error, SE also predicts that when it has a unique fixed
point the reconstruction algorithm will obtain minimum MSE estimates of
the signal. In this thesis we will study the application of the RBP and SE
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to the problem of CS estimation from quantized measurements, while keep-
ing in mind that identical work can be done for AMP as well. In the next
chapter we will present the equations for implementing RBP reconstruction
from quantized measurements, together with corresponding SE equation. For
more general and detailed analysis of RBP see [16].

Summary of the section

— Belief propagation (BP) is an iterative algorithm widely used for de-
coding and estimation in the context of LDPC codes. It works by
passing messages representing probability densities along the edges of
a bipartite factor graph.

— In the case where the graph is a tree BP results in exact marginal
posterior probability distributions of the variables. However in reality
factor graphs are rarely trees, hence BP provides only estimates of the
posterior distributions.

— In principle it is possible to apply BP to CS reconstruction, however
the resulting algorithm is not tractable due to the density of the mea-
surement matrix and the fact that the variables to be estimated take
values in continuous space. Nonetheless, by introducing some Gaussian
approximations BP can be simplified to a more practical alternative —
relazed belief propagation (RBP).

— Error performance of RBP can be characterized and predicted by state
evolution (SE) formalism. SE is a simple recursive equation tracking
the MSE of the CS reconstruction under RBP. It is a powerful analysis
and design tool that can be utilized to design certain parameters of
the reconstruction. In this thesis we make use of this theory to design
optimal quantizers for CS reconstruction under RBP.

2.3 Quantization

Theory

In this section we will present topics related to design of quantizers for a
given stochastic source. More complete and elaborate discussion of quantizer
design can be found in [10]. Quantization is the process of mapping random
variables from some continuous space to some discrete set. More specifically
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we define N-level scalar quantizer () as a map
Q:R—-C={¢;i=1,...,N}, (2.30)

where we refer to C as the output set and to ¢; as output levels. The mapping
is performed by partitioning the real line into N disjoint sub-set Z; and
associating an output level to each interval

Li={reR:Q(z)=c}=Q '), (2.31)

where we refer to Q71 (¢;) as the inverse image of the output level ¢; under
(. Additionally we will be referring to quantizer as reqular if the set Z; can
be described as a single interval [b;_1,b;), i.e.

I, = [b’i—lybi) = {l‘ : bi—l <z < bl}, 1= 1,...,N, (232)

where we refer to b; as decision boundaries. For ¢ = 1, if by = —oo we replace
the closed interval [bg, b;) by an open interval (by,b;). We will additionally
consider one type of non-regular quantizers that we will refer to as binned
[15]. Binned quantizers reduce the rate by joining several disjoint intervals
of a regular quantizer into a single bin, i.e.

Bi:UL:U[bz—hbz);i:l,...,M, (2.33)

leL; leL;

where £; are the disjoint subsets of {1,..., N} and M is the total number
of bins. Figure 2.8 illustrates the difference between regular and binned
quantizers.

To demonstrate the functioning of the binned quantizer consider the
encoder-decoder setting where the encoder uses the quantizer in the Fig-
ure 2.8(b) to digitize the random variable S. Assume that the decoder has
access to the prior distribution pg (s). Suppose that at some moment s is
such that the quantizer output § = @ (s) = 1 is transmitted to the decoder.
Then the decoder knows that s € [—3,—2)(J[1,2) and can combine this
information with the prior pg (s) to estimate s. Consequently, binned quan-
tizers can potentially offer better error performance for lower bitrate, when
some auxilary side information, like the prior distribution, is available at the
decoder.

Typically regular quantizers are optimized by selecting decision bound-
aries and output levels in order to minimze the distortion beween the random
vector S € R™ and its quantized representation S = Q (S). For example, for
a given vector S and the MSE distortion metric, optimization is performed
by solving

QF = arg min E {Is-=Q )7} (2.34)
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Figure 2.8: Example quantizer mappings. (a) Regular and (b) binned quan-
tizers with uniformly spaced cells.

where the minimization is done over all N-level regular scalar quantizers. One
standard way of optimizing () is via the Lloyd algorithm, which iteratively
updates the decision boundaries and output levels by applying necessary
conditions for quantizer optimality [10].

However, for the CS framework finding the quantizer that minimizes MSE
between S and S is not necessarily equivalent to minimizing the MSE between
the sparse vector X and its CS reconstruction from quantized measurements
X [22]. This is due to the nonlinear effect added by any particular CS recon-
struction function. Hence, instead of solving (2.34), it is more interesting to
solve

Q" = argmin]E{HX - X
Q

i } , (2.35)

lo

where minimization is performed over all N-level scalar quantizers and X is
obtained through a CS reconstruction method like RBP or ¢;-minimization.
This is the approach we take in this work to obtain optimal quantizers for
CS acquisition framework.

Illustrative Example

One way to illustrate the effect a quantizer has on compressive sensing recon-
struction is to consider the problem in the measurement space R™. Consider
again the case n = 3, m = 2, and k£ = 1, with measurements given by

y =Q(z) = ¥x, (2.36)
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Measurement Space

=10 s 0 5 10

Z1
Figure 2.9: Illustration of measurement space under quantization. Blue lines
define the possible 1-sparse solution sub-spaces. Black grid delimit quantizer
boundaries. In this setting we do not have direct access to the red cross
(21, 22), instead we have access to quantizer indices (y1,y2), which define
m-cube in R? (red square).

where () is a scalar quantizer. In this case, instead of pinpointing the exact
sparse-subspace where the solution lies, measurements y will merely provide
us with some hypercube in R™ the size of which depends on the quantizer.
This is demonstrated in Figure 2.9. As we can see there are two possible
sparse subspaces that lie within our quantization cell. Implication of this is
that in this particular realization recovery if x is not any more guaranteed.
In the binned quantizer scenario we would associate one index with multiple
quantizer outputs, resulting in several disjoint red squares in measurement
space for one exact measurement.

Summary of the section

— Quantization is performed by mapping continuous-valued random vari-
ables into some finite discrete set. Quantizers that operate on scalars
are commonly referred to as scalar quantizers.

— The most intuitive type of quantizers are reqular quantizers, as they
imitate the rounding process by assigning to some compact sub-interval
of R some discrete value.

— Alternatively, it is possible to bin disjoint cells of a regular quantizer
to form a binned quantizer. This allows to reduce the bitrate of the
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quantizer, while potentially preserving the distortion.

— Quantizers are evaluated and designed based on their error performance
for a given rate. Traditional evaluation metric is the MSE between
quantizer input and output.

— However, in compressive sensing framework minimizing the error be-
tween the quantizer input and output is not necessarily equivalent to
minimizing the error of the reconstruction.
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Chapter 3

RBP for Quantized Measurements

In this chapter we will present equations for implementing RBP for com-
pressive sensing under quantized measurements. We will then work out the
equations of the corresponding state evolution recursion, which will allow us
to design good quantizers in the next chapter.

3.1 Problem Setting

Consider the Figure 3.1 where we depict classical CS acquisition setting, but
where instead of having access to infinite precision measurements Z the best
decoder can have is the digitized measurement vector Y. For simplicity we
assume that ¥ = I,, and that our random vector X &€ R™ is distributed
i.i.d. according to some sparse prior px(x)'. This random vector is measured
through the wide matrix ® to result in Z € R™, which is further perturbed
by some additive white Gaussian noise (AWGN). The resulting vector S can
be written as

S=Z+n=®X+1n, (3.1)

where the elements 7, of the vector n € R™ are i.i.d. random variables dis-
tributed as N (0,0?%). These noisy measurements are then quantized by N-
level quantizer () to give the CS measurements Y € R that can now be
stored or transmitted. The goal of any CS reconstruction scheme is to pro-
vide an estimate of the signal X from these measurements. In particular we
can formulate this problem in the Bayesian framework as in (2.27) and apply
RBP to do estimation given the matrix ®, the signal prior px (z), the noise
variance o2 > 0, and the quantizer mapping Q).

LA Few different sparseness inducing prior distributions have been considered in liter-
ature the most common ones being Laplace and Gauss-Bernoulli distributions.

35
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linear transform T scalar quantizer
matrix neR™

Figure 3.1: Compressive sensing set up with quantized measurements. We
assume that prior to being estimated our measurements Z are passed through
some measurement channel including AWGN and scalar quantizer Q).

Note that under the model in Figure 3.1 each quantized measurement
Yy, indicates that s, € Q7' (y,), hence our measurement channel can be
characterized as

vz (Ya| 2a) = / 1) (t — Zai 02) dt, (3.2)
Q™ (ya)

fora=1,2,...,m and where ¢ (-) is Gaussian function

1 t?
t;v) = exp|—— ). 3.3
o(6) = e (3 ) 33)
By knowing the channel characterization we can easily formulate RBP for
estimating X.

3.2 Relaxed BP

Using a central limit theorem argument RBP reduces the complexity of the
standard BP by approximating the messages with Gaussian distributions.
Then the Gaussianity of the messages allows us to reliably approximate the
probability densities in (2.28) and (2.29) by two scalar parameters each. Al-
gorithm 3.1 presents complete equations for the RBP update rules. We
refer to messages {i"i_,a,%i_,a}(i’a)e g as variable updates and to messages
{tg—i, T(Hi}(i,a) cp @s measurement updates. One iteration of the algorithm
consists of performing these two updates together with estimation of the
input vector X.

The nonlinear functions Fi, and &, in (3.8)-(3.9) are conditional means
and variance

En (q,v) =Var{X | Q = q}, (3.12)
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Algorithm 3.1 Relaxed Belief Propagation for general channels.
1. Initialization: Start at t = 0 by sending

jjf*)a - xlmta (34)

%Zt*)a — Tlnlt ) (3 . 5)

along all edges (i,a) € E. Zjy and Ty, are the mean and variance of the

prior px (z;).
2. Measurement Update: For every (i,a) € E compute

Uy = (?Ja; Z (I)a]xjﬁa; Z q)?” Ajt*)a ) s (36)

J#i J#i

Tai = (yaa Z CI)aj j—ar Z (I)Z] A]t_m + 02) s (37)

J#i JFi

where D, (y, 2,v) are the functions defined in (3.13)-(3.14).
3. Variable Update: For every (i,a) € E compute

o iutﬂi 1
@2&5&(2#“ e ) (3.8)

2t 2t
Zb;éa Py Zb;ﬁa Dy

@ iut_>i 1
7A'.t+1 = gin (Zb#a e ) 9 (39)

e Zb;ﬁa (bnglfﬂz 7 Zb;ﬁa q)nglf—»z
where the functions F}, and &, are the conditional mean and variance given
n (3.11)-(3.12).
4. Estimation: For every i = 1,2,...,n compute the estimate

mo Pt 1
P = R, <Zb L 0% ) (3.10)
Zb 1(1)57,717—4 Zb:l q)giTlf—n'

where F}, is the conditional mean defined in (3.11). Go back to the step 2.
Execute the steps 2, 3, 4 for a fixed number of iterations or until convergence.
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where Q = X +V, X ~ px (x;), and V ~ N (0,v). Note that in general
these functions might not have closed form expressions, however they can be
evaluated with one-dimensional integrals. Similarly the functions Dy and D,
in (3.6)-(3.7) can be computed via

. L, .
Di(y,2,v) =~ (2 = Fou (y.2,7)) (3.13)
. 1 Eout (Y, 2,V
Dy (y,2,v) = - <1 - %) , (3.14)
where F; and &, are conditional mean and variance
Fout (y727V)EE{Z|Z€Q71 (y>}7 (315)
Eout (v, 2,v) =Var{Z|Z € Q7" (y)}, (3.16)

with random variable Z ~ N (Z,v). These functions admit closed-form ex-

pressions in terms of
2 z
erf (Z) = ﬁ/ €7t2dt. (317)
0

The numerical complexity of the RBP implementation in Algorithm 3.1 can
actually be further simplified by following suggestions in [16].

Figures 3.2 and 3.3 show the simulation results for the algorithm above.
We consider sparse signals X distributed i.i.d.} according to the Gauss-
Bernoulli distribution

0,1 ith prob =
x, ~ N (0.1/p) with prob = p, (3.18)
0 with prob =1 — p,
where ¢ = 1,...,n. In the simulation the sparsity ratio is fixed to p = 0.1.

Additionally we set the length of the signal to n = 2000 and the undersam-
pling ratio to f = n/m = 2. The measurement matrix ® is formed from
i.i.d. Gaussian random variables ®,; ~ N (0,1/m). We assume that AWGN
with variance 02 = 107% perturbs our measurements prior to quantization
and 32-level uniform quantizer () with following boundaries

—00 fOIiZO,
b, = —5+% fori=1,...,31, (3.19)
+00 for i = 32.

digitizes our measurements.
In Figure 3.2(a) we validate the assumption of Gaussianity for noiseless-
measurements Z and plot the histogram of z, against the normal density
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N (0,3). Figure 3.2(b) plots MSE performance of the estimation for 15 it-
erations of the algorithm. As we can see RBP converges exponentially fast,
reaching the estimation floor in approximately 8 iterations. Figures 3.3(a)-
(c) demonstrate the reconstruction process across iterations of RBP, where
the estimate at ¢ = 15 is almost exact. Based on our extensive empirical
experiments RBP obtains exceptionally good estimates from quantized mea-
surements.

3.3 State Evolution for RBP

The equations in the Algorithm 3.1 are easy to implement, however they
provide us no insight into the performance of the algorithm. The goal of
SE equations is to describe the asymptotic behavior of RBP under large
measurement matrices. The SE for RBP under the setting in the Figure 3.1
is given by the recursion

SN B S
Tt+1 = (c:m (D2 (67_}, 0_2)) 3 (320)

where ¢t > 0 is the iteration number, 8 = n/m is a fixed number denoting
the measurement ratio, and o2 the variance of the AWGN components is
also fixed. We initialize the recursion by setting 7y = Ti,i, where 7y, is the
variance of X; according to the prior py (x;). We define the function &, as

En (v) =E{&u (¢,v)}, (3.21)

where the expectation is taken over the scalar random variable @ = X +V/,
with X ~ px (z;), and V ~ N (0,v). Similarly the function D, is defined as

Dy (v,0*) =E{Ds (y,2,v+ 0%}, (3.22)

where D, is given by (3.14) and the expectation is take over py|z (ya | 24) and
(Z, Z) ~ N (0, P, (v)), with the covariance matrix

Pz (V) _ ( ﬁfinit ﬁ'f-init -V ) . (323)

BTinit — V  BTinit — V

One of the main results of [16|, which we present below for complete-
ness, was to demonstrate the convergence of the error performance of the
RBP algorithm to the SE equations under large sparse measurement ma-
trices. Denote by d < m the number of nonzero elements per column of
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Histogram of Measurements

0_35 T T T T T T T T T T T
Il sim n = 2000
0.3} = Norm. PDF |

0.25}

0.21

0.15f

Probability

0.1t

0.05r

-5 4 -3 -2 -1 0 1 2 3 4 5

(a)

RBP estimation error

0 T T T T T T T
| = sim n = 2000

MSE (dB)

_30 L L L L L
2 4 6 8 10 12 14

lteration number

(b)

Figure 3.2: (a) Histogram of the measurements z compared against normal
distribution. From a central limit theorem argument for n — 400 elements
of z will follow normal pdf. (b) Error performance of RBP in 15 iterations.
We consider estimation of a sparse signal of length n = 2000 from quantized
measurements. See text for details.
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Figure 3.3: Reconstruction of the sparse signal using RBP from quantized
measurements for iterations (a) t =1, (b) t =5, and (c) t = 15. As wee see
the reconstruction is almost exact.
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®. In the large sparse limit analysis, first let n — +oo with m = (Gn and
keeping d fixed. This enables the local-tree properties of the factor graph G.
Then let d — +o00, which will enable the use of a Central Limit Theorem
approximation.

Theorem 3.1. Consider the RBP algorithm under the sparse limit model

above with transform matriz ® and index i satisfying the Assumption 1 of

[16] for some fized iteration number t. Then the error variances satisfy the

limat ,
lim lim E {‘X _ X } =7, (3.24)
d— +00 n—+00 I

where T, is the output of the SE equation (5.20).

Proof. See [16]. O

A second important result regarding the SE recursion demonstrates its
convergence to some fixed point.

Theorem 3.2. Consider the SE equations (3.20) initialized with To = Tin-
Suppose that E, (V) and 1/Dy (v,0?%) are continuous. Then, we have the
limat:

lim 7 =T, (3.25)

t—-4o00

where 7; decreases monotonically and T satisfies the fixed point equation

T=2En <m) . (3.26)

Proof. See [16]. O

The more complete analysis of RBP also demonstrates that it is asymptot-
ically MSE optimal when the SE equation has a unique fixed point. Although
in practice the measurement matrices are rarely sparse, simulations (see Fig-
ure 3.4) show that SE predicts well the behavior of relaxed BP. Moreover,
recently more sophisticated techniques were used to demonstrate the con-
vergence of approximate message passing algorithms to SE under large i.i.d.
Gaussian matrices |1, 17].

Figure 3.4 considers predictions made by SE and their quantitative match
with empirical observations. As discussed in Theorem 3.1 the asymptotic
mean-square estimation error can be easily predicted via SE recursion (3.20),
specifically the asymptotic MSE of reconstruction is the state variable that
the recursion tracks. We compared the state evolution predictions with the
actual reconstruction performance obtained by a Monte Carlo experiment.
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We set (8,0?%) to (2,0.1), (3,0.1), (2,0) and run 1000 problem instances for
each n € {100, 1000, 2000}. The signal prior used is the same as in (3.18) with
p = 0.1 and the quantizer boundaries are given by (3.19). We ran each RBP
reconstruction with a fixed number of iterations and averaged the results
across the 1000 Monte Carlo realizations, producing empirical averages. In
panels (b), (d), and (f) we illustrate the degree of variability of observations
around the SE prediction by plotting the CDF of the reconstruction MSE over
all Monte Carlo realizations. We see that there is a large variation for small
n, which means that even if SE promises great error performance the actual
reconstruction might perform well below it. However, as n increases variation
decreases and MSE concentrates more tightly around the SE prediction.
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Figure 3.4: Comparison of SE predictions against observations. Panels (a),
(c), (e) compare evolution of the MSE as iterations progress for various levels
of AWGN and undersampling # = n/m. Blue solid curve plots the SE pre-
dicted MSE, while other curves plot mean MSE from empirical RBP recon-
structions. Panes (b), (d), (f) demonstrate the variations of reconstruction
MSE around SE prediction. As n grows emprirical observations get tighter
around SE prediction. We use the same uniform 32-level quantizer for all
experiments. See text for details.



Chapter 4

Optimal Quantization for RBP
Estimation

In this chapter we will present a framework to design asymptotically optimal
quantizers for compressive sensing estimation via relaxed belief propagation.
We say that the quantizer is optimal if it minimizes MSE of the estima-
tion. We start by designing optimal regular quantizers and demonstrate
their superior performance to other standard quantization schemes. We then
dramatically improve the rate-distortion performance of quantization by bin-
ning disjoint quantization cells. As our optimization scheme is based on state
evolution formalism, we note that in principle optimal quantizers for both
approximate message passing (AMP) and RBP estimation can be obtained
in parallel. However, in this thesis we concentrate on design for RBP while
keeping in mind that identical work can be done for AMP as well.

4.1 Optimal Regular Quantization

We are now interested in solving (2.35) to design MSE-optimal quantizers
under RBP. By modeling the quantizer as part of the channel and working
out resulting equations for RBP and SE, we can make use of the prediction
capability of SE to recast our optimization problem to

Q%" = argmin { lim 7‘3} : (4.1)

Q t—o00

where 7; is MSE prediction obtained by SE recursion (3.20). In practice
either we run SE recursion for fixed amount of time, or we set some stopping
criteria. For example, due to monotonic convergence of SE we could stop the
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algorithm when the change in MSE is small from one iteration to the next
|7i = Te-a] < tol, (4.2)

where tol is termination tolerance on MSE and t > 0 is the iteration number.
Then by applying Theorem 3.1, we know that the asymptotic performance
of Q* of (2.35) will be identical to that of QF.

The SE recursion behaves well under quantizer optimization (4.1). We
can see this by looking at the equations (3.16), which is the only place modi-
fied during the optimization process. By inspecting this equation we can see
that small changes in the quantizer boundaries result only in minor change in
the recursion. Although, due to recursive nature of the SE, finding analytic
or closed form expressions for derivatives of 7; for large t’s is hard, we can
approximate them by using finite difference methods. Moreover, the recur-
sion itself is fast to evaluate, which makes scheme (4.1) practically realizable
under standard constrained optimization methods like sequential quadratic
programming (SQP). Note that in principle 7, might admit many local min-
ima, which might complicate the process of finding a global minimum. How-
ever, we found via numerous simulations that for regular quantizers there is
a unique solution to (4.1).

Figure 4.1 depicts 7; at its fixed points as a function of quantization
boundaries. We consider the signal model in (3.18) and set the AWGN
variance to zero. In the panel (a) we consider 4-level regular quantizer with
quantization boundaries

[—OO,—G,O,CL, OO] 3 (43)

where 0 < a < o0 is the parameter to optimize. We pick symmetric quantizer
due to the symmetry of our problem (i.e. distribution of the measurements
Z is symmetric around 0). By optimizing the parameter a the MSE of the re-
construction can be substantially reduced. Panel (b) considers 6-level regular
quantizer with the following boundaries

[_007 _bv —a, O) a, b) OO] ) (44)

where 0 < a < b < oo are the parameters to optimize. In both of the panels
there exists a unique quantizer minimizing MSE. Simulations indicate that
the uniqueness of the minimizer can be actually generalized to arbitrary N-
level regular quantizers. Furthermore, when measurements are symmetric
around the origin, optimal regular quantizers are also symmetric.

Figure 4.2 demonstrates distrortions obtained by several types of quan-
tizers under RBP estimation. In particular it compares quantizers obtained



4.1. OPTIMAL REGULAR QUANTIZATION 47

func. MSE (a)
-4 ‘
-6
m -8
o
L
%)
= -10t
-12¢
== npred (SE)
_14 L I I
0 2 4 6 8
quant. boundary - a
(a)
func. MSE (a, b)
‘ —0
7 1-2
1-4
© 6f
I 1-6
= 5¢
8 1-8
5 4 ~10
Ko}
€ 3t -12
S 14
(o ol -
-16
1t
-18
0

0 2 4 6
quant. boundary - b

(b)

Figure 4.1: Illustration of 7, for (a) 4-level quantizer and (b) 6-level quantizer
as a function of quantization boundary values. Due to symmetry of S and of
SE recursion around zero, we have considered quantization boundaries to be
symmetric as well. As we can see in the plot, for this case MSE is a smooth
function of quantizer boundaries with a unique minimum. Other parameters
used: 02 =0, =2, p=0.1.
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via classical Lloyd algorithm |10] against quantizer obtained by (4.1). In this
simulation, as before, we assume Gauss-Bernoulli distribution for X;, with
sparsity parameter p = 0.1. We fix quantizer boundary points by = —oo
and by = 4oo for all the quantizers. We obtain Uniform quantizer via op-
timization of type (2.34), but with additional constraint of equally-spaced
output levels. The quantizer Lloyd was obtained by iterating through nec-
essary conditions of regular quantizer optimality. The measurements S, for
both Uniform and Lloyd quantizers were approximated as Gaussians by ap-
plication of the central limit theorem. To determine Optimal quantizer, we
perform (4.1) by using a standard SQP optimization algorithm for nonlinear
continuous optimization. As we see the MSE of the quantizer optimized for
the RBP reconstruction is much smaller, with more that 4 dB difference for
many rates.

In [9] it has been shown that, compared to adaptive compression schemes,
quantization of compressive sensing measurements incurs a significant penalty
in terms of rate-distortion performance. In particular adaptive encoding of
k-sparse signals with kR bits results in MSE that decreases exponentially as
272F  As a consequence, in the adaptive encoding scenario approximately 6
dB/b decrease in distortion is achieved with the rate R. We have to renor-
malize this performance to be able to compare it to the results in Figure 4.2.
Compressing a k-sparse signal with kR bits is equivalent to using

_ kR _
- ==

bits per signal component, where p = k/n is the sparsity ratio of the signal.
This in turn is equivalent to using

Rs = BRx = BpR, (4.6)

bits per measurement, with § = n/m the undersampling ratio. Equation
(4.6) indicates that for a fixed p = 0.1, we can achieve 30 dB/b and 20
dB/b decrease in distortion with rate Rg for § = 2 and [ = 3 respectively.
This can be compared to respective 8.5 dB/b and 8.9 dB/b average decrease
that we can observe for the optimal regular quantizers in Figure 4.2. Hence,
even with optimal regular quantization, the penalty to be paid for using a
non-adaptive or universal encoding is still significant.

Figure 4.3 demonstrates the quantization boundaries for quantizers ob-
tained via simulation above. As we can see in comparison to Uniform and
Lloyd quantizers Optimal quantizer has its boundaries clustered closer zero.
This implies that high resolution approximations of the measurements in the
range [—1,1] is preferred for better estimation with RBP. Another remark-
able observation in Figure 4.3 is that quantization regions of the Optimal
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quantizer have almost uniform spacing. This implies that we can potentially
obtain comparable performance to Optimal quantizer by using uniform quan-
tizers optimized via (4.1).

We verify the statement above in Figure 4.4. For the same problem setting
as before we perform (4.1), but with additional constraint of equally spaced
output levels. This results in a very simple and extremely fast optimization
where we optimize over a single variable (similar to Figure 4.1(a)). As we can
see in the figure, the resulting quantizer performs nearly as well as absolutely
best regular quantizer with difference in MSE of only 0.2 dB.

Finally in Figure 4.5 we present MSE performance of RBP for various
rates Rx (measured in bits/signal component). We vary the quantization
rate from 1 to 2 bits per component of x, and for each rate, we determine
optimal undersampling # and quantizers based on methods discussed above.
For comparison, Figure 4.5 also shows the performance of two other simple
algorithms. The top curve is the MSE for optimal linear MMSE estimation,
and the curve labeled LASSO is the MSE from the widely used LASSO al-
gorithm from [23]. Performance of both algorithms is computed assuming a
bounded uniform quantizer and the LASSO performance was predicted by
state evolution equations in [17], with the thresholding parameter optimized
by the iterative approach in [18]. It can be seen that RBP offers dramati-
cally better performance with more than 10 dB of improvement. The figure
also demonstrates that additional gains in performance can be attained by
optimizing the quantizer.

4.2 Optimizing Binned Quantizers

One way to further reduce the distortion of the RBP reconstruction while
keeping rates constant is to use binned quantizers [15|. Binning strategy
becomes viable in any scenario where auxilary information about the signal
being quantized is available at the decoder. In our problem at hand with RBP
reconstruction, we have assumed that the algorithm has access to the sparse
prior of the signal X. We can then consider binning disjoint quantizer cells,
and let the estimation algorithm infer which cell is the correct one during
the reconstruction. Intuitive explanation why reductions are possible lie in
the fact that in the measurement space R™, the k-sparse signal lies in only
a small subset of dimension R* (Figure 2.9). Hence, by binning (or nesting)
quantizers we can potentially obtain better rate-distortion performance.
Figure 4.6 presents comparison of optimized regular quantizers against
optimized binned ones. We use binning strategy depicted in Figure 2.8(b)
where quantization indices are taken modulo M. For example, if we have a



50 CHAPTER 4. OPTIMAL QUANTIZATION FOR RBP ESTIMATION

Meas. Rate vs. Distortion: beta = 2.00
-10 ‘ ‘ : :
= Jniform
= loyds ||
= Optimal

2 25 3 3.5 4 4.5 5

(a)

Meas. Rate vs. Distortion: beta = 3.00
_5 T T T T T

== Uniform
-10 = loyds ]
= Optimal

MSE (dB)
Y
[6)]

(b)

Figure 4.2: Performance comparison of quantizers under RBP reconstruc-
tion for (a) # = 2 and (b) B = 3. We plot MSE versus rate Rg in
bits/measurement. As we see optimal quantizer obtained by (4.1) signifi-
cantly outperforms quantizers optimized by minimizing MSE between quan-
tizer input and output as in (2.34). Curves obtained via SE recursion with
parameters p = 0.1 and 0% = 0.
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Figure 4.3: Illustration of quantization boundaries for the Figure 4.2 (a).
Panel (a) compares quantization boundaries of three quantizers for the rate
4 bits/measurement. In panel (b) we illustrate the boundaries of the optimal
regular quantizer for various rates. Note that optimal quantizer boundaries
are clustered around zero and have nearly uniform spacing between each
other.
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Figure 4.4: Performance comparison of SE optimized uniform quantizer
against optimal quantizer for (a) 8 = 2 and (b) § = 3. It is remarkable
that RBP optimal quantizer has nearly uniform behaviour. In the plot the
difference between the optimal quantizer and optimized uniform quantizer is
within 0.2 dB of each other.
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Figure 4.5: Comparison of quantized RBP performance with other stan-
dard sparse reconstruction methods. MSE performances versus the rate Rx
bits/signal component for Uniform and Optimal quantizers for RBP. See text
for details.

regular quantizer with N = 8 levels

1,2,3,4,5,6,7,8], (4.7)
we can bin L = 2 levels/bin to obtain M = 4 total bins

[1,2,3,4,1,2,3,4]. (4.8)

Optimization is then performed over quantization boudaries via (4.1). For
the simulations presented in Figure 4.6 we set parameters the same way as
for Figures 4.2 and 4.3 in the previous section. Additionally we optimize
between two L = 2 and L = 3 and choose the one with the best MSE per-
formance. As we can see significant performance improvements, up to 20 dB
in the figures, can be obtained by binning quantizer outputs. However, opti-
mization (4.1) for binned quantizers becomes a non-trivial task as the MSE
function that we would like to minimize might develop few local minima. In
our case for finding the global minimum we utilized standard functions in the
Global Optimization Toolbox of the MATLAB software package. One im-
portant observation is that binning achieves approximately 9.3 dB/b and 11
dB/b decrease in MSE with rate Rg for # = 2 and (5 = 3 respectively. This
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compares favorably with respective 8.5 dB/b and 8.9 dB/b obtained for op-
timal regular quantizers. Hence, binning effectively reduces the gap between
the performances of the adaptive and non-adaptive encoding schemes.
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Figure 4.6: Performance comparison of regular and binned quantizers under
RBP for (a) = 2 and (b) 8 = 3. Plotted are MSE of the reconstruction ver-
sus rate Rg in bits/measurements. The best error performance was achieved
by binned quantizer with non-trivial gains across all rates. The curves are
obtained for sparsity ratio p = 0.1 and AWGN variance 0% = 0.
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Chapter 5

Conclusions

Quantization is a necessary component of any practical acquisition system,
yet due to its nonlinear nature it does not lend itself to easy analysis. As
a consequence the topic of quantized measurements is often ignored in com-
pressive sensing literature. In this work we have studied the topic of quantizer
design for compressive sensing under reconstruction by a family of algorithms
commonly referred to as message-passing algorithms. In particular we fol-
lowed the work on the relaxed belief propagation algorithm, however our
results can be easily generalized to other similar algorithms like approximate
message passing. Message passing algorithms, like relaxed belief propaga-
tion or approximate message passing, represent a novel, yet a very powerful
class of methods for obtaining great sparse signal estimations with low com-
putational costs. The error performance of these algorithms can be exactly
characterized by a simple recursive equation called state evolution. By im-
plementing and running state evolution we can accurately predict MSE or
some other error metric of the reconstruction by message passing algorithms.
Moreover, by analyzing fixed points of state evolution equation we can easily
determine if the estimation is mean-square optimal or not.

Recent results for relaxed belief propagation have demonstrated that it
can be generalized to arbitrary measurement channels, where noise of identi-
cal transition probability acts on each compressive sensing measurement. We
utilized these results to incorporate quantization as part of the channel and
worked out relaxed belief propagation and state evolution equations for re-
construction from quantized measurements. We then used the state evolution
framework to optimize quantizer boundaries for optimal MSE performance.
Our results demonstrate that with optimal quantization error performance
of relaxed belief propagation reconstruction improves significantly. More-
over optimal regular quantizers look nearly uniform with quantization cells
clustered close to zero. This indicates that for best estimation performance
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relaxed belief propagation requires high precision measurements around zero,
while allowing coarse quantization of measurements farther away from zero.
Our optimization setting can as well be utilized for designing good binned
quantizers, where disjoint quantization cells are binned together for reducing
the bit rate. We experimentally demonstrate the superior error performance
achieved by binned quantizers under relaxed belief propagation reconstruc-
tion.
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