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Abstract

This thesis proposes architectures and algorithms for digital acquisition of parametric sig-
nals. It furthermore provides bounds for the performance of these systems in the presence
of noise. Our simple acquisition circuitry and low sampling rate enable accurate parameter
estimation to be achieved economically. In present practice, sampling and estimation are
not integrated: the sampling device does not take advantage of the parametric model, and
the estimation assumes that noise in the data is signal-independent additive white Gaussian
noise.

We focus on estimating the timing information in signals that are linear combinations of
scales and shifts of a known pulse. This signal model is well-known in a variety of disciplines
such as ultra-wideband signaling, neurobiology, etc. The signal is completely determined by
the amplitudes and shifts of the summands. The delays determine a subspace that contains
the signals, so estimating the shifts is equivalent to subspace estimation. By contrast,
conventional sampling theory yields a least-squares approximation to a signal from a fixed
shift-invariant subspace of possible reconstructions.

Conventional acquisition takes samples at a rate higher than twice the signal bandwidth.
Although this may be feasible, there is a trade-off between power, accuracy, and speed. Un-
der the signal model of interest, when the pulses are very narrow, the number of parameters
per unit time—the rate of innovation—is much lower than the Fourier bandwidth. There is
thus potential for much lower sampling rate so long as nonlinear reconstruction algorithms
are used.

We present a new sampling scheme that takes simultaneous samples at the outputs of
multiple channels. This new scheme can be implemented with simple circuitry and has
a successive approximation property that can be used to detect undermodeling. In many
regimes our algorithms provide better timing accuracy and resolution than conventional
systems. Our new analytical and algorithmic techniques are applied to previously proposed
systems, and it is shown that all the systems considered have super-resolution properties.

Finally, we consider the same parameter estimation problem when the sampling in-
stances are perturbed by signal-independent timing noise. We give an iterative algorithm
that achieves accurate timing estimation by exploiting knowledge of the pulse shape.

Thesis Supervisor: Vivek K Goyal
Title: Assistant Professor
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Chapter 1

Introduction

This thesis revisits the problem of estimating signal parameters from samples. The con-
ventional approach has two steps: first, the signal is sampled uniformly in time above its
Nyquist rate, with anti-aliasing prefiltering if needed; then, a parameter estimation algo-
rithm is applied on the discrete-time samples. In this approach the first step does not take
advantage of the parametric model of the signal, and the second step usually assumes that
noise in the data is signal-independent additive white Gaussian noise. Whether the con-
ventional approach is effective and economical depends on the parameters to be estimated.
If the goal of the parameter estimation is to find the best approximation to the acquired
signal from a subspace of possible estimates, the conventional approach is ideal. However,
many important parameter estimation problems are not of this simple form.

In this thesis we propose the integration of signal acquisition and parameter estimation.
In particular, we are interested in keeping the acquisition circuitry simple and the sampling
rate low so that accurate parameter estimation can be achieved economically. We present
new architectures, several analyses of the effect of noise, algorithms for mitigating noise, and
extensive simulations using realistic device models. These demonstrate that the modularity
and linearity of the conventional approach come at the price of significant performance
degradation. Our goal is to improve the economy of signal acquisition in terms of hardware
complexity, sampling rate, and associated estimation algorithms.

The variety of parameter estimation problems seen in practice is unlimited, and it is
difficult to make concrete statements without an explicit model. So here we consider signals
that are a superposition of shifted versions of a known pulse h(t),

x(t) =
∑

k

ckh(t− tk). (1.1)

These signals have parameters {ck} and {tk} which we refer to as the amplitudes and
the offsets. Some practical motivations for considering this signal class are discussed in
Section 1.1. From a theoretical and esthetic perspective, this signal class is attractive for
several reasons. Principal among them is that the bandwidth of h(t) does not fundamentally
determine whether the parameters can be recovered from samples of x(t). The generality
of (1.1) is discussed further in Chapter 2.

This thesis focuses on the prototypical case when the pulse shape in (1.1) is the Dirac
delta function, h(t) = δ(t). This case is of particular interest because its support in the
Fourier domain is infinite: conventional sampling theory suggests that it is not possible to
perfectly reconstruct this signal.

11
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Sampling Estimation

     Acquisition

Analog Digital

Conventional

Proposed

Figure 1-1. An illustration of the difference between the classical approach and the proposed approach. In
the classical approach, the signal is first sampled in time at its Nyquist rate, and the obtained samples are
then used for estimation. In the proposed approach, we design the data acquisition system with parameter
estimation explicitly in mind.

There has been much recent work on sampling parametric signals. The rate of inno-
vation of a parametric signal is the minimum number of parameters per unit time that
can completely describe it. Methods and algorithms were proposed that can perfectly re-
construct certain parametric signals from samples taken at the signal rate of innovation
rather than the Nyquist rate [32, 33, 60, 69, 72, 117]. This thesis extends this new sampling
framework to consider signal parameter estimation in the presence of noise, explicitly taking
advantage of parametric signal models.

The contributions of this thesis are threefold:

1. We propose a new signal acquisition device that is very simple to implement. It takes
samples at the outputs of multiple channels simultaneously in time. The associated re-
construction procedures are a departure from the framework of reconstructing signals
only in a fixed subspace and use nonlinear algorithms which in many cases are sub-
space estimation algorithms. We draw connections to the classical estimation problem
of Prony, for which many algorithms of various complexities have been proposed. The
proposed system has a successive approximation property that can be used to detect
undermodeling.1 We analyze the performance of the proposed system by deriving
the Cramér-Rao bounds for timing estimation and the resolution of the system. We
implement several reconstruction algorithms, and we show that in many cases they
are superior to the classical methods and have a super-resolution property.

2. Using the analytical and algorithmic tools developed in the previous part, we revisit
prior work on acquiring signals with finite rates of innovation using uniform sampling
in time. We derive the Cramér-Rao bounds for timing estimation and resolution,
and we show that it is possible to obtain better resolution than the conventional
method using simple algorithms. We show that one of the schemes reviewed also has a
successive approximation property that can be used to detect undermodeling. Further,
this scheme allows for signal segmentation and reconstruction of different orders after
the samples are taken, up to some constraints. This is particularly attractive for
problems where the signal model order is not known exactly.

1Part of this work will be presented at the 2006 IEEE Intl. Conf. on Image Processing, Atlanta, GA [58].
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3. In the last part of the thesis we consider the problem of estimating the parameters
of a signal when the sampling instances are perturbed by signal-independent timing
noise. The classical techniques consider timing noise to induce signal-independent
additive white Gaussian noise on the sample values. We reject this simplification of
the problem and give alternative methodologies. We focus on the problem of delay
estimation when the pulse shape and amplitude of the signal are known, and we give
an iterative algorithm that shows superior performance compared to the traditional
method which relies on maximizing the cross-correlation. Using the signal parameters
based on the single-chip ultra-wideband transceiver developed at the Massachusetts
Institute of Technology (MIT) [11–13,119] we show that in some regimes we can cancel
the effect of jitter completely.2

� 1.1 Motivation

With the accelerating use of computers the need for digital signal processing has increased.
In order to use an analog signal on a computer it must be digitized using an Analog-to-
Digital Converter (ADC). In some cases the only information that we have about the signal
of interest is its Fourier bandwidth. The Nyquist-Shannon sampling theorem states that it
is possible to faithfully reproduce a signal when it is sampled at twice its bandwidth, at a
rate called the Nyquist rate [68, 79]. Using this method, the reconstruction of the signal is
done by sinc interpolation. If the ADC sampling rate is lower than this rate, an anti-aliasing
lowpass filter with cutoff at half the available sampling rate can be used. In this case, the
reconstructed signal is given by

x(t) =
∑
n∈Z

cn sinc(t− nTs). (1.2)

The bandwidth of this signal is 1/(2Ts) and its Nyquist rate is 1/Ts. The signal (1.2)
belongs to a fixed subspace that is spanned by {sinc(t − nTs)}, n ∈ Z. Applying an anti-
aliasing filter of bandwidth 1/Ts and sampling the filter output is equivalent to projecting
the original signal into this subspace. Applying an anti-aliasing filter of smaller bandwidth
and sampling at twice this lower bandwidth is equivalent to projecting the signal into a
smaller subspace. This classical approach is illustrated in Figure 1-2.

� 1.1.1 Why Parametric Signals

Many signals of interest consist of pulses of unknown amplitude and time delay such as
(1.1), and we are interested in the information carried in these amplitudes and delays. This
is one example of parametric signals, meaning signals that can be completely described by
their parameters. Figure 1-3 shows one example of this class of signals. When the pulse
shape is known, the signal can be described by its parameters: the amplitudes and delays of
the pulses. For such a signal, the subspace that the signal of (1.1) belongs to is determined
by its shifts. Hence, estimating its shifts {tk} is equivalent to subspace estimation. For the
same reason, conventional methods that reconstruct the signal only within a fixed subspace

2Part of this work was presented at the 2006 Conf. on Information Sciences and Systems, Princeton,
NJ [59].
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Anti-

aliasing 

filter

DAC /

Interpolator

Figure 1-2. The classical framework of sampling signals, due to Nyquist, Shannon and Kotelnikov. The
input signal x(t) is first filtered using a anti-aliasing lowpass filter, and samples are taken at twice the cutoff
frequency of this filter. The reconstruction is done by applying a reconstruction lowpass filter of the same
bandwidth after translation to the continuous-time domain. We show a mismatched pair of anti-aliasing
and reconstruction filters, resulting in further smoothing of the signal.

cannot obtain perfect reconstruction. In many cases the Fourier bandwidth of this signal
is much larger than the number of parameters per unit time, called the signal rate of
innovation. We call systems that generate this type of signal bandwidth-expanding systems.

Examples include ultra-wideband signals used for communication, ranging and identifi-
cation applications [22, 38, 75, 76, 81, 121–123], and naturally-occurring signals in biological
and physical phenomena [93, 96, 97, 120]. Modern systems such as the Global Positioning
System (GPS), Code-Division Multiple Access (CDMA) systems, and neural circuits, are
also bandwidth-expanding. That is, the transmitted signal has larger Fourier bandwidth
than information rate or rate of innovation [60,61,69,70].

Recent increase of interest in the integration of digital computers and neural systems
means that conversion of signals from the analog domain to the digital domain and vice versa
is becoming more important. Much recent work has been done in developing biologically-
inspired hybrid systems that operate both in the analog and digital domains [40,95–97]. To
quote Sarpeshkar [96],

“The brain is an excellent example of a hybrid of an analog computer and a
digital computer. Neurons use ’spikes’ or pulses of voltage to communicate with
each other, and these spikes have an inherently hybrid nature: The presence of
the spike is a digital event, but the time between spikes is a continuous analog
variable.”

There are several challenges in translating signals from the analog domain to the digital
domain. A neural signal is by nature spiky [93, 120], and therefore its bandwidth is higher
than its rate of innovation. In the Nyquist sampling framework, this necessitates a high-
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Figure 1-3. An example of a parametric signal. The signal x(t) consists of K Dirac delta functions scaled
and delayed. It is completely determined by its parameters {ck, tk}K−1

k=0 .

rate ADC, which in turn leads to high power consumption, complex circuitry, and stringent
noise and circuit quality requirements.

Many applications admit a signal model that is particularly suitable for our proposed
signal acquisition system. For example, it is known that due to the refractory period in the
nervous system, inter-spike timing in a neural system is at least 1 ms, meaning that within
any 1 ms period, there can be at most one spike [66, 93]. Recent interest in developing
brain-machine interfaces means that economical methods for spike detection are desirable.
Current methods either use a threshold detector for detecting the occurrence of the spikes
or take samples at the Nyquist rate of the spikes and use digital signal processing for
denoising [80]. The first approach requires sufficient analog processing to isolate the spike
signal, and the second approach requires a high-rate ADC that samples at a rate higher
than twice the bandwidth of the pulses.

In this thesis we are concerned with three challenges that are acute for acquisition of
spiky signals: how to sample signals of very high bandwidth, how to deal with timing noise,
and how to build a signal acquisition device from simple building blocks.

� 1.1.2 Why Revisit Signal Acquisition

Although wideband ADCs are becoming more commonplace, there are many challenges
in the design and implementation of such devices. Analog and digital electronics have
advanced tremendously, but not at the same pace. For most applications it is preferable to
shift functionality from analog to digital as much as possible. However, the fraction of chip
area, power consumption, and manufacturing cost associated with the analog portion often
grows over time, because of the need for higher-rate and more accurate ADCs to enable
faster signaling and communication [12,78,119].

The recent thesis of Blazquez [11] proposed a single-chip UWB transceiver that sends
Gaussian pulses with a bandwidth of 1 GHz. The manufactured chip is shown in Figure 1-4
with its subsystems highlighted. The signal acquisition system is a significant part of the
proposed receiver, with the Flash ADC taking up nearly half of the baseband processor! The
performance of an ADC is usually given in terms of its sampling rate, power consumption,
dynamic range, and Effective Number Of Bits (ENOB). There is a tradeoff between these
factors. We focus on the tradeoff between speed, accuracy in terms of ENOB, and power.
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Figure 1-4. A UWB baseband processor on a single chip developed by the MIT Microsystem Technologies
Lab.

For a Complementary-symmetry/Metal-Oxide Semiconductor (CMOS) system it is well-
known that this tradeoff is given by [116]:

(Speed [Hz])× (Accuracy [RMS])2

(Power [Watts])
≈ Constant. (1.3)

Although many architectures can obtain good tradeoff of these factors, there are several
limiting factors such as timing noise. It is known that timing noise is a significant source
of impairment in wideband ADCs, decreasing resolution by about 1 bit for every doubling
of the sampling rate in the Mega- and Giga-sample per second regime [3,67,118].

It was recently shown that for some bandwidth-expanding communication systems it is
possible to adjust the receiver sampling rate to be below the Nyquist rate even in the pres-
ence of noise [60,61,69,70,117]. As long as the sampling rate is above the rate of innovation,
the resulting performance is commensurate to the performance of the conventional system
when the transmission bandwidth is adjusted so that there is no aliasing. We will review
this body of work in Section 2.3.2 and Section 2.3.4. Although Maravić and Vetterli [71]
considered the performance of the sampling scheme of [117] in the presence of AWGN,
their analysis assumes that the reconstruction is done by first estimating the second-order
statistics of the observation and then using the matrix pencil method proposed by Hua and
Sarkar [48, 49]. While the matrix pencil method is known to perform well for large block
sizes, parameter estimation via second-order statistics is known to perform poorly for small
block sizes. Further, the result of Vetterli and Maravic holds only for signals which contain
only one component.

The effect of timing noise on the observation is signal-dependent. We consider the effect
of timing noise on conventional uniform-in-time analog-to-digital conversion systems, with
the goal of estimating the unknown parameters of the signal. As mentioned before, timing
noise is a dominant source of noise in wideband ADCs. However, the standard approach is
to consider the effect of timing noise to be signal-independent additive white Gaussian noise.
The variance of this noise term is obtained by considering the highest frequency that can
be sampled without aliasing, and computing the effect of timing noise on the zero-crossings
of this sinusoidal signal. This is called approximation via the maximum signal “slew” rate
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and gives
AWGN [RMS] = Jitter [RMS]×ADC Bandwidth [Hz].

We reject this simplification and show that there are large gains from explicitly considering
the effect of timing noise on the samples of a parametric signal model. We focus on the
canonical problem of signal delay estimation, for which timing accuracy is critical [38, 81].
We simulate the proposed approach using the signal models based on the ultra-wideband
(UWB) testbed developed at the MIT Microsystem Technologies Laboratory (MTL), and
show significant gains. In some regimes, we can completely cancel the effect of jitter. The
characterization of timing noise is well-studied. One common model for timing noise is a
stationary, zero-mean, filtered Gaussian white noise or Wiener process [23, 24, 41, 64]. Our
algorithm can also be adapted to take advantage of this more accurate timing noise model.

In the presence of AWGN, the optimal estimator of pulse delays from samples obtained
via Nyquist sampling finds the maxima at the output of a correlator. When there is only one
pulse in the signal, this can be implemented using a gradient search algorithm. But when
there are K pulses in the signal, the estimator is a K-dimensional maximization. It is known
that the objective function has many local maxima, hence an accurate initial estimate is
required to implement a gradient search [106]. In many cases a good initial estimate is not
available, and the performance of the estimator suffers. Moreover, the resolution of the
conventional system is limited.

We define the resolution of a signal acquisition system as the minimum spacing of two
signal components that can still be resolved by the system. The resolution of a conventional
system is determined solely by its sampling rate. In frequency estimation there is a class
of algorithms that have a super-resolution property, that is at high SNR its resolution is
higher than that of the conventional system. We will show that our proposed systems have
super-resolution properties.

� 1.2 Thesis Outline

We start by reviewing previous work in sampling and reconstruction of parametric signals
in Chapter 2. Then we present the main results in three parts:

1. Multichannel sampling of parametric signals: In Chapter 3 we depart from the
framework of linear subspace projection and use nonlinear algorithms that in many
cases are subspace estimation algorithms. We reject the notion of Nyquist sampling
for parametric signals and give an alternative method. The proposed system takes
samples simultaneously in time at the output of different channels, and is particularly
simple to implement using either integrators or B-spline kernels. We show that algo-
rithms developed for line spectra estimation and Prony estimation can be used in our
proposed system. We also derive the Cramér-Rao bound of our proposed system, and
we show that our system has superior resolution compared to the classical method
analytically and by simulation.

2. Sampling signals with a finite rate of innovation: In Chapter 4 we re-examine
the sampling system proposed by Vetterli et al. that takes uniform samples in the time
domain, at the rate of innovation of the signal. In the noisy case, the sampling rate
can be adjusted anywhere above the rate of innovation, without requiring adaptation
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of the signal pulse bandwidth. We show that below the Nyquist rate the performance
of the proposed system is the same as that of the classical approach, if the bandwidth
of the pulse shape in the latter case were adjusted according to the sampling rate
available at the signal acquisition device. We use methods developed in the previous
chapter to derive the resolution limits of the proposed system and show by numerical
simulation that it has superior performance compared to the classical method.

3. Signal parameter estimation in the presence of timing noise: In Chapter 5 we
explicitly consider timing noise instead of taking the standard approach of assuming
timing noise noise to induce signal-independent additive white Gaussian noise. Taking
advantage of a parametric signal model, we focus on the problem of delay estimation
and show improved accuracy compared to the classical approach in terms of signal-
to-noise ratio, jitter power, and sampling rate.



Chapter 2

Background

In this chapter we review the previous work in exponential fitting and sampling signals
with a finite rate of innovation, which form the mathematical basis for the first part of the
thesis. We also review wideband signal acquisition and examine the problem of timing noise
mitigation.

� 2.1 Powersums and Exponential Fitting

The nonlinear parameter estimation problems that we consider in this thesis are based
on observations that have the form of powersum series. We start by giving the following
definition.

Definition 2.1 (Powersum series). A powersum series of K components is given by

xn =
K−1∑
k=0

ck(uk)n, n = 0, 1, . . . , N − 1. (2.1)

We say that {ck} are the amplitudes and {uk} are the coefficients or poles.

The desired parameters are the K pairs {ck, uk}. A sequence of form (2.1) was first
studied by Baron de Prony in 1795 as he attempted to find the decay rates of chemical
processes [25]. In the original problem, the observations and parameters are real-valued.
This is sometimes called “real exponential fitting” or “exponential analysis” in the natural
sciences literature [4,20,36,50,124]. For the case when K = 1 and N = 2, we have a system
of equations with 2 unknowns. Then we can quickly solve ĉ0 = x0, û0 = x1/ĉ0. This is the
only instance we know of in which there is a closed-form solution, and one that gives ĉk

before ûk. We will take advantage of the relative simplicity of the lower order problems.
De Prony showed that in the noiseless case it is possible to find {ck, uk} exactly based

on N = 2K observations. In the signal processing literature, his method is called the
annihilating filter method, which we review below. We review several other known methods
in Appendix A. Instead of presenting Prony’s method in terms of a constant-coefficient
difference equation, we use signal processing terminology instead. The one-sided z-transform
of (2.1) is given by

X(z) =
∞∑

n=0

K−1∑
k=0

ck(uk)nz−n =
K−1∑
k=0

ck

1− ukz−1
.

19
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In this form the parameters {uk} appear as poles of X(z). Now let hn be a finite impulse
response (FIR) filter of length K, with z-transform H(z). If the central values in the
convolution of hn and xn are zero,

hn ∗ xn = 0, n = K + 1, . . . , N − 1, (2.2)

then the K zeros of H(z) must equal the K poles of X(z). In other words, up to a scaling
factor we must have that:

H(z) =
K−1∏
k=0

(1− ukz
−1).

Suppose that the time-domain representation of this filter is given by hn = 1+
∑K

n=1 hnz−n.
The solution to (2.2) can be obtained by writing the convolution in matrix form. The matrix
equation that we need to solve is given by

xK−1 xK−2 . . . x0

xK xK−1 . . . x1
...

...
. . .

...
x2K−2 x2K−3 . . . xK−1




h1

h2
...

hK

 = −


xK

xK+1
...

x2K−1

 (2.3)

In order to form the system of linear equations (2.3), we require N ≥ 2K observations.
After finding h0, h1, . . . , hK−1 we obtain uk by finding the roots of the corresponding filter
H(z). It is known that this method is not a consistent estimator of the parameters [51,104].
The number of required samples is summarized in the following lemma, which will be used
to prove several sampling theorems later in this thesis.

Lemma 2.1 (Computing the parameters of a powersum series [25]). Consider a
powersum series consisting of K components

xn =
K−1∑
k=0

ck(uk)n, n = 0, 1, . . . , N − 1. (2.4)

It is possible to obtain the parameters {ck, uk}K−1
k=0 from N ≥ 2K observations xn.

� 2.2 Parametric Signals

A parametric signal is a signal that can be expressed in a small number of parameters. One
well-studied example is a signal comprising of K complex exponentials, say

x(t) =
K−1∑
k=0

ck exp(jωkn), (2.5)

where {ck}K−1
k=0 are its complex amplitudes and {ωk}K−1

k=0 are its frequencies. A signal of
form (2.5) is a powersum series with coefficients uk = exp(jωk), which we introduced in
Definition 2.1. Given that the signal contains K such terms it is possible to obtain perfect
reconstruction using N ≥ 2K samples taken uniformly in time [106]. The minimum number
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of parameters that can define a signal is called the rate of innovation of the signal. We make
this precise following the definition given in [117].

Definition 2.2 (Signal rate of innovation). Let Cx(ta, tb) be a counting function that
counts the number of degrees of freedom in a signal x(t) over the interval [ta, tb). Given a
signal x(t), its rate of innovation ρ is defined as

ρ = lim
τ→∞

1
τ
Cx

(
−τ

2
,
τ

2

)
.

Another example of parametric signals that is of particular interest in this thesis are
signals consisting of scaled-and-delayed pulses. When the pulses are narrow, those signals
have very high Fourier bandwidth, in many cases orders of magnitudes higher than their
rates of innovation. We have seen that these types of signals occur in many biological
systems and are used in ultra-wideband communication and signaling.

Definition 2.3 (Parametric Signals: Sum of Diracs). Given a set of K amplitudes
{ck}K−1

k=0 and time delays {tk}K−1
k=0 , the signal of interest x(t) is a superposition of Diracs

x(t) =
K−1∑
k=0

ckδ(t− tk).

The parameters {ck, tk}K−1
k=0 are real-valued.

The problem of signal parameter estimation in continuous-time domain is well-studied
[52, 111]. However, translation into the discrete-time domain is usually done by implicitly
assuming sampling above the Nyquist rate. The problem with this approach is that while
the number of desired signal parameters tends to be small, the Fourier bandwidth of the
signal may be orders of magnitude higher. This is the main motivation of the work of
sampling signals with a finite rate of innovation [117].

Both uniform and non-uniform sampling of analog signals have been studied extensively,
including approximation and noise robustness properties [45,115]. This theory builds upon
the celebrated sampling theorem of Shannon, Nyquist and Kotelnikov, which applies to
the class of bandlimited signals [53,79,100]. Many generalizations have been proposed: see
for example [45, 83, 115]. All of this work relies on reconstructing the signal using linear
projection on the span of a Riesz basis. This span is a fixed subspace. In contrast, in this
thesis we propose methods that estimate a subspace via estimating the timing parameters
of a signal.

� 2.3 Sampling Signals with a Finite Rate of Innovation

The recent work of Vetterli et al. [117] provides examples of non-bandlimited signals that
can be recovered perfectly from uniform samples. Though not bandlimited, the signals they
can recover are specified by a finite number of degrees of freedom per unit time, a property
termed finite rate of innovation (FRI).

Extensions to more general sampling kernels have also been developed and algorithms
for their perfect reconstruction in the exact and noiseless case have been proposed [32,58].
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•,

•,

•,

Figure 2-1. Filtering and uniform sampling in time written as a sequence of inner products with shifts of
the filter function.

In general the reconstruction algorithms are not linear; most of them rely on solving the
powersum series either by the Prony/annihilating filter method or the Matrix Pencil method.
We present a few of these methods in Appendix A.

� 2.3.1 Sampling and inner products

Define the usual L2 inner product of a signal x(t) and a function f(t) as

〈x(t), f(t)〉 =
∫

x(t)f(t)dt.

Filtering a signal x(t) with a sampling kernel h(−t) and taking uniform samples yn =
(x∗h)(nT ) at the output of the sampling kernel can be seen as a sequence of inner products
with shifts of the kernel h(t− nT ). Indeed,

yn = (x ∗ h)(nT ) =
∫ ∞

−∞
x(τ)h(t− τ)dτ

∣∣∣∣
t=nT

(2.6)

= 〈x(t), h(t− nT )〉. (2.7)

We show this in Figure 2-1. When the signal being considered consists of K weighted
Diracs, inner products with a function f(t) take a particularly simple form

〈x(t), f(t)〉 =

〈
K−1∑
k=0

ckδ(t− tk), f(t)

〉

=
K−1∑
k=0

ck〈δ(t− tk), f(t)〉

=
K−1∑
k=0

ckf(tk).
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We will use these properties throughout this thesis. Because of the relationship (2.6) we
use the term filter and kernel interchangeably.

� 2.3.2 Periodic sums of Diracs

Consider signals that are K-sums of Diracs, such as the example shown in Figure 1-3. Such
a signal can be written as

x(t) =
K−1∑
k=0

ckδ(t− tk). (2.8)

For the time being, we assume that the signal is periodic with period 1, hence its rate of
innovation is 2K. From Fourier analysis, a periodic signal can be expressed in terms of its
Fourier series coefficients:

x(t) =
+∞∑

m=−∞
X[m] exp(j2πmt). (2.9)

For the signal model we are interested in, the Fourier series coefficients are given by:

X[m] =
K−1∑
k=0

ck exp (−j2πmtk) , m ∈ Z. (2.10)

The Fourier domain representation given in (2.10) has infinite length, hence we say that
this signal is not bandlimited. However, x(t) has finite rate of innovation, 2K.

In conventional linear sampling theory – assuming a non-parametric signal model – then
given an ADC that takes samples at fs Hz, we must first apply an anti-aliasing/lowpass
filter with cutoff frequency fs/2 Hz. Suppose that this cutoff corresponds to Fourier series
index L. The linear reconstruction of the signal based on its discrete-time samples is then
given by:

x̂(t) =
L∑

m=−L

K−1∑
k=0

ck exp (−j2πmtk) exp(j2πmt). (2.11)

Compare the original signal given by (2.9) and its reconstruction given by (2.11). The
reconstruction of the signal involves Fourier-domain truncation. The truncation boundary
given by [−L,+L] is determined by the lowpass filter to ensure that there is no aliasing.
Clearly, because in general the original signal is non-zero in the entire Fourier domain, the
reconstruction error is nonzero. The reconstruction error decays at a rate proportional to
the sampling rate fs. This reconstruction strategy is based on linear projection into a fixed
subspace determined by the lowpass filter.

Vetterli, Marziliano and Blu [117] showed that it is possible to obtain perfect recon-
struction of the signal x(t) by determining its parameters {ck, tk}K−1

k=0 . They observed that
(2.10) is a powersum series with uk = exp(−j2πtk), and therefore from Lemma 2.1 the
parameters can be estimated from 2L + 1 ≥ 2K Fourier series coefficients. The parametric
reconstruction scheme is based on a nonlinear reconstruction algorithm, which in fact is
based on subspace estimation.

Suppose we select the Fourier series coefficients around DC. Computing these Fourier
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series coefficients can be done by first applying a lowpass filter corresponding to the cutoff
band index L ≤ K in the Fourier domain, sampling at twice this cutoff frequency, and
then computing the Fourier series from the given samples in the time domain. Note that
using this algorithm there is no aliasing in the Nyquist sense either. The primary difference
is that we compute the parameters of the signal based on the obtained samples using
a nonlinear reconstruction method. Therefore in the noiseless case it is possible to obtain
perfect reconstruction by sampling at the rate of innovation of the signal, which is well below
the Nyquist rate, after applying a lowpass filter corresponding to this sampling rate [72,117].
Vetterli, Marziliano and Blu gave the following theorem.

Theorem 2.1 (Sampling periodic sums of Diracs [117]). Let x(t) be a periodic sum
of K Diracs as given in (2.8), with period T . It is possible to obtain perfect reconstruction
from N ≥ 2K uniform samples of (hB ∗ x)(t), where hB(t) = B sinc(Bt) is a sinc kernel
with bandwidth B chosen such that it is greater than or equal the rate of innovation of the
signal 2K/T .

Proof. Let the output of the sinc kernel be sampled at twice the bandwidth. Taking the
discrete Fourier transform of this sequence we obtain

X[m] =
K−1∑
k=0

ck exp (−j2πmtk) , m = −L, . . . , +L.

By construction, the number of Fourier series coefficients obtained is greater than 2K.
This Fourier series is a powersum series, with poles {exp(−j2πtk)} and amplitudes {ck}.
From Lemma 2.1 we know that it is possible to compute the parameters from N ≥ 2K
observations of the powersum series.

The estimation problem associated with this sampling theorem is closely related to
the problem of line spectra estimation, where the poles are given by uk = exp(jωk). Many
algorithms have been proposed that are suitable for this problem [106]. In many cases, their
performance in the presence of white additive noise is known [48,49,54,55,57,71,105,107].
In Section 2.4 we will review some of the results.

Vetterli, Marziliano and Blu also showed that it is possible to use sampling kernels
other than an ideal lowpass filter for different classes of signals. The samples are obtained
by filtering and sampling

yn = 〈x(t), ϕ(t− nT )〉,

where ϕ is the sampling kernel. This scheme is shown in Figure 2-2. The original signal
is given in the Fourier domain by X[m] and has infinite support in that domain. The
filtered and sampled signal in the Fourier domain is given by Y [m], where we have that
Y [m] = X[m] for m = −2,−1, 0, 1, 2. It is periodic in the Fourier domain with period 5 due
to the sampling. In Figure 2-3 we illustrate the difference between this proposed system
and the conventional system based on Nyquist sampling. In the proposed system, we obtain
perfect reconstruction by first estimating the parameters of the signal. These parameters
allow for infinite reconstruction of the signal in the Fourier domain, despite having applied
an anti-aliasing lowpass filter at the input.
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Figure 2-2. FRI sampling of a periodic signal consisting of two Diracs. The original signal x(t) is filtered
and sampled to obtain y[n], and the corresponding Fourier series are given below the time-domain signals.
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Figure 2-3. FRI sampling of a periodic signal consisting of K Diracs. In this example we illustrate the
difference between the parametric approach and the non-parametric approach given in Section 1.1.



26 CHAPTER 2. BACKGROUND

� 2.3.3 Sum of a finite number of Diracs

Now consider the case when the signal model given in (2.8) is aperiodic. It was shown
in [117] that it is possible to perfectly reconstruct the signal from N ≥ 2K measurements.
Suppose that we take uniform samples in time at the output of a Gaussian filter g(t) =
exp(−t2/(2ρ2)). In the noiseless case, the samples at the output of a Gaussian filter are
given by

y[n] =
K−1∑
k=0

ck exp
(
−(nT − tk)2

2ρ2

)

=
K−1∑
k=0

(
ck exp

(
−

t2k
2ρ2

))
· exp

(
2nTtk
2ρ2

)
· exp

(
−(nT )2

2ρ2

)

=
K−1∑
k=0

ak(uk)2 exp
(
−(nT )2

2ρ2

)
,

where ak = ck exp(−t2k/2ρ2) and uk = exp(Ttk/ρ2). Let v[n] = y[n] · exp(+(nT )2/2ρ2).
Then v[n] is a powersum series with real values, which we have examined in the previous
chapter. Just like in the periodic case, we have obtained a theorem.

Theorem 2.2 (Sampling aperiodic sums of Diracs [117]). Let x(t) be an aperiodic
sum of K Diracs as given in (2.8). It is possible to obtain perfect reconstruction from
N ≥ 2K uniform samples of (hG ∗ x)(t), where hG(t) = exp(−t2/2ρ2) is a Gaussian kernel
with width ρ.

There are disadvantages to this nonlinear reconstruction technique. Its performance
when there is undermodeling is not yet known. Therefore the samples must strictly be
taken above the rate of innovation. On the other hand, an anti-aliasing filter can be used in
the linear sampling and reconstruction scheme given by Nyquist to prevent undermodeling.
We do not yet have an analogous facility for the parametric signal models that we consider
in this thesis.

It has been shown that this new sampling theory can be applied to bandwidth-expanding
communication systems. It can also be used for channel acquisition and characterization in
many applications such as GPS, UWB and CDMA systems. The model of (2.8) has been
extended to include more general pulse shapes and different “smooth” pulse shapes arriving
at different times [60,61,69–71]. It was shown that the performance of the proposed system
in the case of delay estimation is the same as that of the classical approach for the same
sampling rate assuming no aliasing in both cases, as shown in Figure 2-4. However, the
classical approach requires that the bandwidth of the transmitter be adapted to ensure that
the receiver sampling rate is above the corresponding Nyquist rate. The FRI receiver does
not require adaptation at the transmitter side, as long as its sampling rate is above the
transmitted signal’s rate of innovation. We show later in this thesis that this system has
super-resolution property : it can discriminate two pulses that are spaced more closely than
the sampling rate.
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Figure 2-4. Delay estimation performance of an FRI receiver, sampling at rates at and below the Nyquist
rate. In the figure, Nn is the Nyquist rate and Ns is the sampling rate. The different curves show the perfor-
mance when the sampling rate is set to be Nn/10, Nn/5, Nn/3, and Nn in increasing order of performance.
This figure is taken from [69].

Figure 2-5. Production of t0, t1 and t2 within an interval of interest, from uniformly-spaced B-splines.

� 2.3.4 Parametric sampling using finite kernels

Recently the class of sampling filters has been extended [31–33] to include local reconstruc-
tion methods even for infinite-length signals from samples taken uniformly in time. The
proposed method includes sampling filters which satisfy the Strang-Fix conditions, or in
other words can reproduce polynomials and exponentials up to a certain order.

Definition 2.4 (Kernels that reproduce polynomials). A kernel ϕ(t) is said to be
able to reproduce polynomials up to order R in interval [0, I) if there exists cm,n such that∑

n

cm,nϕ(t− n) = tm, m = 0, 1, . . . , R, and allt ∈ [0, I).

We show an example of the production of monomials in Figure 2-5. Many kernels satisfy
such conditions, such as the B-splines. It is known that B-splines of order R can reproduce
polynomials up to that same order [114]. The coefficients cm,n are easily obtained for the
case where we use B-splines. Since B-splines are interpolating functions, we simply set

cm,n = nm, m = 0, 1, . . . , R, n ∈ [0, I)
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Clearly, we require that N ≥ R. Due to the compact support of the finite-order B-splines
we only need to find the coefficients for the terms that overlap the interval of interest.

Now we can move on to the problem of reconstructing an infinite stream of Diracs.
Dragotti et al. gave the following theorem.

Theorem 2.3 (Sampling infinite sums of Diracs [32]). Consider an infinite stream of
Diracs and let ϕ(t) be a sampling kernel that can reproduce polynomials of maximum degree
N − 1 ≥ 2K − 1 and of compact support C. Then the signal is uniquely determined from N
samples yn = 〈x(t), ϕ(t− nT )〉 if and only if there are at most K Diracs in any interval of
length KCT .

To obtain the proof, it is sufficient to observe that s[m] =
∑

n cm,nyn =
∫

x(t)tm dt =∑K−1
k=0 akt

m
k , for m = 0, 1, . . . , N. This is again a powersum series (2.1), and we can find

the unknown terms from a sufficient number of observations according to Lemma 2.1. To
finish the proof, in the case that x(t) contains infinitely many Diracs, we can reconstruct it
exactly if there is only at most K of them within a compact interval of length KCT .

Proof. Without loss of generality, assume T = 1 and that x(t) has K Diracs. Let s[m] =∑
n dm,nyn, for m = 0, 1, . . . , N . This is a weighted sum of observed samples, with weights

dm,n given by the polynomial reproduction conditions above. Then,

s[m] =
∑

n

dm,nyn =
∫

x(t)tm dt (2.12)

=
K−1∑
k=0

ckt
m
k , m = 0, 1, . . . , N. (2.13)

This is again a powersum series (2.1), and we can find the unknown terms from a sufficient
number of observations. To finish the proof, in the case that x(t) contains infinitely many
Diracs, we can reconstruct it exactly if there is only at most K of them within a compact
interval of length KCT .

The same approach can be applied to kernels which reproduce exponentials.

� 2.4 Performance Limits of Signal Parameter Estimation

Throughout this thesis we make use of the Cramér-Rao bound (CRB) [21,52,89] to obtain
lower bounds on the parameter estimation problems of interest. Let θ be a vector containing
the parameters of interest, and let θ̂ be the estimate of this vector. Let the observations
be given by y, and the conditional distribution given by p(y; θ). The Fisher information
matrix is defined as,

J(θ) = E

[(
∂

∂θ
log p(y; θ)

)(
∂

∂θ
log p(y; θ)

)T
]

= E

[(
∂

∂θ
log p(y; θ)

)2
]

. (2.14)

Cramér and Rao gave the following theorem.
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Theorem 2.1 (Cramér-Rao estimation lower bound [21,89]). The covariance matrix
of an unbiased estimator θ̂ of a parameter θ can be bounded below by the inverse of the Fisher
information matrix:

E[(θ − θ̂)(θ − θ̂)T ] ≥ J(θ)−1.

It is possible to consider biased estimators; however, simple forms of the CRB usually
only exist for unbiased estimators. Moreover, an unbiased estimator does not always exist.
Fortunately, in our case of interest it has been shown that the algorithms proposed are
unbiased or asymptotically unbiased [20,105,106].

When the observations are subjected to additive white Gaussian noise, then the ex-
pression for the Fisher information matrix (2.14) can be simplified [52]. Let L be the
log-likelihood function L = log p(yn; θ) and the parameterized noiseless signal model be
given by x[m; θ]. Then it can be shown that

J(θ) =

[∑
n

(
∂

∂θ
L

)(
∂

∂θ
L

)T
]

.

=

[∑
n

(
∂

∂θ
x[m; θ]

)(
∂

∂θ
x[m; θ]

)T
]

.

In the general case it is difficult to compute the FIM and the CRB [52,111]. There has been
some work on computing the FIM when the noise is colored, but most of the work in signal
processing has been concentrated on noise which admits an auto-regressive model [39,108].

Now we are ready to examine the problem of parameter estimation from a noisy pow-
ersum series as given in Definition 2.1. We observe

yn =
K−1∑
k=0

ck(uk)n + wn, n = 0, . . . , N − 1. (2.15)

We are interested in estimating the coefficients {ck} and the roots {uk}. We assume ck ∈ R
and either uk ∈ R or uk ∈ C. The performance limits of estimation problems of form (2.15)
have been studied before. We now review some of the results from [30,103,105,106].

Let the signal be interest be of line spectrum form with additive noise

yn =
K−1∑
k=0

αk exp(j(ωkn + ϕk)) + wn, n = 0, . . . , N − 1. (2.16)

The signal is given by its amplitudes αk, phase terms ϕk, and frequencies ωk. The poles
of this signal all lie on the unit circle. When the noise wn is additive white Gaussian
noise (AWGN) with variance σ2, for large numbers of samples N and {ωk} spaced far
from one another it can be shown that the Cramer-Rao bound on the estimates of ωk is
approximately [106, (4.3.9)]

var(ω̂k) ≥
6σ2

N3

1
α2

k

(2.17)

Several algorithms give performance close to this bound, such as the nonlinear least-squares
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algorithm [108] and regularized maximum-likelihood algorithm [35]. However, these algo-
rithms require very good initial conditions and perform poorly when the number of samples
N is small. They are often simulated and implemented using initial values obtained from
the Prony and Matrix Pencil methods.

Dilaveroǧlu derived the Cramér-Rao bound for the estimation of two undamped complex
exponentials in the presence of AWGN [30]. The expressions obtained were given in terms of
the phase difference and frequency difference between the two complex exponential terms.
He showed that the largest lower bound is obtained when the phase difference is zero. We
will see that this case is of particular interest when we examine the performance of the FRI
sampling scheme of Section 2.3.2. For large N , the bound he obtained is

var(ω̂k) ≥
1

4 · SNRk ·N3
(N · δω)−4 + O

(
(N · δω)−2

)
.

Several papers [54,57,105] considered a more general signal model given by

yn =
K−1∑
k=0

αk exp(j(ωkn + ϕk) + pkn) + wn, n = 0, . . . , N − 1. (2.18)

This signal has damping factors pK , so the poles do not all lie on the unit circle. It is
convenient to re-write the signal as,

yn =
K−1∑
k=0

(αk exp(jϕ)) exp((jωk + pk)n) + wn, n = 0, . . . , N − 1.

The poles of the signal have magnitude pk and angle ωk. It was shown in [105] that the
Cramér-Rao bound of the parameters have dependence on some of the other parameters.
Further, the Total Least-Squares (TLS) algorithm was shown to perform close to this bound,
even for small sample sizes. It was shown empirically that the best frequency and phase
estimation performance is obtained when the poles lie on the unit circle, i.e., when the
signal is undamped.

Line spectra estimation algorithms that do not consider the parametric representation
directly are based on periodogram and the Fourier transform. The resolutions of these
non-parametric algorithms are limited by the Fourier resolution limit, which is the size
of the Fourier bins in the Fourier domain. It is known that algorithms such as MUSIC
and ESPRIT (see Appendix A) have super-resolution properties, that is they are able to
distinguish frequency terms that are spaced more closely than the Fourier resolution limit.
Recent work by Dilaveroǧlu [30] and Smith [103] give simplified expressions for the Cramér-
Rao bound for the case when K = 2. In Chapter 3 we will adapt their methods to show
similar bounds for our cases of interest and demonstrate that our proposed multi-channel
acquisition system also has a super-resolution property. Then in Chapter 4 we will use the
same technique to show that the previously proposed systems of Vetterli et al. [117] and
Dragotti et al. [33] also have super-resolution properties.



Chapter 3

Multiscale Sampling of Parametric
Signals

This chapter presents a novel analog-to-digital architecture for parametric signals that are
sums of pulses with different amplitudes and delays, as we introduced in Chapter 1. Unlike
previous methods, the proposed method takes simultaneous samples from multiple channels.
The required hardware is very simple, and in the most basic cases the desired parameters
can be estimated using very simple computations. The number of required samples is
determined by the signal innovation within the interval of interest. In the noiseless case,
we can obtain perfect reconstruction of the signal. We show that the proposed system has
a successive refinement property that can be used to detect aliasing.1 In the noisy case,
we derive performance bounds and propose algorithms that are simple to implement and
perform well. We make comparisons to conventional techniques that rely on the notion
of Fourier bandwidth. When we examine the performance of the proposed scheme in the
presence of additive noise, in many regimes it outperforms the classical method in terms of
accuracy and resolution.

� 3.1 Introduction

In many applications, the signals of interest are defined by a pulse shape, the number of
components, and their amplitudes and delays. For example, consider the class of signals
given by

x(t) =
K−1∑
k=0

ckδ(t− tk), ck ∈ R, tk ∈ [0, T ). (3.1)

These signals are not bandlimited. However, any such signal is fully specified by K
pairs of coefficients (ck, tk). Hence these signals have finite rate of innovation. We are
interested in finding the parameters of the signal—its amplitudes and delays—given by
θ = [c0, . . . , cK−1, t0, . . . , tK−1]T .

The conventional method for reconstructing signals of the form (3.1) is to first apply an
anti-aliasing lowpass filter, sample the output at or above the Nyquist rate, and then use a
correlator to find the locations and amplitudes of the signal components. The problem of
signal location and amplitude estimation from uniformly-spaced samples in the presence of
additive noise is a standard problem in estimation theory [52]. In the presence of AWGN,

1Part of this work will be presented at the 2006 IEEE Intl. Conf. on Image Processing, Atlanta, GA [58].
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the optimal estimate of the signal is given by finding the K highest peaks at the output
of a correlator to find the timing information, and then estimating the amplitudes based
on the timing estimates. This amounts to a K-dimensional search. It is known that the
objective function has many local maxima, and hence a gradient search algorithm requires a
good initial estimate. The quality of this method is commensurate to the width of the sinc
sampling filter used—the wider the bandwidth, the better the resolution in the presence
of additive noise. Thus its performance depends on the available sampling rate. Further,
the resolution of correlation-based methods is bounded below by the sampling rate. We
will show that we can use super-resolution techniques to estimate the desired parameters,
namely the time delays and amplitudes. We will show by simulation that the proposed
system can outperform the resolution of classical methods in many regimes.

� 3.2 Previous Work

Recall from Section 2.3.4 that Dragotti, Vetterli and Blu proposed reconstruction meth-
ods for infinite-length parametric signals using sampling filters that satisfy the Strang-Fix
conditions, and uniform sampling in time. Following Definition 2.4, a filter that satisfies
the Strang-Fix conditions can reproduce polynomials up to a certain order using superpo-
sition of its uniformly-spaced shifts. Some of these filters have finite support, enabling local
reconstruction.

We have seen in Chapter 2 that previously studied sampling methods for reconstructing
signals of form (3.1) given in [60,61,69,117] and [31–33] require the solution of a powersum
series. All of these methods take uniform samples in time, and several algorithms are known:
see Appendix A for an overview. In this chapter we present a new sampling method that is
particularly simple to implement, has a simple reconstruction algorithm in its basic case, and
samples simultaneously in time [58]. We compare its performance to that of the conventional
method.

Multi-channel sampling for bandlimited signals was considered by Papoulis [84] and
reviewed by Higgins [45]. However, they considered only filtered versions of the original
signal, and drew connections to forming a Riesz basis from the filters. Their reconstruction
methods are restricted to a fixed subspace. However, signals of form (3.1) do not form a
subspace. Indeed, the subspace that the signal belongs to is determined by its pulse shifts
{tk}. Hence, perfect reconstruction using conventional methods is not possible. Throughout
this paper we will focus on a specialized model of (2.1), in which any finite interval length
T contains at most K Diracs.

The estimation of parameters in a powersum series has been studied primarily in the
context of line spectra estimation [30,48,49,88,104–106]. In that problem, the poles are of
form exp(jωk)—meaning that they are complex roots of unity and all lie on the unit circle—
whereas in our case the desired parameters are real-valued. As a consequence, we cannot
obtain simplifications that are possible in the line spectra case and resort to numerical
evaluation.
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� 3.3 Proposed Method

Consider the following set of signals, which are obtained through successive integration as
shown in Figure 3-2(b):

x`+1(t) =
∫ t

0
x`(τ) dτ, x0(t) =

∫ t

0
x(τ) dτ.

We are given samples of these signals at time T , denoted as y` = x`(T ). Then the samples
can be written as:

y` = x`(T ) =
1
`!

K−1∑
k=0

ck(T − tk)`, ` = 0, 1, . . . , L− 1. (3.2)

We call the proposed approach the integral sampling system. It is possible to obtain the
parameters {ck, tk} from L ≥ 2K samples y`.

Theorem 3.1 (Multi-channel Sampling via Integrals). Let the observed signal be
x(t) =

∑K−1
k=0 ckδ(t − tk) where tk ∈ [0, T ). Let x`(t) be the (` + 1)-th integral of x(t).

We are given samples y` = x`(T ) for ` = 0, 1, . . . , L − 1. Then it is possible to perfectly
reconstruct x(t) from {y`}L−1

`=0 as long as L ≥ 2K. The algorithm can also be applied to
non-contiguous integral powers of x(t).

Proof. Let s` = (`!) · y`. Then we have that

s` =
K−1∑
k=0

ck(T − tk)`.

The sequence s` is a powersum series of the form (2.1); hence we can solve for {tk} and
{ck} from L ≥ 2K samples y`.

Let h`(t) = (T − t)`1[0,T ), where 1[ta,tb) is the indicator function that is 1 within [ta, tb)
and zero elsewhere. The integrate-and-sample operation can be written as inner products
between the input signal and functions given by h`(t), which we call the sampling kernel.
It can be seen that

s` = 〈x(t), h`(t)〉 (3.3)

=
K−1∑
k=0

ckh`(tk)

=
K−1∑
k=0

ck(T − tk)`−1.

We illustrate this in Figure 3-1.
The above operation can be implemented by using a chain of integrators x`(t) =∫ t

0 x`−1(τ) dτ and x0(t) =
∫ t
0 x(τ) dτ , or in parallel as shown in Figure 3-5. It is also easy to
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,
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Figure 3-1. The proposed multichannel sampling scheme as a sequence of projections onto monomials of
different orders.

extend this scheme to an infinite-length signal by segmenting, as we obtain measurement
from local portions of the signal.

� 3.3.1 Sampling using B-spline kernels

It is also possible to use B-spline kernels of various orders for sampling. Let β0(t) be the 0-th
order box B-spline, defined as β0(t) = u(t)− u(t− 1), where u(t) is the usual step function.
The higher-order B-splines can be generated recursively as βk+1 = βk ∗ β0. Consider the
following set of observations:

y` = 〈β`(t), x(t)〉, ` = 0, 1, . . . , L− 1.

Since the first segment of a B-spline is a monomial of the order of the spline, sufficiency
is achieved when L ≥ 2K just like in the previous case. It is important to note that the
samples above are taken all at the same time, but across different splines scales. This is
different from the spline interpolation scheme which takes samples within one spline scale
but at different, uniformly spaced time instances. Similarly, the B-spline sampling scheme
also has a successive refinement property.

Theorem 3.2 (Multi-channel Sampling via B-splines.). Let the observed signal be
x(t) =

∑K−1
k=0 ckδ(t − tk) where tk ∈ [0, T ). Without loss of generality, let T = 1. Further

let y` = 〈β`(t), x(t)〉, ` = 0, 1, . . . , L − 1, the samples taken at time t = T at the outputs of
B-spline filters of different orders `. Then it is possible to perfectly reconstruct x(t) from
{y`}L−1

`=0 as long as L ≥ 2K. It is also possible to solve from L non-contiguous B-spline-
filtered samples.

The system proposed above can be implemented by a chain of β0 filters, similar to the
chain of integrators of the previous part. The sampling scheme proposed above can also be
applied to signals with different numbers of Diracs at different segments, allowing for lower-
order local reconstruction of the signal. However, the knots of the splines are at integer
multiples of T , and hence the segments must all have the same length.
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(a) Sampling of one Dirac within a time interval. (b) Sampling of multiple Diracs
within a time interval by succes-
sive integration and simultane-
ous sampling across the different
integral levels.

Figure 3-2. Sampling a single Dirac, and its generalized counterpart. The samples are taken simultaneously
at t = T .

� 3.4 Successive Refinement and Detecting Undermodeling

The sampling schemes proposed above have a successive refinement property. Suppose that
we know that there is a finite but unknown number K∗ of Diracs within an interval [0, T ).
We can start by taking 2 samples and reconstructing 1 Dirac, and compare the results with
that obtained by taking another 2 samples and reconstructing 2 Diracs. If the results are
consistent, then we stop the sampling operation. Otherwise, having reconstructed L Diracs
from 2L samples we take another 2 samples and compare the earlier reconstruction with
that for L + 1 Diracs from the larger set of 2L + 2 samples. We stop when the result
is consistent with that of the previous reconstruction. In the presence of noise or model
mismatch, a stopping criteria other than exact reconstruction can be defined.

We have seen that reconstructing 1 Dirac in a finite interval using integral-based sam-
pling can be done using a simple computation. If we are able to partition a signal x(t) into
segments such that there is at most 1 Dirac in each segment, then we can use the simpler al-
gorithm on each segment, taking 2 samples in each segment—basically a divide-and-conquer
approach. Consider P such consecutive segments Sp = [Tp, Tp+1), yielding say signal model
A. A more general signal model is one which contains P Diracs anywhere within the union
of those segments, say [0, T ), which we call signal model B. In both cases we have to take
at least 2P samples, but these samples are not the same for both cases.

Signal model A is more restrictive than B, but gives a simpler reconstruction formula.
In multichannel sampling it is possible to detect undermodeling, for example when we
mistakenly assume signal model A. Consider the reconstruction algorithms for models A
and B respectively, shown in Figure 3-3:



36 CHAPTER 3. MULTISCALE SAMPLING OF PARAMETRIC SIGNALS

(a) System A (b) System B

Figure 3-3. Two systems with different reconstruction orders. System A is suited to a more restrictive
signal model than System B.

1. System A: Obtain samples y0[p] =
∫
Tp

x(t)dt, y1[p] =
∫ Tp+1

Tp

∫ t
Tp

x(t1)dt1dt. From
each p use y0[p] and y1[p] to compute estimates ĉp, t̂p.

2. System B: Obtain samples z` = 〈x(t), s`(t/T )〉 the `-th integral of x(t) sampled at
t = T , for ` = 0, . . . , 2P − 1. Use these samples to simultaneously obtain estimates
{ĉp, t̂p}P−1

p=0 .

Let {cp, tp} be the parameters of the Dirac in segment Sp. When there is no undermodeling
we can derive {z`} from {y0[p], y1[p]} by first computing estimates {ĉp, t̂p}. From these
estimates we can compute an estimate of what the samples of System B should be based
on the samples of System A which we call {ẑ`}. We give the following lemma.

Lemma 3.1 (Consistency for lower-order estimates). Consider the two systems A
and B defined above, giving samples {y0[p], y1[p]} and {z`} respectively. We say that these
samples are consistent when we can derive the latter from the former via signal parameter
estimation. Let {ĉp, t̂p} be the signal parameter estimates from samples of System A, and
let {ẑ`} be the estimate of what the samples of System B should be, given the parameter
estimates from A. Then for ` = 0, 1 we always have consistency, whereas for ` ≥ 2 the
samples of the two systems are consistent only if there is no undermodeling.

Proof. Consider signal model A, and without loss of generality let every segment have 1
Dirac except for segment-a which has two Diracs. We denote this Dirac {cu, tu}. Then for
p 6= a the estimates obtained from A are correct, but for p = a we have that ĉa = ca + cu,
t̂a = Ta− (ca(Ta+1− ta)+ cu(Ta+1− tu))/(ca + cu). Since ẑ` =

∑
p ĉp(T − t̂p)`, we have that

z0 = ẑ0 and z1 = ẑ1, but z` 6= ẑ` for ` ≥ 2.

The lemma can be stated more simply: for ` = 0, 1 we always have consistency regardless
of whether there is undermodeling. For ` > 1 we have consistency only if there is no
undermodeling. We summarize this in the table below.
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Check for

aliasing

Figure 3-4. Checksum system for detecting aliasing in an FRI sampling system.

` = 0, 1 ` > 1
No undermodeling Consistent Consistent

Undermodeling Consistent Not consistent

This property can be used to detect aliasing, by considering a higher-order integral to act
as a checksum.

Theorem 3.3 (Detecting aliasing in low-order FRI signals). Let Sp, p = 0, . . . , P −1
be a P -segmentation of a signal x(t) such that we expect at most 1 Dirac in each segment.
From each segment, we compute y0[p] =

∫
Sp

x(t) dt and y1[p] =
∫ Tp+1

Tp

∫ t
Tp

x(t1)dt1dt, from
which we can compute the estimate of one Dirac in each Sp. Then it is possible to detect
aliasing in any of the P segments by taking one additional sample from a higher-order
integral of the signal.

The theorem follows immediately from Lemma 3.1. The method for detecting aliasing
is analogous to computing a checksum based on z`, for ` > 1, as shown in Figure 3-4. The
lemma also suggests that we can “recycle” the samples already taken from system A for
reconstruction based on samples taken from system B, which admits a less restrictive signal
model. The lemma and theorem can be applied to any system that uses powersums for
reconstruction, and we will see that they are an attractive feature for a previously proposed
sampling scheme based on finite kernels that we reviewed in Section 2.3.4. We will discuss
this in detail in Section 4.2. Finally, we note that these properties also apply to sampling
with B-splines.

� 3.5 Multiscale Signal Acquisition in the Presence of Noise

We now examine the performance of the proposed system in the presence of noise. Recall
from Section 3.3 that the parameters of the signal are obtained from a powersum series with
real-valued coefficients. Real exponential fitting is one of the most important, difficult and
frequently appearing problems of applied data analysis [104]. Moreover, the original Prony
method is not constrained to real-valued solutions. In order to do this, nonlinear least-
squares methods have been proposed [86]. However, these methods have high complexity
and require large sample sizes to perform well. We instead focus on algorithms that work
well for small numbers of samples.

A method and analysis for solving (2.1) in its most general form (complex magnitudes
and complex poles) was presented in [105]. The authors showed that for large sample sizes
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Figure 3-5. Illustration of the multichannel sampling scheme, implemented using integrators and samplers.
The samples are taken simultaneously in time at different integral levels of the input signal.

the parameter estimates approach an unbiased normal distribution to a first order, and that
the estimation of the radii of the poles is best when the poles are on the unit circle (see
their Figure 2). Another algorithm of interest is Cornell’s algorithm [20], which is based on
partial sums. Cornell gave simple formulas for the cases of K = 1 and K = 2. We review
the algorithms in Appendix A.

It is important to note that unlike the case of uniform sampling in time, when we take
our samples across scales the nature of noise depends on the implementation. Two of the
possible architectures are shown in Figure 3-5. When using cascaded filters, we may have
noise propagation and the noise is no longer independent nor identically distributed across
the samples anymore. Therefore we need to consider particular implementations of the
system to obtain a noise model. Regardless of the statistics of the noise, we obtain

s` =
K−1∑
k=0

ck(T − tk)` + w`, ` = 0, 1, . . . , L− 1, (3.4)

where w` is the additive noise term.
Throughout this section we will use the model of noisy integrate-and-dump circuit given

in Figure 3-6. In this model, there are two sources of noise in the integrator circuit: the
input noise nI(t) and output noise nO(t). Both of these noise terms are white Gaussian,
but clearly although the effect on the output signal will be Gaussian, it will not be white
in general. As the prototype case, consider zero-mean white Gaussian sequence x(t) with
variance σ2

x filtered by h(t) and its output y(t) sampled at t = T , say Z = y(T ). Then
clearly Z is Gaussian, E[Z] = 0 and E[Z2] = σ2

x

∫
h2(t)dt.

We consider two implementations: by concatenating integrators in series and taking
simultaneous samples at the output of the different integrators, or by implementing the
integrators in parallel. We show the different implementations in Figure 3-5.
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Figure 3-6. Model of a noisy integrator. There are two noise terms nI(t) and nO(t) at the input and
output of the integrator respectively. Both these noise sources are white Gaussian.

� 3.5.1 Conventional method: filtering and Nyquist sampling

For comparison, consider the conventional method of first applying an anti-aliasing filter
and uniform sampler, and then estimating the signal pulse delay from these samples. The
problem of delay estimation in the presence of AWGN from uniformly samples is a well-
known estimation problem [52]. Let the energy of the signal be Es. Given N samples of a
signal with bandwidth B, it is known that the optimal estimate is the one that maximizes
the cross-correlation, and its performance is given by:

var(τ̂) ≥ 1
SNR · F 2

, (3.5)

where

F 2 =
∫

s′(t)2dt∫
s2(t)dt

, SNR = Es/(N0/2).

The sampling rate is ∆ = 1/2B and σ2 = N0B. In this case we must choose s(t) the lowpass
sampling filter to be commensurate to our desired sampling rate.

� 3.5.2 Performance limits of proposed system

We derive the Cramér-Rao bound (CRB) for several basic cases of interest, in the presence
of AWGN. We consider the powersum series of form yn =

∑K−1
k=0 ck(uk)n + wn. In this

chapter we are interested in the real-valued case, for uk = T − tk. For convenience, we
define θ to be the vector of desired parameters

θ = [c0, . . . , cK−1, t0, . . . , tK−1]T .

Single component

We start with the case when K = 1. Suppose that we observe sn = c0(u0)n + wn, where
wn is additive white Gaussian noise (AWGN). Then we show in Appendix B.1 that the
Cramér-Rao Bound for the estimation of time delay is given in the following theorem.

Theorem 3.4 (Performance limit of single-component real powersum in AWGN).
Suppose that we are given sn = c0(T − t0)n + wn, for n = 0, 1, . . . , N − 1, where wn is
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additive white Gaussian noise with variance σ2. Let u0 = T − t0 and SNR = c2
0/σ2. Then

the Cramér-Rao bound for the estimation of t0 is given by

E[(t̂0 − t0)2] ≥
u2

0

SNR ·N3

(
G0(u2

0)
G0(u2

0)G2(u2
0)−G1(u2

0)G1(u2
0)

)
, (3.6)

where Gr(x) is given by

Gr(x) =
1

N r+1

N−1∑
n=0

nr(x)n. (3.7)

The behavior of (3.6) is consistent with the behavior of frequency estimates in line
spectra estimation which we reviewed in Section 2.1. However, a caveat is in order here.
Suppose for now that the signal of interest consists of complex-valued poles. This case was
studied by Steedly and Moses in [105]. The magnitude of the poles in that case corresponds
to the damping coefficient of the signal. They showed that the CRB for the estimation of
this parameter is minimized around the unit circle. This is a different behavior from what
we obtained in this section, where we observe that the larger the magnitude of the pole, the
better its performance. This illustrates that translating the results from the complex-valued
case to the real-valued case is not straightforward and can be misleading.

Two components

Now consider the case when K = 2. Then sn = c0(u0)n +c1(u1)n +wn, where wn is additive
white Gaussian noise. For convenience, let

A =
[

G0(u2
0) G0(u0u1)

G0(u0u1) G0(u2
1)

]
, B =

[
G1(u2

0) G1(u0u1)
G1(u0u1) G1(u2

1)

]
, C =

[
G2(u2

0) G2(u0u1)
G2(u0u1) G2(u2

1)

]
,

where Gr(x) is as given in (3.7). Then we show in Appendix B.1 that the Cramér-Rao
bound can be found via the Schur complement:

Theorem 3.5 (Performance limit of two-component real powersum in AWGN).
Let there be two Diracs in [0, T ). Consider the estimation of tk using the proposed method
when the N observations are subjected to AWGN with RMS power σ. Let uk = T − tk and
SNRk = c2

k/σ2. Then the CRB is given by,

E[(t̂k − tk)2] ≥
u2

0

SNRk ·N3

[
(C−BTA−1B)−1

]
k,k

,

where A,B,C are as given above.

� 3.5.3 Performance comparison

Many methods have been proposed for solving powersums of (2.1). We focus our attention
on two methods: one proposed by Cornell [20], roughly speaking based on the rotational
invariance property and one by Rahman and Yu [88,105] which uses the Total-Least Squares
(TLS) approach applied to Prony’s method.

Cornell’s method is particularly simple to implement for the case of a single component:
it uses N additions and 2 divisions. On the other hand, the TLS-based method in general
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Figure 3-7. Comparison between Cramér-Rao bound and performance of Cornell algorithm in the presence
of AWGN.

uses singular-value decomposition, but is known to perform well for situations in which the
SNR is very low.

White powersum noise

Now we begin with the simplest model: each sample for both the conventional and the
proposed systems are subjected to AWGN with variance σ2. We show the performance
comparison in Figure 3-7 for the Cornell method and in Figure 3-8 for the TLS method. On
the x-axis of both figures we change the value of the root u0 from 0.1 to 10. When the root
is less than unity, both algorithms perform close to the Cramér-Rao bound. However, as
the root is increased the TLS-based algorithm shows significantly better performance than
the Cornell algorithm and is very close to the derived bound. Interestingly, for N = 2 the
Cornell algorithm is better than the TLS-Prony algorithm, whereas for larger values of N
the opposite is true.

Next we compare the performance of the system to the classical method which takes only
few samples in time, after using a low-pass filter appropriate for the given sampling rate.
We show the results in Figure 3-9. For the conventional system, we normalize the sampling
period to be 1/N , with a single Dirac randomly placed within t ∈ [0, 1). The conventional
system is implemented by using a gradient search at the output of a cross-correlator. For
the case when N = 2 we note that the performance the same regardless of the value of the
desired parameter u0 = (T − t0). For larger values of N the performance improves for u0

near unity and above unity. Roughly speaking, the proposed system is commensurate to the
performance of the classical system at the cost of 10 dB of SNR requirement. However, the
proposed system operates at 1/N the sampling rate of the conventional system. Moreover,
implementing a full-search on the output of a cross-correlator can be expensive.
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Figure 3-8. Comparison between Cramér-Rao bound and performance of TLS algorithm in the presence
of AWGN.
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Figure 3-9. Comparison between the performance of the conventional sampling system, Cornell algorithm,
and the TLS algorithm, for different numbers of samples within a segment, and reconstruction of only one
Dirac in the presence of AWGN. In this case, c0 = 1 and σw = 0.1.
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White continuous-time input noise

The previous comparison uses a primitive noise model and it is difficult to make any quanti-
tative statement in comparing the proposed system to the conventional system. We now use
a different noise model that takes into account the system architectures and sampling meth-
ods. Let w(t) be white Gaussian noise with spectral density N0/2, and let the continuous-
time signal be:

x(t) = c0δ(t− t0) + w(t).

Classical system: Suppose we sample every Ts, and the sampling filter used is ϕ(t) =
sinc(t/Ts). Then the noise per sample is:

σ2
c = E

[
(〈ϕ(t), w(t)〉)2

]
=

1
2π

∫ +π/Ts

−π/Ts

T 2
s

N0

2
dω

=
N0

2
Ts.

The observations are then given by:

yc[n] = sinc(nTs − t0) + wc[n], (3.8)

where wc[n] ∼ N (0, σ2
c ). We take N samples within the signal segment [0, T ), so we set

Ts = T/N for fairness and obtain σ2
c = N0/2 · T/N .

Proposed system: In this case we compute

s` = 〈x(t), h`(t)〉 = c0(T − t0)` + w`,

where h`(t) = t`1[0,T ) as given before. The noise output variance is then

σ2
p[`] =

∫
h2

` (t)N0/2dt

= N0/2
∫ T

0
t2`dt

= N0/2
1

2` + 1
T 2`+1.

Since the noise source is in the original signal, the noise terms will be correlated. The
covariance matrix is given by

E[w[`]w[k]] =
N0

2
1

k + ` + 1
T k+`+1.

In this case there is no difference in the noise covariance regardless of the implementation,
because the only noise present in the system is in the continuous-time input signal. We
simulate and show the results for the TLS-based algorithm in Figure 3-10 and the Cornell
algorithm in Figure 3-11. The algorithms that we implement are exactly the same as that
used in the previous part; they are not cognizant of the correlation in the system. In this
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Figure 3-10. Performance of the TLS-based algorithm when the noise is in continuous-time with spectral
density N0/2 = 0.1 and c0 = 1.
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Figure 3-11. Performance of the Cornell algorithm when the noise is in continuous-time with spectral
density N0/2 = 0.1 and c0 = 1.

case the performance difference between the proposed system and the classical system (see
Figure 3-9) is very small, except for the case when N = 2. For small values of u0 there is
not much difference between the two proposed methods. The computation of the FIM with
colored noise is not straightforward. Several methods have been proposed, but deal mainly
with auto-regressive noise models. We refer the reader to [39] and the references therein.
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Noisy components

Another noise model that can be used is one in which each component has a white continuous-
time additive Gaussian noise at its input, similar to that shown in Figure 3-6. With this
model in mind, we propose several possible implementations of the system. We show these
in Figure 3-12. The output noise terms will be correlated, and we derive the covariance
matrices in the following.

In our reconstruction algorithms, we do not compensate for the correlation in the noise
terms of the samples. We examine the proposed signal acquisition system given in Chapter
3. The proposed system can be implemented in various ways. In this section we consider
the serial and parallel implementations of the proposed system. We assume that the input
noise terms are at the input interface of the integrator blocks as shown in Figure 3-6, and
that they are zero-mean white Gaussian. Since the operations on the samples are linear, the
resulting sample noise terms are zero-mean Gaussian and can be characterized completely
by their covariance matrix.

Following the previous part, let hm(t) = tm1[0,T ) be the sampling kernels. Consider the
prototype case in which a white Gaussian noise signal x(t) with zero mean and variance
σ2

x is filtered by kernels hm(t) and hn(t) and sampled at t = T to give samples ym and yn

respectively. Then clearly ym, yn are both zero-mean Gaussian, and

E[y2
m] = σ2

x

∫
h2

m(t)dt, E[y2
n] = σ2

x

∫
h2

n(t)dt.

Moreover,

E[ymyn] = σ2
x

∫
hm(t)hn(t)dt =

σ2
x

m + n + 1
T (m+n+1). (3.9)

We are now ready to derive the covariance structures for the different implementations.

• Parallel implementation

We begin by considering the case when the integrate-and-dump components which
yield the different integral levels of the input signal are implemented in parallel. The
only noise in the system is introduced within each branch independently. In this case,
we obtain iid noise terms at each sample output w[`]. The performance of algorithms
for solving powersum equations in the presence of AWGN is well-studied [71,106].

We write the finite integration and sampling as convolution with h(t) = 1[0,T ) and
sampling at t = T . Since convolution is linear and time invariant, then given that
the input noise is Gaussian, the distribution at the output in still Gaussian. The
convolution will make the output signal correlated, but since we are only interested
in the sampled output, we only need to compute its variance.

Let w` be the output of the `-th level integrator, and let h`(t) = t`1[0,T ). The sampled
output can then be written as

w` =
(
w`,i(t) ∗ h`(t)

)∣∣
t=T

+ w`,o, (3.10)

where we separate the input and output noise at each channel as w`,i(t) and w`,o(t)
respectively. Clearly, the contributions of these two terms are both Gaussian and zero
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Figure 3-12. Three possible implementations of the proposed system. Each component has a white
continuous-time additive Gaussian noise term, independent of the others.
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mean. For simplicity, we consider only input noise terms. It is easy to derive that the
variance of the first term is

σ2
`,i

∫ T

0
h2

`(t)dt =
σ2

`,i

2` + 1
T 2`+1.

• Parallel System A

Now consider the system shown in Figure 3-12 (b). For simplicity, we consider only
iid input noise terms with variance σ2, since the characterization of the output terms
is very similar. Let the sample noise terms be w[`]. By virtue of the implementation,
the noise terms are zero-mean Gaussian and uncorrelated. The variances are given
by:

E[w2
` ] = σ2 1

2` + 1
T 2`+1.

• Parallel System B

For the system shown in Figure 3-12 (c), we model each `-th order integrator as a
cascade of ` first-order integrator, each with its own input noise terms. We again
model the noise terms as iid zero-mean Gaussian with variance σ2. In this model the
sampled noise terms are still zero-mean uncorrelated Gaussian, and the variances are
given by:

E[w2
` ] = σ2

∑̀
k=0

T 2(`−k)+1

2(`− k) + 1
. (3.11)

• Serial implementation

Unlike in parallel implementation, when the system is implemented in series there may
be noise propagation depending on where noise is introduced into the system. How-
ever, modeling the source and propagation of noise in circuitry is a difficult research
area. We use a simplified model shown in Figure 3-12 (a).

In our system, because the noise terms are zero-mean and jointly Gaussian, they can
be characterized completely by their covariance matrices. The system is implemented
by a concatenation of L integrate-dump circuit blocks. Let the input noise terms at
block-` be φ`(t) with variances σ2

` and the output noise terms be χ`(t) with variances
ρ2

` . All noise terms are zero-mean white Gaussian sequences.

Let z` be the noise terms at the output of the `-th sampler. We divide this into w`

which is the noise due to the input noise terms φk(t), and v` which is due to the
output noise terms χk(t). For convenience, let hk(t) = (T − t)k1[0,T ) represent the
integrate-and-dump operation.
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Without loss of generality let m ≤ n. It can be shown that

E[wmwn] =
m∑

k1=0

n∑
k2=0

∫
t1

∫
t2

E[φk1(t1)φk2(t2)]hm−k1(t1)hn−k2(t2)dt1dt2

=
m∑

k=0

σ2
k

∫
hm−k(t)hn−k(t)dt

=
m∑

k=0

σ2
k

m + n− 2k + 1
Tm+n−2k+1.

Similarly,

E[vmvn] =
m∑

k1=0

n∑
k2=0

∫
t1

∫
t2

E[φk1(t1)φk2(t2)]hm−k1−1(t1)hn−k2−1(t2)dt1dt2

=
m∑

k=0

σ2
k

∫
hm−k−1(t)hn−k−1(t)dt

=
m∑

k=0

σ2
k

m + n− 2k − 1
Tm+n−2k−1.

We show the results in Figure 3-13 for the serial implementation. The performance of
the system when it is implemented in parallel is shown in Figures 3-14 and 3-15. In the
former, there is only one input noise term for each branch. In the latter, there is an input
noise term for each first-order integrator. Clearly, the performance of the former is better
than the performance of the latter. Interestingly, for N = 2 the Cornell algorithm is better
than that of the TLS-Prony algorithm. For larger values of N we notice the opposite: as
N is increased the TLS-Prony algorithm is superior to the Cornell algorithm. Note that
the Cornell algorithm cannot be made aware of what the distribution of the noise is, it only
requires that the noise is zero-mean. It is notable that the performance of both algorithms
is not very sensitive to the correlation structures.

� 3.5.4 Resolution limit

When there is more than one component in the signal but the spacing is large, then it
is well-known that the Cramér-Rao bound and the performance are similar to that of the
single-component case. We now examine the case when the two components are closely
spaced. The line-spectra analog has been studied before, see for example [30, 103, 109]. In
those cases, it is known that there is a strong dependence on phase offset between the two
components, something which does not apply to our case.

One advantage of using super-resolution techniques is the ability to increase the reso-
lution of the estimation method beyond the sampling rate [106]. Smith proposed that the
minimum requirement to resolve two signals is that

RMS of source separation ≤ source separation. (3.12)
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Figure 3-13. Performance of the TLS (dashed) and Cornell (solid) algorithms when each noise term has
RMS power σ = 0.1. The system is implemented in series.
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Figure 3-14. Performance of the TLS (dashed) and Cornell (solid) algorithms when each noise term has
RMS power σ = 0.1. The system is implemented in parallel, and each branch has one noise term.
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Figure 3-15. Performance of the TLS (dashed) and Cornell (solid) algorithms when each noise term has
RMS power σ = 0.1. The system is implemented in parallel, and each first-order integrator has one noise
term.

He then defines the statistical resolution limit as the source separation at which (3.12) is
achieved with equality. Consider a signal with two components: y[n] = c0(u0)n + c1(u1)n +
w[n]. Let the desired parameters be θ = (u0, u1)T . We are interested in how the estimate of
θ depends on δu = |u0−u1|. Since the roots that we are interested in are not complex roots
of unity, we cannot obtain the simplification in [30], where CRB expressions that depend
only on the separation between the two poles are obtained. The performance that we derive
is shown in Figures 3-16, 3-17 and 3-18. The performance of our system depends on the
actual location of the roots. In Figures 3-16 and 3-17 we compare the performance of the
system with the classical method, shown as the line with downward slope. The dashed lines
correspond to the actual spacing between the roots. It can be seen that in some cases, the
performance of the proposed system exceeds the resolution limit of the classical system.
In Figure 3-18 we show the dependence of the performance on the actual locations of the
roots. The Cornell algorithm for K = 2 show performance that is superior to that of the
TLS-based algorithm. We show this in Figure 3-19. When the spacing is very small, the
Cornell algorithm starts to give complex-valued answers which is not valid. We call this
a failure event. For the cases we show, the success rate is close to 1. There are other
techniques that constrain the answer to lie on the real line, or the positive part of the
real line [86]. However, these techniques are not straightforward to implement. From the
simulation result we can see that in some regimes the performance of the proposed system
exceeds the resolution limit of the conventional system, hence the proposed system has a
super-resolution property.

We note certain trends in Figures 3-20 and 3-21. The performance of the system decays
proportionately with decrease in spacing, whereas the resolution limit of the conventional
method behaves the opposite. Moreover, the performance increases with SNR. From Figure
3-20 it can be seen that the relationship is var(u0) ∝ SNR−1. We note that this result is
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Figure 3-16. Comparison between Cramér-Rao bound of the proposed and classical systems in the presence
of AWGN, in terms of number of samples. In this case the roots are near unity, and we consider δu =
0.1, 0.07, 0.03. The dashed lines show (δu)2. The simulation is done at SNR=20 dB.
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Figure 3-17. Comparison between Cramér-Rao bound of the proposed and classical systems in the presence
of AWGN, in terms of number of samples. In this case the roots are near zero, u0 = 0.3, and we consider
δu = u1 − u0 = 0.3, 0.2, 0.1 unlike in the previous case. The dashed lines show (δu)2. The bounds are
evaluated at SNR=20 dB.
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Figure 3-18. Comparison between Cramér-Rao bound of the proposed and classical systems in the presence
of AWGN. The dependence of the performance on the actual locations of the roots is shown. The bounds
are evaluated at SNR=20 dB.
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Figure 3-19. Comparison between Cramér-Rao bound of the proposed system and the Cornell algorithm
in the presence of AWGN, in terms of number of samples. In this case the roots are near unity, u0 = 0.8,
and we consider δu = u1 − u0 = 0.1, 0.07, 0.03. The simulation is done at SNR=20 dB.
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Figure 3-21. Comparison between Cramér-Rao bound of the proposed system in the presence of AWGN.
We show the dependence on the performance on spacing between the roots.

different from that of Smith’s examination of line spectra estimation, where he obtained
var(ω0) ∝ SNR−1/4. Now we consider the effect of spacing on the performance in Figure
3-21. We observe that the relationship is var(u0) ∝ (u1 − u0)−4. In contrast, Smith’s study
of line spectra estimation obtained var(ω0) ∝ (ω1 − ω0)−2. These observations further
illustrate the difference between the line spectra estimation case and the real-valued case.
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We observed that the TLS-Prony algorithm tends to give either a duplicate pair at very
small spacings, or give one “good” estimate and one “poor” estimate. The performance of
the “good” estimate tends to improve with N , but the performance of the “poor” estimate
worsens with N . The performance of the “good” estimate tends to be better than the
estimate of the Cornell algorithm, but the performance of the “poor” estimate is worse. On
average, the performance is only slightly better than the Cornell algorithm.

� 3.6 Conclusions

In this work we proposed a novel signal acquisition method suited to certain parametric
signals. In the simplest case, a particularly simple reconstruction algorithm exists, suggest-
ing a divide-and-conquer approach. We showed that it is possible to detect undermodeling,
justifying the divide-and-conquer approach. We compared the performance of the proposed
system to that of the conventional system based on the notion of Nyquist sampling at the
Fourier bandwidth.

Much of the work relies on solving a powersum series. We considered two algorithms: the
Cornell algorithm and the Total Least-Squares algorithm. Both are suited for small sample
sizes, and we show that they are robust to the correlation structure in the noise. We derived
a Cramér-Rao bound for the basic cases of interest. Although this problem has been studied
in line specta estimation, translation of analytical results is not straightforward and can
be misleading. We demonstrated that the proposed system has super-resolution properties,
meaning that its performance in the high-SNR case exceeds that of the conventional system.
Since the performance of the proposed system is dependent on the relative location of the
Diracs within the integration and sampling period, the performance of the system can be
improved by staggering several integration and sampling periods.

The number of integrate-and-dump circuitries required for the proposed method is on
the order of the rate of the innovation of the signal, which is considerably lower than the
Nyquist bandwidth of the signal.



Chapter 4

Acquisition of Parametric Signals via
Uniform Sampling in Time

The previous chapter introduced a new sampling scheme with associated reconstruction
algorithms and performance analysis for several cases of interest. The scheme proposed
takes samples simultaneously at the output of multiple channels.

This chapter re-examines the proposed sampling schemes of Vetterli et al. and Dragotti
et al. and uses the previously introduced algorithms and analysis techniques. In Chapter 2
we reviewed several of these schemes:

1. Sampling of periodic Diracs using the sinc kernel [117, Sec. 3] in Section 2.3.2.

2. Sampling of finite-length, aperiodic Diracs using the Gaussian kernel [117, Sec. 4B] in
Section 2.3.3.

3. Sampling of infinite-length Diracs using finite-length kernels [32,33] in Section 2.3.4.

These schemes all take uniform samples in time at the output of the sampling kernel, and
find the signal parameters via the powersum series, given in Definition 2.1. In this chapter
we focus on the first and last schemes. We will see that the first scheme requires the solution
of the powersum series when the roots are complex roots of unity, and for the last scheme
the roots are real-valued, similar to the previous chapter. Indeed, we will see later that these
schemes are closely related. We use the analytical and algorithmic tools that we developed
in the previous chapter, and prove new performance bounds for powersum series when the
roots are complex roots of unity. In the more general case we give numerical evaluation
of some bounds and demonstrate via Monte Carlo simulation that the sampling systems
proposed in [33,117] have super-resolution properties.

Further, we show that the scheme for sampling infinite-length Diracs using finite-length
kernels given in [33] have a successive refinement property. Unlike the proposed scheme of
the previous chapter, the successive refinement can be done after the samples are taken,
subject to some constraints.

� 4.1 Periodic Signals with Finite Rate of Innovation

In this section we examine the performance of the sampling scheme proposed by Vetterli et
al. and examine its performance in the presence of additive noise. Recall that this scheme

55
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was reviewed in Section 2.3.2. Following Definition 2.3, let the noiseless signal model be

x(t) =
∑
`∈Z

K−1∑
k=0

ckδ(t− tk − `Tp),

where tk ∈ [0, Tp). In the presence of additive noise, let the noisy signal model be

y(t) =
∑
`∈Z

K−1∑
k=0

ckδ(t− tk − `Tp) + w(t− `Tp). (4.1)

Both x(t) and y(t) are periodic with period Tp. The rate of innovation of x(t) is 2π/Tp.
The Fourier series of y(t) is given by

Y [m] =
K−1∑
k=0

ck exp
(

j
2π

Tp
tkm

)
+ W [m] (4.2)

=
K−1∑
k=0

ck

(
exp

(
j
2π

Tp
tk

))m

+ W [m]. (4.3)

Note that the above is a noisy powersum series, with poles uk = exp(j 2π
Tp

tk). We use tech-
niques developed in [30] and [103] to derive the CRB for the resolution of the this sampling
system. Recall Theorem 2.1. We have seen in Chapter 2.3.2 that in the noiseless case, the
parameters {ck, tk}K−1

k=0 can be estimated from N ≥ 2K observations of the sequence Y [m].
In turn, these observations Y [m] can be obtained by taking samples of y(t) the output of
a lowpass filter and computing the Discrete Fourier Transform (DFT). The samples must
be taken at a rate of fs = N/Tp and the bandwidth of the lowpass filter must be chosen
to be fs/2 so that there is no aliasing [117]. In the presence of noise, we can increase
the sampling rate and the bandwidth of the lowpass filter and obtain more observations of
Y [m] [60, 61,69,71].

Vetterli, Marziliano and Blu proposed the following sampling scheme [117]:

1. Apply lowpass filter ϕ(t) of bandwidth N/2Tp.

2. Obtain uniform samples y[n] = 〈y(t), ϕ(t− nT )〉 at sampling period T = Tp/N .

3. Compute N Fourier series coefficients Y [m] from y[n].

4. Solve for unknown parameters {ck, tk} in powersum series.

We show the system in Figure 4-1 and illustrate the steps in Figure 4-2. In Figure 4-2 the
original signal is given in the Fourier domain by X[m] and is aperiodic in that domain.
For the signal class of interest, the support of the signal X[m] is infinite. The filtered
and sampled signal in the Fourier domain is given by Y [m], and in the noiseless case
Y [m] = X[m] for m = −2,−1, 0, 1, 2 because there is no aliasing in the Fourier domain.
The sampled signal Y [m] is periodic in the Fourier domain with period 5 due to the sampling.
The estimation of unknown parameters in the powersum series can be done using one of
many known methods. We give some of these in Appendix A.
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Figure 4-3. Implementation of the sampling scheme using the Discrete Fourier Transform.
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Although Maravić and Vetterli [71] considered the performance of the FRI sampling
scheme of [117] in the presence of AWGN, their analysis assumes that the reconstruction
is done by first estimating the second-order statistics of the observation and then using
the matrix pencil method proposed by Hua and Sarkar [48, 49]. While the matrix pencil
method is known to perform well for large block sizes, parameter estimation via second-
order statistics is known to perform poorly for small block sizes. Further, the result of
Vetterli and Maravic holds only for signals which contain only one component. In this
chapter we prove the performance limits and demonstrate that for simple cases of interest
it is possible to obtain performance close to the limit by using the algorithms described in
Appendix A. We show by numerical simulation that the proposed scheme of [117] also has
a super-resolution property.

� 4.1.1 Cramér-Rao bounds and performance evaluation

In this section we derive the Cramér-Rao bound for the timing estimation of a single pulse
and the resolution bound for the discrimination of two pulses. The derivation closely follows
the derivation of Dilaveroǧlu [30].

Single-component estimation

First consider the case when the case when K = 1. The desired parameters are θ = (c0, t0)T .
The noiseless signal is given by Let the noiseless signal be given by:

X[m; θ] = c0 exp
(

j
2π

Tp
t0m

)
, (4.4)

In the presence of additive noise, the signal is given by:

y(t) = c0δ(t− t0) + w(t)

Y [m] = c0 exp
(

j
2π

Tp
t0m

)
+ W [m].

Suppose that we observe M samples of Y [m], m = 0, 1, . . . ,M − 1. For convenience, let
δt = |t1 − t0|, and

Γr =
1

N r+1

N−1∑
m=0

mr, (4.5)

Further, let s̄[m] = <{X[m; θ]} and s̃[m] = ={X[m; θ]}. In the presence of AWGN, it is
easy to see that the Fisher Information Matrix is given by

J =
2
σ2

[∑
m

(
s̄[m]s̄T [m] + s̃[m]s̃T [m]

)]
=

2
σ2

(
K · L ·

[
Γ0 0
0 Γ2

]
· L ·K

)
, (4.6)

where we have

s̄[m] =

 cos
(

2π
Tp

t0m
)

−α0m sin
(

2π
Tp

t0m
) , s̃[m] =

 sin
(

2π
Tp

t0m
)

α0m cos
(

2π
Tp

t0m
) , (4.7)
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and K = diag(
√

N,N
√

N), L = diag(1, α0), and α0 = c0(2π/Tp). We obtain the following
theorem, the proof of which is given in Appendix B.2.

Theorem 4.1 (Cramér-Rao bound for periodic single-Dirac estimation using
sinc kernels). Let α0 = c0(2π/Tp) and SNR = α2

0/σ2. For convenience, let Γr =
1

Nr+1

∑N−1
m=0 mr. Suppose that we obtain N samples of the signal after filtering using an

anti-aliasing filter with bandwidth π/N rad. For the case of K = 1, the CRB for time
estimation is given by

E[(t̂0 − t0)2] ≥
1

2SNR
1

N3

1
Γ(2)

. (4.8)

The result obtained in the above theorem is noteworthy:

1. It has the same scaling law as what is known for single-component line spectra esti-
mation [106].

2. Similarly to the line spectra estimation case, it is independent of the location of the
pulse t0.

3. In single-component line spectra estimation, it is known that in some regimes several
algorithms achieve this lower bound, such as the TLS-Prony algorithm [105]. For
small sample sizes and high SNR, we show that the Prony method and the rotational
invariance algorithm perform close to the lower bound for our problem of interest.

We show the performance of the Prony method and the rotational-invariance algorithm in
Figure 4-4. It can be seen that these two algorithms perform very close to the Cramér-Rao
bound that we derived.

Resolution of two components

Now we examine the resolution performance of the proposed system by considering the
case when K = 2. We wish to derive the CRB for the estimation of t0 and t1 in terms of
δt = t1 − t0 when the observations are subjected to AWGN. Let θ = (c0, c1, t0, t1)T be the
vector of unknown parameters. For convenience, let the noiseless Fourier series be given by

X[m; θ] = c0 exp(j(2π/Tp)t0m) + c1 exp(j(2π/Tp)t1m) (4.9)

Further let s̄[m] = <{X[m; θ]} and s̃[m] = ={X[m; θ]}. Then the Fisher Information
Matrix is given by

J =
2
σ2

[∑
m

(
s̃[m]s̄T [m] + s̄[m]s̃T [m]

)]
. (4.10)

For convenience, let α0 = c02π/Tp and α1 = c12π/Tp. We define

s̄[m] =
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Figure 4-4. Timing estimation result for the case of one periodic Dirac using the FRI in-time sampling
system. The SNR is 20 dB, and we compare the Prony method, the rotational invariance algorithm, and
the Cramér-Rao Bound.

We obtain the following theorem, which is our main result on the resolution of our periodic
signal signal model. The proof is given in Appendix B.2.

Theorem 4.2 (Cramér-Rao bound for periodic two-Dirac estimation using sinc
kernels). For the case of K = 2, let SNRk = α2

k/σ2. Suppose that we obtain N sam-
ples of the signal after filtering using an anti-aliasing filter with bandwidth π/N rad.For
convenience, let δt = |t1 − t0|, and

Γr =
1

N r+1

N−1∑
m=0

mr,

Cr =
1

N r+1

N−1∑
m=0

mr cos
(

2π

Tp
δt ·m

)
,

Sr =
1

N r+1

N−1∑
m=0

mr sin
(

2π

Tp
δt ·m

)
.

Further, let
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[
Γ2(Γ2
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Figure 4-5. Timing estimation result for the case of two signal components using the FRI in-time sampling
system. The SNR is 20 dB, and we compare the Fourier resolution, the Cramér-Rao Bound, and the
performance of the TLS-Prony algorithm.

Then the CRB is given by,

E[(t̂k − tk)2] ≥ E[(t̂k − tk)2] ≥
1

SNRk

1
N3

[P]k,k. (4.12)

We make several observations regarding Theorem 4.2:

1. The CRB depends only on the spacing δt = |t1 − t0|. All the terms Γr, Sr and Cr

depend only on sample size N and spacing δt.

2. The CRB is not much affected by the spacing δt.

3. The decay rate in SNR and N is consistent with previously known results, and is
consistent with Theorem 4.1.

4. The formula obtained in (4.12) is similar to that of Diraveroǧlu [30, Theorem 2].

Given Theorem 4.2 we evaluate the performance of the TLS-Prony algorithm and Cor-
nell’s simple formula. In this set of simulations we set the period of the signal to be Tp = 1.
We show the discrimination result in Figure 4-5.

� 4.2 Infinite-length Signals with Finite Rate of Innovation

In this section we examine the sampling scheme proposed by Dragotti et al., that uses
kernels with compact support and is suitable for infinite-length signals with finite rate of
innovation. Recall from Section 2.3.4 that this scheme allows for local reconstruction.
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Figure 4-6. Production of t0, t1 and t2 within an interval of interest, from uniformly-spaced B-splines.

Recall Definition 2.4, and let the kernel ϕ(t) satisfy the Strang-Fix condition and able
to reproduce polynomials up to order R. The samples are obtained: xn = 〈x(t), ϕ(t−nT )〉.
Without loss of generality, assume T = 1 and that x(t) only has K Diracs. Let s[m] =∑

n cm,nyn,m = 0, 1, . . . , N . This is a weighted sum of observed samples, with weights cm,n

given by the polynomial reproduction conditions above. Then,

sm =
∑

n

cm,nxn =
∫

x(t)tm dt (4.13)

=
K−1∑
k=0

akt
m
k , m = 0, 1, . . . ,M − 1.

Clearly, we require that R ≥ M . The signal model (2.1) is again a powersum series, as
introduced in Definition 2.1. In the presence of additive noise, we write yn = xn + wn. For
the remainder of this section we assume that ϕ(t) is a B-spline of a certain order.

� 4.3 Successive Refinement

This scheme is closely related to the proposed system in Chapter 3. Given N samples
of the output of an R-order B-spline, it is possible to obtain a powersum series of length
M = min{N,R}. Therefore it is possible to obtain perfect reconstruction of a powersum
series with up to M/2 components.

Suppose that we know that there is a finite but unknown number K∗ of Diracs within
an interval [0, T ). We can start by taking 2 samples and reconstructing 1 Dirac, and
compare the results with that obtained by taking another 2 samples and reconstructing
2 Diracs. If the results are consistent, then we stop the sampling operation. Otherwise,
having reconstructed L Diracs from 2L samples we take another 2 samples and compare
the earlier reconstruction with that for L + 1 Diracs from the larger set of 2L + 2 samples.
We stop when the result is consistent with that of the previous reconstruction. In the
presence of noise or model mismatch, a stopping criteria other than exact reconstruction
can be defined. This is possible so long as the number of Diracs K∗ is less than M/2, half
the maximal order of polynomial reconstruction possible. Unlike the proposed scheme of
the previous chapter, the successive refinement can be done after the samples are taken,
subject to some constraints.
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� 4.3.1 Single-component estimation

We focus first on a signal consisting of one Dirac, c0δ(t − t0), where t0 ∈ [0, T ). Without
loss of generality, let T = 1. We examine the performance as we take N samples within
this interval. Since K = 1, we can simply use the first-order B-spline, β1(t). See [114] for
an excellent introduction to B-splines. In the noiseless case, the samples are given by:

yn = 〈x(t), β1((t− n)/N)〉, n = 0, 1, . . . , N − 1.

As the sampling rate and the number of samples is increased, we scale the sampling kernel
appropriately.

Recall Section 2.3.4. To reconstruct t0 and t1 within the interval of interest [0, 1) from
β1(t/N), the coefficients are simply given by the evaluation of the n-th order polynomial at

cm,n = (n/N)m

such that within [0, 1) we have

tm =
N−1∑
n=0

cm,nβ1(n/N).

Then we form the powersum series from the samples by

sm =
∑

n

cm,nyn (4.14)

=
K−1∑
k=0

ak(tk)m + vm, m = 0, 1, . . . ,M − 1, (4.15)

where vm is the noise term in the powersum series.
Now consider the noise characterization when the noise in the system arises from

continuous-time AWGN. In this case, w[n] will be correlated. When the sampling ker-
nel is a first-order B-spline, the covariance matrix has a tri-diagonal form. The diagonal
entries are given by:

E[wnwm] =


N0
2

1
N2 2

∫ 1
t=0 t · dt = N0

2
1

N2 , m = n
N0
2

1
N2

∫ 1
t=0(1− t)t · dt = N0

2
1

N2
1
6 , |n−m| = 1
0, else.

The results are shown in Figure 4-7. In this simulation we show the effect of different num-
bers of samples N . The kernel used is a simple first-order B-spline, which can reconstruct
t0 and t1 within the interval of interest. Hence regardless of the number of samples N taken
in time, the powersum series that we obtain as an intermediate form has two terms: s0

and s1. Note that the noise is modeled as a continuous-time AWGN with infinite support
in both the time and frequency domains. Recall that s0 and s1 are obtained from the
projection of the noisy signal y(t) onto kernels given by f0(t) =

∑
n d0,nβ1(t − n/(N − 1))

and f1(t) =
∑

n d1,nβ1(t− n/(N − 1)) respectively. By design, we have that f0(t) = t0 and



64 CHAPTER 4. ACQUISITION OF PARAMETRIC SIGNALS VIA UNIFORM SAMPLING IN TIME

10−1 100 101
−6

−4

−2

0

2

4

6

t0

lo
g 10

(v
ar

(t 0))

Splines and Integral−based Systems, CT white noise, SNR=20dB

N=2

N=4

N=8

N=16

N=32

Part I

Figure 4-7. Performance results for estimation of one Dirac using a first-order B-spline. The system is
implemented using the simple Cornell algorithm. The plot shows different number of samples N , but the
reconstruction first forms a length-2 powersum series. The additive white Gaussian noise is added in the
continuous-time domain, with spectral density N0 = 0.1.

f1(t) = t1 for t ∈ [0, T ). But neither f0(t) nor f1(t) is zero outside that interval of interest.
By assumption, the signal exists only in t ∈ [0, T ), and hence the kernels capture noise
outside of this interval. As the number of time-domain samples N is increased, the splines
used for sampling become narrower, and the footprint of f0(t) and f1(t) becomes closer to
[0, T ). Clearly, the performance then approaches that of the multichannel sampling system
given in Chapter 3. In other words, the multichannel sampling scheme given in Chapter 3
is more efficient in the acquisition of the desired signal as the system takes data only from
the desired portion of the signal.

� 4.3.2 Two-component estimation

For the discrimination of two Diracs, we show the results in Figure 4-8. From the figure we
can see that in some regime the RMS error of the estimate is below the spacing of the two
Diracs, and hence the system under consideration has a super-resolution property.
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Figure 4-8. Performance results for estimation of two Diracs using a first-order B-spline. The reconstruction
first forms a length-4 powersum series. The additive white Gaussian noise is added in the continuous-time
domain, with spectral density N0 = 0.1.

� 4.4 Performance Comparison

It is possible to make performance comparisons between the proposed sampling schemes that
we have considered so far, even if the signal models do not match exactly. We use as an
example an aperiodic signal with one Dirac located within t ∈ [0, T ) subjected to continuous-
time white noise of infinite support both in time and frequency domains. The multichannel
sampling scheme given in Chapter 3 and the sampling scheme given in Section 2.3.4 and
analyzed in Section 4.2 are suitable for this signal model.

The sampling scheme given in Section 2.3.2 and analyzed in Section 4.1 is suitable for
periodic sums of Diracs, but we can use a periodic approximation from a finite number of
samples and compute the Discrete Fourier Transform of these samples.

We show the comparison in Figure 4-9. The conventional method is implemented using
a full gradient search of the peak of a correlator. However, suppose now that K > 1. In
this general case, the conventional method requires a simultaneous K-dimensional search
for peaks at the output of a correlator. It is known that this method requires very accurate
initial conditions, and that the objective function contains many local maxima. Regardless,
we have demonstrated that the proposed systems have super-resolution properties and in
many regimes outperform the conventional method.

� 4.5 Conclusions

We examined the proposed method of Vetterli et al. for reconstructing signals of finite
rate of innovation by filtering and uniformly sampling the signal in time. We proved lower
bounds on the timing estimation performance of the proposed system for the case when
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Figure 4-9. Performance comparison for single-Dirac estimation, located within [0, T ), for the same numbers
of samples.

there is only one component in the signal, and the resolution of the proposed system when
there are two components in the signal.

In the both cases we obtained a bound that is independent of the parameter of interest
and derive significant simplifications that give strong insight into the problem of interest.
Further, we showed that well-known algorithms that are very simple to implement give
performance close to the obtained bounds. We showed that the proposed system has a
super-resolution property, that is its resolution exceeds that of the classical system.

We then applied the analytical and algorithmic tools of the previous chapter to the
method of Dragotti et al. for reconstructing infinite-length signals with finite rate of
innovation, using finite kernels such that local reconstruction is possible. We used the same
algorithms from the previous chapter to show that in many regimes this system also has
superior performance and resolution when compared to the conventional system.

Finally, we showed that the scheme of Dragotti et al. for sampling infinite-length Diracs
using finite-length kernels given in [33] have a successive refinement property similar to
that of the multichannel scheme of Chapter 3. However, unlike the proposed scheme of the
previous chapter, the successive refinement can be done after the samples are taken, subject
to some constraints.



Chapter 5

Signal Parameter Estimation in the
Presence of Timing Noise

In this chapter we consider the problem of estimating parameters of a signal when the sam-
pling instances are perturbed by signal-independent timing noise. The classical techniques
consider timing noise to induce a signal-independent additive noise term on the sample val-
ues, and in practice this additive noise is modeled as white Gaussian if considered at all. We
present tractable alternative methodologies and simulation results that indicate significant
potential for improvement over linear processing. A specific problem studied in depth is
delay estimation when the pulse shape and amplitude of the signal are known. We give an
iterative algorithm that shows superior performance compared to the traditional method
which relies on maximizing the cross-correlation.1

� 5.1 Introduction

The standard abstraction for analog-to-digital conversion (ADC) starts with the sampling
of a continuous-time signal at precisely known, even-spaced times [115]. In any real ap-
plication, the actual sampling instances are not the same as the ideal, desired sampling
instances. We call the difference timing noise. Making timing noise small in practice comes
at a large cost in terms of power, manufacturing cost (for tight tolerances), and device size.
Thus algorithmic mitigation of timing noise can significantly improve system design.

In many current and emerging applications, timing noise has become a significant im-
pairment. It is a dominant source of noise in wideband ADC, decreasing resolution by
about 1 bit for every doubling of the sampling rate in the Mega- and Giga-sample per
second range [3, 67, 118]. In many communication applications this timing noise is even
more pronounced as the receiver circuitry has to synchronize to the transmitter circuitry,
and both have their own timing noise. Applications that rely on accurate timing, such as
the Global Positioning System (GPS) have strict timing noise specifications [27]. A more
abstract (and unwieldy) replacement for “timing noise” could be “function domain noise.”
This would emphasize that similar problems arise when acquired signals are not time series.
For example, a crawler that traverses the length of an oil pipe looking for signs of wear
and tear is propelled by wheels, which may slip or may not have constant velocity. Air- or
water-borne observation devices may have sensing elements in which inter-sensor distance

1Part of this work was presented at the 2006 Conf. on Information Sciences and Systems, Princeton,
NJ [59].

67
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and inter-sample timing is not constant.
ADCs are triggered by clock signals which in turn are often derived from lower-frequency

clock signals. In most digital integrated systems a single clock generator is used to trigger
many different components within the same system. The problem of clock distribution has
been widely studied, in which propagation error resulting from additive noise, capacitance,
and delay is considered and routing methodologies are optimized to minimize the effect of
clock propagation across the integrated circuit [29,37,46]. Clock signals are not perfect, and
characterization of their noise has been studied extensively [42,62]. In electronic system de-
sign, timing noise is often modeled as additional input-independent additive white Gaussian
noise (AWGN) [1,14,15,34,118]. The effect of timing noise is specified in terms of increased
noise floor in the system, given in terms of Effective Number of Bits (ENOB). However,
when viewed as additive, the effect of timing noise in not signal independent and further-
more neither white nor Gaussian. This is the key insight of this work. We consider signals
with a known parametric model, but this insight can also be applied in non-parametric
acquisition.

We do not consider quantization here, though the observation-domain noise could be
redefined to include the effects of quantization, if quantization noise was modeled as signal
independent. In some ADC architectures, timing noise would also affect value accuracy;
see [47] for an overview of the various implementations. We focus our attention on
the unquantized case because the three fundamental limitations in ADC are thermal noise,
timing noise, and comparator ambiguity, with the last of these prohibitive only at extremely
high sampling rates [118].

In this work we focus on the classical problem of signal delay estimation, which is severely
affected by timing noise. It is known that in the presence of only AWGN, the optimal delay
estimator is the one that maximizes the output of the cross-correlator. Given the standard
simplification of the effect of timing noise given above, this same algorithm is used even
when it is known that the ADC is subjected to timing noise. We refer to this method as the
“standard” method. In contrast, we propose new algorithms that take into account timing
noise and its effect on the observations. Throughout this chapter we use the term Additive
White Gaussian Noise (AWGN) to refer to observation-domain AWGN.

The main contributions of this work are threefold:

1. We reject the simplification that the effect of timing noise on the observed samples is
well-modeled by signal-independent AWGN.

2. Instead of directly computing the maximum-likelihood (ML) estimate of the desired
signal parameter, we use the dependence between the desired signal and the effect of
timing noise to estimate the timing noise explicitly. This simplifies the computation.

3. We propose algorithms that are simple to implement, and demonstrate the efficacy of
our approach.

� 5.2 Previous Work

The problem of sampling in the presence of timing noise is not new. In this section we
review previous work divided into three parts: signal reconstruction, spectral estimation,
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and characterization of timing noise. The term “jitter” is often used to describe timing
noise. More broadly speaking, jitter is also used to denote the deviation of a signal’s phase
due to noise or other impairments.

� 5.2.1 Signal reconstruction in the presence of timing noise

The case of bandlimited signals, including deterministic line spectral terms, was considered
by Balakrishnan [6] and Brown [18]. These works focused on computing spectra, the optimal
LTI interpolation filters, and the resulting expected L2 reconstruction errors.

Butzer [19] also studied the effect of timing noise on bandlimited signals; see the newer
book of Higgins for a summary of the work [45]. Butzer considered the L2 error between
the original signal, say f(t), and its sinc interpolation after sampling with timing noise
f̂(t) = f(nT + zn) ∗ sinc(t/T ). He further assumed that the signal decays sufficiently
quickly in time, and that the timing noise term is bounded. The square reconstruction
error can then be bounded by a constant that is proportional to the signal decay rate and
the supremum of its first derivative. This result is intuitive: the steeper the slopes of the
signal, the larger the projection of timing noise from the timing domain to the amplitude
domain.

� 5.2.2 Randomized sampling and spectral estimation

The effect of timing noise on the spectra of the signal has been studied. See [16,17,91] and
the references therein. Roughly speaking, the spectrum of the input signal is filtered by the
spectrum of the timing noise sequence in the Fourier domain. This is the motivation for
randomized sampling, which was proposed as a method for alias-free spectral estimation.
See [10] for a summary of the results. Instead of lowpass filtering at the input of the ADC,
they proposed randomizing the sampling instances instead. Much work has been done in this
area, starting with the spectral characterization of random processes sampled by stationary
point processes and impulse processes [8, 9, 65]. In this body of work the interest is to find
a consistent estimator of the input signal spectrum. The same results has also been used
to study the spectra of UWB signals with random coding in the timing domain [92].

� 5.2.3 Characterizations of timing noise

Noise in an ADC comes from various sources, such as from harmonic distortion, nonlin-
earities, additive and timing noise, quantization error, and filtering imperfections. There
are many architectures that implement an ADC, and they are usually characterized by
their stated resolution (in terms of Effective Number of Bits – ENOB), signal-to-noise ratio
(SNR), dynamic range, and power dissipation [118]. Often the effect of timing noise on
ENOB is approximated only by considering the signal bandwidth and timing noise RMS
value [1, 14, 15]. Clearly, there is a tradeoff between speed, power, and accuracy in ADC
design. For a CMOS system it is well-known that this tradeoff is given by [116]:

(Speed [Hz])× (Accuracy [RMS])2

(Power [Watts])
≈ Constant. (5.1)

Sampling in an ADC is triggered by detecting zero-crossings of a clock signal from an
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oscillator. In the past, sampling ADCs were built up from a separate Sample-and-Hold
Aperture (SHA) and ADC, with aperture jitter a separately specified parameter. It is
generally assumed that the effect of oscillator phase noise and aperture uncertainty are
independent of each other, and that the overall timing noise variance is simply the sum of
the variances of the two [5]. In contrast, today’s ADCs contain an integral SHA circuitry
and often only the overall timing noise RMS is specified.

Circuit designers are aware that the effect of timing noise is signal-dependent. In many
papers [1,14,15], it is suggested that the effect of jitter on a sinusoidal input signal amplitude
A at frequency f is approximated by its “slew”, or derivative, at the zero-crossing of the
signal. For a sinusoidal signal with frequency f , this gives the expression

SNR = 20 log10

(
1

2πf · σz

)
,

where σz is the standard deviation of the jitter. In order to generalize this approximation to
bandlimited input signals it is often assumed that the input signal has a flat power spectra
within the bandwidth of interest, and the overall error is averaged over this bandwidth [102].
Da Dalt et al. considered a more general signal model, that is a wide-sense stationary input
signal with a given autocorrelation rx [23, 24]. They showed that by linearizing the effect
of jitter around the ideal sampling instances, they obtain

SNR = 20 log10

(
rx(0)

−r′′x(0) · σz

)
.

In their work, the error that they are interested in is still the square error of the non-
parametric reconstruction of the signal.

Much work has been done in characterizing phase noise of an oscillator, starting with
the most well-cited pioneering work of Leeson [64]. Lee and Hajimiri improved upon Lee-
son’s model by considering linear time-invariant and linear time-varying models [42,62,63].
These models can also be extended to general pulse shapes other than a sinusoid. One
common model for timing noise is stationary, zero-mean, filtered white Gaussian noise or a
Wiener process [23, 24, 41, 64]. This filter is usually modeled as a lowpass filter whose cut-
off frequency is called the loop bandwidth [2, 41]. Many other models have been proposed,
for example based on phase trajectories of the circuit elements, in an attempt to simplify
the characterization of phase noise based on only a few parameters [43]. It is possible to
design clock circuitry with very narrow loop bandwidth even for wideband applications,
but at the cost of potentially significant complexity [73, 90]. A feedforward system has
also been proposed which can perform better within the loop bandwidth than the typical
PLL because of the absence of division in the feedforward system, but this system has
only been demonstrated to work for low oscillator frequencies and at the cost of significant
hardware [112,113].

One notable previous work is that of Narasimhamurti and Awad [77]. The authors
considered the problem of estimating the phase of a sinusoid sampled using a noisy clock
with accumulated jitter when the frequency and amplitude are known. They proposed a
state-space approach via writing the relationship between successive sample phase using
trigonometric identities. The problem of measuring phase noise itself is well-known and has
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been studied in the context of oscilloscope measurement [2]. There are several methods to
separate the different sources of jitter in a circuit [101].

� 5.3 Problem Statement

Consider the problem of signal delay estimation when the pulse shape is perfectly known
to the receiver. That is, the input signal is

x(t) = g(t− τ), (5.2)

where τ is the unknown delay and g(t) is the known pulse shape. Our model for acquisition
with sampling period T , timing noise sequence zn, and additive noise sequence wn is

yn = x(nT + zn) + wn.

We also use the notation
sn = nT + zn (5.3)

for the noisy sampling instances and refer to zn as in the timing domain and wn as in the
observation domain. The problem is to estimate τ from {yn}.

We are concerned with zn and wn that are independent of the signal x(t). However,
clearly the effect of zn on the observed samples yn depends on the signal of interest x(t).
We are especially interested in situations where zn is a prominent source of impairment.

� 5.4 Example Toy Problems and Main Idea

To gain some insight on the problem, first consider the case with no additive noise in the
observation domain. The observed samples are given by

yn = x(sn), (5.4)

and an example of the effect of timing noise is shown in Figure 5-1. The original signal
x(t) has only one degree of freedom, namely its delay. However, each new sample yn will be
subjected to timing noise and contain one additional unknown parameter zn. As a conse-
quence, taking N samples means having N constraints on N + 1 unknown parameters. In
fact, one can write explicitly that if (τ̂ , ẑ0, ẑ1, . . . , ẑN−1) is consistent with the observations,
then so is (τ̂ + α, ẑ0 − α, ẑ1 − α, . . . , ẑN−1 − α) for any α ∈ R. In one can find this line and
has a probabilistic model for {zn}, then a reasonable estimate can be chosen.

Ambiguity on a single line is the best case scenario, as g(·) will not generally be a one-
to-one function. However, it is worth noting that as compared to the nonparametric case,
(5.2) has given us a relatively easy problem. For example, if (5.2) is replaced by

x(t) =
∑

n

xn sinc(t− nT ),

then there are roughly two degrees of freedom per observation. In this work, we are ex-
ploiting both having a parametric signal model and a willingness to depart from linear,
time-invariant (LTI) processing of samples. The reader is referred to [117] for formal results
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Figure 5-1. An illustration of the effect of timing noise on an input signal. The ideal sampling instances
are solid stems marked by ’O’ and ones subjected to timing noise are dashed stems marked by ’X’.

on sampling parametric signals.
We are now ready to graduate to a more interesting problem. Let x(t) = t − τ , where

τ is an unknown delay term. We observe a set of samples yn = x(nT + zn) = nT + zn − τ .
Let the timing noise zn be an i.i.d. white Gaussian sequence. Given a set of samples
{y0, . . . , yN−1} we obtain an estimate for zn = yn−nT +τ . Since zn appears as an additive,
zero-mean, Gaussian noise term, the Maximum-Likelihood (ML) estimate for τ is simply
given by:

τ̂ML =
1
N

N−1∑
n=0

(yn − nT ).

Once the estimate τ̂ has been obtained, we can then find the estimate of the timing noise
sequence ẑn = yn − nT + τ̂ML. In Figure 5-2 we show two examples. The first example is
equivalent to the problem that we just considered. In the first example, the signal is such
that knowledge of its parameter can be used to determine the timing noise sequence. In the
second example, knowledge of its parameter is not very useful for determining the timing
noise sequence.

In general the pulse shape of interest is not an invertible map. Let us first assume
that timing noise zn is small compared to the sampling period T , and that the signal is
sufficiently smooth. Then given τ we can compute the sampling instances sn, and the timing
noise zn, from the obtained samples yn. Given a model for the timing noise, we can then
estimate it. Conversely, we will show that if we have an estimate of the timing noise, we
can use it explicitly in our delay estimation routine.

First we consider the case when the only source of noise in the system is timing noise.
We will then extend to the case when there is also AWGN.
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(a) An example in which the location is uniquely deter-
mined by the sampled value.

(b) An example in which the location is not uniquely de-
termined by the sampled value.

Figure 5-2. Toy examples of how knowledge of the signal can be used to estimate the timing noise. The
ideal sampling instances are solid stems marked by ’O’ and the ones subjected to timing noise are dashed
stems marked by ’X’.
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� 5.5 Delay Estimation in the Presence of Timing Noise Only

We are now ready to tackle the first problem which is when the only noise in the system is
white timing noise [59]. The observed samples are

yn = g(nT + zn − τ), n = 0, 1, . . . , N − 1, (5.5)

and we wish to estimate τ . An estimate of delay and timing noise of the signal {τ ; z0, . . . , zN−1}
is consistent with observations {yn} for a given pulse shape g(t) when yn = g(nT + zn − τ)
for n = 0, 1, . . . , N − 1. We denote the set of consistent values of {yn, zn; τ} by C.

We propose to find the estimate τ̂ that minimizes the Euclidean norm of the timing
noise while giving a consistent solution. When g is invertible, let an = g−1(yn). In this case
the term an = nT + zn − τ is completely determined by yn. Given any estimate of a, the
optimal choice of τ is the mean of {an − nT}. Therefore we need to only optimize over τ ,
or over z. From here it is straightforward to obtain τ̂ that minimizes ‖z‖2:

τ̂ML =
1
N

∑
n

(an − nT ). (5.6)

In general the pulse shapes of interest are not invertible maps. For example, the Gaussian
pulse is not an invertible map. In this case, for any given estimate of the delay τ there
may be more than one timing noise value at each sample point that produces a consistent
reconstruction, hence direct evaluation of the ML estimate is difficult. We represent all the
consistent sequences via the ambiguity set.

Definition 5.1. Consider the problem of estimating the delay of a signal consisting of a
known pulse shape g(t). Given a sequence of samples yn we define the ambiguity set for
each n as follows:

A(g)
n = {t | g(t) = yn}. (5.7)

The use of this set is to allow treatment of pulse shapes g(·) which are not invertible
maps. When the reconstruction algorithm makes a mistake in choosing the correct member
of the ambiguity set, we refer to this error as an ambiguity error.

If we restrict ourselves only to values of z and τ which are consistent, then the values
of z are completely determined by τ assuming small timing noise. Hence given the ML
estimate of one we can derive the ML estimate of the other term. This observation means
that the solution to the above can also be obtained by optimizing over z. We optimize the
“complete” log-likelihood:

τ̂ = arg max
τ,z

lnPr(y | z; τ)Pr(z; τ) (5.8)

Since the jitter zn is assumed to be Gaussian, we wish to find the consistent estimate that
minimizes ‖z‖2:

min
τ,z

‖z‖2 s.t. yn = g(nT + zn − τ), ∀n. (5.9)

The above optimization can be computed in the timing domain, but considering all ambigu-
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Figure 5-3. Sampling at noisy instances, with only white timing noise. In this set, N = 16, Gaussian
pulse with width 2, T = 2, τ = 3.4. The X’s are the ambiguity set members, and the O’s are those that are
estimated to be the true sampling points. The line is the regression, and τ is given by the intersection of
the line with the y-axis.

ous sets of an for each n which yield the same yn. This corresponds to finding the minimiza-
tion of ‖z‖2 over all possible ambiguous sets given by the cardinal product a ∈ ~A =

⊗
nA

(g)
n .

In summary, a brute-force method for solving the optimization problem of (5.9) is given
by:

1. For each n, compute A(g)
n from yn, and obtain ~A =

⊗
nA

(g)
n .

2. For each a ∈ ~A, compute

τ̂(a) =
1
N

∑
n

(an − nT ), zn(a) = an − (nT − τ̂).

3. Choose τ̂(a) which minimizes ‖z‖2
2.

In most cases, the ambiguity sets An will consist only of discrete points, and a simplified
solution is possible. Recall that any admissible an is of form an = nT + zn − τ . When
zn is small, this is simply a line of slope T in the variable n, and its intercept is the delay
term −τ . A simple heuristic algorithm for resolving the ambiguity is to iterate between
line regression—fixing the slope to always be nT—and nearest-neighbor association. The
standard line regression is optimal in the mean-square sense, and therefore optimal for white
Gaussian timing noise zn.

The proposed system is compared to the pulse fitting procedure which seeks to minimize
the L2 norm by maximizing the cross-correlation between the estimate and the observation.
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This latter system is a gradient-search algorithm, and we allow multiple initial conditions
and pick the best result. For concreteness, we emulate the ultra-wideband (UWB) system
of the MIT Microsystems Technology Laboratories (MTL) [11, 13, 119], in which a 2 ns
Gaussian pulse located near the center of a 100 ns frame is subjected to a Gaussian jitter
of standard deviation of 75 ps or 200 ps. There are 200 samples taken within each frame.
The results are given in the table below.

σz = 0.2-ns σz = 0.075-ns σz = 0.075-ns
no AWGN no AWGN 10-dB AWGN

var(τ̂) Proposed 0.0109 0.0031 0.9407
var(τ̂) Standard 0.0625 0.0557 0.1064

The above algorithm is in fact an iterative algorithm that alternates between finding the
ML estimate of τ and zn. It can be further improved by considering all possible zn given a
previous estimate of τ . From (5.8) note that we can write:

τ̂ (k+1) = arg max
τ,z

lnPr(y | z; τ̂ (k))Pr(z; τ (k)),

lnPr(z; τ (k)) = lnPr(a− nT + τ̂ (k)).

This is the basis of the Expectation-Maximization (EM) algorithm [28], where instead of
finding the ML estimate of the hidden variable, the expected likelihood is computed instead.
We found that given the signal parameter used in the previous part, this modification gives
a modest gain in performance.

While the new algorithm consistently outperforms the conventional method, it is not
robust to observation-domain noise. A small amount of observation-domain noise may have
an adverse effect on the performance depending on the pulse shape. We will address this
in the next section.

Now we consider the delay estimation problem in which the observations are given by

yn = x(nT + ∆n) = g(nT + ∆n− τ).

In this case, the timing noise consists of a pure drift term determined by ∆. Drift occurs
when the clock frequencies between two references are not exactly the same. Suppose
that the drift term ∆ is relatively small; in most electronic applications the drift can be
guaranteed to be below 100 ppm.

From the set of measurements {yn}, we can again find the ambiguity sets An as defined
above. The problem now becomes a clustering and line regression problem. We wish to
find a set of points from the ambiguity set such that a line regression of these points will
yield a line with slope close to T , because we know that the drift term is small relative to
T . We implement a simple iterative routine which repeats the following two steps, except
that the slope is no longer T but is instead (1 + ∆)T :

1. From each ambiguity set indexed in n, find the point closest to the current estimate
of the line slope and offset.

2. From the set of nearest points, update the estimate of the slope and offset.

In the presence of drift and white Gaussian jitter, the above algorithm can be used with no
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modification. After all, line regression is a least-squares fit, which is optimal for additive
Gaussian noise. We obtain results similar to that shown in Figure 5-3.

� 5.6 Delay Estimation in the Presence of Timing Noise and AWGN

In the previous part we have seen that one problem with the consistency-based algorithm in
the presence of AWGN is that a small amount of additive noise may lead to a very different
answer to the ambiguity set An, and hence give a very poor estimate τ̂ .

� 5.6.1 Extending consistency to include AWGN

We can extend the model to include the additive noise term wn in our definition of consis-
tency.

Definition 5.2 (Consistency with timing noise and AWGN). Let parameter vector
θ parameterize the signal xθ(t), and let {yn}N−1

n=0 be samples taken at times {nT + zn}N−1
n=0 .

Estimates of the unknown parameter vector θ, timing noise vector {zn}N−1
n=0 and AWGN

{wn}N−1
n=0 are said to be consistent with the observations when yn = xθ(nT + zn) + wn for

n = 0, 1, . . . , N − 1. Let C denote the set of consistent estimates.

Directly expressing Pr(y; θ) is difficult in general. We again follow the Expectation-
Maximization algorithm (EM) approach by working with the complete data set:

arg max
θ,z

lnPr(y, z; θ) = arg max
θ,z

lnPr(w|z; θ)Pr(z; θ). (5.10)

The computation of (5.10) can be done either in a nested manner or iteratively between
the two variables τ and z. For the problem of delay estimation, we are concerned only with
the delay τ as the unknown parameter. The model is then given by

yn = g(nT + zn − τ) + wn, n = 0, 1, . . . , N − 1. (5.11)

Similarly to the case where only timing noise is present, we can obtain an ML estimate of
τ from {zn} and vice-versa. An estimate of delay, timing noise and additive noise of the
signal {τ ; z0, . . . , zN−1;w0, . . . , wN−1} is consistent with observations {yn} for a given pulse
shape g(t) if and only if yn = g(nT + zn − τ) + wn for n = 0, 1, . . . , N − 1.

Conditioned on τ , because of the whiteness, the estimates of {wn, zn} can be computed
separately for each n. Moreover, for each n a consistent wn is completely determined by
fixing τ and zn. Indeed, using the model we can set:

wn = yn − g(nT + zn − τ), n = 0, 1, . . . , N − 1. (5.12)

Now consider computing the estimates of the hidden variables {wn, zn} and the unknown
parameter τ iteratively. The two estimation problems are given by:

• Estimating hidden variables:

(ŵk+1, ẑk+1) = arg max
w,z

Pr(w, z | y, τ̂k).
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• Estimating unknown parameter:

τ̂k+1 = arg max
τ

Pr(y | ŵk, ẑk; τ).

In the estimation of the hidden variables we can use the insights of the previous part, namely
that the estimation can be distributed in n, and that wn is uniquely determined by (τ, zn)
following (5.12). We obtain

arg max
(wn,zn)

Pr(wn, zn|yn, τ̂k) (5.13)

= arg max
(wn,zn)

lnPr(zn|yn; τ)Pr(wn|zn, yn; τ)

= arg min
zn

‖zn‖2

σ2
z

+
‖yn − g(nT + zn − τ)‖2

σ2
w

.

Estimation of the unknown delay is simpler: given z the only uncertainty in y is the AWGN
term. Hence,

arg max
τ

Pr(y | ŵk, ẑk; τ) = arg min
τ

‖y − g(nT + z− τ)‖2, (5.14)

where n denotes the vector [0, 1, . . . , N − 1]T and g denotes the appropriate N -fold product
of the pulse shape. The optimization in (5.14) has an intuitive interpretation: given our
knowledge of the timing noise we can construct a template pulse shape which we can then
use for maximizing the cross-correlation with the sampled signal.

We apply the optimization procedures of (5.13) and (5.14) iteratively. For both steps
we use a steepest-descent approach. The performance is strictly better than that of using
only correlation, because it also allows for compensation in the timing domain. The perfor-
mance evaluation of this method is promising: in all cases, the performance of the proposed
technique is superior to that of the standard, correlation-based method.

� 5.6.2 Algorithm based on linearization of effect of timing noise

To be able to incorporate correlation properties of the noise sequences {wn} and {zn},
we now develop an algorithm based on linearization of x(·) around the nominal sampling
instances. We lineare the effect of zn around nT . Following our previous notation, let
sn = nT + zn denote the sampling instances. We are interested in the pulse delay τ , which
is contained in the argument of the pulse shape g(·). For convenience, let

an = sn − τ = nT + zn − τ. (5.15)

The noisy samples we obtain are given by yn = g(an) + wn. In the amplitude domain the
noise term wn is additive and is independent of the signal. However, the effect of zn is
signal-dependent. We are interested in estimating τ = an − nT − zn, given the observation
yn.

Suppose for a moment that we already know τ , and wish to characterize zn and wn.
Around each sampling instance, we use a first-order Taylor expansion to approximate the
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pulse shape.

• In the amplitude domain: We obtain

yn ≈ g(nT − τ) + zng′(nT − τ) + wn. (5.16)

For convenience, let u
(τ)
n = zng′(nT−τ)+wn. From statistical characterizations of the

processes zn and wn, we can derive a statistical characterization of u
(τ)
n conditional

on τ .

• In the timing domain: We obtain

an ≈ nT + zn − τ +
1

g′(nT − τ)
wn. (5.17)

Let v
(τ)
n = zn + wn/g′(nT − τ). We can similarly derive a statistical characterization

of v
(τ)
n .

In all cases of interest, both wn and zn are zero-mean stationary Gaussian processes [26,64].
Therefore, by linearization of the pulse shape around nT , both u

(τ)
n and v

(τ)
n are also zero-

mean Gaussian processes. However, they are not stationary because their variances depend
on the local slope of the pulse shape at each nT . The amplitude-domain additive noise wn

arises from Brownian motion in the circuitry, and hence is modeled as white noise. On
the other hand, timing-domain additive noise zn arises from aperture and clock phase jitter
as we discussed in Section 5.2.3, and more restrictive models are often used.

The characterization of u
(τ)
n and v

(τ)
n requires knowledge of τ , which is the unknown,

desired parameter. Therefore we use an iterative approach which refines our estimate of
τ . The refinement of the estimate τ can be done in both domains. In the timing domain,
given the characterization of the timing noise zn, we can attempt to estimate it as we did
in the previous subsection.

The linear approximation given above is valid when the jitter is small and the pulse is
smooth. We can linearize around zn = 0 to obtain

g(nT + zn − τ) ≈ g(nT − τ) + zng′(nT − τ). (5.18)

Then our signal model can be simplified to

yn = g(nT − τ) + u(τ)
n , n = 0, . . . , N − 1, (5.19)

where u
(τ)
n ∼ N(0, (σzg

′(nT − τ))2 + σ2
w). This approximation is good for high SNR and

signal-to-jitter ratio (SJR). Then for fixed τ , u
(τ)
n is white and Gaussian, but not identically

distributed. Its variance depends on g′(nT − τ). For convenience, we write the variance as
(σ(τ)

n )2 = (σzg
′(nT − τ))2 + σ2

w.
The ML estimation problem for the model of (5.19) is given by:

τ̂ML = arg min
τ

N−1∑
n=0

∣∣∣∣∣yn − g(nT − τ̂ + ẑn)

σ
(τ)
n

∣∣∣∣∣
2

. (5.20)
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The problem of (5.20) is still hard to evaluate because of the dependence of σ
(τ)
n on both

n and hypothesis τ via g′[nT + z[n] − τ ]. However, given a previous estimate τ̂k, we can
instead use σ

(τ̂k)
n . We obtain the following iterative algorithm:

• Step 0: Start with initial estimate τ̂0.

• Step 1: Given previous estimate τ̂k, compute σ
(τ̂k)
n .

• Step 2: Perform the following optimization:

τ̂k+1 = arg min
τ

N−1∑
n=0

∣∣∣∣∣yn − g(nT − τ̂k + ẑ
(k)
n )

σ
(τ)
n

∣∣∣∣∣
2

. (5.21)

• Step 3: Given τk+1, find new estimate ẑ
(k+1)
n given the characterization of z[n].

• Step 4: Repeat as necessary, k = k + 1.

The optimization in step 2 is basically a cross-correlation which takes jitter into account,
both as a penalty term and as a compensation term. This can also be implemented as a
gradient search.

Given a spectral characterization of the timing noise zn, the noise term vn is a non-
stationary, white, zero-mean Gaussian process. The optimal estimate of zn in this case
is still given by the Wiener filter [44]. The approach above can easily be modified to use
different models of the timing noise zn, such as when zn is a deterministic periodic sequence
with known or unknown period.

� 5.7 Towards the Optimal Pulse Shape for Delay Estimation in
the Presence of Timing Noise

Recall the basic example in which the pulse shape is given by g(t) = at with a 6= 0 a fixed
constant. Clearly, this function is invertible. It can easily be derived that the conditional
distribution of yn given τ can easily be derived to be normal with mean a(nT − τ) and
variance σ2

w + a2σ2
z . Hence the ML estimate and Cramér-Rao bound are given by:

τ̂ML =
1
N

N−1∑
n=0

(yn

a
− nT

)
, var(τ̂) ≥

σ2
z + σ2

w
a2

N
. (5.22)

In contrast to the case where only white timing noise is present, in this case the slope a
determines the relative effect of the timing noise versus the additive noise: the steeper the
slope, the more the additive noise is attenuated. This result should be compared with the
non-parametric analytical result of Butzer [19] which we discussed in Section 5.2.1. Butzer’s
analysis of non-parametric signals suggests that steeper slopes are worse because it amplifies
the effect of timing noise on the observations in the amplitude domain, where the error is
measured.

In order to gain an insight into the best design of pulse shapes, consider a pulse consisting
of two piecewise-linear regimes, denoted A1 and A2, as shown in Figure 5-4. The slopes at
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Figure 5-4. A simple pulse shape with two different slopes.

the different regimes are a1 and a2 respectively. Without loss of generality, let a2 ≥ a1. Let
n1 and n1 be the number of samples that fall within each regime.

The ML estimator can be derived from the log-likelihood function and is a linear com-
bination of the samples {yn}N−1

n=0 . The Cramér-Rao bound is given by

var(τ̂) ≥

 n1

σ2
z + σ2

w

a2
1

+
n2

σ2
z + σ2

w

a2
2

−1

. (5.23)

The result of (5.23) can be used to obtain an insight into the performance of delay estimation
in the presence of timing noise, for different pulse shapes. For fairness, we will fix the same
N , T and signal energy. Let the signal energy of a pulse g(t) be denoted by E =

∫
|g(t)|2 dt.

Then it can be shown that for all values of N , T , E , σz, and σw, the minimum value of
the right hand side of (5.23) is achieved by s1 = 0; it is strictly decreasing in s1 by the
assumption that a2 ≥ a1, and for any fixed s1 it is strictly decreasing in a2 and a1. This
means that the triangle pulse is optimal in the sense that it gives the lowest Cramér-Rao
bound for the estimate of pulse delay, which we know can be achieved with the estimator
derived from the log-likelihood function.

� 5.8 Simulation Results

We now verify the efficacy of our proposed algorithms via simulation. In several simulation
sets, we emulate the signal and system parameters used in the MIT Microsystems Technol-
ogy Laboratories (MTL) single-chip UWB transceiver system [11,13,119]. The system uses
a Gaussian pulse of width 2 ns with 400 samples taken at sampling period 0.25 ns.

� 5.8.1 Delay RMS vs. AWGN RMS

We begin by comparing the performance of the proposed method against the conventional
method for various values of σw and σz. The signal parameters are based on the MTL UWB
system. In this set of simulations the horizontal asymptotes correspond to the mean jitter
value given the width of the pulse: in the timing domain, the mean of the jitter and the
delay are not distinguishable from one another. We show this in Figure 5-5.
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Figure 5-5. The performance of the proposed algorithm based on the MIT MTL single-chip UWB
transceiver. The algorithm uses gradient search for the delay τ , and LMMSE for the jitter term. The
system is simulated for different jitter RMS values. The system uses a Gaussian pulse of width 2 ns with
400 samples taken at every 0.25 ns.
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� 5.8.2 Delay RMS vs. Oversampling

Now we fix σw and σz, and show a family of curves as a function of oversampling. The
“baseline” system uses N = 8 and T = 1. The oversampled signal increases N while keeping
N × T fixed. The results are shown in Figure 5-6.
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Figure 5-7. RMS of delay estimation. In this case zn is bandlimited to digital frequencies shown on the
X-axis, N = 16, T = 0.5, σz = 74e− 3, and σw = 1e− 3, 1e− 4.

� 5.8.3 Delay RMS vs. Loop Bandwidth

When we know that zn has a certain loop bandwidth, we can take advantage of this in the
estimation of zn given τ̂ . Timing noise with lower loop bandwidth is easier to estimate and
cancel, hence we can obtain better performance. In comparing timing noise with different
loop bandwidths, we make sure that the RMS of the timing noise remains the same. We
show this in Figure 5-7. In this batch of simulations we set the mean of the jitter sequence
to zero so that the mean jitter does not appear as a noise floor. We show the performance
of the system when N = 16, T = 0.5, σz = 74e−3, and σw = 1e−3. The signal pulse shape
is Gaussian with amplitude 2 and width 2. However, loop bandwidth does not appear to
speed up the converge of the algorithm as seen in Figure 5-8 where we show the average
performance at different iteration steps. The performance gains can be significant, as shown
in Figures 5-9 and 5-10.

Using a similar system setup, we examine the effectiveness of jitter cancellation in Fig-
ure 5-9. We also used the signal parameters used in the MIT MTL UWB testbed and show
the performance in Figure 5-10. The horizontal asymptote refers to the performance when
no jitter is present in the system. In this batch of simulation we also make sure that the
mean of the jitter sequence is zero. These systems are implemented using gradient search
for the delay-estimation part.
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� 5.9 Conclusion

We have considered the problem of estimating parametric signals in the presence of timing
noise, focusing on the classical problem of delay estimation. We proposed new algorithms
which take into account the nature of timing noise, and showed that when timing noise is
a prominent source of impairment, our new approach is superior to that of the old method
that uses only cross-correlation. Unlike the classical approach which considers only AWGN
and use LTI processing, our algorithm explicitly takes timing noise into account and uses
an iterative approach to simplify the computation. The proposed approach can be easily
modified to use more accurate models of timing noise.



Chapter 6

Closing remarks

This thesis revisited the problem of estimating signal parameters. It proposed the integra-
tion of sampling and estimation, and proposed several economical architectures with low
sampling rate, requiring simple hardware and associated algorithms. We gave several ana-
lytical lower bounds on estimation error variance and proposed algorithms that give good
performance for the cases of interest. This thesis also considered timing noise, which is a
prominent source of impairment in wideband ADCs. We proposed algorithms that take
timing noise into account, and showed that our algorithms are superior to that of the old
method that uses only cross-correlation.

Most of the parameter estimation was done from a powersum series: the timing pa-
rameters are encoded into the roots in the series. This problem is called “Prony analy-
sis,” “exponential fitting” or “exponential analysis” in other fields of studies. Although
this problem has been studied in line spectra estimation, translation of the result is not
straightforward and can be misleading. We demonstrated that the proposed systems have
super-resolution properties, meaning that their performances in the high-SNR case exceed
that of the conventional system. Since the performance of the proposed system is dependent
on the relative locations of the Diracs within the integration and sampling period, in many
cases adaptation of the integration intervals can improve the performance of the system.

Finally, we showed that the analysis method that was developed can also be used to
give new performance results on prior work of Vetterli et al. [117], in which a parametric
signal is filtered and sampled uniformly in time. Since the desired parameters appear as
complex roots of unity and thus lie on the unit circle, we were able to obtain simplification
from trigonometric identities that gave insight into the behavior of the system.

� 6.1 Algorithms

The problem of exponential fitting is not new and is well-studied in various fields ranging
from natural sciences [4, 36, 50, 99, 110, 124], to medicine [74], statistics [82], mathematics,
computer science [56], and engineering. Many algorithms are known, but as the work is
widely distributed across many different fields, there is still no comprehensive study of which
algorithms are suitable for which scenarios.

The work on exponential fitting in signal processing has been concentrated in the areas
of angle-of-arrival estimation and direction finding, often using multiple antennas or sensors.
This body of work is focused on estimating the signal parameters by first estimating the
signal covariance structure [48,49,71,106], and on the case when we have a large number of
samples with multiple snapshots. Since the parameter of greatest interest is in the angles
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of the coefficients of the powersum series, it is often assumed that the coefficients lie on the
unit circle. Most of the publications in this area demonstrate the efficacy of their algorithms
by Monte-Carlo simulation and give the resulting mean-square error.

On the other hand, the papers on exponential fitting in the natural sciences often give
proof of concept by using the algorithms proposed to estimate parameters in an experiment
for which they know the correct answer [7, 20, 50]. Moreover, the number of observations
tends to be small. This is more suitable for our problems of interest, since we focus on
the economy of small-scale problems and small numbers of observations. However, where
appropriate we still use Monte-Carlo simulation and give the resulting mean-square error.

For an overview of the work in signal processing, we refer the reader to Stoica’s text-
book [106] and the newer work of Maravic and Vetterli [71]. For an overview of the work in
natural sciences, we refer the reader to the recent overview by Istratov and Vyvenko [50].
It is an interesting exercise to see the overlap and non-overlap between the different fields.

� 6.2 Analytical Challenges

We have seen that constraining the coefficients of the powersum series to lie on the real line
instead of on the unit circle significantly adds to the difficulty of the analysis: no longer
can we use trigonometric identities to decompose the problem into the form that we prefer.
Translating the results from the case where the coefficients lie on the unit circle to when the
coefficients lie on the real line is not straightforward and in some cases can be misleading.
For example, one may be tempted to translate the analysis of Steedly, Ying and Moses [105],
which considered complex-valued poles, to real-valued poles as follows: set the angle of a
complex-valued coefficient to zero and consider the estimate of the magnitude to represent
the coefficient itself on the real line. Their results suggest that the best performance is
obtained when the magnitude is unity, or when the poles lie on the unit circle on the
complex plane. However, we have seen in Section 3.5.2 and Theorem 3.4 that this approach
is incorrect.

It is possible to obtain asymptotic results on the performance of the estimates as δω →∞
for line spectra estimation, such as in the papers by Dilaveroǧlu [30] and Smith [103],
although neither authors proposed an algorithm. We are not able to obtain analogous results
for our cases of interest. Regardless, lower bounds on performance are most interesting when
an algorithm that performs close to it is also presented, which we did in several cases.

� 6.3 Future Work

Much of the contribution of this thesis is on rethinking the design of ADC for parametric
signal acquisition. As such, more realistic device noise models should be studied. Moreover,
a study of the actual implementation cost is in order to justify the economical efficacy of
our proposed approach and also those that were given by other researchers.

� 6.3.1 Generalizing sampling

Throughout this thesis we viewed sampling as inner products with a set of functions. These
functions are chosen for two reasons:

1. That the operations are easy to implement.
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2. That the signal parameters can easily be obtained from the mapping induced by the
functions.

There is an infinite multitude of possible approaches for these two goals—we have only
considered very specialized cases for which there are well-known simple devices such as
integrators, and fast computational tools such as the Fast Fourier Transform. Broadly
speaking, there are three avenues for further work:

1. Consider more general methods for obtaining samples of a signal, including methods
that are not inner products.

2. Consider other systems of equations from which the parameters of a signal can be
obtained, other than the powersum series.

3. Consider other devices for obtaining the desired inner products.

The last avenue is related to the connection between the multi-channel sampling scheme of
Chapter 3 and the Dragotti-Vetterli-Blu sampling scheme of Section 4.2. Essentially, within
the interval of interest the Dragotti scheme uses Strang-Fix theory to obtain the inner
product that the multi-channel scheme obtained via integration. The primary difference is
that the front-end of the Dragotti scheme is implemented as linear shift-invariant sampling
followed by uniform sampling in time, whereas in the multi-channel scheme it is implemented
using integrate-and-dump circuitry.

There are advantage and disadvantages to both schemes: in the multi-channel scheme
the integrate-and-dump operates exactly on the interval of interest, but if we were to seg-
mentize a signal, the integration intervals must be decided in advance.

By contrast, in the Dragotti scheme the intervals of interest can be decided after the
samples are taken. However, by virtue of the sampling kernels being interpolating functions
the footprints of the inner products are necessarily larger than the interval of interest.
When there is continuous-time white noise, this means higher noise power. When there is
unwanted signal within this overflow, then the estimate obtained will be incorrect.

Even if the sampling schemes are limited to inner products, it is easy to generate new
sampling kernels by taking linear combinations of the proposed sampling kernels, as long
as it can be recombined into the desired form.

� 6.3.2 Successive refinement and detecting undermodeling

In Chapter 3 and Section 4.2 we considered two sampling schemes that are closely related.
We call these the multichannel and Dragotti schemes respectively. In the latter, given N
samples of the output of an R-order B-spline, it is possible to obtain a powersum series
of length M = min{N,R}. Therefore it is possible to obtain perfect reconstruction of a
powersum series with up to M/2 components.

An attractive feature of the Dragotti scheme is its ability to segmentize a signal arbitrar-
ily, and compute reconstructions of different orders at different segments. To start, suppose
that we take N samples of a signal filtered using a B-spline kernel of order R within a seg-
ment [0, T ). Suppose that we segmentize the signal into segments p = 0, 1, . . . , P − 1 with
Np samples within each segment. Then within each segment we can compute a powersum
series of length Mp = min{Np, R}, which in turn can be used to obtain reconstruction of a
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powersum series with up to Mp/2 components within each segment. The segments can also
overlap across time and scale.

However, care must be given to the fact that the reconstruction of polynomials have
support outside its interval of interest. This means that we must account for this when
segmenting a signal into several intervals of interest, within each we wish to reproduce
polynomials of the desired orders. Hence, even if the segments overlap across time and
scale, we must take into account the overlaps in the inner products.

� 6.3.3 Reviewing timing and signaling

In Chapter 5, the last part of the thesis, we proposed an iterative algorithm that estimates
both the signal parameter and the timing noise sequence. The viewpoint that we introduced
is very general: timing-domain noise and observation-domain noise are two processes with
different structures, and the map from one domain to the other is determined by the signal,
which in turn is determined by its parameters.

We considered very simple cases when the timing noise sequence is a stationary stochastic
process. Further extensions are possible. For example, we can consider timing noise to be
a deterministic sequence or a non-stationary sequence admitting a special structure. When
the timing noise sequence has memory, the estimate can be used to predict the timing noise
term in other portions of the signal. Furthermore, the proposed algorithm can be used as a
method for decoding covert messages encoded in the timing noise at the signal transmitter.

The preliminary work on designing transmission pulse shapes with timing noise and
observation-domain additive noise that we explored in Section 5.7 can be extended to include
other design considerations such as spectral efficiency and dynamic range.



Appendix A

Powersum Series

The nonlinear parameter estimation problems that we consider in this thesis are based on
observations of form

xn =
K−1∑
k=0

ck(uk)n, n = 0, . . . , N − 1. (A.1)

The desired parameters are the K pairs {ck, uk}. A sequence of form (A.1) is called a
powersum series, first studied by Baron de Prony in 1795 as he attempted to find the decay
rate of chemical processes [25]. In the original problem, the observations and parameters
are real-valued. This is sometimes called “real exponential fitting” in the natural sciences
literature. De Prony showed that in the noiseless case it is possible to find {ck, uk} exactly
based on N = 2K + 1 observations. In the signal processing literature, his method is called
the annihilating filter method, which we review below. It is known that this method is not
a consistent estimator of the parameters [51,104].

In the noisy case we observe

yn =
K−1∑
k=0

ck(uk)n + wn, n = 0, . . . , N − 1. (A.2)

We are interested in recovering the coefficients {ck} and the roots {uk}. We assume that
ck ∈ R and uk either uk ∈ R or {uk ∈ C | ‖uk‖ = 1}.

It is possible to rewrite (A.2) in matrix form:

y = Ac + noise, (A.3)

where [y]n = yn, [c]k = ck, and [A]n,k = (uk)n. Throughout this document, we index
matrices starting with 0 instead of 1 for consistency. Clearly, the matrix A is a Vander-
monde matrix. Hence our problem of finding {uk} is equivalent to finding the elements of
a Vandermonde matrix.

Several methods of solution have been proposed, which we cover below. Most of these
methods first find {uk}, and then use the estimate to find {ck}. We are interested in two
classes of algorithms: one based on Prony’s method and one based on the Matrix Pencil
method, also known as the Rotational Invariance Property [48, 49, 94]. These two classes
of algorithms are closely related: see [35] for a quick overview of their similarities and
differences. For low noise levels the Matrix Pencil-based methods are slightly superior to
the Prony-based methods, and for high noise levels it is the other way around.
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Several algorithms give performance close to the Cramér-Rao bounds in the presence of
AWGN, such as the Nonlinear Least-Squares algorithm [108] and a regularized Maximum-
Likelihood algorithm [35]. However, while their performance can exceed that of the Prony
and Matrix Pencil-based methods, these algorithms requires very good initial conditions
and perform poorly when the number of samples N is small. These algorithms are often
simulated and implemented using initial values obtained from the Prony and Matrix Pencil
methods.

� A.1 Prony’s Method: Annihilating Filter Solution

Instead of presenting Prony’s method in terms of a constant-coefficient difference equation,
we use signal processing terminologies instead. The one-sided Z-transform of (A.1) is given
by

X(z) =
∞∑

n=0

K−1∑
k=0

ck(uk)nz−n =
K−1∑
k=0

ck

1− (ukz−1)
.

In this form the parameters {uk} appear as poles of X(z). Now let hn be a Finite Impulse
Response (FIR) filter of length K, with Z-transform H(z). If the central values in the
convolution of hn and xn are zero,

hn ∗ xn = 0, n = K + 1, . . . , N − 1, (A.4)

then the K zeros of H(z) must equal the K poles of X(z). In other words, up to a scaling
factor we must have that:

H(z) =
K−1∏
k=0

(1− ukz
−1).

The solution to (A.4) can be obtained by writing the convolution in matrix form. The rank
of the Toeplitz matrix will be K, hence by writing a K × (K + 1) matrix the solution is
the nullspace of the matrix. If we have more measurements, we can write a K × (K + L)
Toeplitz matrix instead, and obtain a nullspace of rank L. Each basis vector that spans
this nullspace must satisfy (A.4). Hence we can improve the performance of the system by
averaging the basis vectors.

When we have a large number of samples, we can estimate the covariance matrix of the
samples. In the presence of white noise, the covariance matrix will have the same property,
that is its rank is K. Hence we can use the same procedure to obtain the estimates of
{uk}. This is the main idea behind Pisarenko’s algorithm and the MUSIC (MUltiple SIgnal
Classification) algorithm [87,98].

� A.2 Matrix Pencil, Rotational Invariance Technique

Another method for finding the parameters of a powersum series is based on self-similarity,
which we will make precise in the following. Let X be a P × Q Hankel matrix containing
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the observations yn, and let P,Q > K:

X =


y0 y1 · · · yQ−1

y1 y2 · · · yQ
...

...
yP−1 yP · · · yP+Q−2

 .

One possible decomposition of X is X = USVH , where

[U]i,j = (uj)i,S = diag(c0, . . . , cK−1, 0, . . . , 0), [V]i,j = (uj)i.

However, the factorization above is not unique. For example, X = (UW1)W−1
1 SW2(W−1

2 VH)
is also a valid factorization for any unitary W1,W2. In other words, what we really want
is a decomposition with a structural constraint, namely that U,VH are Vandermonde.
Fortunately there is an algebraic structure that we can take advantage of.

Let Φ = diag(uk) be a K ×K diagonal matrix containing the signal poles. Now let b
be a row vector of all 1’s. Because U,V are Vandermonde, we can write:

U =


b

b ·Φ
b ·Φ2

...
b ·ΦM−1

 ,V =


b

b · (ΦH)
b · (ΦH)2

...
b · (ΦH)M−1

 .

Now we introduce truncations of these matrices. Let (·) and (·) denote the operation of
omitting the first and last row of (·) respectively. Then it can be shown that

U = U ·Φ, V = V ·Φ. (A.5)

This is called the rotational invariance property. This property was used in line spectra
estimation for finding frequencies which appear as uk = exp(jωk). We now show that this
property also applies to UW1 and VW2. To see this, we write:

UW1 =


bW1

bW1 ·W−1
1 Φ

bW1 ·W−1
1 Φ2W1
...

bW1 ·W−1
1 ΦM−1W1

 ,VW2 =


bW2

bW2 · (ΦH)W2

bW2 · (ΦH)2W2
...

bW2 · (ΦH)M−1W2

 .

Because W1 is unitary, (W−1
1 ΦW1)k = W−1

1 ΦkW1. Therefore,

UW1 = UW1 ·W−1
1 ΦW1, VW2 = VW2 ·W−1

2 ΦW2. (A.6)

Recall that we are interested in Phi. Because the rotational invariance property applies to
A.6 then it applies to any decomposition of the Hankel data matrix X. For convenience,
we pick the singular-value decomposition (SVD) of X, and use the rotational invariance
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property of the left- and right-singular matrices to obtain Φ.
In summary, the algorithm is as follows:

1. Form X the Hankel matrix from observations yn.

2. SVD X = USVH , form principal left and right singular vectors Us,Vs corresponding
to the K largest singular values of X.

3. Form Z = Us
† ·Us.

4. Find uk = eig(Z).

Similarly, when the number of samples is large, we can estimate the covariance of the
signal and use it in place of the data. This is the main idea behind ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques) [94].

� A.3 TLS-Prony Algorithm

We briefly review the algorithm proposed by Rahman and Yu, and analyzed by Steedly and
Moses [88,105].

Suppose that we are given observations y[n], n = 0, . . . , N − 1. Pick an integer L > K,
recommended to be around N/3.

1. Form the Hankel matrix Y of size (N − L× L) from observations.

2. Compute the SVD of Y and reconstruct using only the K largest singular values. Call
this reconstruction Ŷ, and the first column ŷ.

3. Compute the least-squares estimate b̂ = (Ŷ)†ŷ, where (·)† denote the pseudo-inverse.

4. Find the L roots of polynomial representation B̂(z), obtaining estimates û` for ` =
0, 1, . . . , L− 1.

5. Do least-squares fitting to find amplitudes ĉ` for each of the L estimates.

6. For each of the L estimates, compute energy

E` =
∑

n

‖ĉ`(û`)n‖2.

7. Pick K estimates with the largest energies.

� A.4 Cornell’s Algorithm

Cornell [20] proposed a procedure for finding the coefficients of a powersum series from
uniformly spaced observations based on segmenting and computing partial sums of the set
of observations. He gave simple formulas for when K = 1 and K = 2, and Petersson and
Holmström gave formulas for the case when K = 3, 4 [85]. In this thesis we review only the
simple formulas for K = 1 and K = 2. It is known that the algorithm performs poorly for
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large K. Suppose that we are given observations y[n], n = 0, . . . , N − 1. For convenience,
let N = 22q for some integer q.

For K = 1, the steps are given by:

1. Segment y[n] and take sums:

S1 =
N/2−1∑
n=0

y[n], S2 =
N−1∑
N/2

y[n].

2. Compute W = S2/S1.

3. Set estimate û0 = (W )N/2.

For K = 2, the steps are given by:

1. Segment y[n] and take sums:

S1 =
N/4−1∑
n=0

y[n], S2 =
N/2−1∑

N/4

y[n].

S3 =
3N/4−1∑
n=N/2

y[n], S4 =
N−1∑
3N/4

y[n].

2. Compute

L1 = (S1S4 − S2S3)/(S1S3 − S2
2),

L2 = (S2S4 − S2
3)/(S1S3 − S2

2).

3. Find the roots of x2 − L1x + L2 = 0, say W0,W1.

4. Set estimates û0 = (W0)N/4, û1 = (W1)N/4.

Cornell’s algorithm requires only very mild conditions on the noise, that is that the noise
is zero-mean. It does not even require that the noise is additive, but it does have to satisfy:

E[y[n]] =
K−1∑
k=0

ck(uk)n.

He showed that under this mild condition the algorithm is a consistent estimator. Cornell’s
algorithm has been extended by Agha [4] in order to avoid having to take powers of real
numbers, although Agha’s modified algorithm gives similar performance for small sample
sizes. Cornell’s has also been modified to allow for non-uniform spacing of samples by
Foss [36].
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Appendix B

Noise Analysis of Powersum Series

In this appendix we derive the performance limits of the estimation of the parameters of a
powersum series. Recall from Section 2.4 that the Cramér-Rao Bound (CRB) is a powerful
tool for finding the lower bound of estimation error for any unbiased estimator under some
mild conditions. Further, recall that in the case of AWGN the CRB has a particularly simple
form. We start with the noise analysis for the case when the roots are real-valued. This is
the case of interest for Chapter 3, where the timing information appear as uk = (T − tk).
We continue by analyzing the case when the roots are complex roots of unity, and thus lie
on the unit circle. This is useful for Chapter 4, where the timing information appears as
uk = exp(j2πtk/Tp).

� B.1 Real-valued Roots

We are interested in estimating parameters {uk} and {ck} from observations of the noisy
powersum

y[n] =
K−1∑
k=1

ck(uk)n + w[n], n = 0, 1, . . . , N − 1. (B.1)

� B.1.1 Cramér-Rao Bounds

Consider the observation model (B.1) with all quantities real-valued. Suppose that additive
noise w is zero-mean Gaussian with covariance matrix Σ. Then the likelihood is:

L =
1

|Σ|1/2
exp

(
−(y −Ac)HΣ−1(y −Ac)

)
, (B.2)

where A is a Vandermonde matrix as in Appendix A. We are interested in finding the
Cramér-Rao bound for the estimating {uk}.

To derive the Fisher information matrix (FIM) we start with the log-likelihood:

− lnL = yHΣ−1y + cHAHΣ−1Ac− cHAΣ−1y − yHΣ−1c.

For convenience, define

• Fc = ∂T
c ∂c lnL.

• Fu,c = ∂T
u ∂c lnL

• Fu = ∂T
u ∂u lnL.
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Then we obtain that the FIM is given by,

Fc,u = E
[

Fc FT
u,c

Fu,c Fu

]
. (B.3)

We make the following definition:

• Ξ = AHΣ−1A,

• following [103] let Ξ[u] denote the substitution of the first derivative w.r.t. uk when
the k-th index of u is required,

• and similarly let let Ξ[u,u] denote the substitution of the first derivative w.r.t. uk and
u` when the k, `-th index of u is required.

Then we can derive:

−
(

∂T
c

∂T
u

)
lnL =

(
(2cHΞ + yHΣ−1A)

(cHΞuc− yHΣ−1Auc− cHAH
u Σ−1y)

)
(B.4)

−∂T
c ∂c lnL = 2Ξ (B.5)

−∂c∂
T
u lnL = 2Ξuc− 2AH

[u]Σ
−1y (B.6)

−∂T
u ∂u lnL = cHΞ[u,u]c− cHA[u,u]Σ

−1y − yHΣ−1A[u,u]c. (B.7)

Now we are ready to find the Fisher information matrix by taking the expectation of the
above. To evaluate the above expression, note that the noise is assumed to be zero mean,
therefore we simply need to substitute E[y] = Ac.

To finally obtain the CRB, note that the FIM given in (B.3) is of block matrix form.
Therefore we can use the Schur complement of the FIM to obtain a lower bound on the
estimate of u:

E[(û− u)(û− u)T ] ≥ (Fu − FT
u,cF

−1
c Fu,c)−1. (B.8)

� B.1.2 White noise case

When the noise is white we obtain a simpler expression for the FIM (for example see [52]).
For convenience, let θ be the vector of parameters and x[n; θ] be the noiseless signal given
by θ. In this case,

− lnL = constant +
1

2σ2

∑
n

(y[n]− x[n; θ])2.

The partial derivative is particularly simple:

− ∂

∂θ
lnL =

2
2σ2

∑
n

(y[n]− x[n; θ])
∂

∂θ
x[n; θ].
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Then,

J =
1
σ2

[(
∂

∂θ
lnL

)(
∂

∂θ
lnL

)T
]

=
1
σ2

[∑
n

(
∂

∂θ
x[n; θ]

)(
∂

∂θ
x[n; θ]

)T
]

.

Let p[n] = [(u0)n, . . . , (uK−1)n, c0 · n · (u0)n−1, . . . , cK−1 · n · (uK−1)n−1]T . Therefore,

J =
1
σ2

[∑
n pT [n]p[n]

]
. (B.9)

To examine the resolution limit, following Dilaveroǧlu [30] we wish to derive the per-
formance for K = 2 in terms of δu = u1 − u2. However, Diraveroǧlu only considered the
undamped line spectra case, which contains complex exponentials on the unit circle, say
exp(jω1) and exp(jω2). He used trigonometric identities to decompose the parameters into
the desired form. In his case, the final result gives a CRB for ω1, ω2 that depends on
δω = ω1 − ω2, but independent of absolute terms ω1, ω2. By contrast, we do not obtain
such convenient decompositions and have to rely on numerical evaluation.

� B.1.3 Single-pole case

We now use the result to consider the simplest case when there is only one pole in the
signal. First consider the case when w[n] is white Gaussian with variance σ2. We can write
the FIM as:

J =
2
σ2

([√
N

N
√

N

] [
1

(c0/u0)

] [
G0(u2

0) G1(u2
0)

G1(u2
0) G2(u2

0)

] [
1

(c0/u0)

] [√
N

N
√

N

])
.

We are interested in finding the CRB for u0 = (T − t0), which is the last entry of the inverse
of the FIM J−1. This can be obtained by using direct matrix inversion:

E[(û0 − u0)2] ≥
σ2

N3

(
u0

c0

)2( G0(u2
0)

G0(u2
0)G2(u2

0)−G1(u2
0)G1(u2

0)

)
.

The behavior of (3.6) is consistent with the behavior of frequency estimates in line spectra
estimation which we reviewed in Section 2.1. However, a caveat is in order here. Suppose
for now that the signal of interest consists of complex-valued poles. This case was studied
by Steedly and Moses in [105]. The magnitude of the poles in that case corresponds to
the damping coefficient of the signal. They showed that the CRB for the estimation of
this parameter is minimized around the unit circle. Clearly, this is a different behavior
from what we obtained in this section. This illustrates that translating the results from the
complex-valued case to the real-valued case is not straightforward and can be misleading.

A caveat is in order here. Translation of the currently known results to our specific
case is not straightforward and can be misleading. When the poles are complex-valued,
the lack of knowledge of the exact pole angle lead to large errors in the estimate of the
pole magnitude: a small error in the phase estimate of the pole will be amplified by the



102 APPENDIX B. NOISE ANALYSIS OF POWERSUM SERIES

10−1 100 101
−14

−12

−10

−8

−6

−4

−2

0

2

u0

lo
g 10

(C
RB

)

Single pole in AWGN, SNR=20dB

N=2
N=4
N=6
N=8

Figure B-1. The Cramér-Rao bound for the estimation of a single pole with unit amplitude and AWGN
with RMS 0.1 per sample.

magnitude of the pole, as shown in Figure 2 of [105]. Hence in the complex case, the error
in pole magnitude estimate is best for unit magnitude, and becomes worse as the true pole
magnitude increases. In our case, the poles have positive real values. The error in the pole
value (magnitude) estimate decreases as the pole value (magnitude) is increased, as there
is no phase ambiguity. We show this in Figure B-1.

� B.1.4 Two-pole case

We now consider the case when K = 2. Then y[n] = c0(u0)n + c1(u1)n + w[n]. For
convenience, we define the following:

R =


√

N √
N

N
√

N

N
√

N

 , S =


1

1
(c0/u0)

(c1/u1)

 , (B.10)

and

Gr(x) =
1

N r+1

N−1∑
n=0

nr(x)n. (B.11)

Then the FIM can be written as,

J =
1
σ2

·R · S ·


G0(u2

0) G0(u0u1) G1(u2
0) G1(u0u1)

G0(u0u1) G0(u2
1) G1(u0u1) G1(u2

1)
G1(u2

0) G1(u0u1) G2(u2
0) G2(u0u1)

G1(u0u1) G1(u2
1) G2(u0u1) G2(u2

1)

 · S ·R. (B.12)
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For convenience, let

A =
[

G0(u2
0) G0(u0u1)

G0(u0u1) G0(u2
1)

]
, B =

[
G1(u2

0) G1(u0u1)
G1(u0u1) G1(u2

1)

]
, C =

[
G2(u2

0) G2(u0u1)
G2(u0u1) G2(u2

1)

]
,

Let SNRk = c2
k/σ2. Then the CRB is given by,

E[(t̂k − tk)2] ≥
u2

0

SNRk ·N3

[
(C−BTA−1B)−1

]
k,k

,

Unfortunately no further simplication has been found in finding the inverse of the FIM, and
we obtain the CRB by numerical evaluation instead.

� B.2 Complex Roots on the Unit Circle

In this section we examine the case when the roots of the powersum series are complex roots
of unity. Unlike in the previous case where we were forced to make a numerical evaluation,
in this section we are able to obtain useful factorizations and gain further insight into the
problem at hand. We assume that the observation is subjected to AWGN for this section.

� B.2.1 Single-component case

We prove Theorem 4.1. It can be shown that the FIM is given by:

J =
2
σ2

([√
N

N
√

N

] [
1

α0

] [
Γ(0) 0

0 Γ(2)

] [
1

α0

] [√
N

N
√

N

])
. (B.13)

The inverse is given by:

J−1 =
σ2

2

[
1
N

1
Γ0

0
0 1

N3
1

α2
0Γ(2)

]
. (B.14)

We have then obtained Theorem 4.1.

� B.2.2 Resolution of FRI method

Now we consider Theorem 4.2. For convenience we define

α0 =
(

c0
2π

Tp

)
, α1 =

(
c1

2π

Tp

)
, (B.15)

and

K =


√

N √
N

N
√

N

N
√

N

 , L =


1

1
α0

α1

 (B.16)

We segmentize the FIM as follows:

J =
2
σ2

(
K · L ·

[
A b
bT c

]
· L ·K

)
. (B.17)



104 APPENDIX B. NOISE ANALYSIS OF POWERSUM SERIES

After some algebra, we obtain

A =
[
Γ(0) C(0)
C(0) Γ(0)

]
, b =

[
0 −S(1)

S(1) 0

]
, c =

[
Γ(2) C(2)
C(2) Γ(2)

]
The CRB is found by computing the inverse of the FIM:

J−1 =
2
σ2

(
K−1 · L−1 ·

[
A b
bT c

]−1

· L−1 ·K−1

)
. (B.18)

We are interested in the bound on the estimates of t0 and t1, which we obtain via the
inverse of the Schur complement of c in J:

P = c− bTA−1b.

=
[
Γ2 C2

C2 Γ2

]
− 1

Γ2
0 − C2

0

[
S2

1Γ0 S2
1C0

S2
1C0 S2

1Γ0

]
.

M =
[
Γ2(Γ2

0 − C2
0 )− S2

1Γ0 C2(Γ2
0 − C2

0 )− S2
1C0

C2(Γ2
0 − C2

0 )− S2
1C0 Γ2(Γ2

0 − C2
0 )− S2

1Γ0

]
P =

1
Γ2

0 − C2
0

M.

P−1 = (Γ2
0 − C2

0 )M−1.

Finally, we define SNRk = 2α2
k/σ2 and obtain,

E[(t̂k − tk)2] ≥
1

SNRk

1
N3

[P]k,k.

Let X0 = Γ2
0 − C2

0 . Then,

[P]k,k =
Γ2X0 − S2

1Γ0X0

Γ2
2X

2
0 − 2S2

1Γ0X0 + S4
1Γ2

0 − C2
2X2

0 + 2S2
1C0C2X0 − S4

1C2
0

.



Appendix C

List of Acronyms

ADC Analog-to-Digital Converter
AWGN Additive White Gaussian Noise
CDMA Code-Division Multiple Access
CMOS Complementary-symmetry/Metal-Oxide Semiconductor
CRB Cramér-Rao Bound
DFT Discrete Fourier Transform
EM Expectation-Maximization algorithm
ENOB Effective Number Of Bits
FFT Fast Fourier Transform
FIM Fisher Information Matrix
FRI Finite Rate of Innovation
GPS Global Positioning System
IID Independent and Identically Distributed
MIT Massachusetts Institute of Technology
ML Maximum Likelihood
RMS Root Mean Square
SHA Sample-and-Hold Apperture
SNR Signal-to-Noise Ratio
UWB Ultra-wideband
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