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Abstract

This thesis describes the design and implementation of two novel frameworks and pro-
cessing schemes for 3D imaging based on time-of-flight (TOF) principles. The first
is a low power, low hardware complexity technique based on parametric signal pro-
cessing for orienting and localizing simple planar scenes. The second is an improved
method for simultaneously performing phase unwrapping and denoising for sinusoidal
amplitude modulated continuous wave ToF cameras using multiple frequencies.

The first application uses several unfocused photodetectors with high time reso-
lution to estimate information about features in the scene. Because the time profiles
of the responses for each sensor are parametric in nature, the recovery algorithm uses
finite rate of innovation (FRI) methods to estimate signal parameters. The signal
parameters are then used to recover the scene features.

The second application uses a generalized approximate message passing (GAMP)
framework to incorporate both accurate probabilistic modeling for the measurement
process and underlying scene depth map sparsity to accurately extend the unambigu-
ous depth range of the camera. This joint processing results in improved performance
over separate unwrapping and denoising steps.

Thesis Supervisor: Vivek K. Goyal
Title: Research Scientist, Research Laboratory of Electronics
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Chapter 1

Introduction

Imaging is the process of encoding physical information about a scene of interest to

produce an image. In traditional optical imaging, the physical information captured

describes color and light intensities reflected by objects in a scene. By contrast, in

3D imaging, the goal is to obtain spatial information about a scene.

In general, imaging can accomplished by passive and active means. Passive imag-

ing schemes utilize ambient light from the environment as illumination of the scene,

while active imaging devices produce their own illumination and measure the response

of the scene to the illumination.

3D imaging is a growing area of interest, as applications in robotics, security,

health care, gaming, etc. increasingly incorporate 3D information. A variety of

qualities are desirable for a 3D imaging system, including accuracy, robustness to

ambient light, portability, and high frame rates. As a result, much research in 3D

imaging technology focuses on noise performance, size, power, and processing speed.

The two new imaging methods introduced in this thesis, Planar Scene Feature Re-

covery (PSFeaR) and Simultaneous Phase Unwrapping and Denoising (SPUD), both

are active 3D imaging technologies that make use of time-of-flight (TOF) principles

and exploit physical modeling and sparsity to make improvements in these challenge

areas. The remainder of this thesis will be organized into two major parts describing

PSFeaR and SPUD as follows:

The rest of the introduction in Chapter 1 will lay out the fundamental concepts
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and themes of TOF, physical modeling, and signal representation that underlie both

imaging frameworks.

Chapter 2 describes the PSFeaR architecture and processing, first giving context

for the diffuse imaging problem and describing the advantages and disadvantages of

proposed framework in relation to current art. It presents a new imaging device and

intended scenes of interest and then outlines the sampling techniques and estimation

algorithms used to recover the scene features. Finally, the chapter evaluates the

simulated performance of this framework for estimating simple scenes under various

noise conditions.

Chapter 3 describes the SPUD algorithm and the operation of the TOF cameras it

is intended for. It outlines the operating principles of an amplitude modulated contin-

uous wave (AMCW) TOF camera and the appropriate forward modeling for its mea-

surements. Then, it describes the generalized approximate message passing (GAMP)

framework and the specific details of its implementation for solving the unwrapping

and denoising problem. The chapter ends with simulations of the SPUD algorithm

and comparisons of its performance to traditional separate processing methods.

Chapter 4 concludes the thesis with a discussion of possible future directions for

the two frameworks

1.1 Time-of-Flight Principle

Time-of-flight cameras measure distance by relating the finite speed of light to the

time traveled by light between the scene and the imaging device as d = ct. TOF

systems are active imaging systems and can be categorized further into two groups,

pulsed and continuous wave (CW), based on the illumination signal they produce.

Pulsed TOF systems produce a single pulse within one repetition period and

measure a response in the period. The pulse shape is typically much narrower in time

than the repetition period. While conventional systems may integrate the return

signal and measure the time at which the integrated signal crosses a threshold as the

approximate time-of-flight, PSFeaR will use parametric signal processing to measure

12



the time-of-flight. Continuous-wave ToF systems produce a periodic signal, such as

a sinusoid, and measure the phase shift between the received signal and the original

signal. This measurement of phase shift can be made by performing a cross correlation

between the two signals. The conventional CW TOF architecture and processing will

be presented with more detail in Chapter 3 when introducing SPUD.

1.2 Physical modeling

The operation and performance of optical imaging systems is in part determined by

the fundamental physics governing how the intensity of light changes as it travels and

how this intensity is measured electronically.

Diffuse or unfocused light from a point source experiences decreasing intensity as

it radiates outward, exhibiting behavior described by the inverse square law. The

intensity of a light signal measured a distance r from the source has intensity propor-

tional to the inverse of distance squared (∝ 1/r2). This radial falloff effect dictates

the quality of the measurements corresponding to further points in a scene, especially

in the presence of ambient light.

Measurement of light is achieved in semiconductors through a process of converting

photons to electrons. This conversion process is probabilistic, and causes what is

known as shot noise. The charge generation in photodetectors is well characterized

as a time inhomogeneous Poisson process with rate λ proportional to the intensity of

light [8], with discrete distribution

p(k) =
e−λλk

k!
, k ∈ N0

where k is a realization of a random variable denoting the number of electrons gen-

erated at some time instance and N0 denotes the set of non-negative integers. While

many traditional processing methods assume this measurement is roughly described

by a Gaussian random variable with fixed variance, the true nature of the measure-

ment process is signal dependent.

13



PSFeaR and SPUD incorporate these two physical phenomena into their models

to achieve improved performance.

1.3 Signal representations

As technology advances the ability to sample time series at a faster rate or capture

more pixels in a fixed-size image, the amount of information used to represent these 1D

and 2D signals increases. However, many interesting signals and images have certain

properties that allow them to be represented or closely approximated in clever ways.

1.3.1 Parametric Signals

Many signals can be characterized by a finite set of parameters describing specific

information about the signal. For example, a signal of the form f(x) = ax2 + bx+ c

may be parameterized by the triple of coefficients (a, b, c) for each power of x. An

alternate parameterization representing different information about the signal could

be the triple (d, h, r) for the representation f(x) = d(x − h)2 + r. In either case,

certain information about the signal is captured in the parameters, and the signal

belongs to a parametric family.

In the PSFeaR framework, the parametric nature of the signals is exploited in the

processing method to allow lower sampling rate and higher-resolution for recovery

than classical sampling methods. This direct recovery of parameters also allows for

faster estimation of the 3D scene than recovery from using a full forward signal model.

1.3.2 Sparse Signals

A signal may be said to have a sparse representation if its coefficients are near zero in

an appropriately chosen transform domain. Images of natural scenes have been shown

to have sparse representations in the discrete wavelet basis [14]. This sparsity also

applies to depth maps, which tend to have wavelet coefficients that are approximately

Laplacian in distribution, with density

14



p(x) =
1

2q
e−|x/q| (1.1)

for some parameter q.

In the SPUD algorithm, knowledge of signal sparsity is used to achieve denoising

in the depth map produced.
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Chapter 2

Planar Scene Feature Recovery

(PSFeaR)

Planar Scene Feature Recovery (PSFeaR) is a new imaging architecture, in both

measurement and processing, for directly sensing 3D structure of scenes composed

of planar components. The measurement device has compact size and uses standard

inexpensive hardware components. The algorithm employs the time-of-flight (TOF)

principle and parametric signal processing techniques to achieve significantly lower

computational complexity than computer vision methods based on stereo disparity

or structured light [16] and methods relying on forward simulation.

Practical applications of interest, such as generating physically realistic rendered

augmentations or 3D indoor localization and mapping, rely on only few specific scene

features such as plane orientation and location. Current image processing and com-

puter vision pipelines operate by obtaining a full 2D or 3D image of the scene, detect-

ing objects, then estimating object parameters. While useful for general scenes, the

pipeline requires significant acquisition and computation resources. The PSFeaR ar-

chitecture obviates the need for these expensive requirements for simple planar scenes

through the use of parametric modeling of scene impulse responses.

17



Figure 2-1: Device and example scene of interest composed of a single infinite plane

2.1 Device and Scene Setup

Consider the device and scene of interest shown in Figure 2-1, corresponding to the

practical scenario of physically accurate rendering for augmented reality applications.

The processing framework will ultimately be demonstrated for recovering the orien-

tation and location of one or two planes in the camera field of view.

The proposed imaging architecture comprises of a single intensity modulated light

source that illuminates the scene with a T -periodic signal s(t) and 4 time-resolved

sensors. The intensity of reflected light detected at Sensor k is rk(t), k = 1, · · · , 4.

The light source and detectors are synchronized to a common time origin. It is also

assumed that the illumination period is large enough to avoid aliasing and distance

ambiguity [13]. To derive the scene impulse response, we let s(t) = δ(t).

18



Figure 2-2: Device and example scene of interest composed of a two semi-infinite
planes

2.1.1 Single Plane Scene Impulse Response

Consider a scene comprising a single infinite plane occupying the entire field of vie

(FOV). Following [6], let x̃ = (x̃1, x̃2) ∈ R2 be a point on the scene plane correspond-

ing to point x = R(x̃) =
(
R1(x̃1, x̃2), R2(x̃1, x̃2), R3(x̃1, x̃2)

)
∈ R3 in the previously

defined 3D space oriented relative to the device, let d(s)(x) denote the distance from

the illumination source at (0, 0, 0) to x, and let d
(r)
k (x) denote the distance from x to

Sensor k. Then d
(t)
k (x) = d(s)(x) + d

(r)
k (x) is the total distance traveled by the light

contribution from x. This contribution is attenuated by the reflectance f(x), square-

law radial fall-off, and cos+(θ(x)) =
(

cos(θ(x)) + | cos(θ(x))|
)
/2, for 0 ≤ θ(x) ≤ π

to account for the illumination beam angle intensity profile, where θ(x) is the angle

between x and the vector < 0, 0, 1 > normal to the device. Here, it the imaging

direction is chosen to be in the positive z-direction so that the sensor’s entire FOV

lies in the halfspace where z > 0. The cos+(θ(x)) models stronger illumination of

scene points more directly in front of the device than for those more lateral to the

device.

19



s(t) gk(t) qk(t)

ηk(t)

⊕- - - ��?yk(t) rk(t)

Ts

- rk[n]

Figure 2-3: Signal flow diagram for signal acquisition at Sensor k.

Using s(t) = δ(t), the amplitude contribution from point x is the light signal

ak(x) f(x) δ(t− d(t)k (x)/c) where

ak(x) = cos+(θ(x))/
(
d(s)(x) d

(r)
k (x)

)2
. (2.1)

Combining contributions over the plane, the total light incident at Sensor k at time

t is

gk(t) =

∫ ∞
−∞

∫ ∞
−∞

ak(x) f(x) δ(t− d(t)k (x)/c) dx1 dx2. (2.2)

The intensity gk(t) thus contains the contour integrals over the object surface where

the contours are ellipses. For f(x) > 0, it can be seen that gk(t) is zero until a

certain onset time τk. For constant reflectivity f(x) = 1, gk(t) can be approximately

represented in a parametric form and can also be well approximated by a polynomial

spline of degree at most 1. This polynomial approximation will form the basis for

the plane localization and orientation algorithm. For the remainder of the analysis

in this thesis, it is assumed that the reflectivity f(x) = α is constant but unknown.

2.1.2 Sampling the Sensor Response

An implementable digital system requires sampling at the detectors. Furthermore, a

practical detector has an impulse response qk(t), and the Dirac impulse used in the

above analysis is an abstraction that cannot be realized in practice. Using the fact

that light transport is linear and time invariant, we accurately represent the signal

acquisition pipeline at Sensor k using the flow diagram in Figure 2-3.

For a photon-counting detector, the signal can be modeled as a Poisson process

20



with rate:

yk(t) = gk(t) ∗ qk(t) ∗ s(t)

Assuming operation at high light levels, digital samples can be well modeled as:

rk[n] ≈ yk(t)|t=nTs , n = 1, . . . , N,

where N such samples are acquired in each illumination period with a sampling

period Ts = T/N . Samples yk[n] = yk(t)|t=nTs = E{rk[n]} for n = 1, . . . , N can be

calculated accurately given the exact plane orientation and the sensor coordinates.

For the remainder of this thesis, it is assumed that the 4 detectors have identical

responses qk(t) = q(t). Then the continuous ideal scene response at the detector

yk(t) = gk(t) ∗ h(t) where h(t) = q(t) ∗ s(t) represents the combined pulse shape

and sensor impulse response. Figure 2-4 shows a typical scene impulse response and

sensor response from a scene composed of one infinite plane.

2.1.3 Forward Modeling for the Sensor Response

The scene response at the sensor is the convolution of the continuous scene impulse

response gk(t) with the combined pulse shape and sensor impulse response h(t). As-

suming a known combined pulse shape and sensor impulse response h(t), the scene

impulse response gk(t) needs to be computed in order to find the scene response sam-

ples rk[n]. The scene impulse response has been expressed as a contour integral in

two variables on the plane, as in Equation 2.2. Because the contours are ellipses, the

coordinate transformation R−1 from the original 3D Cartesian system to a 2D polar

coordinate system confined to the plane can be applied to simplify the representa-

tion. In addition, the elliptical contour integral has no closed form solution even for

a simple constant reflectivity function such as f(x) = α, so a numerical integration

is required to simulate impulse response values.

Since the closed form expression for gk(t) cannot be produced, samples of gk(t) can
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(a)

(b)

Figure 2-4: Typical single infinite plane (a) scene impulse response and (b) sensor
response
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instead be numerically computed at given time instants as previously mentioned. To

approximate a continuous time convolution, the oversampled g
(os)
k [n] = gk(t)|t=nTs/M

can be convolved with oversampled h(os)[n] = h(t)|t=nTs/M , where M is the oversam-

pling rate. This yields y
(os)
k [n] = h(os)[n] ∗ g(os)k [n], which can then be downsampled

ŷ[n] = y(os)[Mn] to produce an accurate estimate for ŷ[n] ≈ y[n] at the appropriate

sampling rate for the sensor.

2.1.4 Multiple Plane Scene Impulse Response

Consider a scene in which two planes intersect in the FOV of the device, corresponding

to localizing the device with respect to the interior corner of a room. The impulse

response can be calculated similarly to Eq. 2.2 describing the single plane case,

gk(t) =
2∑
i=1

∫ ∞
−∞

∫ ∞
−∞

aki(x) fi(x) δ(t− d(t)ki (x)/c) dx1i dx2i. (2.3)

The impulse response from the two planes is initially identical to the sum of the

individual plane responses. However, the response from the occluded semi-infinite

portions of each plane results in an additional negative contribution, as shown in a

typical two plane scene impulse response in Figure 2-5. In modeling the response, this

occlusion can be simulated by setting fi(x) = 0 for points x beyond the intersection

of the planes. This computation can similarly be extended to 3 or more planes as

well.

2.2 Estimating Plane Pose

With the ability to perform full forward modeling, it is now possible to estimate the

plane pose from samples of the scene response. A plane P (n) that does not intersect

the origin can be parameterized by the 3D coordinates of the point n = (a, b, c) on

the plane that lies closest to the origin. This plane is alternatively described by the

equation n · x = n · n, which uniquely determines the normal of the plane as well

as its location. For every such plane P (n), samples of expected noiseless response at

23



(a)

(b)

Figure 2-5: Scene impulse responses and sensor responses from two planes being
imaged internally
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Sensor k, yk[n; a, b, c], can be computed. Then the estimated values for (a, b, c) can be

posed as an optimization problem to find the ŷk[n] = yk[n; â, b̂, ĉ] with the minimum

error relative to the collected noisy samples rk[n]:

(â, b̂, ĉ) = argmin
(a,b,c)

∑
k

∑
n

(rk[n]− yk[n; a, b, c])2 (2.4)

Note that this recovery directly captures scene features without requiring acqui-

sition of a complete 2D or 3D image. However, this formulation involves full forward

simulation as an intermediate step, and as a result the objective function expressed

in this form is difficult to characterize in terms of the parameters of interest (a, b, c).

Moreover, because there is no closed form expression for the impulse response of a

scene, the accurate simulation of scene responses is an expensive computation. When

dealing with multiple planes, the complexity becomes prohibitive. Other approaches

are necessary in order for the computation to be tractable and for the imaging frame-

work to be practical.

2.3 PSFeaR Algorithm

The approach that the PSFeaR framework takes to reduce the complexity of the

computation is to incorporate parametric sampling. Once the important signal pa-

rameters are recovered, the scene features can be estimated from those parameters.

This greatly reduces the computational cost of the estimation of plane orientations

from the collection of time samples. This section will first outline the algorithm for a

scene consisting of a single plane and then examine the recovery of a scene composed

of two intersecting planes. In both cases, the framework applies a two-step process

to the feature acquisition problem:

1. Use parametric deconvolution to estimate scene impulse responses gk(t) and

onset times τk from samples rk[n].

2. Use the set of estimated signal parameters (onset times τk) to recover scene

features.
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2.3.1 Parametric Sampling Step

The central pillar of classical sampling methods is the Shannon sampling theorem,

which dictates that perfect reconstruction of a continuous bandlimited signal from

noiseless samples can be achieved with a sampling rate of twice the bandlimit, ωs >

2ωmax. This perfect reconstruction is achieved through interpolation using a bandlim-

ited sinc kernel. On the other hand, parametric sampling techniques utilize the fact

that a signal to be sampled belongs to a parametric family to directly recover those

specific parameters describing the continuous signal. Parametric methods may require

lower sampling rates compared to traditional sampling and processing methods.

The Finite Rate of Innovation (FRI) method used in the PSFeaR framework is a

parametric technique and in this case is used to accurately estimate onset times τk of

the impulse response gk(t). FRI sampling allows recovery of a time signal composed

of a stream of Dirac deltas blurred by a sampling kernel using fewer samples than

dictated by Shannon theory in a tractable computation [17]. Similarly, FRI techniques

also allow recovery of piecewise polynomial functions.

Consider a signal composed of a periodic stream Diracs of the form

x(t) =
∑
`

a`
∑
n

δ(t− t` − nT )

By using Poisson’s summation formula, we can rewrite

x(t) =
∑
m

1

T

(∑
`

a`e
−i(2πmt`/T )

)
ei(2πmt/T )

=
∑
m

X[m]ei(2πmt/T )

where X[m] are the discrete Fourier coefficients of x(t).

The time locations of the Diracs are directly related to the frequency of the com-

plex exponentials that compose the discrete Fourier coefficients X[m]. The FRI tech-

nique uses spectral estimation methods, such as annihilating filter or matrix pencil,

on 2L + 1 of these discrete Fourier coefficients to efficiently find up to L frequencies
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(a)

(b)

Figure 2-6: Approximate time derivative of scene impulse response

in the Fourier coefficients and thus up to L time locations of the Diracs. Once the

time locations are found, the amplitudes can be recovered through solving a linear

system 
X[0]

X[1]
...

X[L− 1]

 =
1

T


1 1 . . . 1

z0 z1 . . . zL−1
...

...
. . .

...

zL−10 zL−11 . . . zL−1L−1




a0

a1
...

aL−1


where zl = e−i(2πtl/T ).

A noiseless sensor can only observe samples yk[n], but from samples Yk[m] =

Gk[m]H[m] we can recover Gk[m] with knowledge of H[m]. Although the measure-

ments from the detector are not noiseless, the samples rk[n] can be used as an estimate

for the noiseless values yk[n], giving Rk[m]/H[m] ≈ Yk[m]/H[m] = Gk[m]. With ap-
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propriate denoising techniques, the spectral estimation described previously can be

performed well.

For recovery of onset times of the scene impulse responses gk(t), observing that

the time derivatives d
dt
gk(t) are singular at τk but integrable suggests that they may

be approximated well as a stream of Diracs. Figure 2-6 shows the approximate time

derivatives of the scene impulse responses (with singularities removed). Thus, in-

stead of performing spectral estimation using Fourier coefficients Gk[m] of scene im-

pulse response gk(t), the spectral estimation is done using the Fourier coefficients

i(2πm/T )Gk[m] of d
dt
gk(t). This is equivalent in the FRI framework to approximat-

ing the scene impulse response with 0th order piecewise constant functions.

2.3.2 Recovery Step

The onset times τk correspond to times at which the light that travels the shortest to-

tal distance is incident on the sensor. Thus from each τk we can calculate the shortest

path length d̂mink = cτk for each source-detector pair. Using the previous parameteri-

zation of plane P (n) by point n, let the distance dmink (n) denote the minimum path

length from the origin to P (n) and back to Sensor k at wk = (wkx, wky, wkz). From

the geometry of the scene, it can be seen that dmink (n) = ||2n − wk||2. This can be

used in the following optimization to find the parameters n̂ for which the sum of

squared differences between observed total distances and estimated total distances is

minimized:

n̂ = argmin
n

∑
k

(dmink (n)− d̂mink )2 (2.5)

The resulting plane P (n̂) is the estimate for the plane.

2.3.3 Scene Containing Multiple Planes

Recovering plane orientations for a scene containing multiple intersecting planes can

be done in a similar process as previously described in this section. Consider a

scene with two planes, P0 and P1, intersecting within the FOV of the camera, as

shown earlier in Figure 2-2. The response now has two onset times, τk0 and τk1,
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corresponding to the times at which the light that travels the shortest total distance

to and from each plane is incident on the sensor.

Due to the geometry of the scene, these nearest points will necessarily lie on

the visible half planes and not the occluded portions. In addition, the negative

contribution from the occluded portions of the plane occur after the initial onsets.

Here, the onset times recovered from the initial FRI step need to be assigned to

a plane. Assuming that the camera will not be exactly the same distance to both

planes, then choose P0 to be the closer plane. Then the onset times for each plane,

τk0 for P0 and τk1 for P1, can be used to recover each plane separately.

2.4 Simulations and Discussion

The simulations demonstrate the performance of the parametric sampling step and

explain the parameter choices used for the PSFeaR imaging. The simulations used a

25 cm × 20 cm device, which is the size of a typical current-generation tablet device.

The combined pulse shape and sensor impulse response h(t) was simulated by a

Gaussian pulse of width 1 ns. The pulse repetition rate was 50 MHz (signal period

T = 20 ns) with N = 201 samples per repetition period. The signal to noise ratio

(SNR) was defined as the maximum ratio over the repetition period between the mean

and standard deviation of the approximated Poisson process with rate determined by

the scene response, SNR = max
n

(√
yk[n]

)
. The SNR was varied for simulations by

varying scaling of the scene response, simulating signal dependent noise, and rescaling

to the original amplitudes.

2.4.1 Performance of Parametric Sampling Step

The parametric sampling step as discussed in Section 2.3.1 describes the implementa-

tion used in the final PSFeaR framework. However, several other factors were taken

into consideration for setting parameters such as model order and approximation

order and for removing the bias in the estimates before the recovery step.
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Figure 2-7: Variance of estimates of onset times τ for varying model order with fixed
approximation order (0th order box fit)

Model and Approximation Order

Note that for a typical combined pulse shape and sensor impulse response h(t), its

Fourier coefficients H[m] for high frequencies have low magnitude relative to coeffi-

cients for low frequencies. This deconvolution step in the frequency domain amplifies

the effects of high frequency noise. Thus in general there is a tradeoff between using

a high enough model order (large enough number L of Fourier coefficients) to fully

represent all the Diracs in the signal versus using too high of a model order (too

large L) and including the effects of the amplified high frequency noise. Figure 2-7

shows the relative performance of onset time estimation with varying model orders

with fixed approximation order over 50 random noisy simulations on the same scene

impulse response.

It is possible to also increase the approximation order, or approximate the scene

impulse response with higher order piecewise polynomials. While using a 1st order

linear spline would intuitively seem to produce a closer reconstruction for the signal,

the actual performance in noisy conditions would not reflect the improved modeling

as might be expected. Instead, the use of higher order fits increases the effect of high

frequency noise, as each additional order introduces another factor of i(2πm/T ) to

the Fourier coefficients used in estimation. Figure 2-8 shows the relative performance
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Figure 2-8: Variance of estimates of onset times τ for 0th order (box) and 1st order
(linear) approximations for fixed model order L = 6

of 0th and 1st order approximations for fixed model order L = 6 over 50 random

noisy simulations for the same scene impulse response.

Estimation Bias

The derivatives of scene impulse responses are not exactly fit by Diracs and are

asymmetric about the singularity. This leads to a slight positive bias when computing

locations τ̂k of the time locations of the Diracs using the FRI methods. Various

factors affecting the bias include true onset time and plane orientation. However,

in the typical use case in which the 3D angle θ between the plane normal and the

device normal < 0, 0, 1 > is less than π/4, the effect of θ on the bias b[τ̂k; τk, θ] is

small and can be marginalized to find an expectation over typical values of θ. Then

the bias b[τ̂k; τk] = τ̂k − τk can be estimated from analysis of scene impulse responses

with varying τk and corrected. While a closed form expression for the expected bias

is difficult to obtain, the correction can be implemented simply via lookup table and

interpolation. Figure 2-9 shows the bias of the estimate over typical θ for a range of

true τk computed via Monte Carlo simulation.
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Figure 2-9: Average normalized bias over typical range of scenes

2.4.2 PSFeaR Performance

The performance of the PSFeaR method was compared to the recovery using full

forward simulation fitting described previously. The FRI model order was chosen as

L = 4, and the approximation was made using 0th order piecewise constant fit. To

demonstrate the framework, the following two cases were examined:

• a single plane described by the parameterization introduced in the thesis, such that

the point in the plane with minimum distance to the origin n = (0.4, 0.3, 0.5).

• two intersecting planes described by their respective parameterizations n0 =

(0, 0.5, 0.5) and n1 = (0,−1, 1)

Figure 2-10 shows the performance of the full forward modeling based recovery

method in matching the sampled signal rk[n] to the expected returns ŷk[n].

Figures 2-11 and 2-12 show the signal parameter estimation step of the framework

for both single and two plane simulations. The estimated signals reconstructed from

their parameters are shown with the true signals. Note that although the piecewise-

constant fits for gk(t) are crude due to model mismatch, the important time locations,

onset times τk, are captured fairly accurately when the time derivative of the scene

impulse response d
dt
gk(t) is modeled with Diracs, and the bias can be corrected as

described earlier in Section 2.4.1.
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Figure 2-10: Estimates of scene impulse responses using the full forward modeling
based recovery.

(a)

(b)

Figure 2-11: Time derivatives and estimated Dirac locations of scene impulse response
for simulated scene containing (a) one plane and (b) two planes
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(a)

(b)

Figure 2-12: Reconstruction of scene impulse response from estimated Diracs for same
simulated scenes as in Figure 2-11 of (a) one plane and (b) two planes.

Figure 2-13: Effect of noise on error in estimation of plane parameters for each of two
planes. Each noise level was simulated 50 times
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Figure 2-13 shows the effects of noise on accuracy for recovering features of each

of two planes. For the two plane case, the full forward recovery was infeasible, so

the simulations show the ability of the framework to recover multiple planes. It

should be noted that the nearer plane is recovered nearly as well as a single plane,

but planes with larger distance to the device have weaker returns, so the recovery

for these further planes is less accurate. In the simulated case, the second plane was

significantly further from the camera than the first plane, and the effect of distance

on the accuracy becomes clear.

2.5 Conclusion

Through simulation, it has been demonstrated that the new 3D imaging framework

is able to directly estimate features, namely pose and location, from planar scenes

by recovering signal parameters without needing to form a full depth map. The two

step process is able to recover orientation of multiple planes by fitting scene impulse

responses with piecewise constant functions and does so in a tractable computation.
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Chapter 3

Simultaneous Phase Unwrapping

and Denoising (SPUD)

3.1 Time-of-Flight Imaging

Amplitude modulated cosine wave (AMCW) TOF cameras use a diffuse periodic light

source and reflected light focused on a sensor array to measure distance. Because TOF

systems use periodic light, the distance measurements they produce can suffer from

ambiguities, or phase wrapping. The problem of resolving these ambiguities is a 2D

phase unwrapping problem. While there are methods for solving this problem using

norm minimization [10], branch cuts [5], and a variety of other techniques, phase

unwrapping still remains a significant challenge.

Using multiple modulation frequencies reduces the need for unwrapping by in-

creasing the total unambiguous distance. However, this increases the amount of data

collection and acquisition speed required to maintain a fixed frame rate at same noise

performance levels. In addition, pixel-wise unwrapping is still not easily or accurately

achieved at low SNR.

The Simultaneous Phase Unwrapping and Denoising (SPUD) method is a method

based on loopy belief propagation (LBP) addressing both the issues of unwrapping

and denoising TOF measurements a unified framework, unlike previous uses of LBP

for phase unwrapping [2, 3]. It incorporates an accurate physical model for TOF
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measurement and probabilistic scene modeling. It maintains low complexity through

the use of generalized approximate message passing (GAMP) and is compatible with

current hardware architecture of existing TOF systems. The combined processing

that is possible due to the framework allows better performance over postprocessing

conventionally formed depth maps.

3.2 Operation of TOF Cameras

The operation of an AMCW TOF cameras make separate measurements for each

transverse spatial location (pixel) using an array of sensors. Figure 3-1 shows an

abstraction of the signals involved in pixel i when using an AMCW homodyne TOF

camera. The periodic source signal s(t) = 1 + cos(2πft) with modulation frequency

f = 1/T and period T is generated from a periodic reference signal p(t) also with

period T . The specific design of p(t) will be described shortly. This source s(t)

illuminates the entire scene, and the scene return signal at pixel i can be modeled as

ri(t) = ai cos(2πf(t− τi)) + (ai + bi)

where ai is the attenuated amplitude of the reflected sinusoid, τi = 2zi/c is the time

delay due to light travel from camera source to scene point distance zi and back to

camera sensor, c is the speed of light, and bi is the constant ambient light contribution.

3.2.1 Homodyne Measurement and Conventional Phase Es-

timation

In homodyne measurement, the return signal ri(t) is correlated with the phase-shifted

reference signal p(t−φ) and a half-period shifted copy p(t+T/2−φ). The significance

and choice of the phase shift φ will be demonstrated shortly. The signal p(t) is chosen
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Figure 3-1: Signal processing abstraction of TOF camera

such that the resulting correlation functions have the form,

g−(φ; zi) =
1

T

T∫
0

ri(t)p(t− φ) (3.1)

= a cos(2πf(φ− 2zi/c)) + (a+ b) (3.2)

g+(φ; zi) =
1

T

T∫
0

ri(t)p(t+ T/2− φ) (3.3)

= −a cos(2πf(φ− 2zi/c)) + (a+ b) (3.4)

These two correlations are then added and subtracted (see [4] for details) to yield the

final measured outputs as functions of φ given,

h+(φ; zi) = (g+(φ; zi) + g−(φ; zi))/2 = (ai + bi) (3.5)

h−(φ; zi) = (g+(φ; zi)− g−(φ; zi))/2 = ai cos(2πfφ− 4πfzi/c) (3.6)

The importance of phase shift φ of the reference signal p(t − φ) and p(t + T/2 − φ)

becomes clear. The correlation functions h+(φ; zi) can be effectively sampled by

varying φ. Estimating the amplitude and frequency of the sinusoidal signal h+(φ; zi)

requires at least two samples in φ per period; however, typical TOF cameras collect
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4 equally spaced samples y
(n)
i = hi+(φn; zi) in each period, φn = n/4f for n =

0, 1, 2, 3. The remainder of this thesis will assume a 4-tuple of measurements yi =

(y
(0)
i , y

(1)
i , y

(2)
i , y

(3)
i ), is obtained at each pixel i at depth zi using modulation frequency

f . In addition, the camera is assumed to similarly produce samples h
(n)
+ of h+(φn; zi)

From these measurements, conventional processing in current TOF cameras gives

pointwise estimates for sinusoid amplitude, background contribution, and wrapped

distance:

ãi =

√(
y
(0)
i

)2
+
(
y
(1)
i

)2
+
(
y
(2)
i

)2
+
(
y
(3)
i

)2
2

, (3.7)

b̃i =
1

4

(
h
(0)
+ + h

(1)
+ + h

(2)
+ + h

(3)
+

)
− ãi, (3.8)

z̃i =
c

4πf
tan−1

(
y
(1)
i − y

(3)
i

y
(0)
i − y

(2)
i

)
. (3.9)

These estimates are accurate in the absence of measurement noise.

3.2.2 Statistical Measurement

As discussed in Chapter 1, the process of converting photons to electric charge in

photodetector sensors generates shot noise [8], which affects TOF camera measure-

ments. As described previously, the charge generation can be modeled as a time

inhomogeneous Poisson process with rate λi(t) = ηri(t) at each sensor pixel, where η

is the quantum efficiency of the sensor.

To combat the effects of this shot noise, the correlation function is averaged over

N periods. For large N , according to the central limit theorem, the output is approx-

imately normally distributed,

y
(n)
i |zi ∼ N

(
ηg
( n

4f
; zi
)
, 1
2
η(ai + bi)/N

)
for n = 0, 1, 2, 3.

Given zi, each measurement of the correlation function is conditionally independent.

Thus the joint distribution or the 4-tuple of measurements yi given true distance zi
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at pixel i is given

p(yi | zi) ∝
3∏

n=0

exp
{
−
(
ηai cos(1

2
nπ − 4πfc−1zi)− y(n)i

)2
2σ2

i

}
∝ C exp

{ 3∑
n=0

ηaiy
(n)
i cos(1

2
nπ − 4πfc−1zi)

σ2
i

}
,

where σ2
i = 1

2
η(ai+ bi)/N . Then the likelihood on observations yi given true distance

zi takes the form

p(yi | zi) = C exp
{ηaiAi

σ2
i

cos(4πfc−1(zi − z̃i))
}
, (3.10)

where Ai =
√(

y
(0)
i − y

(2)
i

)2
+
(
y
(1)
i − y

(3)
i

)2
and z̃i is defined as in (3.9), which is

available from measurements taken by current TOF cameras. Since ai and bi are not

available directly to form our likelihood, we instead use the values ãi and b̃i estimated

as in (3.7) – (3.8), which are also readily available in current TOF cameras.

3.2.3 Phase Unwrapping

Because TOF cameras use periodic illumination signals, measurements beyond a cer-

tain range are ambiguous, and many different true depth values may produce the

same measurement. In particular, zi = z̃i + nc/(2f) for any n ∈ Z. Decreasing

the modulation frequency decreases the maximum unambiguous distance D = c/2f .

However, it is well-known that with noisy measurements, the error in estimating

distance increases as well. This fact can be derived from the earlier analysis.

With two different modulation frequencies for illumination f0 and f1,

zi = z̃i0 + n0
c

2f0
= z̃i1 + n1

c

2f1
for n0, n1 ∈ Z (3.11)

is the system of equations determining the ambiguity of measurements, where z̃ij is

the measured distance at frequency fj. It can be seen that the maximum unambiguous

distance is extended to D = c/2 gcd(f0, f1) when f0 and f1 are chosen to have some
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common factors. In the absence of noise, the true distance within the can be computed

accurately from 3.11. However, this algebraic system is not robust, and small errors

in measurement can result in large inaccuracies in estimated unwrapped distance.

Thus in a noisy setting, the unwrapping problem becomes nontrivial.

Consider the joint likelihood of measuring two 4-tuples at each of two modulation

frequencies, p(yi0,yi1|zi) = p(yi0|zi)p(yi1|zi). The value of zi that maximizes this

likelihood can be used as a pointwise estimate for the tru distance of the scene point.

However, this likelihood is highly nonconvex, and finding such a maximum likeli-

hood estimate (MLE) essentially requires a global grid search within the extended

unambiguous range.

3.3 Unwrapping and Denoising TOF Measurements

Unwrapping using two frequencies was a nontrivial problem in noisy settings. In this

section, a graphical modeling based framework for solving the unwrapping problem

with noise will be introduced.

3.3.1 Transform Domain Signal Modeling

As discussed in Chapter 1, images of natural scenes often have sparse representations

in discrete wavelet bases, with wavelet coefficients following approximately Laplacian

distributions,

p(xk) =
1

2q
e−|xk/q| (3.12)

for some parameter q that varies between depth maps based on scene structure. This

knowledge of sparsity can be used to denoise images. For example, one method

for denoising is to perform soft thresholding on the wavelet coefficients of an image,

which is equivalent to performing the maximum a posteriori probability estimate with

a Laplacian prior on the coefficients assuming a Gaussian noise model.

Pairing this notion of wavelet sparsity with the previous description of the TOF

measurement and noise processes, the forward acquisition can be represented as a
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Figure 3-2: Forward acquisition model for the TOF camera measurements at two
modulation frequencies.

graphical model as in Figure 3-2.

3.3.2 GAMP-Based Unwrapping and Denoising

Fig. 3-2 shows a graphical model for the acquisition process. This is amenable to

GAMP since wavelet coefficients x can be modeled as independent and the measure-

ment process is separable on the spatial-domain quantities z = Φx. Like approximate

message passing [1] and earlier techniques, GAMP uses approximations for certain

messages in loopy BP; unlike earlier techniques it allows the non-Gaussianity of noise

and nonlinearities discussed in Section 3.2.

To incorporate our model into the GAMP framework, the prior distributions p(xk)

and probabilistic measurement channels p(y0i,y1i|zi) as well as the linear transform

matrix Φ need to be specified. The distribution p(xk) given in (3.12) enforces spar-

sity of the wavelet coefficients of the estimate as discussed in Chapter 1. The linear

mixing matrix Φ performs the inverse discrete wavelet transform on x to obtain
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the unwrapped image z = Φx. The measurement channel probability distribution

p(y0i,y1i|zi) incorporates the observed data into the estimate. The algorithm is sum-

marized below in Alg. 1, and one iteration is illustrated in Fig. 3-3.

Algorithm 1 (High-level pseudocode for GAMP algorithm)

initialize: x(0) = 0, z(−1) = 0
for t = 0→ N − 1 do

1. Output linear step: Compute

µ̂z(t) from Φ, µx(t), and µz(t− 1);

σ̂z(t) from Φ and σx(t)

2. Output nonlinear step: For each i, estimate

(µzi(t), σzi(t)) from

(µ̂zi(t), σ̂zi(t)) and p(y0i,y1i|zi)

3. Input linear step: Compute

µ̂x(t) from ΦT and µz(t);

σ̂x(t) from ΦT and σz(t)

4. Input nonlinear step: For each k, estimate

(µxk(t+ 1), σxk(t+ 1)) from

(µ̂xk(t), σ̂xk(t)) and p(xk)

end for

The “sum-product” and “max-sum” versions of GAMP described in [12] both

follow this outlined algorithm, employing different estimator forms in the output and

input nonlinear steps. The output and input nonlinear steps for the “sum-product”

version as well as computationally-efficient approximations for these steps will be

described in more detail in Sections 3.3.3 and 3.3.4.

As outlined, the GAMP framework gives as output an estimate of wavelet coeffi-

cients x, which through the linear transform Φ is used to find the unwrapped depth

image estimate z = Φx. This outlined method will be called “SPUD1.” Alterna-

tively, an additional half iteration can be performed to estimate z from the output

nonlinear step with wavelet coefficients x as input. This corresponds to further per-

forming steps (1) and (2) from Algorithm 1 beyond SPUD1. This modified method
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will be known as “SPUD2.”

It is observed that the two estimates from using SPUD1 and SPUD2 do not

necessarily converge to a single point, but instead can reach a fixed cycle in which each

method converges to its own distinct equilibrium point. The SPUD1 estimate is more

strongly affected by the sparse prior, while the SPUD2 estimate is more influenced by

the observed data. Thus with the same sparsity model and filter length, when more

denoising is required in low SNR settings, SPUD1 outperforms SPUD2, but when the

observations are more reliable in higher SNR settings, SPUD2 tends to produce more

exact estimates of the scene.

3.3.3 Approximating the Output Nonlinear Step

The output nonlinear step in Algorithm 1 estimates an expectation and variance for

zi based on the sample vectors (y0i,y1i), the likelihood function p(y0i,y1i|zi), and the

previous computed values for the expectation and variance of ẑi.

The calculation of the estimates µzi(t) and σzi(t) are

µzi(t) =

∞∫
−∞

zf(z, µ̂zi(t), σ̂zi(t)) dz

σzi(t) =

∞∫
−∞

(z − µzi(t))2f(z, µ̂zi(t), σ̂zi(t)) dz

where

f(z, µ̂zi(t), σ̂zi(t)) = p(y0i,y1i|z)N
(
z; µ̂zi(t), σ̂zi(t)

)
(3.13)

(see [11] for further details).

However, the exact integral does not have a closed-form expression and is cumber-

some to numerically integrate. Instead, an approximation to the likelihood function

can be made to simplify computation. The exponential of a cosine from (3.10) may

be closely approximated by the wrapped normal distribution [15]. For j = 0, 1 and
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each i, the approximated likelihood function is

p̃(yji|zi) ∝
∞∑

n=−∞

1√
2πσji

exp
{
− (zi − z̃ji − nDj)

2

2σ2
ji

}

where

σ2
ji =

2c2(
4πfj

)2 ln
(I0(ηaiAji/σ2

i )

I1(ηaiAji/σ2
i )

)
and In(k) is the modified Bessel function of the first kind. The likelihoods p(y0i|zi)

and p(y1i|zi) can then be further approximated without incurring much additional

error within the unambiguous range by truncation to sums of L and M Gaussians

respectively. The resulting approximation for p(y0i,y1i|zi) = p(y0i|zi)p(y1i|zi) can

expressed as a weighted sum of K = LM Gaussians,

p̃(y0i,y1i|zi) ≈
K∑
k=1

wkN (zi; s̃k, σ
2
k)

Now f(z, µ̂zi(t), σ̂zi(t)) from (3.13) can be expressed as a weighted sum of K Gaus-

sians, and the computation for estimates µzi(t) and σzi(t) can be simply characterized

by the values of wk, s̃k, σ
2
k, µ̂zi(t), and σ̂zi(t).

To evaluate the performance of the approximation for the exponential of a cosine,

the error between the function and its approximation as a function of k, the coefficient

for the cosine in the likelihood function for a single frequency, is calculated over the

extended unambiguous range as

ej(k) =
∥∥ exp

(
k cos

2πz

Dj

)
− p̃j(k, z)

∥∥
2

=
( D/2∫
−D/2

∣∣ exp
(
k cos

2πz

Dj

)
− p̃j(k, z)

∣∣2 dz)1/2

where p̃j(k, z) is the approximation to the single frequency likelihood. The error for

the two frequency likelihood over the extended unambiguous range can be calculated
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Figure 3-3: One iteration of our GAMP algorithm for unwrapping and denoising.
This diagram shows the updates of the estimates for ẑ(t) and x̂(t), represented by
dark green nodes. The means of the estimates µ̂z(t) and µ̂x(t) and the variances
σ̂x(t) and σ̂x(t) are updated concurrently at each step
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Figure 3-4: Differences between sum of Gaussian approximation and exponential of
cosine functions for low frequency, high frequency, and two frequencies at k = 0.4

(a) (b) (c)

Figure 3-5: Errors of sum of Gaussian approximation for exponential of cosine like-
lihood functions for (3-5a) low frequency, (3-5b) high frequency, and (3-5c) two fre-
quencies over a range of k values

similarly,

e(k) =
∥∥ exp

(
k cos

2πz

D0

+ k cos
2πz

D1

)
− p̃0(k, z)p̃1(k, z)

∥∥
2

Figure 3-5 shows the error in approximating each single frequency likelihood sep-

arately and the error for approximating the combined likelihood.
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3.3.4 Approximating the Input Nonlinear Step

The input nonlinear step in Algorithm 1 estimates an expectation and variance for xk

based on the prior distribution p(xk) and the previous computed values for expectation

and variance for x̂k. This calculation also requires computing similar integrals for

µxk(t) and σxk(t),

µxk(t) =

∞∫
−∞

xg(x, µ̂xk(t), σ̂xk(t)) dx

σxk(t) =

∞∫
−∞

(x− µxk(t))2g(x, µ̂xk(t), σ̂xk(t)) dx

where

g(x, µ̂xk(t), σ̂xk(t)) = p(xk)N
(
x; µ̂xk(t), σ̂xk(t)

)
(3.14)

While these integrals can be expressed in terms of exponentials and the error func-

tion erf(·), the expressions are not numerically well-behaved. Instead, an approxima-

tion can be made here as well, replacing the expectation with a more well-behaved

maximum a posteriori estimate, and a corresponding variance update

µxk(t) = argmax
xk

g(x, µ̂xk(t), σ̂xk(t))

σxk(t) = σ̂xk(t)

3.3.5 Computation

The use of the Gaussian mixture to approximate the true likelihood leads to a simple

form for the expectation and variance computations in the output nonlinear step—

much lower than numerical integration using the true likelihood. The linear mixing

can be implemented using a 2D fast discrete wavelet transform. Furthermore, the

structure of the algorithm allows the processing to be parallelized and optimized for

computation in real time, implemented either in hardware or on a GPU, for example.

Thus, the full integrated processing can be performed quickly and accurately.
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3.4 Simulations and Discussion

The integrated SPUD methods were compared against separate pointwise maximum

likelihood estimation for unwrapping followed by wavelet thresholding and other con-

ventional techniques for denoising. The modulation frequencies chosen were 30 MHz

and 40 MHz, typical operating frequencies for TOF cameras, yielding a maximum

unambiguous range of c/(2 · 10 MHz) ≈ 15 m from the gcd modulation frequency of

10 MHz. The simulated scenes were within the range of 0.5–12 m, causing wrapping

for either modulation taken separately.

The simulated scenes were taken from the right side camera of the Tsukuba stereo

pair dataset under different illumination conditions [7], [9]. Ground truth depth maps

simulated z, the flashlight illumination simulated active illumination and spatially

varying reflectivity in amplitude a, and fluorescent light illumination simulated am-

bient background contribution b. Defining the SNR to be the ratio between the

average amplitude of the sinusoid and the standard deviation of noise in the sam-

ples, SNR = 10 log10(2a
2N/(a+ b)) dB, and holding constant the integration periods

N = 100, we vary the SNR by varying the average level of b.

The 2D separable Daubechies length-4 discrete wavelet transform was used in

both the baseline methods and the SPUD methods. SPUD was run for 20 iterations

with step size 0.5, and the MLE was found using a discretized grid search. Wiener

filtering was also performed using the estimated spectrum and noise variance of the

MLE depth map. Median filtering was performed for comparison as well.

Fig. 3-6 shows the “Tsukuba 450” simulated scene along with the wrapped images

produced by using (3.9) separately for each modulation frequency, with SNR = 10 dB.

Pointwise ML estimation is difficult (requiring a grid search) and does not perform

well, as shown in Fig. 3-7(a,b). Post-processing the MLE by wavelet thresholding

(using MatLab’s default thresholding function) provides significant improvement, as

shown in Fig. 3-7(c,d). Wiener filtering provides similar MSE performance, as shown

in Fig. 3-7(e,f). While wavelet thresholding oversmooths most of the image, the

adaptive Wiener filter oversmooths in some blocks while leaving some of the nosier
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(a) (b) (c)

(d) (e)

Figure 3-6: Ground truth and estimates for “Tsukuba 450” scene computed from
(3.9) using single modulation frequencies at SNR = 10 dB.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3-7: Reconstructed depth maps and their root mean squared errors. The pro-
posed GAMP method provides a 0.5 dB improvement relative to the median filtered
MLE and more than 5 dB relative to the pointwise MLE. All images produced at
SNR = 10 dB.
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(a) (b) (c)

Figure 3-8: Pixelwise standard deviations over 50 simulations at 10 dB SNR

Figure 3-9: Root mean squared error comparison for several methods across an SNR
range for “Tsukuba 450” image.
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Figure 3-10: Comparison of filter lengths on “Tsukuba 450” image across an SNR
range.

patches untouched. The median filter performs well at very low SNR but not across

the entire SNR range and also produces large blocks of incorrect estimates. The

proposed GAMP-based method does much better than the post-processing, both

visually and in RMS, as shown in Fig. 3-7(g,h).

Fig. 3-8 shows the per-pixel standard deviations achieved over 50 Monte Carlo

simulations at 10 dB SNR using the MLE, median filtering on the MLE, and SPUD2.

The standard deviations vary with the illumination intensities. Median filtering pro-

vides a reduction in standard deviation over the MLE estimate, but SPUD2 yields

lower standard deviation across the depth image than median filtering.

Fig. 3-9 provides a comparison over a range of low and moderate SNRs. At

extremely low SNRs, all methods fail to produce a useful image; the proposed method

allows successful operation at moderate SNRs, for which we can increase robustness

to ambient light, lower the illumination power requirement, or increase the frame

rate.

Fig. 3-10 shows the effect of filter length on the GAMP-based reconstruction

performance. The length-4 Daubechies filter provides reasonable improvement over

length-2 filter at low and moderate SNRs, but further increasing the length does not

result in much more significant reduction in MSE. All simulation code and simulation

data are available at http://rleweb.mit.edu/stir/spud/.
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Chapter 4

Conclusion

4.1 PSFeaR

The PSFeaR framework was demonstrated to be able to practically and directly esti-

mate features of planar scenes by recovering signal parameters. The two step process

finds plane locations and orientations for scenes composed of single and multiple

planes by approximating the time derivatives of scene impulse responses by Diracs.

This architecture processing greatly reduces the complexity of 3D acquisition by di-

rectly inferring features rather than forming a full high resolution depth map.

The signal parameter recovery in Step 1 of the framework is somewhat susceptible

to noise for more distant or less reflective planar scenes due to the model mismatch.

In addition, the PSFeaR framework estimates scene features assuming that recovered

signal parameters vary according to a normal distribution, which is not necessarily

the best fit based on the parameter recovery method. Future work includes increasing

the parametric deconvolution performance in Step 1 and incorporating the distribu-

tion of recovered parameters when estimating scene features in Step 2. Additionally,

the effects of a spatially varying reflectivity function as well as varying combined

pulse shape and sensor impulse responses on the scene impulse response and its re-

covery could be studied in more detail to better inform the modeling of the recovered

parameter distribution.
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4.2 SPUD

SPUD is a new method for integrated processing of data in time-of-flight cameras

to perform unwrapping and denoising jointly. The result is greatly improved perfor-

mance over post-processing of a noisy unwrapped image, particularly at low SNRs.

Because the scene is within the extended unambiguous range, the success of the cur-

rent method is due largely to the detailed acquisition modeling rather than the use

of a signal prior.

Future work could extend the integrated approach to image beyond the unambigu-

ous range, possibly even using a single modulation frequency, for particular classes of

scenes. Parameters of a separable image prior could be automatically estimated by

incorporating the Expectation-Maximization algorithm [18]. Greater structure in the

signal prior could be incorporated using hybrid GAMP [12].
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