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Abstract

Data is rarely obtained for its own sake; oftentimes, it is a function of the data that we care about.
Traditional data compression and quantization techniques, designed to recreate or approximate the
data itself, gloss over this point. Are performance gains possible if source coding accounts for
the user’s function? How about when the encoders cannot themselves compute the function? We
introduce the notion of functional quantization and use the tools of high-resolution analysis to get
to the bottom of this question.

Specifically, we consider real-valued raw data XN
1 and scalar quantization of each component Xi

of this data. First, under the constraints of fixed-rate quantization and variable-rate quantization,
we obtain asymptotically optimal quantizer point densities and bit allocations. Introducing the
notions of functional typicality and functional entropy, we then obtain asymptotically optimal block
quantization schemes for each component. Next, we address the issue of non-monotonic functions
by developing a model for high-resolution non-regular quantization. When these results are applied
to several examples we observe striking improvements in performance.

Finally, we answer three questions by means of the functional quantization framework: (1) Is
there any benefit to allowing encoders to communicate with one another? (2) If transform coding
is to be performed, how does a functional distortion measure influence the optimal transform? (3)
What is the rate loss associated with a suboptimal quantizer design? In the process, we demonstrate
how functional quantization can be a useful and intuitive alternative to more general information-
theoretic techniques.

Thesis Supervisor: Vivek K Goyal
Title: Associate Professor
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Modularity and abstraction are amongst the most fundamental principles of electrical engineering.

Without them, complex systems would be both unimaginable and unrealizable; for instance, it is

difficult to understand the workings of a computer purely from device physics. Nonetheless, it is

frequently profitable to break the boundaries of abstraction: an engineer might improve performance

by considering the inner workings of system A and system B together. We focus on a particular

example of this — data compression followed by computation.

Consider a system that digitizes an analog voltage waveform. Somewhere towards the front end

of this system will most likely be an analog-to-digital converter (ADC) sampling and quantizing the

input data. Rarely are end users interested in seeing this voltage data itself; oftentimes they won’t

even know what a “volt” is. Instead, some computation will be performed on this data, with the

results of this computation going to the end user. It is worth noting that most neurological signals

are extraordinarily low-rate and low-precision; Gabor for instance makes reference to “the 20 bits

per second which, the psychologists assure us, the human eye is capable of taking in” [1]. As such, a

human is most likely interested in only a small fraction of the information contained within captured

data [2].

The principles of abstraction and modularity require that the ADC block be designed to produce

a “good” digital approximation to a continuous voltage. The word “good” is taken as shorthand

for “as close as possible to the original voltage waveform,” typically in terms of a generic signal

distortion measure such as the mean squared error (MSE). The computation block takes the output

of the ADC and produces the one or two bits of actual interest to the user.

All is not well, however. More optimistically speaking, there is considerable room for improve-

ment in this picture. The digitization process has been designed to minimize distortion to the voltage

waveform — but the end user could care less about it! A far better design philosophy would cater
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X1

X2

XN

X̂1

X̂2

X̂N

Encoder

Encoder

Encoder

Decoder Ĝ(X̂N

1 )
...

Figure 0-1: Functional source coding. Note the disjoint encoders and the computation of a function
at the decoder

towards “digitizing the data to minimize distortion of the function seen by the end user.” In other

words, one might perform analog to digital conversion taking into account the computation to be

performed.

As another example, consider a distributed sensor network. Each sensor collects some data and

communicates it to a common fusion center after performing some compression on it. Just as with

the ADC example, this data is usually not the end product of the system: there will generally be

some computation performed on it at the fusion center. So how can the sensor network adjust its

source coding to take this computation into account?

These problem statements are typical of a much broader class of source coding questions, repre-

sented abstractly in Fig. 0-1. N variables, XN
1 = {X1, X2, . . . , XN}, with some joint distribution

are separately observed, compressed, and communicated to a common decoder. The decoder then

performs some computation on the compressed representations of each source, represented as a func-

tion G(X̂N
1 ). In the case of the ADC, each Xi would be a sample of the voltage waveform, and the

process of compression would be the act of quantization to a discrete set of possible values. Simi-

larly with the sensor networks, each sensor would separately quantize and compress its observations

before sending them to the decoder.

Both of these manifestations of the problem have a distributed flavor to them. The sensors in a

sensor network are physically separated, and virtually all ADC architectures require the samples to

be quantized separately or — in the case of sigma-delta — with limited collaboration. This has two

consequences. First, the problem immediately becomes nontrivial: one cannot merely compute the

function of the uncompressed sources, G(XN
1 ), and perform compression directly on G. Instead, one

must devise some scheme to compress each source variable Xi into a compressed representation X̂i

so as to minimize the error between the “ideal” value of G(XN
1 ) and the approximation Ĝ(X̂N

1 ). For

12
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instance, suppose that two automated surveillance video cameras are monitoring a store. A decision

on whether or not to alert the police must be made from a third location. How should each camera

best compress its video? Neither camera can decide for itself and communicate the decision, so the

optimal strategy is far from obvious.

Secondly, we make no assumptions about the independence of the samples XN
1 . This immedi-

ately brings up connections to multiterminal information theory: how can one exploit the correlations

between the source variables to reduce the redundancy between each of their compressed representa-

tions? One must consider this, additionally, within the context of the computation to be performed:

does “redundancy” mean the same thing when we are not interested in representing variables for

their own sake?

In this thesis, we approach this problem and its related threads from the perspective of quanti-

zation theory; the results of this are grouped under the heading of functional quantization. There

are numerous advantages to this approach. Quantization can be seen as something of a middleman

between information theory and the much more physically grounded world of circuit design and

implementation. While it can be used to address the physical rounding process performed in most

ADCs, it can also venture into issues of fundamental limits and asymptotic behavior. Perhaps most

importantly, it gives us access to powerful analytical tools that can yield quantitative results —

oftentimes in places that more abstract techniques fall short.

Our goals in exploring functional quantization are the following:

1. Develop a framework for analyzing functional quantization.

2. Identify the fundamental limits on performance.

3. Design optimal or near-optimal quantization techniques that can approach these limits

4. Attack related problems with these same techniques.

In Chapter 1 we discuss some of the theoretical tools used in the thesis. We start with a review

of basic source coding concepts, including discrete and differential entropy and Slepian-Wolf coding.

We then consider the quantization problem in both its scalar and vector forms. The high-resolution

approximation — incredibly important to our approach — is discussed as a way to reduce the

complexity of the quantization problem. Finally, transform coding is briefly touched on for its

relevance to our development of “functional transform coding” in Chapter 4.

13
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Next, in Chapter 2 we obtain the results at the heart of functional quantization. A brief review

of related work places this effort in its many appropriate contexts: as we show, the functional

quantization problem has connections to problems as diverse as perceptual coding and multiterminal

information theory. Although our eventual interest is in the multidimensional scenario (i.e., a source

vector XN
1 for N > 1), we start our development by considering the more easily digested single-

dimensional scenario. While this situation is relatively straightforward, it provides useful insights

for the higher dimensional problems.

Our approach with developing the theory for multidimensional problems is to consider increas-

ingly unconstrained situations, from fixed-rate quantization to Slepian-Wolf variable-rate quanti-

zation. Finally, we consider an even broader scenario that cannot be captured by our previous

techniques: variable-rate vector quantization at each encoder. To attack this problem, we develop

the notion of functional typicality — much in the vain of the well-known asymptotic equipartition

theorem. We note how this technique may be used as an alternative route to several of our previous

derivations.

In Chapter 3 we apply the results of this theoretical exploration to several functions of statistical

interest (for instance, the decoder might be interested in obtaining the midrange of its samples).

We observe a striking gap in performance between ordinary techniques and functional techniques;

for variable-rate quantization, this gap is found to grow exponentially in the number of source

variables. It is found that similar behavior can be observed for an entire class of functions satisfying

the properties of selectivity and symmetry.

Our results up to this point have concerned functions G(XN
1 ) that are monotonic in each of their

arguments. We find that this restriction is overly strict, and generalize to the set of functions that

are smooth, bounded, and not necessarily monotonic. In the process, we consider the problem of

high-resolution non-regular quantization, and develop a way of describing these quantizers.

In Chapter 4 we use the techniques of the previous chapters to explore new situations. Functional

transform coding is first considered as a computationally tractable alternative to unconstrained func-

tional vector quantization. We obtain the optimal transformation under the constraint of uniform

quantization and note similarities to the Karhunen-Loeve transform of traditional transform coding.

Next, we explore the possibility of encoders that can communicate with one another. Wildly

different behavior is observed for fixed-rate and variable-rate quantization. For the former, any bits

going from encoder to encoder are better spent going to the decoder; encoder collaboration is hence

14
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discouraged. For the latter, the potential benefits are unbounded. We give a simple example that

demonstrates this dichotomy. In the process of these derivations, we make use of a picture that sees

the function’s sensitivity profile (g2
i (x) is introduced in Chapter 2) as a vector in a Hilbert space

whose “length” indicates the distortion.

Finally, we consider the situation where the optimal quantizer is not used due to an inaccurate

source/function model or inaccuracy on the part of the system designer. In other words: if the

compression system thinks the source has a probability distribution that it doesn’t, or that the

function in question is different from what it is, how sensitive is the system’s performance to this

mistake? We quantify the impact of such errors in the form of a rate loss.

15
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Chapter 1

Freshman Year: A Review of

Source Coding and Quantization

Several techniques from basic information theory and quantization are used prominently in our

development of functional quantization. This chapter is meant as a brief review of these topics. For

a more detailed take on source coding, refer to [3], or for quantization [4] [5].

We will start be reviewing the fundamental concepts of entropy and its role in lossless compression

— wherein source data can be recreated perfectly. From here, we discuss the lossy regime, where

the source data can at best be imperfectly approximated from its compressed representation, along

with basic rate-distortion theory.

We then change focus to scalar quantization, where a continuous random value is approximated

from a finite set of real numbers. Through several examples, we come to realize the complexity of

analytically describing the quantization process. The techniques of high-resolution approximation,

which convert quantizer design from a discrete to a continuous problem, are described as a means

to reduce this complexity.

These problems are even more pronounced for vector quantization, which we go to next. Here,

multiple random variables are together approximated from a finite set of real vectors. Transform

coding is discussed as a means to improve tractability of analysis and implementation; this will come

in particularly handy during the development of functional transform coding in Sec. 4.1.

17



Chapter 1. Freshman Year: A Review of Source Coding and Quantization

Type of Coding X = 1 X = 2 X = 3 Rate
Fixed-Length 00 01 10 2 bits/sample
Variable-Length 1 00 01 1.5 bit/sample

Table 1.1: Illustration of fixed and variable length lossless coding of a three-value source X

1.1 Lossless Compression and Entropy Coding

Most sources of data are repetitive; artwork, for instance, frequently contains areas of relatively

similar colors. Central to lossless data compression is this notion of “redundancy,” or excess infor-

mation. By removing this redundant information, one may reduce the amount of information that

needs to be stored or communicated. The beauty of information theory is its ability to tie an elegant

quantitative framework to this abstract notion.

To illustrate the notion of redundant information more concretely, suppose we have a random

variable taking values in some finite alphabet — suppose, for instance, that X is 1 with probability

1/2, 2 with probability 1/4, and 3 with probability 1/4. Now suppose we wished to store the value

of this variable. How many bits would it take? The obvious approach is to assign 2 bits to represent

the three values in some arbitrary manner; perhaps the binary system itself would suffice (see Table

1.1). This would result in an average of 2 bits per sample of X , but can one do better?

We made two implicit constraints when formulating this generic answer: that each codeword

must be the same length, and that only one sample of X may be coded at a time. Relaxing the

first of these requirements, we note that a receiver can decode variable-length codewords provided

no codeword is the prefix of another. In line with this, suppose we use the assignment rule given by

the last line of Table 1.1. The average number of bits per sample is then only

L = 1 · 1

2
+ 2 · 1

2
= 1.5

which happens to be the best we can do.

As the alphabet size and the number of samples we code together grow, obtaining the optimal

compression scheme is increasingly difficult. Nonetheless, Shannon noted a remarkable fundamental

limit on the performance of this optimal compression scheme: the entropy of the source variable X ,
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defined as the “eerily self-referential” [3] expression

H(X) = E [− log2 pX(X)]

The forward part of his theorem states that one may code a random variable with average codeword

length — referred to as the rate — arbitrarily close to H(X) with arbitrarily small probability of

error. The converse states that no coding scheme, no matter how complex its implementation, can

achieve a rate-per-sample below the entropy.

It can be seen that for our random variable X with dyadic PMF, H(X) is precisely 1.5 bits. In

general, however, one must code many samples together to come within arbitrary precision of the

entropy. Constructing the optimal codeword assignments quickly becomes a complicated task: for

block coding 10 samples of a binary variable together, the source alphabet is of size 1024. Several

techniques have emerged to address the very gritty task of entropy coding; we list a few of the more

prominent:

1. Huffman coding [6] is a greedy algorithm that produces the optimal (but non-unique) codeword

assignments for a given finite alphabet. It can be difficult to deal with large blocklengths,

however.

2. Arithmetic coding [3] does not necessarily produce optiml assignments for any given block

length, but through a simpler architecture allows one to work with large blocklengths.

3. Lempel-Ziv-Welch (LZW) [7] is a universal compression algorithm that does not require knowl-

edge of the source distribution.

The literature on lossless source coding is incredibly rich; we recommend interested parties to

look there for further information.

1.1.1 Slepian-Wolf Coding

The situation we have just considered can be considered a form of coding for point-to-point com-

munications. That is, user A encodes a source in order to communicate it to user B. In general,

however, we can imagine many users on both ends, connected together in some sort of network.

A network situation that is of particular interest to us is the distributed source coding scenario,

depicted in Fig. 1-1.
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X1

X2

Encoder for X2

Encoder for X2

Decoder (X1, X2)

Figure 1-1: The Slepian-Wolf scenario. Two correlated variables, X1 and X2, are separately encoded
and jointly decoded.

d
X1X1

X2X2

Encoder for X1

Encoder for X2

Decoder for X1

Decoder for X2

Figure 1-2: An inner bound on the Slepian-Wolf problem; one may always ignore correlations and
code/decode X1 and X2 separately.
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X1 = 0 X1 = 1
X2 = 0 1/2 1/4
X2 = 1 0 1/4

Table 1.2: An example of nontrivially correlated sources.

Two potentially correlated sources, X1 and X2, are separately encoded into codewords Y1 and

Y2, at rates R1 and R2 respectively. These are then forwarded to a joint decoder that attempts to

recover X1 and X2 from Y1 and Y2. Let us note that this is always possible if the communication is

forced to be disjoint, as in Fig. 1-2. That is, one may simply losslessly encode/decode X1 and X2

separately. As we saw in the previous section, the rate limitation for this is given by the achievable

lower bounds: Ri ≥ H(Xi) for each i.

However, we can do better if the sources are correlated. Consider, for instance, the joint prob-

ability mass function (pmf) depicted in table 1.2. The sum of the marginal entropies — the rate

limitation under the stricter constraints of Fig. 1-2 — is H(X1) + H(X2) = 1.81 bits. Due to

correlations, the “joint entropy” (the entropy of the random variable (X1, X2)) is only 1.5 bits. As it

happens, it is possible to reconstruct X1 and X2 from rates that sum to the latter of these quantities:

only 1.5 bits.

According to the theorem of Slepian and Wolf [8], one may block code X1 and X2 at a sum-rate

R1 + R2 arbitrarily close to H(X1, X2) with arbitrarily low probability of error. In other words,

there is no loss associated with having to separately encode X1 and X2! This theorem generalizes to

N sources, XN
1 , in that the sum-rate lower bound

∑N
i=1 Ri ≥ H(XN

1 ) is achievable. We will make

use of this property in the development of functional quantization.

1.2 Lossy Compression and Rate-Distortion Theory

Lossless compression is only half the story. Consider audio compression for instance: one might

record a WAV file on a microphone before converting it to MP3 format and saving a considerable

amount of disk space. Listening to the MP3, however, can be jarring, depending on one’s taste in

music — the compression algorithm may have introduced distortion into the audio. The original

WAV cannot be perfectly recreated from the MP3 data — some information has been lost during

compression. Lossy compression seeks to trade off the reduced rate from lost information with the

distortion it introduces.
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In the notation of entropy, we may easily define the notion of “lost” information as the difference

H(X)−H(X̂), where X̂ is the approximated version of X . This corresponds to the reduction in bits

due to the approximations. But not all information is equally “relevant”: it’s far more important,

for instance, that we retain our header information for the WAV file than the last 0.1 seconds of

sound!

Shannon quantified the notion of distortion by first defining an error function. For instance, the

squared-error between a real value x and its approximated value x̂ is |x − x̂|2. The expected value

of the error function, d, is defined as the distortion:

D = E
[
d(X, X̂)

]

where X is the random variable we care about, and X̂ is its compressed representation.

The rate-distortion function associated with a specified source and error function summarizes

the “best possible” behavior for a lossy compression scheme. R(D0) gives the lowest possible rate

at which the distortion is less than or equal to D0. Analogously to lossless compression, one may

approach R(D0) performance arbitrarily closely, but one may not simultaneously achieve a rate

below R and a distortion below D0.

The generality of this construction is both its strength and its weakness. In some cases, the rate

distortion function is precisely known. For instance, Fig. 1-3 depicts the R(D) performance for a

memoryless Gaussian source. In most cases, it is not.

Note that the choice of error function is critical in defining both the R(D) function and the

implementations that can approach it. The squared-error metric is often used for real-valued sources

due to its analytical tractability. One may interpret functional compression as attempting to exploit

the tractability of MSE while expanding the number of applicabile scenarios.

1.3 Scalar Quantization

The rate-distortion function for a source (and distortion function) tells us how well we may approx-

imate the source, but it does not instruct us on how to perform this approximation. Quantization

provides a more literal framework for this, by explicitly dictating the lossy mapping that is to be

used.
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Figure 1-3: The rate-distortion function for a memoryless Gaussian source of variance σ2.

Scalar quantization is best defined in the context of a real-valued source, X , with a probability

density function (pdf) fX(x). In general, one cannot encode X exactly with any finite number of bits

— some sort of “rounding” to a finite number of levels is necessary. This rounding — the process of

quantization — will introduce some distortion. The distortion, in turn, will be related to both the

number and placement of levels.

Quantization (as we will consider it) involves two components. First, a finite number K of

reconstruction points must be specified. Second, a mapping Q(X) from the source alphabet to the

reconstruction points must be defined. Suppose, for instance, that X is a uniform source over [0, 1],

and we wish to quantize it into a discete variable X̂ with K levels, so as to minimize the “mean-

squared error”, E
[
(X − X̂)2

]
. How should the K reconstruction points, and the corresponding cells

Q−1(X̂) be placed?

The symmetry of the problem encourages us to space the K levels uniformly over the range

[0, 1]. Having decided on this placement, the mapping from X to X̂ can be chosen to minimize

the distortion. This amounts to rounding each value of X to its nearest quantization level. The

quantizer we have defined in this manner is summarized by two pieces of information: the placement
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Figure 1-4: A simple 4-level quantizer for a uniform [0, 1] source.

of the levels, and the “cells” in X that are rounded to each level. Fig. 1-4 illustrates both the cells

and the levels for our example.

We make an important observation at this point: for the squared-error distortion metric, every

quantization cell created by this rounding operation is connected (intervals in the one-dimensional

case). This quality is known as regularity, and quantizers that obey it are regular quantizers. It can

be seen that optimal quantizers for the squared-error metric are regular. Note that this does not

necessarily extend to other distortion measures.

The performance of this quantizer mapping, Q(X) : X → X̂ , is described by the distortion it

introduces:

D = E
[
(X − X̂)2

]

=
∑

X̂

p(Q(X) = X̂)E
[
(X − X̂) | Q(X) = X̂

]

=
∑

X̂

p(Q(X) = X̂)
1

12K2

=
1

12K2

This is one step from taking the form of a distortion-rate function: we need only to establish a

connection between the number of levels, K, and the quantizer’s rate, R. This relationship is heavily

dependent on the way the quantizer chooses to encode its finite-alphabet output X̂ = Q(X). We

will consider two scenarios: fixed-rate (codebook-constrained) coding, where all codewords are of

identical length, and variable-rate (entropy-constrained) coding, where the techniques of lossy com-

pression are applied to X̂.

Fixed-Rate Coding. If all codewords are of identical length, the rate is set by the codebook’s

size. In the case of a scalar quantizer with K possible quantization points, this rate is simply the

logarithm of K, R = log2 K.
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Variable-Rate Coding. Things are slightly more complicated for variable rate coding. Shan-

non demonstrated that we may code a finite-alphabet random variable at a rate arbitrarily close to

its entropy with arbitrarily small probability of error. Ignoring issues of implementation and the

nuances of this statement, it more or less tells us that X̂ may be encoded at average rate R = H(X̂).

The problem is that the rate does not depend solely on K any longer; the placement of the levels

plays a large part in determining the entropy of X̂. For instance, if I were to quantize a uniform

[0, 1] source with 8 levels uniformly across [1/2, 1] and one level at 1/4, the resulting entropy would

be H(X̂) = 2.5 bits; noticeably lower than the log2 9 ≈ 3.17 of a uniform quantizer with the same

number of levels.

We now describe a powerful analytical tool that allows us to gracefully explore questions involving

quantization. In the process, complex situations such as variable-rate coding are shown to have

relatively simple interpretations.

1.4 The High-Rate Approximation for Scalar Quantization

The difficulty in analyzing quantization is symptomatic of a broader difficulty in science and engi-

neering: the analysis of systems with mixed discrete and continuous components. For instance, the

modeling of biological ion channels can be incredibly difficult if one attempts to consider the move-

ment and behavior of each charged particle passing through the channel [9]. Given that the detailed

shape of the channel and its interaction with each particle plays a critical role in regulating passage,

one might consider this computational barrier a show stopper. What scientists have found, however,

is that the charged particles may be approximated as a fluid with a continuous charge density, and

the channel as a cylinder with a certain charge profile. While this approximation is incredibly rough,

it yields trends and quantitative behavior that is surprisingly in line with observations [10].

A similar approximation is common in the analysis of scalar quantization. As the number of

quantization levels grows, one may decouple the design of the quantizer from its resolution by

means of a quantization “point density.” Instead of speaking of the placement of K discrete levels,

one deals with a normalized quantization point density function, λ(x). We define λ in the following

manner:
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Let ∆ be positive, K be the number of quantization points, and λ be a point density. In

the limit of large K, Kλ(x)∆ approximates the number of quantization points within the interval

[x − ∆
2 , x + ∆

2 ]. The spacing of these points will be roughly uniform.

The function λ allows us to describe a regular quantizer with a continuous function, instead of

with a set of discrete levels. In order for it to be a useful construction, however, several approxima-

tions prove necessary:

1. The conditional probability density within any quantization interval, fX|Q(X)(x | Q(X) = x̂),

is roughly uniform. This is a reasonable assumption if the source distribution is smooth and

the rate is high. See Fig. 1-5 for an illustration.

2. The quantization point density, λ(x), is similarly approximated as constant within any quan-

tization cell.

3. Neighboring intervals are similarly spaced. This is a reasonable assumption if the quantization

point density, λ(x), is smooth and the rate is high.

Armed with these assumptions, a continuous expression for the distortion in terms of λ(x), the

resolution K, and the source distribution fX(x) is possible. The MSE distortion within a single

quantization cell, with reconstruction point x̂i is given by the variance of a uniform distribution,

according to approximation (1). The length of this cell is given by ∆(x̂i) = (λ(x̂i)K)−1; therefore

the distortion within the cell is

1

12
∆2(x̂i) =

1

12

1

K2λ(x̂i)2

The MSE over all quantization cells is the weighted sum of these distortions:

D =

K∑

i=1

p(x̂i)
1

12

1

K2λ(x̂i)2
(1.1)

Since λ(x) is roughly constant within any interval, each term in the summation can be approxi-

mated by an integral:
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Figure 1-5: Demonstration of the high-resolution approximation. The “triangle” is the source dis-
tribution, and the vertical lines indicate quantizer cell boundaries.
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D ≈
K∑

i=1

∫

xs.t.Q(x)=x̂i

1

12
fX(x)

1

K2λ(x)2
dx

=
1

12K2

K∑

i=1

∫

xs.t.Q(x)=x̂i

fX(x)
1

λ(x)2
dx

=
1

12K2

∫

x

fX(x)
1

λ(x)2
dx (1.2)

The design of our quantizer, represented by λ(x), is now isolated from the resolution, K, and we

have an expression that makes a good deal of qualitative sense. In fact, it is oftentimes quantitatively

accurate even for relatively low rates. Our goal, however, is not merely one of modeling the system;

we wish to design a quantizer to minimize this distortion. As the process of optimizing λ takes

different forms for fixed- and variable-rate scalar quantization, they will be considered separately.

Fixed-Rate Quantization In this situation, R = log2 K. We therefore need to pick a point den-

sity λ so as to minimize E
[
λ−2(X)

]
. Application of Hölder’s inequality shows that the minimizing

choice is given by:

λ(x) = SfX(x)1/3

where S is a normalization constant and fX(x) is the probability density of the source. The resulting

distortion is:

D =
1

12
2−2R

[∫
fX(x)1/3dx

]3

The term in brackets is the L1/3 pseudonorm of fX(x), and we denote it by ‖fX(x)‖1/3.

Variable-Rate Quantization The construction of this optimization problem is not as trivial
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as for the fixed-rate. Rather than having a simple relationship to K, the rate is given by:

R = H(X̂) (1.3)

= −
K∑

i=1

p(x̂i) log2 p(x̂i) (1.4)

≈ −
K∑

i=1

fX(x̂i)∆(x̂i) log2(fX(x̂i)∆(x̂i)) (1.5)

≈ −
∫

fX(x) log2

(
fX(x)

1

Kλ(x)

)
dx (1.6)

= −
∫

fX(x) log2 fX(x)dx

︸ ︷︷ ︸
h(X)

+

∫
fX(x) log2 Kdx

︸ ︷︷ ︸
log

2
K

+

∫
fX(x) log2 λ(x)dx

︸ ︷︷ ︸
E[λ(X)]

(1.7)

= h(X) + log2 K + E [λ(X)] (1.8)

where Eq. 1.5 follows from the piecewise constant approximation to fX(x) and Eq. 1.6 follows from

the Riemann sum approximating the integral. Inserting this relation between the rate, R, and the

resolution, K, into the distortion relation 1.2 gives:

D =
1

12
2−2R+h(X)+E[log λ(X)]E

[
λ(X)−2

]

It can be shown by Jensen’s inequality that this expression is minimized when λ(x) is constant.

That is, in the high-rate regime, the uniform quantizer is optimal. The resulting distortion is given

by an aesthetically pleasing expression:

D =
1

12
2−2R+h(X)

Note on Regularity Assumption: The above analysis seeks to obtain an optimal quantization

profile for a given source distribution. A subtle point, however, is that the point density function

can only be used to describe regular quantizers. Our solutions are therefore optimal amongst the set

of regular quantizers. Since the distortion measure of concern is the squared-error, the best possible

performance may be achieved by a regular quantizer, and our solutions are globally optimal. Note,

however, that this ceases to be true when we consider functional quantization for arbitrary functions.

The question of high-resolution non-regular quantization is settled in chapter 3.
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1.5 Vector Quantization

Just as one might losslessly encode/decode several source variables at the same time via block coding,

one may quantize several real-valued source variables together. This process, the quantization of a

real-valued source vector, is referred to as vector quantization (VQ).

Formally, XN
1 is a random vector with some joint probability distribution, fXN

1

(xN
1 ). A quantizer

is a mapping from RN to K reconstruction points, X̂N
1 = Q(XN

1 ). As before, the quantizer can be

seen as a combination of two pieces of information: (1) the locations of the reconstruction points,

and (2) the “cells” in RN that are rounded to each of the K levels.

VQ can be seen as a generalization of, or alternative to, separately scalar quantizing each of the

vector components Xi. One of its obvious advantages is to exploit correlations between the source

variables. Consider as an example a two-vector source, X2
1 , where the joint pdf is given over [−1, 1]2

by:

fX2

1

(x2
1) =





1
2 ifx1x2 ≥ 0

0 otherwise

The marginal distributions of X1 and X2 are uniform over [−1, 1], so the optimal scalar quantizers

would each be uniformly spaced over [−1, 1]. Note, however, that half the quantization cells that

are created from these scalar quantizers are never used! A vector quantizer has the option of only

creating cells where x1x2 ≥ 0, and thereby using the allocated rate much more efficiently.

As it turns out, VQ has advantages over scalar quantization even when the sources are inde-

pendent. Suppose, for instance, that X1 and X2 are independently, identically distributed with the

uniform [0, 1] distribution. The optimal scalar quantizer, as before, is uniformly spaced over [0, 1]

for each source. One may visualize this quantization as tiling the space [0, 1]2 with identical square

cells. VQ, however, can reduce distortion by using hexagonally shaped cells. See Fig. 1-6 for an

illustration of this.

This advantage will be referred to as the shape gain associated with VQ at a certain dimension.

Quantitatively, the k-dimensional shape gain is the maximum constant of improvement in distortion

by using a k-dimensional nonrectangular cell that (1) has normalized volume, and (2) can tile

k-dimensional space. As the dimensionality grows arbitarily large, this shape gain approaches a

constant that numerologists no doubt find very exciting: 1
6πe [4]. In this thesis, we will generally
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Figure 1-6: Comparison of optimal quantization cells for (left) separable scalar quantization and
(right) vector quantization. The hexagonal lattice is more efficient, but more computationally in-
tensive to implement.

tiptoe around the use of non-rectangular quantization cells; they result in a negligible boost to

rate-distortion compared to the effects we will be interested in.

Just as we consider scalar quantization to come in two varieties, so does VQ. One may assign

each quantization cell a constant-length codeword, and thereby generate a fixed-rate quantizer of

rate R = 1
N log2 K bits per (scalar) source symbol. Alternatively, variable-rate entropy coding can

be applied to X̂N
1 , and thereby generate a variable-rate quantizer of rate R = 1

N H(X̂N
1 ).

Lastly, let us emphasize that while VQ has notable advantages over scalar quantization, it can

prove costly to implement. In general, one must check whether the source falls into each of the

quantization cells before assigning a codeword; this is an O(2NR) operation and quickly becomes

unmanageable with growing dimensionality N . Several constructions exist that seek to trade off the

complexity of the VQ process with performance of the resulting quantization scheme. Of these, we

will occupy ourselves primarily with the variety known as transform coding.

1.6 Transform Coding

The computational complexity of performing arbitrary vector quantization grows notoriously with

increasing dimension. However, the benefits of jointly quantizing a large number of sources together

is oftentimes difficult to ignore. Indeed, it can prove advantageous in many cases to constrain a

vector quantizer to a more computationally tractable form — even if this constraint comes at some

loss of optimality. The reduced performance at any one dimension can be more than offset by the
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ability to operate at large dimensions.

Transform coding is a popular form of constrained VQ. An N × N linear transformation, U , is

first applied to the source vector xN
1 to produce the transform coefficients yN

1 = UxN
1 . The transform

coefficients are then separately scalar quantized into the vector ŷN
1 . The rate of the transform code

is the average of the rates for each scalar quantizer; we wish to design the transform, U , the scalar

quantizers Qi(yi) = ŷi, and the rate allocations Ri (s.t.
∑N

i=1 Ri ≤ R) in order to minimize the

distortion

D = E

[
1

N

∣∣XN
1 − U−1QN

1 (UXN
1 )
∣∣2
]

Suppose the scalar quantization is variable-rate. As we saw in Sec. 1.4, the optimal variable-rate

scalar quantizer is uniform for sufficiently high rates. The distortion for each scalar quantizer then

obeys the relation

Di =
1

12
22h(Yi)−2Ri (1.9)

For an arbitrary source, it is difficult to analyze this expression or the effect of a transformation

on it. As such, we constrain our attention to the case of a jointly Gaussian source vector XN
1 . While

the results from this analysis don’t perfectly generalize to arbitrary source distributions, they do

give useful insights.

For a jointly Gaussian source XN
1 , transformation results in another jointly Gaussian vector of

coefficients Y N
1 . It can be shown [11] that Eq. 1.9 reduces to

Di =
πe

6
σ2

yi
2−2Ri (1.10)

where σ2
yi

is the variance of the ith transform coefficient, yi. Summing the contributions from the

N sources, we have a total distortion of

D =
N∑

i=1

πe

6
σ2

yi
2−2Ri (1.11)

This can be minimized in two steps: first the optimal distribution of rate R amongst the N

encoders’ rates Ri should be determined, and then the optimal transform can be chosen to minimize

the resulting expression.
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Optimal Rate Allocation. An application of the arithmetic/geometric mean inequality demon-

strates that Eq. 1.11 is minimized when the geometric mean of the N terms equals their arithmetic

mean. In other words,

D ≥ N
πe

6
2−2R/N

(
N∏

i=1

σ2
yi

)1/N

(1.12)

Can we select individual rates Ri summing to R such that this lower bound is achieved? The

rates required are Ri = R
N − 1

2N log2

(∏N
i=1 σ2

yi

)
. If each of the variances σ2

yi
is nonzero, these rates

are feasible for sufficiently large sum-rate R.

Optimal Transform. A linear transform, U , applied to the source vector XN
1 creates a new

correlation matrix for the transform coefficients Y N
1 . Specifically,

Kyy = E
[
Y N

1

(
Y N

1

)T ]

= E
[
UXN

1

(
XN

1

)T
UT
]

= UE
[
XN

1

(
XN

1

)T ]
UT

Assuming that appropriate bit allocations will follow the transformation, our goal is to minimize

the distortion given in Eq. 1.12. This is equivalent to minimizing the product of diagonal elements

of Kyy, a quantity we refer to as the multiplicative trace. The Hadamard inequality demonstrates

that the minimizing transformation places the matrix Kxx into its eigenbasis — in other words, the

optimal transformation U decorrelates the source. This transformation is known as the Karhunen-

Loeve Transform (KLT),

Shortcomings. As noted, the KLT was only derived as optimal for the case of a jointly gaussian

source vector. In general, placing a source into its decorrelated basis reduces redundancy between

the coefficients, but other factors may oppose this. For instance, if fixed-rate quantization is being

performed and the source’s support is not spherically symmetrical, a non-KLT basis may allow for

more efficient tiling of the support with a fixed number of quantization cells.
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Chapter 2

Sophomore Year: Functional

Quantization for Monotonic

Functions

In this chapter, we will develop the functional quantization results that form the heart of this work.

The techniques and mathematical picture we work with are as important as the analytical solutions

to the quantization design problems of interest; we will make use of them extensively in the ensuing

chapters. To aid in the development of these techniques, we restrict our attention to functions

monotonic in each argument and, thereby, to the set of regular quantizers. These restrictions will

eventually be relaxed in Chapter 4.

We start by discussing a few topics within the wide spectrum of related work. The generality

of the functional quantization problem creates connections to topics ranging from perceptual audio

coding to multiterminal source coding. Some are obviously more closely related than others; we

allocate our attention accordingly.

We then begin to develop the theory by considering the relatively simple single-dimensional

functional quantization scenario. Even though the analysis for one dimension is straightforward, it

suggests an approach for higher dimensions.

Optimal quantizers are then obtained for several increasingly unconstrained scenarios of multi-

dimensional functional quantization. First, the N -dimensional fixed-rate problem is attacked. We
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X1

X2

V1

rate R1

V2

rate R2

Ĝ(V1, V2)

Figure 2-1: Generic functional source coding scenario shown with two variables.

build on this to solve the N -dimensional variable-rate problem, before generalizing once again to

incorporate Slepian-Wolf entropy coding. The notion of “functional typicality” and “functional

entropy” are then introduced, in analogy with their traditional counterparts. We demonstrate how

they can provide an alternate route to many of our derivations.

2.1 Related Work

Functional quantization and, more generally, functional source coding live at the intersections of

several problems: quantization, source coding, multiterminal information theory, and non-MSE

distortion measures. As such, there are many topics that they relate to. We provide a brief summary

of some of these connections here.

Quantization with a functional motive bears resemblance to the idea of “task-oriented quantiza-

tion.” There has been considerable work in this direction for classification [12], estimation [13], and

detection [14]. Additionally the use of a function at the decoder can be seen as inducing a non-MSE

distortion measure on the source data. In this sense, a similarity can be seen to perceptual source

coding [15], where a non-MSE distortion reflects human sensitivity to audio or video.

The problem depicted in Fig. 2-1 is of central interest to us. Various special cases of it have

been previously considered from different perspectives. In general, X1 and X2 are random variables

with some joint distribution, and G is a function of the two.

• If G is the identity function, we have a general distributed source coding problem that is well-

known in the lossless setting [8] and recently solved in the quadratic Gaussian case [16]. In

this situation, the correlation of X1 and X2 is of primary interest.
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• If G(X1, X2) = X1 and R2 is unconstrained, then X2 can be viewed as receiver side information

available at the decoder. The trade-off between R1 and distortion to X1 is given by the Wyner-

Ziv rate-distortion function [17, 18].

• The Wyner-Ziv scenario has been examined at high resolution by Rebollo-Monedero et al. [19].

It has been shown that providing the receiver side information to the encoder yields no im-

provement in performance.

• For general G and R2 unconstrained, the problem has been studied by Feng et al. [20]. Under

suitable constraints on the distortion metric, one may also view X2 as receiver side information

that determines the distortion measure on X1, drawing a connection to [21].

• Let Y = G(X1, X2). Then Y may be interpreted as a remote source that is observed only

through X1 and X2 and we have the remote source multiterminal source coding problem [22].

• Rather than having a single function G, one may consider a set of functions {Gi}i∈I and

define DG = E
[
d(Gα(XN

1 ), Gα(X̂N
1 )
]
, where α is a random variable taking values in index

set I. In this setting, fixed- and variable-rate quantization to minimize MSE was studied by

Bucklew [23]. Note that if the function were known deterministically to the encoder, one would

be better off simply computing the function and encoding it directly.

A couple pieces of work are related in results, even though they make use of very different

techniques. We explore these in slightly more depth below.

2.1.1 Discrete Functional Compression

One may consider the scenario of finite-alphabet sources and lossless functional compression. The

Wyner-Ziv version of this problem (side information at the decoder) was shown by Orlitsky and

Roche [24] to reduce to the entropy of a “characteristic graph.” Later, Doshi et al. [25] generalized

these results to the case of distributed sources, and demonstrated the applicability of graph-coloring

to the problem. We will illustrate both the characteristic graph concept and the graph coloring

approach with a simple example.

Let X1 take values over {0, 1} uniformly, and let X2 take values over {0, 1, 2, 3} uniformly.

Suppose the function of interest is the modulo-2 sum of X1 and X2; that is, G(X1, X2) = (X1 +

X2)%2. If X1 and X2 must be separately compressed, as in Fig. 2-1, how low of a sum-rate is
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Figure 2-2: Characteristic graphs for 1- and 2-bit random variables, when the decoder is interested
in the modulo-2 sum of the two.

possible while still losslessly calculating G(X1, X2) at the decoder? To answer this question, one

constructs a characteristic graph for each of the sources.

Each node of a characteristic graph corresponds to a letter in the source alphabet Xi. An edge

is drawn between two nodes a and b in the characteristic graph of X1 if the following holds:

Condition for an edge: If there exists a symbol y ∈ X2 such that p(X2 = y, X1 = a) > 0,

p(X2 = y, X1 = b) > 0, and G(a, y) 6= G(b, y), we draw an edge between a and b.

For the situation we drew out, the characteristic graph for X1 is complete, while the graph for

X2 is missing the edges (0, 2) and (1, 3) since those points are indistinguishible from G’s perspective.

According to Doshi, we can do no better than coloring each graph and having each encoder commu-

nicate the colors to the decoder. Fig. 2-2 demonstrates a possible 2-color coloring for these graphs

that results in a sum-rate of 2 bits. Compare this to the ordinary compression of Slepian-Wolf — it

would take 3 bits to perfectly recreate the sources according to their result.

Note that if a function can sometimes distinguish between all the values of a source, the charac-

teristic graph is complete and functional compression yields no advantage over ordinary compression.

Most functions of interest fall into this category. A similar notion of “distinguishability” shows up

in our work with non-monotonic functions in Chapter 3.
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2.1.2 Functional Source Coding

In their 2004 paper, Feng et al. [20] consider the problem of functional source coding in the Wyner-

Ziv context; a source X1 is coded and communicated to the receiver, which estimates a function

G(X1, Y ) of X1 and side information Y . They obtain several results, which we summarize below.

1. A functional rate-distortion expression similar in form to the Wyner-Ziv equation is derived,

making no assumptions about the type of distortion measure or the type of function involved.

2. The rate loss from using ordinary source coding instead of Wyner-Ziv coding is shown to be

arbitrarily large.

3. Under the constraint of MSE distortion measure, the rate loss between providing and not

providing the side information Y to the encoder is shown to be arbitrarily large when the

function is not separable.

4. When the function is separable, the loss from providing the side information is at most half a

bit.

5. When the function is smooth (in the same sense that we deal with it), the rate loss from side

information not being present is bounded in terms of the maximum magnitude of the derivative

of the function.

6. The influence of noise on the problem is also considered through the use of rate loss bounds.

A point of comfort: several of these results (2,3,4,5) may be confirmed by considering appropriate

special cases of our functional quantization setup.

At this point, we will begin to develop our functional quantization picture. Our approach will be

to consider added complexity step-by-step; most notably, in this chapter we only consider the highly

restrictive case of functions monotonic in each of their variables. This condition will be relaxed in

Chapter 4. Connections with the above prior work will be noted as they appear.

2.2 Single-Dimensional Functional Quantization

Limiting ourselves to a single dimension feels very much like a straitjacket: the applications are lim-

ited, and the results are rarely interesting. Nonetheless, it helps to avoid the full-blown distributed
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X Quantizer X̂ Ĝ(X̂) = G(X̂)

Figure 2-3: Single dimension fixed-rate functional quantization

functional quantization before we have developed the basic analytical tools to be used. The 1D sce-

nario is perfect from this perspective: despite its simplicity, we see elements of the more complicated

problems in it.

Suppose our encoder is provided a single continuous-valued source variable, X ∈ [0, 1]. Tra-

ditional source coding dictates that we are interested in recreating X itself; for instance, we may

explicitly seek to minimize the mean-squared error between X and its R-bit quantized representa-

tion, X̂, E
[
(X − X̂)2

]
. The functional perspective generalizes our interest from X to a function

G(X).

An immediately obvious approach to attacking this problem is to compute G(X) first, and then

quantize G(X). However, while this technique is effective, it fails to generalize to the distributed

N -dimensional cases where none of the encoders has sufficient information to compute the function.

We instead take the approach of deriving a new distortion measure for X that reflects functional

considerations. In Appendix 2.B the equivalence of these two methods is shown for one dimension.

As depicted in Fig. 2-3, our encoder performs quantization of X into X̂ = Q(X), and transmits

X̂ to the receiver. The receiver then makes use of an estimator, Ĝ(X̂), to approximate the correct

value of the function, G(X). We quantify the receiver’s performance by means of functional MSE:

E
[
(G(X) − Ĝ(X̂))2

]
.

In order to analyze this problem, the function G and the source X must be restricted in sev-

eral ways. For the moment, we err on the side of being too strict — Chapter 3 will loosen the

requirements.

1. The probability distribution of X , fX(x) must have bounded support. For convenience, we

assume a support of [0, 1].

2. fX(x) should be smooth.

3. G(x) must be continuous on [0, 1].

4. G(x) must possess bounded derivative almost everywhere.
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5. G(x) must be monotonic in x.

The least necessary of these requirements, #5, is also the most limiting. We include it because

of the following lemma:

Lemma 2.2.1 If G(x) is monotonic, the optimal functional quantizer of X will be regular.

Proof A regular quantizer is one for which every quantizer cell is connected (for R1 this reduces to

“every quantizer cell is an interval”).

We make use of the fact that the optimal functional quantizer in one dimension is induced by

the optimal ordinary quantizer for the variable Y = G(X). That is, one may compute the function

G(X), and quantize it directly. Since the optimal ordinary quantizer for a real-valued source is

regular, the optimal quantizer over Y , denoted by QY (y), is regular.

QY (y) may be simulated by quantization over X with reconstruction points in X given by

G−1(ŷi) and cells in X given by G−1(Q−1
Y (ŷi)). We know that Q−1

Y (ŷi) is an interval, since QY must

be regular. Since G is monotonic and continuous, G is a homeomorphism between [0, 1] and G([0, 1]).

Then G−1 is a continuous, well-defined mapping, and since the continuous mapping of a connected

space is connected, G−1(Q−1
Y (ŷi)) is connected. This demonstrates that a regular quantizer in X

will be optimal.

With this restriction, we are therefore able to limit our attention to the set of regular quantizers.

In Sec. 3.2, we generalize to include nonregular quantization and non-monotonic functions (in the

more general N -dimensional scenario).

The task we face is to design an estimator, Ĝ(X̂), and a K-level quantizer, X̂ = Q(X), so as to

minimize the functional distortion D = E
[
(G(X) − Ĝ(X̂))2

]
. We attack each of these problems in

turn.

Estimator, Ĝ:

App. 2.A, constrained to the one-dimensional case, demonstrates that there is no loss of optimality

from selecting the estimator Ĝ(X̂) = G(X̂).

High-Resolution Distortion

Our interest lies in the high-resolution regime, where the distribution within any quantizer cell may

be approximated as uniform, and the quantizer spacing may be described by a point density function.
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To accommodate the function G, an additional approximation is used: G is linearized by its Taylor

series coefficients within any quantizer cell. Suppose that y is the center of a quantizer cell. Then

G is approximated within the cell as

G(x) ≈ G(y) +
dG(x)

dx

∣∣∣∣
x=y

(x − y)

Instead of repeating our work in the next sections, we make use of this approximation immediately

for the N -dimensional distortion.

Theorem 2.2.2 If N sources X1, . . . , XN are quantized according to point density functions λ1, . . . , λN

with resolutions K1, . . . , KN , then the high-resolution distortion to a function G(X1, . . . , XN ) is given

by

E [dG] ≈ 1

12

N∑

i=1

E
[
g2

i (xi)K
−2
i λ−2

i (xi)
]
. (2.1)

Proof of this theorem may be found in Appendix 2.C. For a single dimension — our present

point of interest — the expression reduces to

D = E
[
dG(X, X̂)

]
= E

[
(G(X) − G(X̂))2

]
=

∫ 1

0

fX(x)
1

12K2λX(x)2
g(x)2dx (2.2)

where dG(x, y) is the functionally induced distortion measure, K is the number of quantization in-

tervals, and we have defined g(x) =
∣∣∣dG(x)

dx

∣∣∣. Note that the quantity g(x)2 summarizes the function’s

influence on quantizer performance.

Fixed-Rate (Codebook-Constrained) Quantization

Under a fixed-rate constraint, each quantization point, X̂0, is communicated with R bits — 2R is

therefore the number of intervals, K. The only remaining degree of freedom in the distortion (Eq.

2.2) is in the point density function, λX(x). What choice of λX(x) minimizes D = E [dG]?

Notice that Eq. 2.2 bears resemblance to Eq. 1.2, but with the probability density fX(x) replaced

with a surrogate density, fX(x)
∣∣∣ dG(x)

dx

∣∣∣
2

. This suggests that a similar optimization technique may

be successful. Indeed, use of Holder’s inequality demonstrates that the (functional) distortion is

minimized when λX(x) is chosen to be proportional to the cube root of the (surrogate) density. The
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X
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Quantizer Block Encoder Block Decoder Ĝ(X̂) = G(X̂)

Figure 2-4: Single dimension variable rate functional quantization

resulting minimum is proportional to the L1/3 norm of the (surrogate) density. That is,

λX(x) ∝
(
fX(x)g(x)2

)1/3
(2.3)

E [dG] ≥ 1

12
2−2R

∥∥fX(x)g(x)2
∥∥

1/3
(2.4)

Variable-Rate (Entropy-Constrained) Quantization

Now suppose that a block entropy coder is allowed to operate on the output of the scalar quantizer,

as in Fig. 2-4. While a rate constraint, R ≤ R0, continues to be enforced, the relationship between

rate and resolution (K) is less obvious.

The lowest achievable rate of transmission is the entropy of the quantized variable, H(X̂). Ne-

glecting practical considerations, we assume this rate may be precisely achieved. To consider the

entropy in our optimization, we must know how it depends on the point density, λX(x), and the

resolution.

As demonstrated in Sec. 1.4, at high rate the discrete entropy of a quantizer output is approxi-

mated in terms of the source’s differential entropy, h(X). We repeat Eq. 1.8 for convenience:

R = H(X̂) ≈ h(X) + log2 K + E [log2 λX(x)] (2.5)

An expression for distortion in terms of rate, R, and quantizer density, λ, is now available from Eqs.

2.5 and 2.4.

E [dG] =
1

12
22h(X)−2R+2E[log

2
λX (x)]E

[
1

λX(x)2
g(x)2

]
(2.6)

In the general footsteps of Gersho [26], this may be minimized by Jensen’s inequality:
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D = E [dG] =
1

12
22h(X)−2R+2E[log

2
λX (x)]E

[
2−2 log λX(X)+2 log

2
g(X)

]
(2.7)

≥ 1

12
22h(X)−2R+2E[log

2
λX (x)]2−2E[log λX (x)]+2E[log

2
g(X)] (2.8)

=
1

12
22h(X)−2R+2E[log

2
g(X)] (2.9)

Jensen’s inequality, given in general by E
[
2Z
]
≥ 2E[Z], holds with equality when the exponent,

Z, is deterministic. Therefore, the lower bound is achieved when we choose the point density

appropriately:

λX(x)2 ∝ g(x)2 (2.10)

Example:

Suppose X is uniformly distributed over the interval [0, 1], and that the decoder will compute

G(x) = x2.

The optimal ordinary quantizer — uniform for both fixed and variable rates — yields a functional

distortion of

D =
1

12
2−2RE

[
g(X)2

]

=
1

9
2−2R (2.11)

The optimal fixed rate functional quantizer is described by point density λF (x) = 5
3x2/3 and a

distortion of

D =
1

3
‖x2‖1/3 · 2−2R =

9

125
2−2R ≈ 0.0722−2R

The optimal variable rate functional quantizer has point density λV (x) = 2x, proportional to

dG/dX . After rearranging Eq. 2.9, the distortion is given by

D =
2−2R

12
e2E[ln 2X] =

2−2R

12
e2(ln 2−1) ≈ 0.045 · 2−2R

Even in a single dimension, benefits from functional quantization can be seen. Note that these
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Figure 2-5: Fixed-Rate Distributed Quantization: Independent scalar quantization is performed at
each source.

improvements are identical to those from computing the function prior to quantization (see App.

2.B). However, while pre-computation fails to extend to multidimensional scenarios, our techniques

from this section do. We will find that the performance gap between functional and ordinary

quantization can grow considerably with dimension.

2.3 N-dimensional Functional Quantization

At this point, we are prepared to attack the distributed problems at the heart of functional quanti-

zation. Our approach will be to consider increasingly open-ended scenarios, starting with fixed-rate

quantization and moving towards the more general variable-rate block-quantization.

2.3.1 N-dimensional Fixed-Rate

We consider the situation depicted in Fig. 2-5. Let the source XN
1 be a random vector described by

joint pdf fXN
1

(xN
1 ); for convenience, let fXN

1

(xN
1 ) be supported in [0, 1]N . Note that the components

of XN
1 can be arbitrary correlated.

Let the function G : RN → R be continuous, possess bounded derivative almost everywhere,

and be monotonic in each of its arguments. Monotonicity is a useful property satisfied by many of

the functions of interest to us; nonetheless we have found that as a requirement it can be loosened

significantly (see Sec. 3.2).

Problem Statement

The ith encoder performs quantization on Xi to generate the approximation X̂i = Qi(Xi). X̂i

is chosen from a finite set of size Ki, and its index within this set is communicated at fixed rate

45



Chapter 2. Sophomore Year: Functional Quantization for Monotonic Functions

Ri = log2 Ki to a centralized decoder.

The N encoders, Q1 through QN , must together satisfy a sum-rate constraint. That is,
∑

Ri ≤ R

for some R. In practice, the individual rates Ri must be integer-valued, as they represent the number

of bits communicated to the decoder from a single encoder. We relax this condition and allow the Ris

to be (positive) real numbers for two reasons. First, real Ri may be arbitrarily closely approached

by integral Ri through block coding. Second, it has been shown that optimal integral bit allocations

can be obtained from optimal real bit allocations with little fuss [27].

The centralized decoder effectively receives a component-by-component quantized vector X̂i =

Qi(Xi). From this information, it must form an estimate Ĝ(X̂N
1 ) for the function G(XN

1 ), minimizing

the functional distortion: D = E
[
dG(X, X̂)

]
= E

[
|Ĝ(X̂N

1 ) − G(X)|2
]
.

Choice of Estimator

Since multiple combinations of estimator/quantizer can minimize the distortion, we may restrict one

or the other. App. 2.A demonstrates that optimality is still possible if the estimator is constrained

as Ĝ = G.

Description of Quantizer

The cartesian product of N quantizers yields a tiling of [0, 1]N by rectangular cells. In analogy with

the single-dimensional situation, we make use of high-resolution approximations within each of these

cells.

A1. The joint pdf, fXN
1

(xN
1 ), is roughly uniform within any cell. A continuous fXN

1

(xN
1 ) with

derivative bounded almost everywhere will guarantee this.

A2. The function, G(X), is roughly affine at any point. This permits a Taylor approximation to

the function within each cell.

A3. The quantizer Qi is described by a normalized point density function over Xi, λi(x). The quan-

tizer cell containing xN
1 is a rectangle with side lengths approximately given by 2−Ri/λi(x

N
1 ).

We use these approximations to obtain the functional distortion for a specific choice of quan-

tization densities λi(x). To simplify the resulting expression, we define a quantity analogous to

g(x)2 =
∣∣∣dG(x)

dx

∣∣∣
2

from the single-dimensional case:
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Definition g2
i (x), the ith functional sensitivity for a source XN

1 and function G(xN
1 ), is the expected

squared partial derivative of G(xN
1 ) with respect to xi:

g2
i (x) = E

[∣∣∣∣
dG

dXi

∣∣∣∣
2

| Xi = xi

]

Lemma 2.3.1 If approximations A1, A2, and A3 hold, then functional distortion is given by

D =

N∑

i=1

1

12K2
i

g2
i (xi)λi(xi)

−2 (2.12)

where Ki is the number of quantization points for the ith encoder.

The proof for this may be found in App. 2.C. Because we are considering the fixed-rate situation,

we may substitute the rate for the resolution: Ri = log2 Ki. This results in distortion

D =
N∑

i=1

2−2Ri

12
g2

i (xi)λi(xi)
−2 (2.13)

In order to minimize this expression, we may optimize the λis and Ris separately.

Theorem 2.3.2 Eq. 2.13 is minimized subject to a sum-rate constraint
∑N

i=1 Ri ≤ R by choice of

point densities λi such that

λi(x) ∝ (fX(x)g2
i (x))1/3

and choice of rate allocations Ri such that the total distortion is given by

E [D] =
N

12
2−2R/N

N∏

i=1

‖fXi(xi)gi(xi)
2‖1/N

1/3 .

Proof We choose optimal densities and rate allocations in turn.

Optimal densities, λi.

Eq. 2.13 is a sum of N separate expressions, each of which involves only one of the λis. Each of

these terms is, in fact, representative of single-dimensional functional quantization with point density

λi and squared derivative g2
i — the N -dimensional problem reduces to N parallel one-dimensional

problems.

As such, we may separately choose each point density λi to minimize its corresponding term in

the summation. The optimal choice is obtained from Eq. 2.3:
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λi(x) ∝ (fX(xi)gi(xi)
2)1/3

and leads to distortion

E [D] =

N∑

i=1

1

12
2−2Ri‖fXi(xi)gi(xi)

2‖1/3 (2.14)

The only degrees of freedom remaining are in the rate allocations, Ri.

Optimal rate allocations, Ri.

Proceeding along standard lines for rate allocation problems, we first note the applicability of the

arithmetic/geometric mean inequality. Applying this to Eq. 2.14, we have the following lower bound:

E [D] ≥ N

12

(
N∏

i=1

2−2Ri‖fXi(xi)gi(xi)
2‖1/3

)1/N

.

Recall that we constrain the rates with a sum-rate condition,
∑

i Ri ≤ R. This may be incorpo-

rated into the lower bound:

E [D] ≥ N

12
2−2R/N

N∏

i=1

‖fXi(xi)gi(xi)
2‖1/N

1/3 . (2.15)

If G is dependent on each of the source variables, this bound will be nonzero and achievable. If

G is independent of one or more of the source variables Xi almost everywhere, then discarding these

(unnecessary) components will allow a proper rate allocation amongst the remaining Xi, and Eq.

2.15 will be achievable in the adjusted source space.

2.3.2 N-dimensional Variable-Rate

We now add some flexibility to the encoder and decoder by permitting the use of entropy coding,

as depicted in Fig. 2-6. Specifically,

1. The ith scalar quantizer continues to scalar quantize each sample of Xi independently of

other samples of Xi and independently of the happenings at other encoders. Quantization is

performed at resolution Ki.

2. The ith block entropy coder losslessly encodes together M sequential outputs from the scalar

quantizer, X̂i1 . . . X̂iM .
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Figure 2-6: Variable Rate Quantization: Scalar quantization is now followed by block coding.

3. The average rate per symbol from the ith encoder is denoted Ri; note that log2 Ki generally

differs from Ri. We enforce a sum-rate constraint as before:
∑

i Ri ≤ R.

4. The block decoder recreates X̂i1 . . . X̂iM for each i.

5. Finally, the decoder computes an estimate of the values of G for each instance in the block:

Ĝj = Ĝ(X̂1j , . . . , X̂Nj).

Our task is to optimize the choice of estimator, lossless encoder, quantizer, and rate allocation.

Each may be considered in isolation.

Estimator, Ĝ.

Assuming the lossless encoder is in fact lossless, the analysis performed in App. 2.A continues to

hold for the variable-rate scenario. Therefore, the constraint Ĝ = G is justified.

Lossless Encoder

N discrete variables, X̂N
1 , must be separately encoded and jointly decoded — at the minimum

possible sum-rate. This description fits the profile of the Slepian-Wolf problem, whose solution

asserts both the achievability and optimality of a sum-rate arbitrarily close to the joint entropy,

H(X̂N
1 ).

When the source variables are independent, Slepian-Wolf coding is unnecessary. Under these

circumstances, or more generally when the user desires a lower complexity entropy coding algorithm,

the Slepian-Wolf decoder reduces to N disjoint encoders and decoders (Fig. 2-7). We consider the

Slepian-Wolf scenario of Fig. 2-6 in more detail in the next section.

Within the framework of disjoint entropy coders, each quantized source X̂i can be encoded at

rate arbitrarily close to its marginal entropy, H(X̂i). Using high resolution approximations as in
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Figure 2-7: Variable Rate Quantization: The entropy coding reduces to a disjoint operation for each
source component

[26], this quantity may be related to the quantizer resolution Ki, density λi, and source differential

entropy h(Xi):

Ri = H(X̂i) ≈ h(Xi) + E [log2 λi(xi)] + log2 Ki (2.16)

We neglect the small error in approximation 2.16 in the derivations that follow.

Theorem 2.3.3 The high-resolution distortion, given by Eq. 2.12, is minimized subject to a sum-

rate constraint
∑N

i=1 H(X̂i) ≤ R by choice of point density functions such that

λi(x) ∝ gi(x)

and rate allocations such that the minimum distortion is given by

D =
N

12
2−2R/N+

∑N
i=1

h(Xi)/N+2
∑N

i=1
E[log

2
gi(xi)]/N .

Proof As with the fixed-rate scenario, we first optimize the quantization profiles, and then perform

appropriate rate allocation amongst the N quantizers. Quantizer.

Assuming lossless encoding, distortion is given by Eq. 2.13:

D =

N∑

i=1

1

12
g2

i (xi)K
−2
i λi(xi)

−2

=
N∑

i=1

1

12
2−2Ri+2h(Xi)+2E[log

2
λi(xi)]g2

i (xi)λi(xi)
−2

(2.17)
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As with fixed-rate, the N -dimensional distortion reduces to N parallel one-dimensional distortions.

Each λi may be chosen to minimize its corresponding term in the summation. According to Eq.

2.10, this minimizing choice is

λ2
i ∝ g2

i

and the corresponding distortion is

D =

N∑

i=1

1

12
2−2Ri+2h(Xi)+2E[log

2
gi(xi)] (2.18)

Optimal Rate Allocation.

Recall the sum-rate constraint:
∑N

i=1 Ri ≤ R. The R bits may be allocated amongst the N encoders

as in Sec. 2.3. The optimal allocation satisfies the arithmetic/geometric mean inequality with

equality, resulting in distortion

D =
N

12
2−2R/N+

∑N
i=1

h(Xi)/N+2
∑N

i=1
E[log

2
gi(xi)]/N (2.19)

2.3.3 N-dimensional Variable Rate with Slepian-Wolf Coding

Our derivations of optimal quantization profiles and distortions, summarized by Eqs. 2.15 and

2.18, have not explicitly considered correlations between the sources. Nonetheless, they are optimal

within the constraints that we have placed on them. Can we loosen any of these constraints so that

coding may exploit correlations? From Fig. 2-7, one can see that the answer is “yes”: even though

the decoding takes place at a centralized decoder, the entropy decoders for each of the sources are

disjoint.

Replacing the N entropy decoders with a single block decoder, we find ourselves presented with

the Slepian-Wolf situation (Fig. 1-1). The lowest achievable sum-rate is given by the joint entropy

of the quantized variables, H(X̂N
1 ); otherwise, the problem statement is identical to that for disjoint

variable-rate coding.

Theorem 2.3.4 The high-resolution distortion, given by Eq. 2.12, is minimized subject to a sum-
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rate constraint H(X̂1, . . . , X̂N) ≤ R by choice of point density functions such that

λi(x) ∝ gi(x)

and rate allocations such that the minimum distortion is given by

D =
1

12
2−2R+2h(X1,...,XN )+E[log2

g2

i ].

Proof Recall the variable-rate distortion expression, and how it may be converted to a function of

the sum-rate:

D =
1

12

N∑

i=1

1

K2
i

2E[log2
g2

i ] (2.20)

≥ 1

12

1∏
K2

i

2
∑N

i=1
E[log2

g2

i ] (2.21)

Using a Slepian-Wolf coding scheme, the resolution quantity K2
i may be related to sum-rate in

a manner similar to Eq. 2.16:

H(X̂N
1 ) ≈ h(XN

1 ) +
N∑

i=1

log2 Ki +
N∑

i=1

E [log2 λi]

Inserting this into the minimized distortion expression, we obtain the Slepian-Wolf achievable

lower bound to the distortion-rate function.

D(R) ≥ 1

12
2−2R+2h(XN

1
)+E[log2

g2

i (X)]

The gain in bits from Eq. 2.19 is, satisfyingly, the total correlation of the sources,
∑N

i=1 h(Xi)−

h(XN
1 ). For the case of two sources, the total correlation is the mutual information.

Notice in the above equation the analytical separation between correlations and functional con-

siderations. In reality, the random binning introduced by Slepian-Wolf coding allows the quantizer

to be nonregular and thereby remove redundancy between sources.
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Relationship to Linder et al. [28]

In [28], the authors consider the class of “locally quadratic” distortion measures for variable-rate

high-resolution quantization. They define locally quadratic measures as those having the following

two properties:

1. Let x be in RN . For y sufficiently close to x in the Euclidean metric (that is, d(x, y) < ε), the

distortion between x and y is well approximated by
∑N

i=1 Mi(x)|xi − yi|2, where Mi(x) is a

positive scaling factor. In other words, the distortion is a space-varying non-isotropic scaled

MSE.

2. The distance between two points is zero if and only if the points are identical. Formally

d(x, y) = 0 implies that x = y.

For these distortion measures, they consider high-resolution variable-rate regular quantization,

and both generalize Bucklew’s results [23] (to non-functional distortion measures) and demonstrate

the use of multidimensional companding functions to implement these quantizers. Of particular

interest to us is the comparison they perform between joint and scalar quantization. When Slepian-

Wolf coding is employed for the latter, the scenario is similar to the developments of Sec. 2.3.3.

The source of this similarity is the implicit distortion measure we work with: dG(x, y) = |G(x)−

G(y)|2. When x and y are very close to one another, our Taylor approximation technique reduces

this distance to a locally quadratic form:

|G(x) − G(y)|2 ≈
N∑

i=1

∣∣∣∣
dG(xN

1 )

dxi

∣∣∣∣
2

|xi − yi|2

From this, we may obtain the same variable-rate S/W performance as Eq. 2.19 through the results

of Linder et al.

However, there are differences both subtle and important between locally quadratic distortion

measures and the functional distortion measures we consider. First and foremost: a continuous

scalar function of N variables is guaranteed to have an uncountable number of point tuples (x, y)

for which G(x) = G(y) and therefore that dG(x, y) = 0 and x 6= y. This loudly violates the second

condition of a locally quadratic distortion measure, and the repercussions are felt most strikingly for

non-monotonic functions — for whom regular quantizers are no longer necessarily optimal (discussed

in Chapter 3).
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This second condition is also broken by functions that are not strictly monotonic in each variable;

one finds that without this strictness, variable-rate analysis of the centralized encoding problem is

invalidated. Specifically, if the derivative vector

dG(XN
1 ) =

(
dG(xN

1 )

dx1
, . . . ,

dG(xN
1 )

dxN

)

has nonzero probability of possessing a zero component, the expected variable-rate distortion as

derived by both Bucklew and Linder et al. is D = 0, regardless of rate. This answer is obviously

nonsensical, and arrives from the null derivative having broken the high-resolution approximation.

Given that even the example functions we consider in Sec. 3.1 fall into this trap, the central-

ized results have limited applicability to functional scenarios. We nonetheless summarize them in

App. 2.D.

2.4 Block Quantization and Functional Typicality

In the previous section, we derived the design and performance of optimal variable-rate functional

quantizers. Our approach there was grounded in the picture of Fig. 2-7, where an explicit quantizer

is followed by an entropy coder. We allowed the entropy coder the flexibility to block code the

quantized representation of our source Xi, provided it was done so losslessly.

In this section, we seek to generalize slightly further. Instead of a scalar quantizer for Xi followed

by block entropy coding, we allow for block quantization; that is, an i.i.d sequence from the ith source,

(Xi)
M
1 is vector quantized into the representation (̂Xi)M

1 , before being entropy coded. This is done

somewhat in the spirit of [16], where the optimality of an architecture separating VQ from entropy

coding was demonstrated.

Our analysis in this section takes on a slightly different flavor from before. Observing Eq. 2.9,

we notice that the impact of the function G on the optimal quantizer performance is limited to the

sensitivity terms 2E[log2
g2

i (Xi)]. These functional terms bear strong resemblance to their probabilistic

counterparts: 2−2h(Xi) = 2−E[log2
fX (Xi)

2]. This suggests that the notion of a distribution’s entropy

can be adjusted by the presence of a function. To explore this fact, we derive our results by

using a modified notion of typicality. The relationship of this approach to the quantization point-

density technique of the original derivations is completely analogous to that between typicality and

codeword-length optimization in a lossless setting.
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2.4.1 Shannon’s Typicality

A critical step in Shannon’s establishment of information theory was the development of typicality.

Sequences of i.i.d samples from a discrete probability mass function are found to split into two

camps: the typical and the atypical. The typical sequences dominate the sample space and, more

curiously, they all have similar probabilities of occurrence.

Quantitatively, a sequence xM
1 of M samples of a discrete variable X is said to be ε-Shannon-

typical if

∣∣∣∣
1

M
log2 P

(
xM

1

)
− E [log2 P (X)]

∣∣∣∣ < ε

and we denote the set of such sequences by Aε.

Since 1
M log2 P

(
XM

1

)
converges in probability to E [log2 P (X)] — the entropy H(X) — it can

be seen that the probability of Aε can be made arbitrarily close to one. One can therefore bound

the probability of a typical sequence above and below as

(1 − ε)2−M(H(X)+ε) ≤ P
(
xM

1

)
≤ 2−M(H(X)−ε)

Shannon’s source coding result now follows quite blatantly: the atypical sequences may be ig-

nored, while the (roughly equiprobable) typical sequences can each be given codewords of length

MH(X) + Mε. The beauty of this approach is its avoidance of details: by means of typicality, one

has simplified the problem to one of coding a uniform distribution.

Note how this contrasts with the more direct approach of variable-length single-sample coding.

If one attempts to solve for the optimal codeword lengths for each symbol of a discrete source, he

or she will find that rate is minimized when each symbol is assigned a codeword with length equal

to the negative logarithm of its probability. The average rate that results is then the entropy of the

source — the same as by the typicality argument.

An analogous typicality construction holds for the continuous regime. If a source X is distributed

over [0, 1] with some distribution fX , one may consider a sequence of M samples of X , XM
1 . Virtually

all the probability will be contained within a region of volume 2Mh(X) (in analogy to cardinality

2MH(X)) with the probability density arbitrarily close to uniform over this volume.
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2.4.2 Functional Typicality: One Dimension

We seek to apply the same logic to the problem of variable rate functional VQ and observe the

resulting performance. First we consider the one-dimensional problem, wherein a random variable

X distributed over [0, 1] according to fX(x) is to be quantized to compute the function G(x) (which

obeys the same constraints as in our previous analysis). Unlike before, we jointly quantize/encode

M samples of X : XM
1 .

Judging from its similarity to entropy in the distortion expression of Eq. 2.9, a good guess

for the quantity of “functional entropy” is, in terms of the single-dimensional sensitivity profile

g(x) =
∣∣∣dG(x)

dx

∣∣∣:

k(X, G) = E [log2 g(X)] .

We define functional-ε-typicality in the same manner as Shannon-ε-typicality, and we call a

sequence xM
1 ε-completely-typical if it is both ε-functionally-typical and ε-Shannon-typical. The set

of completely typical sequences is referred to as Cε. It can be shown that the set of functionally-

typical-sequences has probability arbitrarily close to 1, since

1

M

M∑

j=1

log2 g(xj) → k(X, G)

From this fact and the analogous statement for Shannon typicality, we may bound the probability

that a sequence is ε-completely-typical as being greater than or equal to 1−2ε for arbitrarily small ε.

The question: can we somehow restrict our attention to the quantization of the completely typical

sequences, and ignore the rest?

Lemma 2.4.1 The distortion contribution from the atypical sequences can be made arbitrarily small

by increasing the blocklength M .

Proof The total distortion of our encoder can be broken into two terms: one from the typical

sequences, and the other from the atypical sequences:

D = P
(
XM

1 is atypical
)
Datypical + P

(
XM

1 is typical
)
Dtypical,

where Datypical and Dtypical are the conditional distortions. Because G is bounded, the distortion
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between two points dG(x, y) is upper bounded by a value L. Therefore, we may bound the distortion

of an atypical sequence:

dG(xM
1 , x̂M

1 ) =
1

M

M∑

j=1

dG(xi, yi) (2.22)

≤ max
x,y

dG(x, y) (2.23)

= L (2.24)

We can therefore upper bound the distortion contribution from the atypical sequences as Lp(Ω−

Cε) ≤ Lε. Since this can be made arbitrarily small by raising the sequence length M , we are justified

in only considering the completely-typical sequences.

The completely-typical set has a roughly uniform probability distribution (consequence of Shannon-

typicality), and all points have nearly identical geometrically averaged derivatives
∏M

j=1 |g(yj)|1/M
=

2k(X,G) (consequence of functional-typicality). What does this say about the optimal quantizer and

optimal performance? Note that the typical set is topologically open: it can be shown by standard

topological arguments that every typical point xM
1 possesses a neighborhood of typical sequences.

Because of this, high-resolution approximations may be applied. The trouble is that we are dealing

with vector quantization now — not the scalar variety that the majority of this chapter has been con-

sidering. Nonetheless, using techniques borrowed from the scalar case, high-resolution optimization

of the vector quantizer design is possible.

We first make an important assumption on the use of arbitrary lattices for vector quantization:

any polytope quantization cell is fully determined by its shape-gain S(M) and its characteristic

lengths in each of the M dimenions. For both rectangular [23] and ellipsoid [29] cells, the functional

distortion may be shown to take the form

1

M
S(M)

M∑

j=1

g2
j ∆2

j (2.25)

where gj is the function’s slope in the jth direction and ∆j is the jth characteristic length for the

cell. Note that the rectangular case forms an inner bound to the distortion, while the ellipsoid case

is an outer bound. It is therefore reasonable to restrict our attention to lattices obeying Eq. 2.25.

Lemma 2.4.2 Under the high-resolution approximation, suppose K identical quantizer cells with
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shape factor S(M) (equal to 1/12 if the cells are rectangular) are to be placed in a volume V (y)

containing a point yM
1 . Then the minimum distortion per-cell is given by

D = S(M)V (y)2/M22k(X,G).

Proof In accordance with the high-resolution approximation, quantizer cells in close vicinity will

be identical, as will the sensitivities g2(xj) =

∣∣∣∣
∣∣∣dG(x)

dx

∣∣∣
xj

∣∣∣∣
2

in each cell. Denoting the side-lengths of

these cells in the jth direction by ∆j , one may write the expected distortion within each cell as

D =
1

M
S(M)

M∑

j=1

g(yj)
2∆2

j

Since the volume constraint may be written as V = K
∏M

j=1 ∆j , the optimization of the side-

lengths ∆j reduces to an application of the arithmetic/geometric mean inequality. The resulting

minimum distortion (when each side-length ∆j is chosen inversely proportional to its respective

sensitivity g(yj)) is

D = S(M)

(
V

K

)2/M M∏

j=1

g(yj)
2/M .

Since all points being quantized are functionally-typical, this may be reduced in terms of the

functional entropy. We also replace V/K by the volume V (y) of a cell located near point y:

D = S(M)V (y)2/M22k(X,G)

This distortion-per-cell is completely independent of the location of the quantization cell, so long

as it contains typical points. Under the constraints that the sum of the volumes of all cells must

equal the volume of the completely typical sequences, 2Mh(X), it can be shown by Lagrange multi-

pliers that the total distortion is minimized if every quantization cell has equal volume, 2Mh(X)/K.

Furthermore, because the completely-typical set has uniform probability distribution, the resolution-

per-sample K1/M may be phrased in terms of the rate-per-sample 2R. The minimal total distortion

is then given by:

D = S(M)22h(X)−2R+2k(X,G).

58



Chapter 2. Sophomore Year: Functional Quantization for Monotonic Functions

This is the result we have seen before for the single-dimension case, although the 1/12 factor

has been replaced by a polytope second moment, S(M). As discussed in chapter 1, the shape gain

is a fundamental advantage that VQ holds over scalar quantization. What we see here is that the

shape gain is the only advantage that VQ has in the one dimensional functional case. Does this

same result hold true for the distributed multi-dimensional case?

2.4.3 Functional Typicality: N Dimensions

To analyze the multidimensional scenario with typicality, we make the assumption that the optimal

quantizer is regular (that is, all cells are similarly shaped and connected). As with our original

derivation of multidimensional functional quantization, we note that this holds true for functions

G(xN
1 ) that are monotonic in each variable and defer further considerations to the next chapter.

Recalling our approach from the single-dimension scenario, we start by glancing at the variable-

rate distortion expression derived in Sec. 2.3.2,

D ∝ 2
∑N

i=1
E[log2

g2

i (Xi)]

In likeness to the single-dimensional k = E

[
log2

∣∣∣
∣∣∣dG(x)

dx

∣∣∣
X

∣∣∣
2
]
, we define the N multidimensional

functional entropies

ki(Xi, G) = E [log2 gi(Xi)]

We can consider the joint quantization of a length M sequence at each encoder. Notationally,

let (Xi)j refer to the jth sample in the sequence seen by the ith encoder. We call a sequence

(xi)
M
1 completely ε-typical if it is both ε-Shannon-typical according to the distribution fXi and

functionally-ε-typical if

∣∣∣∣∣∣
1

M

M∑

j=1

log2 gi((xi)j) − ki

∣∣∣∣∣∣
< ε.

Using analysis identical to the previous section, it can be shown that, asymptotically, only

the completely-typical sequences contribute to the distortion. Noting that the set of completely-

typical sequences is an open set (as before), we can consider the problem of high-resolution vector

quantization within this set. Suppose the quantization cells in the vicinity of a point y = (yN
1 )M

1

have side-length ∆i,j with respect to the jth sequence sample of the ith source. Then each such cell
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will have distortion

D = S(M)

N∑

i=1

M∑

i=1

∆2
i,j((xi)

M
1 )

∣∣∣∣
dG(xN

1 )

dxi
(yN

1 )j

∣∣∣∣
2

A critical detail in this expression is that the ith side-length is only a function of the sequence

of M samples (xi)
M
1 seen by ith quantizer. One may not adjust the side-lengths at the quantizer

for X2 based on the value of X1. The consequence of this limitation appears when we take the

expectation of this distortion over all quantization cells: as with the analysis from Sec. 2.3 we

are presented with N separate one-dimensional distortion expressions, with the single-dimensional

sensitivity g2(x) replaced by the multidimensional sensitivity g2
i (x).

D =

N∑

i=1

S(M)

M∑

j=1

E
[
gi(Xi,j)

2∆2
i,j((Xi)

M
1 )
]

Each of these N terms may be optimized by techniques completely analagous to those of Sec.

2.4.2. The resulting total distortion, in terms of the rate-per-sample R, is then given by

D = NS(M)exp

[
−2R +

2

N

(
N∑

i=1

h(Xi)

)
+

2

N

(
N∑

i=1

ki(Xi, G)

)]
.

As before, we find that the only improvement yielded by vector quantization is contained is the

shape-gain term S(M). If Slepian-Wolf coding is employed, the improvement in is still given by the

total correlation, and we have minimum distortion

D = NS(M)exp

[
−2R +

2

N
(h(X1, . . . , XN )) +

2

N

(
N∑

i=1

ki(Xi, G)

)]
.

2.5 Notions of Optimality: How close are we to the best

possible structure?

We have taken the route of increasing generality in our construction of the distributed source coding

problem. First, we worked within the constraint of fixed-rate quantization, wherein each codeword

is of length Ri bits. Next, lossless disjoint encoders and decoders were added for each source, and

we considered the variable-rate performance of the system. Then, by allowing the entropy decoders

to fuse into a single block decoder, Slepian-Wolf coding was made possible.
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Slepian-Wolf coding achieves the lowest possible sum-rate
∑N

i=1 Ri such that the quantized values

X̂N
1 are recreated at the decoder. In the spirit of functional compression we may question the

constraint of perfectly recreating the quantized sources at the decoder — after all, we are interested

not in X̂N
1 but in G(X̂N

1 ). Preservation of X̂N
1 is sufficient to preserve G(X̂N

1 ), but it may not be

necessary. That is, some rate gain may be possible from seeking to represent G(X̂N
1 ) instead of X̂N

1

itself.

The scenario we have created is identical to the discrete functional compression problem consid-

ered by Doshi et al. [25]. They demonstrate that the lowest sum-rate for representing G(X̂N
1 ) can

be achieved by communicating the colors of a “characteristic graph” [24] for each source. When we

designed the optimal variable-rate quantizer, we assumed that the entropy coding will be lossless.

The use of discrete functional compression compromises this assumption and therefore our quan-

tizer’s optimality. It can be shown, however, that functional quantization followed by functional

compression nearly always reduces to our Slepian-Wolf scenario (the arguments are very similar to

those regarding “equivalence-free” functions in the ensuing chapter).

Even so, it is not even obvious whether the optimal approach to source coding can be found in

the separation architecture we take as a starting point (quantization followed by discrete coding of

some sort). We leave this question more or less unanswered.

2.A Optimal Choice of Estimator

Let XN
1 be a random vector with distribution on [0, 1]N , and let G be the function of interest. The

goal of functional quantization is to choose (1) disjoint quantizers (QXi)
N
1 for each component of the

source vector and (2) an estimator Ĝ so as to minimize the distortion E
[
|G(XN

1 ) − Ĝ(QN
1 (XN

1 ))|2
]
.

Suppose that a combination of quantizers and estimator, (QXi)
N
1 and Ĝ0, is optimal. We show

that this performance can be matched by estimator Ĝ = G and appropriately chosen

quantizers Q̃N
1 . Specifically, Q̃N

1 will be chosen to have the same quantization intervals as QN
1 , but

(potentially) different reconstruction points.

Let Ix =
∏N

i=1

(
Q−1

Xi
(QXi(x))

)
be the quantization cell containing the point x ∈ RN , and let Ĝ′

be an optimal estimator that is in use alongside quantizers (QXi)
N
1 . Since Ix is regular (connected)

and G is continuous, G(Ix) is an interval (connected) in R. The operation Ĝ′(Q(x)) amounts to

quantizing this interval; for it to be optimal, Ĝ′(Q(x)) ∈ G(Ix). Because G is continuous, we may
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pick Q̃(Ix) to be a point Îx such that G(Îx) = Ĝ1(Q(x)).

Compared with the quantizer QN
1 and estimator Ĝ′, Q̃N

1 and estimator Ĝ = G have identical

intervals and generate identical estimates for each interval. Therefore, there is no loss associated

with limiting Ĝ = G.

2.B Equivalence of 1D Quantization Schemes

A variable X with distribution fX(x) supported on [0, 1] is to be quantized at rate R. We wish to

design the quantizer QX(x) so as to minimize the distortion E [dG] = E
[
|G(X) − Ĝ(QX(X))|2

]
.

As suggested in Sec. 2.2, a feasible strategy in this one-dimensional scenario is to calculate G(X)

and optimally quantize G itself. What choice of quantizer QX(X) and estimator Ĝ can emulate this

procedure?

Estimator Ĝ:

Let QG(G) be the optimal (regular) quantizer of G that we wish to implement via Ĝ(QX(X)). The

most obvious choice for the estimator is Ĝ = G. Since G is monotonic and continuous, we may

construct the associated quantizer QX(X) as QX(x) = G−1(QG(G(x))).

The composition of G and QX generates the desired quantization of G. Suppose x0 is the value

to be quantized. Then Ĝ(QX(x0)) = G(G−1(QG(G(x0)))) = QG(G(x0)) — and we may constrain

Ĝ = G without problem.

Fixed-Rate (Codebook-Constrained) Quantization:

The optimal quantizer can be described by a point density function over the range of G:

λG(g) ∝ fG(g)1/3 ∝
(

fX(G−1(g))
dG−1(g)

dg

)1/3

(2.26)

where G’s monotonicity justifies the second relation. λG induces a quantizer density on X

λX(x) ∝ λG(g(x))
dG(x)

dx
∝
(

fX(x)

(
dG(x)

dx

)2
)1/3

(2.27)

The resulting distortion is that of an optimal quantizer over G. Assuming for clarity that the
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range of G is [0, 1],

E [D] =
1

12
2−2R‖fG(g)‖1/3

=
1

12
2−2R

∥∥∥∥
fX(G−1(g))

dG/dx(G−1(g))

∥∥∥∥
1/3

=
1

12
2−2R

[∫ (
fX(x)

dG/dx(x)

)1/3
dG

dx
dx

]3

=
1

12
2−2R

∥∥∥∥∥fX(x)

∣∣∣∣
dG

dx
(x)

∣∣∣∣
2
∥∥∥∥∥

1/3

(2.28)

Eqs. 2.27 and 2.28 are identical to Eqs. 2.3 and 2.3, respectively.

Variable-Rate (Entropy-Constrained) Quantization:

A uniform quantizer over the range of G is high-rate optimal when entropy coding is employed. This

induces a non-uniform quantizer on X with interval spacing

∆X(x) ∝ ∆G(G(x))

∣∣∣∣
dG

dx

∣∣∣∣ (2.29)

As with the fixed-rate scenario, this quantizer will achieve the optimal distortion over G:

E [D] =
1

12
2−2R+2h(G)

=
1

12
2−2R+2h(X)+2E[log

2
dG/dX] (2.30)

where we have made use of “derived entropy” from a coordinate transformation, as described in [30].

Once again, notice how this solution matches that of Sec. 2.2.

2.C Derivation of High-Resolution Functional Distortion

XN
1 is a random vector with distribution fX(xN

1 ) supported on [0, 1]N , and G is a bounded function

differentiable almost everywhere. Suppose each component of XN
1 , Xi, is quantized at resolution Ki

using normalized quantization profile λi(xi). We obtain the high-rate functional distortion, defined

as E
[
|G(X) − G(X̂)|2

]
, in terms of λi, fX , and Ki.

We start by looking at a single quantization cell, S ⊂ [0, 1]N , with centroid yN
1 . Because each
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component is quantized independently, S is a rectangular region of length ∆i = K−1λi(yi)
−1 on the

ith side. The high-rate assumptions A1-A3 tell us that within S the distribution fX(xN
1 ) is roughly

uniform and the function G is approximately affine. Quantitatively, we replace G with its Taylor

approximation around yN
1 :

G(xN
1 ) ≈ G(yN

1 ) +

N∑

i=1

∂G(xN
1 )

∂xi

∣∣∣∣
xi=yi

(yi − xi). (2.31)

Since E [G(X)|X ∈ S] = G(yN
1 ), the midpoint yN

1 may be chosen as the reconstruction point X̂S .

The conditional distortion is then given by the variance of G within S:

var(G(X) | X ∈ S) = E




(

N∑

i=1

∂G

∂Xi

∣∣∣∣
X̂S

(yi − Xi)

)2

| XN
1 ∈ S





=

N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2

E
[
(yi − xi)

2 | XN
1 ∈ S

]

=

N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2
∆2

i

12

=

N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2
1

12K2
i λ2

i (X̂S)
(2.32)

The expectation of Eq. 2.32 across all quantizer cells S is the total distortion.

E [dG] =
∑

S

P (S)

N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2
1

12K2
i λ2

i (X̂S)

=
∑

S

fX(X̂S)

(
N∏

i=1

∆i(S)

)
N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2
1

12K2
i λ2

i (X̂S)

=
∑

S

(∫

xN
1
∈S

fX(xN
1 )dxN

1

)
N∑

i=1

(
∂G

∂Xi

∣∣∣∣
X̂S

)2
1

12K2
i λ2

i (X̂S)
(2.33)

The slope of G and the point density λi are both roughly constant throughout quantization cell

S. Hence, we may absorb the slope and density terms into the integral:

E [dG] ≈
∑

S

∫

xN
1
∈S

fX(xN
1 )

N∑

i=1

(
dG

dXi

∣∣∣∣
xN
1

)2
1

12K2
i λ2

i (x)
dxN

1 (2.34)
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Since the cells S cover the support of fX(x), we may remove the summation
∑

S by expanding

the domain of integration.

E [dG] ≈
N∑

i=1

1

12K2
i

∫

xN
1

(
dG

dXi

∣∣∣∣
xN
1

)2

λ−2
i (xi)dxN

1

=

N∑

i=1

1

12K2
i

E




(

dG

dXi

∣∣∣∣
xN
1

)2

λ−2
i (xi)



 (2.35)

For convenience, we define g2
i (xi) as the expected squared partial with respect to Xi:

g2
i (xi) = E

[(
dG

dXi
|XN

1

)2

| Xi = xi

]

This completes the decoupling of the distortion expression into N terms for the N source components.

E [dG] ≈ 1

12

N∑

i=1

E
[
g2

i (xi)K
−2
i λ−2

i (xi)
]

(2.36)

2.D Comparison with Centralized Coding

The Slepian-Wolf theorem claims that the lossless performance of centralized encoding may be

matched by distributed encoding. Does this statement hold true for functional quantization as well?

If the function, G, is precisely known to the encoders, then in the centralized case G(XN
1 ) may

be directly quantized. All bits may be put towards the quantization of G, leading to a 2−2NR rate

dependence — in stark contrast to the distributed scenario’s 2−2R.

However, we may also compare to the scenario described by Bucklew [23], where the encoder

is only aware of a distribution of possible function Gj over some index set j ∈ J . The centralized

performance in this case is given by

Dc = L2−2R+h(XN
1

)+
∑N

i=1
E[log2

|dG(xN
1

)/dxi|
2]

where L is a constant polytope shape-gain factor. The ratio in distortion is found to be

D/Dc = 12L2−2
∑N

i=1
E[log

2
|dG/dxi|−E[log

2
|dG/dxi||Xi]] (2.37)
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We observe several points about this ratio:

1. D is greater than or equal to Dc, since M is less than or equal to 1/12 and E [log2 |dG/dxi|]

is greater than or equal to E [log2 |dG/dxi| | Xi], by concavity ∩ of the log function.

2. When G is almost everywhere a linear function of the N source variables, D/Dc is the polytope

shape gain from vector quantization.

3. When G is an M -dimensional vector-valued function, |dG/dxi|2 is everywhere replaced by

∑M
j=1 |dG/dxi|2, and D/Dc is the polytope shape gain.

Finally, note that the quantitative result of Eq. 2.37 has been obtained in the more general

context of quadratic distortion measures by Linder et al. [28].
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Chapter 3

Junior Year: Scaling, Non-regular

Quantization, and Non-monotonic

Functions

3.1 Scaling Analysis

The use of high-resolution quantization gives us the power to derive analytical results in otherwise

intractable situations. This comes in very handy when we wish to analyze the behavior of functional

quantization systems as the number of sources grows arbitrarily large — one may simply leave N

as an unspecified parameter.

In this section, we observe how certain classes of functions behave under distributed functional

quantization. Sec. 3.1.1 considers quantization for several example functions. Striking scaling with

the number of sources, N , is observed and explained, before Sec. 3.1.2 generalizes this behavior to

a class of functions we call selective and symmetric.

3.1.1 The Maximum, the Median, and the Midrange

Assume the source, XN
1 , is i.i.d. uniform over [0, 1]N . We are interested in quantizing so as to

accurately represent a function of the source, G(XN
1 ). Both the fixed and variable rate versions of
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this problem are considered for different choices of G.

The Maximum

To illustrate the application of functional quantization, we consider a simple example: a user is

interested in the maximum of N samples of X , given by G(XN
1 ) = max({X1, X2, . . . , XN}).

For either fixed-rate or entropy-constrained quantization, the first key computation is to deter-

mine the quantity g2
i (x), the expected squared partial with respect to source variable Xi. From the

symmetry of G, we may assert that g2
i is independent of i. For notational convenience, consider

i = 1.

The partial derivative of G(x1, x2, . . . , xN ) with respect to x1 is 1 where x1 ≥ max({x2, x3, . . . , xN})

and 0 otherwise. The expectation that defines g2
1(x) is thus the expectation of an indicator function

of the event X1 ≥ max({X2, X3, . . . , XN}), so

g2
1(x) = P (X1 ≥ max({X2, X3, . . . , XN}) | X1 = x) (3.1)

=

N∏

i=2

P (X1 ≥ Xi | X1 = x) (3.2)

= xN−1. (3.3)

We may now obtain the optimal quantization performance.

Optimal Fixed-Rate Quantization. According to Eq. 2.3.1, λi(x) ∝ x(N−1)/3 for optimal

fixed-rate quantization. Upon correct normalization of this density (to integrate to 1), we have the

exact relation

λi(x) = 1
3 (N + 2)x(N−1)/3.

See Fig. 3-1 for λi(x) at different dimensionalities. Note how it reflects our intuition: a greater

density of points is assigned to values more likely to affect the max. To obtain the distortion that
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Figure 3-1: Optimal fixed-rate max quantizers for several values of N (number of sources)

results from this choice of density, we turn to Eq. 2.15. Given g2
i (x), D evaluates to

D =
N

12
2−2R/N

(∫ 1

0

x(N−1)/3

)3

dx (3.4)

=
N

12
2−2R/N

(
3

N + 2
x(N+2)/3

∣∣∣
1

0

)3

(3.5)

=
1

12
2−2R/N 27N

(N + 2)3
(3.6)

(3.7)

For N = 1, where G(X) = X , observe that the optimal density reduces to λ = 1 and that the

resulting distortion is 1
122−2R, as expected. Thus, we can see explicitly that ordinary quantization

is a special case of the functional formulation.

Optimal Variable-Rate Quantization For the variable rate case, the optimal quantizer point

density is proportional to gi = x(N−1)/2. We normalize λi to 1, as in the fixed-rate scenario:

λi(x) =
N + 1

2
x(N−1)/2. (3.8)

Fig. 3-2 depicts this density for different values of the dimensionality. At a qualitative level, λi is not
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Figure 3-2: Optimal max variable-rate quantizers for several values of N .

strikingly different between the fixed and variable rate scenarios; they both demonstrate the same

emphasis on larger x, and both become increasingly concentrated with increasing dimensionality N .

The distortion, obtained by Eq. 2.19, draws a much more noticeable line between fixed and

variable-rate constraints (see Fig. 3-3 for an illustration of this).

D =
N

12
2−2R/N+E[log2

g2

i ] (3.9)

=
N

12
2−2R/N+(N−1)E[log

2
x] (3.10)

=
N

12
2−2R/N−(N−1) log

2
e (3.11)

=
N

12
2−2R/Ne−N+1 (3.12)

Once again, observe that both the distortion and density reduce to the appropriate form when N = 1.

Comparison with Ordinary Quantization We saw before (Sec. 2.2) that ordinary quantiza-

tion can be far from optimal in terms of functional MSE. This can be demonstrated quantitatively by

comparing functional and ordinary quantizers for the max function. How much better do functional

quantizers perform?
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Figure 3-3: The ratio of functional to ordinary distortion for the max, as a function of dimensionality
(log scale). Note that while the fixed-rate quantizer has a 1/N2 falloff, the distortion in the variable-
rate case improves exponentially.

Ordinary quantization of a uniform [0, 1]N source would result in a uniform quantizer. In the

language of the high-rate approximation, λi = 1 for any component Xi. Eq. 2.12 then tells us the

distortion is

D =
1

12

N∑

i=1

1

K2
i

E
[
g2

i (Xi)
]

(3.13)

By the symmetry of both the source distribution and the function with respect to the source

variables, the rate must split evenly between the dimensions: log2 Ki = R/N . The distortion may

then be written using the gradient operator, ∇G:

D =
1

12
2−R/NE

[
|∇G|2

]
(3.14)

To find the E
[
|∇G|2

]
quantity for the max, we recognize the following: at almost any point

xN
1 ∈ [0, 1]N the gradient vector is 1 in the largest of its components and 0 in each of the others.

Therefore, |∇G|2 is 1 with probability 1, and the distortion is

D =
1

12
2−R/N (3.15)
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If the number of bits per source variable, R/N , is held constant, the ordinary distortion is

independent of the sample size. This lies in stark contrast to the fixed-rate functional quantizer,

whose distortion falls with the square of the dimension. Even more striking is the variable-rate

quantizer, whose distortion falls exponentially with the dimension (Fig. 3-3).

But where does this latter improvement come from?

Source of Improvement The max function — as an order statistic — is selective, in that it

selects one of its inputs to be the output. The distortion of the ordinary quantizer, therefore, does

not depend on the dimensionality; each component is quantized in the same manner.

However, the variance of the max itself falls with the square of the dimensionality. The fixed-

rate quantizer exploits this by crowding points towards the region of interest. For a fixed resolution,

increasing N will widen interval sizes for smaller values of Xi and shorten them for larger Xi. The

result is an increasingly skewed probability mass function for the quantized symbols X̂i. The fixed

rate quantizer’s output entropy, for instance, is seen to fall linearly with N :

H(X̂i) ≈ h(Xi) + log2 Ki + 2E [log2 λi] (3.16)

= h(Xi) + log2 Ki + 2E
[
log2 N + 2 − log2 3 + log2 x(N−1)/3

]
(3.17)

= h(Xi) + log2

(
Ki

(N + 2)2

3

)
− N − 1

3
log2 e (3.18)

Variable rate quantization takes advantage of this fact via entropy coding. The jump from 1/N2

with the fixed-rate quantizer to e−N with the variable-rate has little to do with the slightly different

choice of λi, and everything to do with being able to increase the resolution K via entropy coding.

The Median

We now consider a decoder interested in computing the median of N i.i.d. uniform samples of a

source, XN
1 . For simplicity, restrict N to be odd valued with N = 2M +1; the median is then defined

as the (M +1)th order statistic. We first determine the performance of an ordinary (non-functional)

quantizer.

Ordinary Quantization. Let xN
1 be a point in the N -dimensional space, and let xi denote

its ith coordinate. Since the median is an order statistic, G(xN
1 ) = xi for some i. Therefore,
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dG/dxj = δij within some neighborhood of xN
1 , and |∇G|2 = 1. From this and Eq. 3.14, we have

the distortion of the ordinary quantizer:

DGO(R) =
1

12
2−2R (3.19)

The absence of a dependence on N fits with our intuition: the median simply takes one of the source

values, so the dimensionality should not affect the quantizer’s accuracy.

Fixed-Rate Functional Quantization. To determine the fixed-rate functional quantizer’s

distortion, we must first obtain g2
i (xi). Given a point xi ∈ [0, 1], xi is either itself the median of

xN
1 or (differentially or locally) it has no bearing on the value of the median. Therefore, g2

i (x) =

P
(
G(XN

1 ) = x | Xi = x
)
. This probability may be evaluated combinatorially in terms of M = N−1

2 ,

and the cumulative distribution function of X , FX(x). For x to be the median, M of the other sources

must be greater than x, with the remaining M less than x. There are




2M

M


 possible selections of

which sources are above or below. The probability of each of these choices is FX(x)M (1−FX(x))M ;

the first term is the probability that M i.i.d samples will fall below x, and the second term is the

probability that M will exceed x. Summing the probability of all choices leading to G(XN
1 ) = x, we

have

g2
i (x) =




2M

M


FX(x)M (1 − FX(x))M .

For a uniform [0, 1] distribution, FX(x) = x. This yields an optimal point density λi ∝ xM/3(1−

x)M/3 and total distortion

DGF (K, M) =
N

12K2

∥∥∥∥∥∥∥




2M

M


xM (1 − x)M

∥∥∥∥∥∥∥
1/3

(3.20)

The point density reflects our intuition that more quantizer intervals should be assigned to the

more important middle ground — a fact that becomes increasingly true as the dimensionality is

increased. Observe the increasingly concentrated point density in Fig. 3-4.

We will now demonstrate that the distortion expression of Eq. 3.20 falls with 1/N . First, we use

integration by parts and Stirling’s approximation to obtain the integral
∫ 1

0
xK(1−x)Kdx. It can be
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Figure 3-4: Optimal fixed-rate median quantizers for N = 10, 20, 30, 40, and 50 sources. Note how
the quantizers become increasingly concentrated with N .

shown that iterated integration by parts reduces this integral to the form

∫ 1

0

xK(1 − x)Kdx =

K+1∑

i=1

K!

(K + i)!
xK+i(1 − x)K+1−i

]1

0

(3.21)

=
K!2

(2K + 1)!
(3.22)

Factorials are messy, so we convert them to exponentials via Stirling’s formula: n! =
√

2πn
(

n
e

)n
eλn ,

where the error term 1
12n+1 < λn < 1

12n decays to zero. Applying this to our previous equation, we

can obtain the L1/3 norm referred to in the distortion equation:
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∫ 1

0

xK(1 − x)Kdx ≈

(√
2πK K

e

)2

√
2π(2K + 1)

(
2K+1

e

)2K+1
(3.23)

=

√
πe

2
√

K
2−2K (3.24)

∥∥∥∥∥∥∥




2M

M


 xM (1 − x)M

∥∥∥∥∥∥∥
1/3

≈




2M

M



[(√

3π
e

2

) 2−2M/3

M1/2

]3
(3.25)

=




2M

M



(√

3π
e

2

)3 2−2M

M3/2
(3.26)

We may apply Stirling once more to the combination term:

D =
N

12
2−2R




2M

M



(√

3π
e

2

)3 2−2M

M3/2
(3.27)

=
2M + 1

12
2−2R 2M !

M !2

(√
3π

e

2

)3 2−2M

M3/2
(3.28)

≈ 2M

12
2−2R

√
4πM(2M/e)2M

2πM(M/e)2M

(√
3π

e

2

)3 2−2M

M3/2
(3.29)

=
2M

12
2−2R 1

M2

(√
3π

e

2

)3

(3.30)

∝ 1

M
(3.31)

In contrast, since the median simply takes on one of the source values, the ordinary distortion

DGO(K) does not even depend on M (Eq. 3.19). The ratio between these — which is independent

of K — is depicted in Fig. 3-5.

Notice that the variance of the median — and with it, the distortion of a fixed-rate centralized

encoder — also falls with 1/M . In this sense, fixed-rate distributed quantization is order-optimal in

M (for a system that involves no coding). This order optimality does not carry over to K, however:

for centralized encoding all N log2 K bits available can be directed towards quantizing the source

that is the median. Distortion can therefore fall at 2−2NR = K−2N , as opposed to the distributed

2−2R = K−2.

Variable-Rate Functional Quantization. For the variable-rate scenario, the optimal quan-
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Figure 3-5: Ratio of distortion between functional and ordinary quantizers for the median. The top
line is the fixed-rate performance, and the bottom is variable-rate.

tization point density is proportional to the sensitivity profile, λi ∝ gi(xi), and the distortion is

given by D = N
122−2R+2h(X)+

∑N
i=1

E[log2
g2

i (Xi)]. As with the fixed-rate scenario, the point density

becomes increasingly peaked towards the middle of the range. How does the distortion compare?

We first note, for convenience, that the minimum distortion may be rewritten in the natural base

as D = N
12e−2R+2h(X)+

∑N
i=1

E[ln g2

i (Xi)]

For the uniform source distribution, we know that

g2
i (x) =




2M

M


 xM (1 − x)M

We can then calculate the following

E
[
ln g2

i (Xi)
]

=

∫ 1

0

lnxMdx +

∫ 1

0

ln(1 − x)Mdx + ln




2M

M




= 2M

∫ 1

0

lnxdx +

2∑

i=1

M ln i − 2

M∑

i=1

ln i

= −2M +
2M∑

i=1

ln i − 2
M∑

i=1

ln i
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The summations can be approximated by integrals; as it happens, we are making use of an

intermediate step in Stirling’s approximation.

E
[
ln g2

i (Xi)
]

≈ −2M +

∫ 2M

0

ln τdτ − 2

∫ M

0

ln τdτ

= −2M + 2M ln 2M − 2M lnM

= −2M + 2M ln 2

Plugging into the distortion expression, we have that

D ∼ Ne−2M+2M ln 2

= N
(e

2

)−2M

As with the maximum function, we see exponential reduction in distortion with N (illustrated

in Fig. 3-5). One may attribute this to similar factors: while the point density did not change

appreciably between fixed- and variable-rate, the use of entropy coding permitted a much higher

resolution.

We also note that this geometric falloff is not restricted to situations where fX(x) is the uniform

distribution. Consider the more general symmetric distribution case (fX(x) = fX(1−x)). Distortion

is seen to instead take the form

D ∼ Nexpe

{
2M

∫ 1

0

fX(τ) ln FX(τ)dτ + 2M ln 2

}

which also involves a geometric falloff.

The Midrange

We now consider a scenario identical to the above, but with the maximum function replaced by

the midrange (the source still being uniform i.i.d.). The midrange is defined as the average of the

minimum and the maximum components of xN
1 . No parity restriction on N is necessary to obtain

clear results. We start by obtaining the ordinary quantizer’s distortion function, DGO(R, N).

For an arbitrary point xN
1 ∈ [0, 1]N , we have G(xN

1 ) = 1/2(xmin + xmax), where xmin and
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xmax are the minimal and maximal coordinates of xN
1 . Therefore dG/dXi = 1

2δi min + 1
2δi max and

|∇G|2
xN
1

= 1/2. Since this holds almost everywhere, E
[
|∇G|2

xN
1

]
= 1/2 and the ordinary quantizer’s

distortion is similar to that for the median:

DGO(R, N) =
1

24
2−2R (3.32)

To compute the analogous quantity for the functionally optimized quantizer, we first turn our atten-

tion towards the characteristic quantity g2
i (x). If xi is not the minimum or the maximum, dG/dXi is

zero; otherwise dG/dXi is 1/2. The latter situation occurs with probability P
(
max(XN

1 = x) | Xi = x
)
+

P (min(Xn
1 = x) | Xi = x), since the minimal and maximal events are disjoint almost everywhere.

Therefore,

g2
i (x) = 1

4 (P (max(Xn
1 = x) | Xi = x) +P (min(Xn

1 = x) | Xi = x))

= 1
4 (FX(x)N−1 + (1 − FX(x))N−1). (3.33)

The term FX(x)N−1 represents the probability that all sources but Xi fall below x; likewise, (1 −

FX(x))N−1 is the probability that x is the maximal element. The fixed-rate distortion from this

expression is

DGF (K, N) =
N

12K2

∥∥∥∥
1

4
(FX(x)N−1 + (1 − FX(x))N−1)

∥∥∥∥
1/3

(3.34)

For the uniform [0, 1] source, FX(x) = x. For large values of N , g2
i (x) is dominated by (1−FX(x))N−1

when x < 1/2, and by FX(x)N−1 when x exceeds 1/2. We may then approximate the integral as
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DGF (K, N) ≈ N

12K2

1

4

(∫ 1

1/2

FX(x)(N−1)/3dx +

∫ 1/2

0

(1 − FX(x))(N−1)/3dx

)3

=
N

48K2

(∫ 1

1/2

x(N−1)/3dx +

∫ 1/2

0

(1 − x)(N−1)/3dx

)3

=
N

24K2

(∫ 1

1/2

x(N−1)/3dx

)3

=
N

6K2

(
3

N + 2
(1 − (1/2)(N+2)/3)

)3

≈ N

6K2

(
3

N + 2

)3

= 9N2−2R 1

2(N + 2)3

For large values of N , this follows an approximate 1/N2 falloff, in contrast to the constant

distortion of the ordinary quantizer; see Fig. 3-7 for the exact behavior. When we examine the

optimal point densities (Fig. 3-6) we find them to be increasingly concentrated towards the edges

as the dimensionality increase. Since the midrange is calculated from the min and the max, this is

expected.

The variance of the midrange is known to fall with 1/N2 [31] [32]. As with the median, this

implies that a fixed-rate centralized encoder’s dependence on N carries into the distributed scenario.

We may also compute the distortion-rate behavior for the variable-rate scenario.

D =
N

12
2−2ReE[ln g2

1
(x1)] (3.35)

=
N

12
2−2Re2

∫
1/2

0
lnxN−1dx (3.36)

=
N

12
2−2Re2(N−1)

∫
01/2 lnxdx (3.37)

=
N

12
2−2Re(N−1)(ln 1/2−1)dx (3.38)

= 2−2R N

12

(e

2

)1−N

(3.39)

Note, once again, the differing rates of convergence. Additionally, observe in Fig. 3-6 that the

optimizing point densities are not significantly different between fixed and variable rate; as before
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Figure 3-6: Optimal fixed and variable rate midrange quantizers for 10 disjoint sources

the improvement (drawn in Fig. 3-7) may be attributed to the entropy coding block.

3.1.2 Selective/Symmetric Functions

In the above analysis, we came to notice two curious trends in the performance of functional quan-

tization with the median, midrange, and maximum:

1. The functional distortion of a fixed-rate quantizer fell at the same rate as the variance of

the function. The median has variance ∼ 1
N and fixed-rate distortion ∼ 1

N 2−2R, while the

midrange/max have variance ∼ 1
N2 and fixed-rate distortion ∼ 1

N2 2−2R.

2. The functional distortion of a variable-rate quantizer fell exponentially with N for all the cases

considered.

At a higher level, we observe that as the functions become increasingly deterministic, the error

of the functional quantizers falls correspondingly. Can this relationship be generalized? Perhaps if

we consider the set of all order-statistics, similar behavior will play out. Indeed, this turns out to be

the case: for any finite linear combination of order statistics (central or extremal) for uniform i.i.d.

sources, both observed trends continue to hold.

As it happens, this class of functions can be generalized even further. Let us refer to a function

G(xN
1 ) as being symmetric if G(xN

1 ) = G(yN
1 ) whenever the vector yN

1 is a permutation of xN
1 .
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Figure 3-7: The distortion reduction from functional quantization for the midrange. Top curve is
fixed-rate and bottom is variable-rate.

And let us refer to G(xN
1 ) as being selective if G(xN

1 ) = xI(xN
1

); that is, G “selects” one of the

components of xN
1 . Clearly, any order statistic is a selective function and any function of order

statistics is symmetric.

We may then derive the sensitivity g2
i (xi) for selective and symmetric G. For any point xN

1 , the

partial derivatives are given by

dG(xN
1 )

xi
=





1 if G(xN
1 ) = xi

0 otherwise





This then allows us to state that g2
i (x) = P

(
G(XN

1 ) = x | Xi = x
)
. Combining the symmetry of

G with Bayes’ rule, we observe that:

P
(
G(XN

1 ) = x | Xi = x
)

=
P
(
Xi = x | G(XN

1 ) = x
)
fG(x)

fX(x)
(3.40)

=
1

N

fG(x)

fX(x)
(3.41)
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Since we are restricting attention to the case of a uniform source distribution, this reduces to

g2
i (x) =

1

N
fG(x) (3.42)

(note that fG(x) depends on N). For fixed-rate functional quantization, this yields a distortion

D ∝ ‖fG‖1/32
−2R

At first glance, this is both encouraging and disappointing: while we have a very simple depen-

dence on fG, it is not the variance that carries through but instead the L1/3 norm. At second glance,

we notice some similarities between the L1/3 norm and the variance of a unimodal (single “peaked”)

distribution.

1. Scaling Y = 2X : ‖fY ‖1/3 = ‖2f(x/2)‖1/3 = 4‖f(x)‖1/3, just as var[2f(x/2)] = 4 var[f(x)].

2. Shifting Y = X + α: ‖fY ‖1/3 = ‖f(x − α)‖1/3 = ‖f(x)‖1/3, just as var[f(x − α)] = var[f(x)].

3. Example: Uniform distribution of width ∆: ‖f(x)‖1/3 ∝ ∆2, just as var[f(x)] ∝ ∆2.

4. Example: Gaussian with standard deviation σ has 1/3-norm proportional to σ2, just as

var[f(x)] = σ2. Demonstration:

‖f(x)‖1/3 =

[∫ (
1

σ
√

2π
e−x2/2σ2

)1/3

dx

]3

=

[∫
1

σ1/3(2π)1/6
e−x2/6σ2

dx

]3

=

[
σ2/3(2π)5/6

√
3

∫
1√

3σ
√

2π
e−x2/6σ2

dx

]3

= σ2(2π)5/2
√

3
3

∝ σ2

Note, however, that the L1/3 norm is significantly different from the variance in that it is invariant

to permutation of the coordinate system x. A function like the one at the top of Fig. 3-8 might

result in the same norm as the one at the bottom, although the two have vastly different variances.

However, if we constrain our attention to the unimodal distributions, such as those of the order
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Figure 3-8: Both distributions have identical L1/3 norms, but the top distribution has smaller
variance.

statistics, it is not unreasonable that the fixed-rate functional distortion — given by the L1/3 norm

of the distribution — scales with N in the same manner as the variance.

The exponential falloff of the variable rate results are in some ways even more fascinating than

the proportional-to-variance behavior of fixed-rate. Using Eq. 3.42, we can write the variable-rate

distortion in terms of the KL-divergence between fG and fX :

D =
N

12
2−2R22h(X)+E[log2

g2

i ] (3.43)

=
N

12
2−2R22h(X)+E[log2

1

N +log
2

fG(x)] (3.44)

∝ N2−D(fG‖fX ) (3.45)

For distribution fX that is uniform over [0, 1], this reduces to D ∝ N2D(fG‖fU ), where fU is the

uniform distribution. In other words, the more sharply nonuniform fG becomes, the more negative

the distortion exponent grows. For the case of the order statistics, this exponent falls linearly; it is

from this that we observe the exponential falloff with N .
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3.2 Generalizing from the Monotonic Functions

In Chapter 2, our major results relied on a strict constraint on the functions considered: G(XN
1 )

must be monotonic in each of its variables. Our motivation in enforcing this requirement was to

guarantee the optimality of the quantizers we designed. Since the high-resolution description only

applies within the space of regular quantizers, our optimization procedure produces the optimal

regular quantizer. When G is monotonic, the optimal quantizer can be trivially shown to be a

regular; it is the restriction of G that ensures optimality amongst all quantizer designs.

To illustrate why this isn’t necessarily true for non-monotonic functions, we introduce a simple

one-dimensional example. Suppose X is uniformly distributed over [0, 1] and that G is a simple non-

monotonic function: G(x) = 1
2− | x − 1

2 |. If we blindly apply the regular functional quantization

machinery seen in the previous chapter to G, we will find that G is fully characterized by its squared

derivative, g2(x) = 1. This leads to a uniform quantizer over [0, 1], for both fixed and variable

rate scenarios (top of Fig. 3-9). But if the goal is to recreate G, we may save an entire bit of

communication by quantizing | X − 1
2 |. This can be interpreted as the introduction of non-regular

quantization intervals: a single codeword corresponds to the union of an interval to the left of

x = 1/2 and one to the right (Fig. 3-9).

For a single dimension, any lack of monotonicity leads to a non-regular optimal quantizer. While

this seems to affirm our earlier restriction to the monotonic functions, it turns out that a similar

result does not hold for higher dimensions. Fig. 3-10 demonstrates that a function can be non-

monotonic in each of its variables and still be optimally quantized by a regular quantizer. For the

version of the function that is aligned with the axes (top), there is no loss from grouping the two

edges of the kink in x1 together, since the function cannot distinguish between them. When it is

rotated, however, any such grouping in x1 will introduce errors. For sufficiently high rate, these

errors will outweigh the extra bits saved from the grouping.

So if monotonicity is too strict of a requirement, what is more appropriate?

In this section, we consider a much broader class of functions — those that are “equivalence-free,”

and demonstrate that regular quantization is asymptotically optimal for them. To do this, we first

construct a model for non-regular quantization that allows for high-rate analysis. Next, this model

is applied to functions that satisfy our definition for equivalence-freedom, and it is demonstrated

to yield regular quantizers in the high-rate limit. Finally, we use the model to construct optimal
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Figure 3-9: If the function G is not monotonic, non-regular quantization may be optimal. Note how
the form of the binning does not change as the resolution is increased — this is a strong hint that
a resolution-independent non-regular description is possible.
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x1

x1

x2

x2

G(x1, x2)

G(x1, x2)

Figure 3-10: A function G of two variables is shown in both graphs. The top G (separable) is best
quantized by a non-regular quantizer, while for the bottom (a rotated version of the top G) a regular
quantizer is asymptotically optimal. This is due to the bottom function being “equivalence-free.”
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nonregular quantizers for functions that are not equivalence-free.

3.2.1 High-Rate Non-Regular Quantization

At the heart of our model is a rather simple observation: non-regular quantization cells can be seen

as the union of regular quantization cells. Consider the previous example of non-regular quantization

for a nonmonotonic function. Suppose the rate constraint was for a 1-bit quantizer. Then one of

the quantizer cells would be, for instance, the region [0, 1
4 ]∪ [34 , 1], which is the union of two regular

cells. How can this union-of-intervals picture be incorporated into a description of a non-regular

quantizer?

To approach this problem, we again turn to behavior demonstrated in the example. As the

resolution is increased from 1 to 2 bits, the aforementioned cell splits into two. Each of its regular

subcells is halved by the increased resolution, but the linkage between cells to the left of x = 1/2

and those to the right remains unaffected (Fig. 3-9).

This suggests that non-regular quantization can be seen as a two-step process. First, regu-

lar quantization is performed on the input data, producing a discrete variable X̃. After this, a

“binning” process is performed from X̃ to the non-regularly quantized X̂. Each value of X̂ may

correspond to multiple values of X̃ and, therefore, to a union of regular intervals in the domain

of X . Unfortunately, relying on a discrete-to-discrete mapping for a high-resolution description is

at odds with the continuous-approximation nature of high-resolution analysis. In other words, we

would prefer that non-regular quantizer description and design remain in the continuous realm.

Searching for inspiration, we turn to the model of compander-based quantization. This concept,

closely linked to single-dimensional functional quantization, involves the application of an invertible

continuous function w to X , before performing uniform quantization on w(X). This process is

reversed for decoding. The end result is a nonuniform quantizer implemented through appropriate

selection of a companding function w. For every point density λ, there is a companding function

w(X) that brings about the same high-resolution quantizer as λ upon being uniformly quantized

and inverted at the decoder.

Traditional companding techniques can be adapted to implement non-regular quantizers. Nor-

mally, w is restricted to be monotonic, continuous, and possess bounded derivative. We discard

these conditions and replace them with the following definition.
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X w(X) ŵ = Q(w) X̂(ŵ) G(X̂)

Figure 3-11: Construction for non-regular quantization. A generalized companding function w(X)
is applied to data prior to quantization.

Definition A function w is a generalized compander if it is piecewise monotonic with a finite number

of pieces, continuous, and possesses bounded derivative over each piece.

The restriction of a finite number of pieces is a limitation on the types of non-regular quantizers that

can be captured with this model: those for which every non-regular cell is a finite union of regular

cells. It is not clear to us whether this is a necessary restriction, or if proofs of our results can be

generalized to include it.

With w in place, we have the quantization structure shown in Fig. 3-11. The compander w

can be seen as not only sizing the quantization intervals, as an ordinary compander would, but also

binning them together to provide for non-regularity. Unlike a traditional binning function, w acts

over a continuous domain of source values into a continuous range of bins. To illustrate how w

may represent non-regularity, let us return to the example from before. There are many choices

of w that can implement the left-right binning that we seek; we choose the most obvious for this

particular case, w(x) = 2G(x). One may observe that this results in points to the left of 1/2 being

grouped with points to the right. Upon performing uniform quantization of w(X), the appropriate

non-regular quantizer can be obtained, as demonstrated in Fig. 3-12.

The generalized compander w captures the limiting non-regularity of a quantization scheme. As

the resolution is raised, the binning of the discrete values more closely resembles the continuous

binning represented by w. At the same time, w is significantly more than just a binning map: its

slope represents the relative size of the bins. For instance, if our function of interest over [0, 1] was

instead

G(x) =





4x
3 if x < 3

4

4 − 4x if x ≥ 3
4

the subcells that compose each quantization cell would no longer be equally sized, as displayed in

Fig. 3-13.
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X

w(X)

Figure 3-12: Example of non-regular quantization through a generalized companding function w(X).
Observe how the rate may be changed without affecting the fundamental binning structure, enforced
by w(X).

X

w(X)

Figure 3-13: Example for a non-uniform sloped companding function w(x). Notice how the relative
sizes of quantization subcells are dictated by the relative slope of w(x).
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3.2.2 Equivalence-Free Functions

We now define a (very broad) class of functions for which regular quantization is optimal at suffi-

ciently high resolutions. In the next subsection, the binning/companding function w(x) will be used

to accommodate functions outside of this class.

To start with, consider the separate quantization of the N components of XN
1 ∈ [0, 1]N so as to

minimize the mean squared error of a function G(XN
1 ) (i.e., the standard N -dimensional functional

quantization problem). We will focus on the design of one of the quantizers — that of X1, for

example.

Let A ⊂ [0, 1] be some subset of the range of X1. We then make the following definitions:

1. Definition The conflict probability of A is p(A) = P
(
var(G(XN

1 ) | X1 ∈ A, XN
2 ) > 0

)
, the

probability that a user observing G can notice a difference between the elements of A.

2. Definition If p(A) is zero, we say the elements of A are functionally equivalent, and that G

possesses an equivalence. The former is symbolically represented as ai ≡ aj for ai, aj ∈ A, and

can easily be seen to justify its christening as an equivalence relation.

Our result is that non-regular quantization is asymptotically suboptimal for equivalence-free

functions. Specifically, non-regular quantization will be found to introduce a nonzero lower bound

on the distortion, independent of rate. We show this formally through the use of the w construction

of the previous subsection.

Let G : [0, 1]N → [0, 1] be equivalence-free and smooth (bounded gradient), and let XN
1 be

distributed over [0, 1]N according to fXN
1

(xN
1 ). Now suppose that companding functions wN

1 are

applied to XN
1 to generate the binned values Y N

1 . Y N
1 are then each quantized by quantizers

(QYi)
N
1 described by point density functions λN

1 and resolutions Ki. Quantization of Y N
1 induces a

quantization of XN
1 , denoted by (QXi)

N
1 . The total distortion of the non-regular quantizers (QY i)

N
1

is

DTOT = E
[
var[G(XN

1 ) | (QY i)
N
1 ]
]

Definition We define regularity indicator function I(xi) in the following manner. The point xi ∈

[0, 1] is contained within a quantization cell Q−1
Xi

(xi) that can be broken into a finite union of regular

intervals ∪M
j=1Sj . I(xi) returns the index, j, of the interval that xi belongs to.
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Note that I(xi) is the information gap between a regular and non-regular quantizer. We exploit

this fact to reduce the dimensionality of our problem.

Lemma 3.2.1 Let (Q̃Xi)
N
1 be the N quantizers of XN

1 that are each potentially non-regular. Let

D̃TOT be the resulting distortion. D̃TOT is lower bounded by the distortion of quantizers (QXi)
N
1 for

which (QXi)
N
2 are regular quantizers and Q̃X1

= QX1
.

Proof Suppose the regularity indicators I(xi) for components i ∈ {2, . . . , N} are communicated to

the decoder in addition to the original quantization symbols (Q̃Xi(Xi))
N
1 . If the ith encoder quantizes

xi>1 into nonregular cell S = ∪M
j=1Sj , the indicator I(xi) tells the decoder that xi ∈ SI(xi). Since

the subcells Sj are regular, and since this result holds for arbitrary xi>1, the quantizers (QXi(Xi))
N
2

are all regular. We bound the distortion D̃TOT from the original quantizers with the distortion D

from the new ones by means of the law of total variance:

D̃TOT = E
[
var[G(XN

1 ) | (Q̃Xi)
N
1 , (I(Xi))

N
2 ]
]

+ E
[
var[E

[
G(XN

1 ) | (Q̃Xi)
N
1 , (I(Xi))

N
2

]
| (Q̃Xi)

N
1 ]
]

≥ E
[
var[G(XN

1 ) | (Q̃Xi)
N
1 , (I(Xi))

N
1 ]
]

(3.46)

= D (3.47)

We have lower bounded the total distortion of a quantizer that is potentially nonregular in each

of its N dimensions by the distortion of one that is nonregular in only the first dimension.

By this lemma, we may lower bound total distortion D̃ by the distortion D assuming each of the

quantizers (QXi)
N
2 is regular. No such assumption is made about QX1

.

Theorem 3.2.2 Let G be equivalence free. Then, if w−1(w(X)) has cardinality greater one with

nonzero probability, the total distortion possesses a positive, rate-independent lower bound for rate

R exceeding a constant R0.

Proof Consider a point y ∈ w([0, 1]). Since w is uniformly quantized, y is contained within a

quantization interval Q−1
Y1

(QY1
(y)), which gives rise to a potentially non-regular quantization cell

for X , w−1
1 (Q−1

Y 1(QY 1(y))). By definition, w−1
1 (y) is a set containing finitely many points; let us

enumerate these M points as w−1
1 (y) = {a1, . . . , aM}. We note that ai ∈ w−1

1 (Q−1
Y 1(QY 1(y))) for

any i ∈ {1, . . . , M}. Since the points ai are distinct, M is finite, and w1(x) has bounded derivative
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within each of a finite number of pieces, for a sufficiently high rate the quantizer cell over X ,

w−1
1 (Q−1

Y 1(QY 1(y))), reduces to a union of disjoint regular intervals over X — each containing one

of the points ai.

Let us consider the distortion within the quantization cell containing w−1
1 (y), and point xN

2 :

w−1
1 (Q−1

Y 1(QY 1(y))) × (Q−1
Xi(xi))

N
2 . Note that each of the sets Q−1

Xi(xi) is a regular interval.

D(y, xN
2 ) = var[G(XN

1 ) | X1 ∈ Q−1
Y 1(QY 1(y)), Xi>1 ∈ Q−1

Xi(xi)] (3.48)

Yet again, this may be bounded by the law of total variance — this time involving the indicator

function I(X1) for X1’s non-regular quantizer. To reduce notational complexity, we indicate the

quantization cell Q−1
Y1

(QY1
(y)) ×∏N

i=2 Q−1
Xi

(xi) by q(y, xN
2 ).

D(y, xN
2 ) = E

[
var[G(XN

1 ) | XN
1 ∈ q(y, xN

2 ), I(X1)]
]

+ var[E
[
G(XN

1 ) | XN
1 ∈ q(y, xN

2 ), I(X1)
]
| XN

1 ∈ q(y, xN
2 )]

≥ var[E
[
G(XN

1 ) | XN
1 ∈ q(y, xN

2 ), I(X1)
]
| XN

1 ∈ q(y, xN
2 )]

We now make use of G’s smoothness. Specifically, we take advantage of its derivative being

bounded:
∣∣∣dG(xN

1
)

xi

∣∣∣ < L for any i ∈ [1 . . .M ]. We also introduce the notation ∆i(x) for the width of

the quantizer interval in the ith quantizer containing coordinate x.
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D(y, xN
2 ) ≥ var[E

[
G(XN

1 ) | XN
1 ∈ q(y, xN

2 ), I(X1)
]
| XN

1 ∈ q(y, xN
2 )]

= var[E
[
G(aI(X1), x

N
2 ) + G(XN

1 ) − G(aI(X1), x
N
2 ) | XN

1 ∈ q(y, xN
2 ), I(X1)

]
| XN

1 ∈ q(y, xN
2 )]

= var[E
[
G(aI(X1), x

N
2 ) | XN

1 ∈ q(y, xN
2 ), I(X1)

]

+E
[
G(XN

1 ) − G(aI(X1), x
N
2 ) | XN

1 ∈ q(y, xN
2 ), I(X1)

]
| XN

1 ∈ q(y, xN
2 )] (3.49)

≥ var[G(aI(X1), x
N
2 ) | w1(X1) = y]

− var[E
[
G(XN

1 ) − G(aI(X1), x
N
2 ) | XN

1 ∈ q(y, xN
2 ), I(X1)

]
| XN

1 ∈ q(y, xN
2 )] (3.50)

≥ var[G(aI(X1), x
N
2 ) | w1(X1) = y]

− var[E
[∣∣G(XN

1 ) − G(aI(X1), x
N
2 )
∣∣ | XN

1 ∈ q(y, xN
2 ), I(X1)

]
| XN

1 ∈ q(y, xN
2 )] (3.51)

≥ var[G(aI(X1), x
N
2 ) | w1(X1) = y]

− var[E

[
N∑

i=1

∣∣∣∣∣

∣∣∣∣
dG

dxi

∣∣∣∣
XN

1

∆i(Xi)

∣∣∣∣∣ | XN
1 ∈ q(y, xN

2 ), I(X1)

]
| XN

1 ∈ q(y, xN
2 )] (3.52)

≥ var[G(aI(X1), x
N
2 ) | w1(X1) = y] − NL2 max

i∈[1,...,N ],x∈[0,1]
∆i(x)2 (3.53)

Taking the expectation of this quantity over all y ∈ w1([0, 1]) and all xN
2 ∈ [0, 1]N−1 yields a

bound for the total distortion:

DTOT ≥ E
[
var[G(aI(X1), X

N
2 ) | w1(X1) = Y ]

]
− NL2∆max(R) (3.54)

The second term in this expression decays to zero with increasing rate (the width of the largest

quantizer cell), while the first — a high-rate characteristic of the system — remains constant. We

demonstrate that the first is greater than zero if G is equivalence-free and w1 is non-one-to-one over

a set of nonzero probability.

Suppose the first term is, instead, zero.

0 = E
[
var[G(aI(X1), X

N
2 ) | Y ]

]
(3.55)

= P
(
var[G(aI(X1), X

N
2 ) | Y ] > 0

)
E
[
var[G(aI(X1), X

N
2 ) | Y, var[G(aI(X1), X

N
2 )] > 0]

]
(3.56)
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Since G is equivalence-free and w1 introduces non-regularity with nonzero probability,

P
(
var[G(aI(X1), X

N
2 ) | Y ] > 0

)
> 0

and (clearly)

E
[
var[G(aI(X1), X

N
2 ) | Y, var[G(aI(X1), X

N
2 )] > 0]

]
> 0.

Putting these together, we may obtain the desired contradiction:

E
[
var[G(aI(X1), X

N
2 ) | Y ]

]
≥ P

(
var[G(aI(X1), X

N
2 ) | Y ] > 0

)
E
[
var[G(aI(X1), X

N
2 ) | Y ]

]
(3.57)

≥ 0

This demonstrates that the first term is nonzero. Because ∆max(R) decays to zero monotonically

with rate, we may pick R0 such that

NL2∆max(R0) < E
[
var[G(aI(X1), X

N
2 ) | w1(X1) = Y ]

]
.

For R > R0, the following then holds true:

DTOT ≥ E
[
var[G(aI(X1), X

N
2 ) | w1(X1) = Y ]

]
− NL2∆max(R) (3.58)

≥ E
[
var[G(aI(X1), X

N
2 ) | w1(X1) = Y ]

]
− NL2∆max(R0) (3.59)

> 0 (3.60)

This proves the theorem.

The ramifications of this are striking: non-regular quantization introduces a nonzero lower bound

to the distortion of equivalence-free functions. This is clearly suboptimal if the rate is sufficiently

high; even the naive uniform quantizer possesses a 2−2R dependence! Therefore, for equivalence-free

functions the performance of non-regular quantization can be either improved upon or equalled by

regular quantization.

A grain of salt: note that this refers to the design of high-rate optimal quantizers. For finite rate

constraints, a non-regular quantizer may very well outperform a regular quantizer.
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3.2.3 Optimal Non-Regular Functional Quantization

In the previous section we demonstrated that regular quantization is high-resolution optimal for the

class of equivalence-free functions. In this section, we consider functions that possess equivalences

and demonstrate that our approach to high-rate non-regular quantizer design is optimal for them in

the high rate.

First of all, suppose that the function of interest, G(XN
1 ), is continuous, smooth (bounded gradi-

ent), and bounded. Furthermore, suppose that there exist equivalences in G from the perspective of

the encoder for X1. The analysis of the previous section, in addition to demonstrating regular quan-

tization’s optimality for equivalence-free functions, also shows that any binning that is performed

over a non-equivalent set B ∈ [0, 1] will introduce a nonzero floor to the distortion. Therefore, if

a non-regular quantizer is to be allowed to operate on X1, its non-regular cells must be centered

on points that are functionally equivalent. This provides a bound for the maximum possible non-

regularity that will not introduce a distortion floor: for each set of functionally equivalent points

{x1, . . . , xM}, the quantization intervals containing any point in the set are unioned.

The only source of error with this approach is the presence of elements in the unionized quanti-

zation cells that are not equivalent to one another (they are simply near other elements that are).

For instance, suppose the points x1 = 1
4 and x1 = 3

4 form the only equivalence class of cardinality

greater than one. Each will be quantized within an interval of some length, ∆1/4 and ∆3/4. When

these intervals are unioned, problems emerge for finite interval lengths: 1
4 + ε is being grouped with

[3/4− δ, 3/4+ δ], for instance. This results in an additional distortion ∆D bounded by ∆D ≤ 2−2R.

As the resolution is raised, the quantization interval sizes become smaller and this error disappears.

Therefore, we have an asymptotically optimal approach in the discrete realm: bin together the quan-

tization cells containing each element of an equivalence class. It can be seen that this is equivalent

to implementing a generalized companding function w(X).
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Chapter 4

Senior Year: Functional Transform

Coding, Encoder Collaboration,

and Uncertainty

In Chapter 2, we developed a mathematical framework in which one may analyze the performance of

functional quantization systems. We then proceeded, in Chapter 3, to extend the reach of this theory

to all continuous functions with derivative bounded almost everywhere. In this chapter, we use these

results as a foundation from which to tackle several new scenarios and problems. Each demonstrates

both the intuitiveness of the functional quantization picture and its assistance in analysis.

First, we consider functional transform coding (FTC). Transform coding, in its ordinary incar-

nation, has proven itself as an extremely valuable tool for practical source coding; does it continue

to help us when we care about a function of the source vector? Moreover, how does the optimal

functional transform code compare with the well known Karhunen-Loeve Transform?

After this, we consider the question of encoder collaboration. The picture we have been dealing

with thus far does not draw any arrows between the encoders — what if they are allowed to com-

municate? We examine this question in the context of both fixed- and variable-rate coding, and find

wildly different behavior. While collaboration can yield arbitrarily high reductions in distortion for

variable-rate, for fixed-rate the bits used for encoder-encoder communication would be better spent

going to the decoder and reducing distortion according to the -6dB per bit rule.
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1 )U UT ......
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Figure 4-1: Uniform transform coding

Finally, we look to questions of uncertainty and universality. We have examined in previous

chapters how to design the optimal quantizer given the source distribution — but what if the

implementation was flawed? Also, a source’s distribution often is not known precisely. How does

this effect the design of an optimal quantizer?

4.1 Functional Transform Coding

Consider the setup common to Feng et al. [20] and Bucklew [23] (see Fig. 2-1). Both require vector

quantization—a computationally expensive premise if the form of the quantizer is to be left arbitrary.

By constraining the quantizer to the form of a uniform transform code, we can significantly reduce

this cost while still removing redundancies between sources.

Under the transform constraint (Fig. 4-1), an N -vector of source variables, XN
1 ∈ RN is first

presented to an encoder. We constrain XN
1 so that its distribution, fXN

1

(xN
1 ) is supported entirely

within the N -sphere of radius 1. Following this,

1. An invertible linear transformation, U , is applied to XN
1 to yield vector Y N

1 = UXN
1 . We

constrain U to be of unity determinant. This is without loss of generality, since (1) U must

have a nonzero determinant from being invertible and (2) if U has a non-unity determinant c,

the scaled matrix Uc−1/N will have unity determinant and will result in identical distortion

performance as U .

2. The components of Y N
1 are uniformly scalar quantized into the vector Ŷ N

1 . Ŷi has fixed rate

Ri and resulting interval size 2−Ri .

3. There is a total rate constraint:
∑

Ri ≤ R.

4. The decoder inverts the transformation X̂N
1 = U−1Ŷ N , and computes an estimate of the
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function Ĝ(XN
1 ) , G(X̂N

1 ).

The goal remains unchanged from Chapter 2: U and the Ri are to be chosen to minimize the mean

squared error of G, DG = E
[
(Ĝ(XN

1 ) − G(XN
1 ))2

]
.

Several definitions prove helpful in obtaining the optimal transform.

Definition Define the sensitivity vector over X so that each of its components is given by γXi =

∂G(xN
1 )/∂xi.

Definition Similarly, define the sensitivity vector over Y so that each of its components is given by

γYi = ∂G(U−1(yN
1 ))/∂yi.

Note that the two vectors are related by the transform γY = UγX .

Definition Define the sensitivity matrix over XN
1 , ΓX(xN

1 ) = γXγT
X and the sensitivity matrix over

Y N , Γ(yN ) = γY γT
Y . The (i, j)th components are more explicitly given by

ΓX(xN
1 )i,j =

∂G

∂xi

∂G

∂xj

and likewise for ΓY (yN
1 ).

Lemma 4.1.1 The following three properties hold.

1. ΓX and ΓY are real, symmetric, and positive semidefinite.

2. E [ΓX ] and E [ΓY ] are also real, symmetric, and positive semidefinite.

3. E [ΓY ] = UE [ΓX ] U−1.

Proof Positive semidefiniteness of ΓX and ΓY follows from each matrix being the outer product

of a real-valued vector with itself. Positive semidefiniteness of E [ΓX ] and E [ΓY ] follows from their

description as a sum of positively scaled positive definite matrices. The final property is the result

of algebra: E [ΓY ] = E
[
γY γT

Y

]
= E

[
UγXγT

XU−1
]

= UE [ΓX ] U−1.

Using these properties we may optimize the distortion.

Theorem 4.1.2 The optimal transform U diagonalizes the matrix E [ΓX ] and results in distortion

DG =
N

12
2−2R/N det(E [ΓX ])1/N
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except when E [ΓX ] has any zero eigenvalues.

Proof Uniform quantization entails high-rate point density functions over Y N
1 of the form λi = 1.

Referring to Eq. 2.12, we may write the total distortion as

DG =
1

12

∑

i

2−2RiE

[∣∣∣∣
∂GY (yN

1 )

∂yi

∣∣∣∣
2
]

where GY (yN
1 ) = G(U−1yN

1 ).

Optimizing the rates Ri subject to the sum-rate condition,

DG ≥ N

12
2−2R/N

[
∏

i

E

[∣∣∣∣
∂GY (yN

1 )

∂yi

∣∣∣∣
2
]]1/N

(4.1)

Note that this bound is achievable for finite R if and only if

E
[
|∂G/∂yi|2

]
> 0 for all i = 1, . . . , N . (4.2)

The term in brackets is the product of the diagonal elements of E [ΓY ], referred to us as the mul-

tiplicative trace. By the Hadamard inequality, we can simultaneously minimize both the distortion

and the multiplicative trace by choosing U to diagonalize E [ΓX ]. This yields total distortion:

DG ≥ N

12
2−2R/N det(E [ΓX ])1/N . (4.3)

This distortion bound is achievable if det(E [ΓX ]) > 0, since in that case E [ΓY ] has no zero

diagonal elements.

If E [ΓY ] has any zero diagonal elements, det(E [ΓX ]) = 0 and condition (4.2) has been violated.

To correct for this, the zero components may be discarded, for G is unaffected by them almost

everywhere. We demonstrate this quantitatively.

Lemma 4.1.3 If E [ΓY ] has a zero diagonal element, distortion is unaffected if the corresponding

component is discarded.

Proof By our construction, the function G(XN
1 ) has bounded gradient. Therefore, ΓY (yN

1 ) ≤ L2

for some constant bound L2. Now assume that a diagonal element of E [ΓY ], given by E [ΓY ]jj =
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E

[∣∣∣ ∂G
∂yj

∣∣∣
2
]
, is zero. Assume, for convenience, that this is the first element j = 1. Discarding this

component forces the decoder to make the estimate

Ĝ(ŷN
2 ) = E

[
G(Y1, ŷ

N
2 )
]

from quantized components ŷN
2 instead of the estimate

Ĝ(ŷN
2 ) = G(ŷN

1 )

from quantized components ŷN
1 .

We can bound the effect of this change by the law of total variances.

D = E
[
var[G(Y N

1 ) | ŷN
2 ]
]

(4.4)

= E
[
var[E

[
G(Y N

1 ) | ŷN
2 , Y1

]
| ŷN

2 ] + E
[
var[G(Y N

1 ) | ŷN
2 , Y1] | ŷN

2

]]
(4.5)

≤ E
[
var[E

[
G(Y N

1 ) | ŷN
2 , Y1

]
| ŷN

2 ]
]

+ D0 (4.6)

= E
[
var[G(Y1, ŷN

2 ) | ŷN
2 ]
]

+ D0 (4.7)

≤ L2P (|dG/dy1| > 0) + D0 (4.8)

= D0 (4.9)

Therefore, there is no cost to discarding the unused component Y1.

This process may be repeated for all the zero eigenvalues. Rederiving the optimal transform after

deleting them, we notice two effects.

1. The non-zero eigenvalues are left unchanged.

2. The dimensionality has been reduced from N sources to N −N , where N denotes the number

of null components.

In general, use of the transform U reduces distortion by a factor 2−2RN det(E [ΓY ])/E
[∏

γ2
Xi

]
,

where E [ΓY ] is the reduced dimensionality E[ΓY ]. Unlike the separable quantization situations of

the previous chapters, this distortion improvement is rate dependent when N > 0.
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Notice the similarity of the optimal transformation to that of the KLT for non-functional trans-

form coding. The KLT diagonalizes the covariance of the random vector, XN
1 . U diagonalizes

E [ΓX ], which may be written as the sum of the covariance of the random vector γX and the matrix

Aij = E [∂G/∂xi]E [∂G/∂xj].

4.1.1 Example: The Selective Functions

Just as the sensitivity profile defined a function in the eyes of a functional quantizer, the sensitivity

matrix defines it in the eyes of a functional transform code. For any selective function, the derivative

of the function is zero with respect to all sources but one, for which the derivative is unity. Therefore,

we have the following sensitivity matrix:

E [ΓX ]ij = E

[
dG

dxi

dG

dxj

]
(4.10)

= δijP
(
G(xN

1 ) = xi

)
(4.11)

The sensitivity matrix is already diagonalized, so the optimal transform is the identity matrix

and the problem is merely one of bit allocation amongst the encoders. If G is also symmetric, the

rates are split evenly amongst the sources, and functional transform coding yields no benefits.

4.1.2 Example: A Linear Combination of the Sources

Suppose we are interested in a linear function of the sources, G(xN
1 ) = A(vN

1 )T · xN
1 , where A is a

real number and vN
1 is a normalized vector. We then see that the sensitivity matrix is diagonalized

if one of the basis vectors y for the transform is chosen to be v. Specifically, this will result in a

single element of E [ΓY ] being non-zero. We therefore have a distortion improvement of 2R(N−1) by

using the transform code.

4.1.3 Limitations

Our construction considers uniform quantization after transformation of a source vector that is

contained within the unit sphere. This is notably different from our assumptions for distributed

quantization, where the source vector was contained within [0, 1]N . The consequences are felt when
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X1

X2

X̂1

X̂2

Y

Q1

Q2

Figure 4-2: Suppose the encoder for X2 could send a message to the encoder for X1. Is there any
benefit?

we consider sources that have a support smaller than the unit sphere.

For instance, consider a source contained within a box within the unit sphere. Geometry tells

us that this box can be no larger than [0, N−1/2]N . On one hand, this restriction makes sense: if

we were to (conceivably) rotate the box so that its diagonal was aligned with one of our axes, the

uniform quantizer would have to accommodate a [0, 1] support, which is the maximum it is capable

of. On the other hand, when the box is in its natural [0, N−1/2]N state, each uniform quantizer could

scale its support down to [0, N−1/2] without causing overload problems. This reveals a shortcoming

with our problem setup: the quantizers are not allowed to adapt their support after a transformation

has taken place.

4.2 Encoder Collaboration

We now consider the scenario where one of the encoders is given the option of communication with

another. For instance, X2’s encoder might choose to send a random variable of side information, Y ,

to X1’s encoder (Fig. 4-2). Assuming that Y must be conditionally independent of X1 given X2,

what kind of performance gains are possible for fixed- and variable-rate coding? Our approach will

be to consider the situation where Y is a single bit of information, and generalize from there.

Formally, the ith encoder may code Xi with knowledge of the binary variable Y from the jth

encoder. For convenience, assume that i = 1 and j = 2 (i.e., the second encoder sends information

to the first). As stated before, Y is conditionally independent of X1 given X2. We restrict this rela-

tionship even further: Y must be a deterministic function of X̂2 = Q(X2). This constraint ensures

that the decoder has access to Y . Note that this becomes increasingly reasonable as resolution is

increased.
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The best possible strategy — an upper bound for performance — is for encoder 1 to use two

codebooks: one for when Y = 0 and one for when Y = 1. Since the decoder may determine the

value of Y from the high-rate description of X2, this bound is achievable. Recall that the distortion

expressions for both fixed- and variable- rate coding take the form of a summation of N 1D functional

distortions:

D =

N∑

i=1

Di2
−2R1

We can immediately incorporate the effect of Y into this expression. The total distortion is

merely the expected distortion over Y . Moreover, the only terms affected by Y are D1 and R1:

Dtot = E [D | Y ] (4.12)

= E
[
D1(Y )2−2R1(Y )

]
+

N∑

i=2

Di2
−2Ri (4.13)

A brief aside is warranted on the nature of R1(Y ). Under a fixed-rate constraint, R1(Y ) = R1;

any flexibility in its value would break the fixed-rate constraint. For variable-rate, on the other hand,

the first encoder can certainly change the length of its stream based on the value of Y . However,

the other encoders are not extended this privilege, as they are not privy to the value taken by Y .

As demonstrated by this example, the situations are slightly different for fixed- and variable-rate

coding. We therefore consider them separately from this point onward.

4.2.1 Fixed-Rate

Knowing that we are working in a fixed-rate context, Eq. 4.13 can be written more explicitly in

terms of the source/side-information distribution fX|Y (XN
1 = xN

1 | Y = y). We also define the

conditional sensitivity profile:

g2
i|Y (x|y) = E




∣∣∣∣∣
dG(xN

1 )

dxi

∣∣∣∣
Xi

∣∣∣∣∣

2

| Xi = x, Y = y





This expression has a simple interpretation. The optimal fixed-rate encoder has two codebooks to

work with: one when Y = 0 and one when Y = 1. In each scenario, it designs an optimal quantizer

104



Chapter 4. Senior Year: Functional Transform Coding, Encoder Collaboration, and Uncertainty

based on the source distribution from its perspective, which is fX|Y instead of the usual fX . The

conditional sensitivity profile is merely the profile, derived from the conditional source distribution,

that it uses to design the optimal quantizer in each case. Making use of g2
i|Y and the conditional

distribution fXi|Y , we have:

D = E

[
1

12
2−2R1‖fXi|Y (x|Y )g2

1|Y (x|Y )‖1/3 | Y

]
+

N∑

i=2

Di2
−2Ri (4.14)

=
1

12
2−2R1

(
P (Y = 0) ‖fXi|Y (x|0)g2

1|Y (x|0)‖1/3 + P (Y = 1) ‖fXi|Y (x|1)g2
1|Y (x|1)‖1/3

)

+

N∑

i=2

Di2
−2Ri (4.15)

This equation does not seem terribly helpful until we massage out a curious relationship.

P (Y = 0) fXi|Y (x|0)g2
1|Y (x|0) + P (Y = 1) fXi|Y (x|1)g2

1|Y (x|1) (4.16)

=
fXi(x)

fXi(x)

(
P (Y = 0) fXi|Y (x|0)g2

1|Y (x|0) + P (Y = 1) fXi|Y (x|1)g2
1|Y (x|1)

)
(4.17)

= fXi(x)

(
P (Y = 0) fXi|Y (x|0)

fXi(x)
g2
1|Y (x|0) +

P (Y = 0) fXi|Y (x|1)

fXi(x)
g2
1|Y (x|1)

)
(4.18)

= fXi(x)
(
P (Y = 0 | X = x) g2

1|Y (x|0) + P (Y = 1 | X = x) g2
1|Y (x|1)

)
(4.19)

= fXi(x)g2
1(x) (4.20)

It helps to look at fX(·)g2
1(·) and P (Y = y) fX|Y (·|y)g2

1|Y =y(·|y) as vectors in a Hilbert space.

By sending side information Y , we are essentially expressing a vector fX(·)g2
1(·) as the sum of two

others. If we interpret the L1/3 norm as a distance measure (a mathematical stretch, but back to

that in a bit), we have replaced

D ∝ ‖fX(x)g2
1(x)‖1/3

with
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D ∝ P (Y = 0) ‖fX1|Y (x, 0)g1|Y (x, 0)2‖1/3 + P (Y = 1) ‖fX1|Y (x, 1)g1|Y (x, 1)2‖1/3

= ‖P (Y = 0) fX1|Y (x, 0)g1|Y (x, 0)2‖1/3 + ‖P (Y = 1) fX1|Y (x, 1)g1|Y (x, 1)2‖1/3

In other words, the length of a vector has been replaced by the sum of the lengths of two vectors

that add to produce it. If the distance measure were an actual distance metric, this would be

rather unfortunate, as it implies we can never reduce the distortion via side information (triangle

inequality). However, the operation ‖ · ‖1/3 qualifies as a quasinorm, for which gains are possible.

In fact, there is a triangle-like inequality that applies to the L1/3 norm, and by relating the lengths

of the components to the length of their sum it bounds the distortion improvement from usage of

side information.

Saito [33] provides a quantitative relation without proof; we give a proof of this in Appendix 4.A:

‖x(t) + y(t)‖1/3 ≤ 4(‖x(t)‖1/3 + ‖y(t)‖1/3) (4.21)

This can be back-substituted to yield the following:

D =
1

12
2−2R1

(
P (Y = 0) ‖g2

1|Y (x|0)‖1/3 + P (Y = 1) ‖g2
1|Y (x|1)‖1/3

)

+

N∑

i=2

Di2
−2Ri (4.22)

≥ 1

4
D12

−2R1 +

N∑

i=2

Di2
−2Ri (4.23)

Use of a single bit of side information can at most reduce an encoder’s distortion by a factor

of four. What’s more, one may guarantee a factor-of-four reduction by using the extra bit of side

communication to instead increase resolution for the encoder (R1 → R1 + 1). This result trivially

generalizes to multiple bits: side-information is generally a losing game for fixed-rate encoding. We

note that the flavor of this is similar to that of Prabhakaran et al. [34] for the ordinary source coding

of Gaussian sources.
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Figure 4-3: Example scenario: X1 is the horizontal axis, and X2 the vertical. The numbers in each
quadrant are the values of the derivative of G against X1.

4.2.2 Variable-Rate

For the variable-rate scenario, one might approach things in a similar light. The expectation of

distortion may be taken over both possible values of Y , and one may write the resulting distortion

in terms of the conditional sensitivities g2
1|Y =y defined as in the previous section. R1 is now allowed

to depend on Y , but we will ignore this degree of freedom, as it turns out to be inconsequential for

our purposes.

D = E

[
1

12
2−2R12E[log2

g2

1|Y (X1|Y )|Y ]
]

+

N∑

i=2

Di2
−2Ri (4.24)

=
1

12
2−2R1

(
P (Y = 0) 2E[log2

g2

1|Y (X1|0)|Y =0]‖1/3 + P (Y = 1) 2E[log2
g2

1|Y (X1|1)|Y =1]
)

+

N∑

i=2

Di2
−2Ri (4.25)

Unlike the L1/3 norm, the log-norm has no bound of the form of Eq. 4.21. This implies, in theory,

that arbitrary improvements are possible from a single bit of side information. We demonstrate that

this is the case by means of a simple example.

Let X1 and X2 be uniform i.i.d. over [0, 1]2. Rather than explicitly defining our function, we

will define its derivative profile. The function G may itself be obtained via integration. For X2,
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dG(x1,x2)
dx2

= 1, and the optimal quantizer is uniform. For X1, we define its derivative as a piecewise

constant function over the four quadrants of [0, 1]2 (Fig. 4-3). If X1 and X2 are both less than 1/2

or if X1 and X2 are both greater than 1/2, dG(x1,x2)
dx1

= 1. Otherwise (in the other two quadrants),

dG(x1,x2)
dx1

= L, where L is some nonzero positive constant. We can derive the sensitivity profile for

X1 from this description:

g2
1(x) =

1 + L

2

This also allows us to find the distortion of the functional quantizer without encoder commu-

nication. We only express the term from the first encoder, since the second term’s contribution is

unaffected by the side-information.

D1 =
1

12
2−2R2E[log(1+L)−1] =

1

12
2−2R L + 1

2

Now suppose that X2 can provide one bit of information to X1. Functional quantization reduces

to ordinary quantization for a constant sensitivity profile; the less constant the profile is, the greater

the improvement from functional techniques. This suggests to us that the best piece of information

allows the quantizer of X1 to tailor itself to the nonuniformity of the joint distribution:

Y =





0 if X2 > 1/2

1 otherwise

From this, we can define the conditional sensitivity profiles for X1:

g2
1|Y =y(x, y) =






1 if X1 > 1/2 and Y = 0

1 if X1 ≤ 1/2 and Y = 1

L otherwise

We can now compute the distortion contribution from X1 with Y available, D1Y .
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D1Y =
1

12
2−2R2E[log2

g2

i|Y =0]/2+E[log2
g2

i|Y =1]/2 (4.26)

=
1

12
2−2R2

1

2
log

2
L (4.27)

=
1

12
2−2R

√
L (4.28)

This is in contrast to the performance without the side information Y . Taking the ratio between

the old and the new D1, we have

D1

D1Y
=

L + 1

2
√

K

This performance gap grows arbitrarily large as L is increased — and in all cases it is due to a

single bit of information.

4.2.3 Comparison with Ordinary (Non-Functional) Scenario

These results are strikingly different than those from ordinary source coding. Consider first the

discrete scenario. XN
1 is now a vector from a discrete alphabet, and we wish to recreate XN

1

perfectly at the decoder. Can chatting between encoders assist us in reducing the total rate of

communication at all? According to Slepian and Wolf, the answer is a resounding “no.” Even in the

case of unlimited collaboration via fused encoders, the minimum sum-rate to the decoder remains

unchanged.

How about ordinary quantization? If quantization is variable-rate and Slepian-Wolf coding is

employed on the quantized indices, no gains are possible from talking encoders. This result can also

be seen as a consequence of Rebollo-Monedero’s work [19] with high-resolution Wyner-Ziv coding,

where he demonstrates that there is no gain from supplying the source encoder with the decoder

side information.

4.3 Penalties for Suboptimality

For a variety of reasons, the optimal quantizer point density may not be perfectly implemented.

Perhaps precision is the limiting factor, or perhaps it is complexity. One often sees piecewise constant
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point density functions in practice for this latter reason. Also, one may not have perfect knowledge

of the source distribution. In this section, we explore how sensitive functional quantizers are to these

types of imperfections.

The worst kind of screwup is the kind that isn’t recognized as a screwup. If a functional quantizer

is designed for the wrong source distribution or the wrong sensitivity profile g2
i , how much of an

effect can this have on the asymptotic rate-distortion performance? This is examined for both the

fixed- and variable-rate scenarios.

There are two varieties of mistakes we will consider. A source modeling error occurs when an

incorrect source distribution, eX(x) is used to design a quantizer in place of the correct distribution,

fX(x). A functional modeling error occurs when an incorrect functional sensitivity profile h2
i (x)

is used to design a quantizer in place of the correct sensitivity profile, g2
i (x). Our approaches to

analyzing the errors from these two sources proves different for fixed- and variable-rate coding.

4.3.1 Fixed-Rate Imperfect Design

The only part of a fixed-rate encoder that needs to be designed is the quantization block — the

process of codeword generation requires no design decision. The quantization block is completely

summarized by the quantization profile λi(x). An optimal choice from the perspective of an engineer

who believes the source distribution to be eX and the sensitivity to be h2
i is λi(x) ∝ (eXh2

i )
1/3. This

lies in contrast to the truly optimal choice, λi(x) ∝ (fXg2
i )1/3. Rather than attempting to separate

the effects of incorrect functional sensitivity from those of incorrect source distribution, we will

consider them together as the effect of having chosen a sub-optimal λE .

Since the dependence on rate follows 2−2R scaling for either optimal point density λO or erroneous

point density λE , we can quantify the effect of suboptimal design by a ratio of distortions DE/DO

(independent of rate) or, equivalently, an excess rate ∆R = RE −RO to achieve the same distortion.

Clearly ∆R = 1
2 log2(DO/DE). The optimal point density λO ∝ (fX(x)g2

i )1/3 achieves a distortion

proportional to ‖fX(x)g2
i (x)‖1/3, while the erroneous design λE achieves a distortion proportional

to
∫

fX(x)g2
i λ−2

E (x)dx; in other words, ‖fX(x)g2
i λ−2

E ‖1. We may compute the rate loss with this

information.
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∆R =
1

2

(
log2 ‖λ3

O · ‖(fX(x)g2
i )1/3‖3

1 · λ−2
E ‖1 − log2 ‖fX(x)g2

i ‖1/3

)
(4.29)

=
1

2

(
log2

[
‖(fX(x)g2

i )1/3‖3
1 · ‖λ3

O · λ−2
E ‖1

]
− log2 ‖fX(x)g2

i ‖1/3

)
(4.30)

=
1

2

(
log2

[
‖fX(x)g2

i ‖1/3 · ‖λ3
O · λ−2

E ‖1

]
− log2 ‖fX(x)g2

i ‖1/3

)
(4.31)

=
1

2

(
log2

∥∥∥∥
λ3

O

λ2
E

∥∥∥∥
1

)
(4.32)

A couple points are worth noting about the form taken by this penalty. First of all, we may

be comforted in that ∆R = 0 when λE = λO. Second, as with the KL-divergence, this metric

for “distance” between designs diverges if the erroroneous density is zero somewhere that the real

density is nonzero.

4.3.2 Variable-Rate Erroneous Design

Unlike with fixed-rate quantization, variable-rate quantization has two components to it: a quantizer

(described by the profile λ(x)) and an entropy coder (related to the entropy of the quantized output).

We consider both in turn. First, the effect of incorrect quantization will be modeled as it was for the

fixed-rate scenario: by comparing the erroneous point density λE with the optimal one, λO. After

that, the effect of error on the entropy coding process will be added to the rate loss.

We will first work in terms of the rate loss assuming that the entropy coding is performed

properly (that is, assuming that the coding is performed with the correct source distribution in

mind). Proceeding as we did for fixed-rate, we may equate the distortions and obtain the difference

between the quantization-faulty rate RE and the correct quantizer’s rate RO. Note that we expect

the latter to be smaller.

DE = DO (4.33)

2−2RE+2h(X)+E[log2
λ2

E]E

[
g2

i (X)

λ2
E(X)

]
= 2−2RO+2h(X)+E[log2

g2

i (X)] (4.34)

2−2RE+2h(X)+E[log2
λ2

E]+log
2
E[g2

i (X)/λ2

E(X)] = 2−2RO+2h(X)+E[log2
g2

i (X)] (4.35)

2RE − 2RO = E
[
log2 λ2

E

]
+ log2 E

[
g2

i (X)

λ2
E(X)

]

−E
[
log2 g2

i (X)
]

(4.36)
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Noting that λ2
O(x) = g2

i (x) · C, where C is a normalization constant:

2RE − 2RO = E
[
log2 λ2

E

]
+ log2 E

[
λ2

O(X)

λ2
E(X)

]
− E

[
log2 λ2

O(X)
]
+ log2 C − log2 C (4.37)

= logE

[
λ2

O(X)

λ2
E(X)

]
+ E

[
log λ2

E(X)
]
− E

[
log2 λ2

O(X)
]

(4.38)

RE − RO =
1

2
logE

[
λ2

O(X)

λ2
E(X)

]
+ D(fX‖λE) − D(fX‖λO) (4.39)

In the last step, we observe the emergence of the KL divergence D(·‖·), a term seen frequently in

rate loss expressions. Note, as we did in the derivation for selective/symmetric functions in Chapter

3, that the point densities λE and λO are being used as if they were probability densities.

We may add to this the effect of rate loss in the encoder. Thus far, the expression RE − RO

indicates the amount of rate that must be added for the erroneous decoder to catch up to the

distortion performance of the optimal one. However, if the source distribution is not known correctly,

some more rate will have to be added for it to catch up to the performance of the optimal entropy

coder. We denote this second gap REE − RE , and quote a well-known result [3] that the rate loss

associated with designing for an incorrect probability mass function pE instead of the correct one pX

is the divergence between the two. In our case, the PMF’s of interest are those over the quantized

representation X̂ according to the two different pdf’s:

REE − RE = D(pX‖pE)

We may obtain pX and pE from the associated probability density functions, fX and eX , by

means of the high-rate approximation:
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REE − RE =
∑

X̂

pX̂(X̂)
pX̂(X̂)

pE(X̂)
(4.40)

≈
∑

X̂

fX(X̂)∆(X̂)
fX(X̂)∆(X̂)

eX(X̂)∆(X̂)
(4.41)

≈
∑

X̂

fX(X̂)

∫

x|Q(x)=X̂

fX(X̂)

eX(X̂)
dx (4.42)

≈
∑

X̂

∫

x|Q(x)=X̂

fX(x)
fX(x)

eX(x)
dx (4.43)

=

∫ 1

0

fX(x)
fX(x)

eX(x)
dx (4.44)

= D(fX‖eX) (4.45)

Once again, the KL divergence is equal to the rate loss. Adding the loss from both steps, we

have the total loss from incorrect pdf eX and incorrect quantization profile λE as:

REE − RO = D(fX‖eX) + D(fX‖λE) − D(fX‖λO) +
1

2
logE

[
λ2

O(X)

λ2
E(X)

]

4.A Proof of Quasi-triangle-inequality

Let x(t) and y(t) be functions from R → R. We will demonstrate the quasi-triangle inequality:

‖x(t) + y(t)‖1/3 ≤ 4(‖x(t)‖1/3 + ‖y(t)‖1/3)

First, we prove the relation (x + y)3 ≤ 4(x3 + y3):

113



Chapter 4. Senior Year: Functional Transform Coding, Encoder Collaboration, and Uncertainty

(x + y)3 − 4(x3 + y3) = x3 + y3 + 3x2y + 3xy2 − 4x3 − 4y3 (4.46)

= 3(−x3 − y3 + x2y + xy2) (4.47)

= 3(x2(y − x) − y2(y − x)) (4.48)

= 3(x2 − y2)(y − x) (4.49)

= 3(x + y)(x − y)2 (4.50)

≥ 0 (4.51)

We now prove the triangle equation. By the relation we have just demonstrated:

(∫
x(t)1/3dx

)3

+

(∫
y(t)1/3dx

)3

≥ 1

4

(∫ (
x(t)1/3 + y(t)1/3

)
dx

)3

Using the concavity ∩ of the function t1/3, each term in the integral may be lower bounded:

1

4

(∫ (
x(t)1/3 + y(t)1/3

)
dx

)3

≥ 1

4

(∫
(x(t) + y(t))1/3dx

)3

=
1

4
‖x(t) + y(t)‖1/3

This concludes the proof.
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Graduation

We began by considering two specific problems: quantization of data in an analog-to-digital con-

verter, and distributed source coding in sensor networks. Both problems were given a “functional

twist” when we noted that the user would likely be interested in a function of the data more than

the data itself. This difference is particularly pronounced when we consider human end-users, who

are physically incapable of caring about high-rate data.

From here, we generalized to the abstract functional quantization scenario represented in Fig.

0-1. With the firepower of the high-resolution quantization analysis, we attacked this problem in

increasingly unconstrained forms. Eventually, the notion of functional typicality was introduced

as an alternative route to our derivations. We then applied and extended these results to a wide

variety of situations, some showing surprising improvements over ordinary quantization techniques.

Non-monotonic functions were dealt with by means of high-resolution non-regular quantization, a

notion and a quantitative picture that we introduced. The functional version of the transform coding

problem was considered, and solved with functional quantization techniques under the constraint of

uniform quantization. Encoder collaboration was also explored and found to demonstrate strikingly

different behavior between variable-rate and fixed-rate coding. Finally, we considered the effect of

imperfect implementations and imperfect knowledge on the performance of a functional quantization

system.

The clearest message from these results is a strong endorsement for the high-resolution quantiza-

tion approach to compression problems. While these results are built on continuous approximations

and are therefore not as precise as those of rate-distortion theory, one can obtain meaningful solu-
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X1

X2

XN

Quantizer

Quantizer

Quantizer

Decoder G(X̂N

1 )
...

Figure 5-1: A sequential source with memory. The ith encoder knows the value of Xj for j ≤ i.

tions to a wide variety of problems where exact approaches fail. This manifests itself in the ease

with which functional quantization extends to new scenarios.

For instance, consider the problem of a sequential encoder with memory (see Fig. 5-1) — which

may better represent an analog-to-digital converter than our original picture. The encoder first

encodes X1 into X̂1 according to some quantization profile, and sends the latter to the decoder.

From our quantization picture, we know that the best quantizer — variable- or fixed-rate — is one

that works with source distribution fX1
(x) and functional sensitivity g2

1(x). Next, X2 is encoded

into X̂2 by the same encoder. Since both the decoder and the encoder remember the value of

X̂1 ≈ X1, the best quantizer for X2 works with source distribution fX2|X1
(x | X1 = x1) and similarly

conditioned functional sensitivity g2
2(x | X1 = x1). In general, the Nth quantizer is obtained from

source distribution fXN |XN−1

1

(x | XN−1
1 = xN−1

1 ) and functional sensitivity g2
2(x | XN−1

1 = xN−1
1 ).

The problem has been solved almost trivially, due to the functional quantization framework.

We close by considering several extensions to the functional quantization theory. As demon-

strated by the example above, there is no shortage of directions in which this work can take. Amongst

these options, we believe the three topics below have the greatest potential for both practical and

theoretical impact.

Universality. Most of the situations we have considered, with the exception of the imperfect

design considerations of Sec. 4.3, assume that the probability distribution of the source is known to

both the encoder and the decoder. In reality, this is rarely the case. From this comes motivation for

universal functional quantization, where the encoder and decoder adapt to the distribution of the

source as it is repeatedly sampled and quantized. It is not obvious what algorithm should be used
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to refine the distribution estimate, nor is it clear what the fundamental limitations on this are. We

note that it would be particularly interesting to see how functional considerations affect the design

of an estimator.

Complexity Constraints. Quantization, over its history, has taken two very different direc-

tions. In one room are the theorists, chasing fundamental limits and optimal quantizers. In the

other room are those interested in practical compression schemes. This thesis has fallen largely into

the realm of the former. For real-world systems to take advantage of our results, the latter must be

embraced as well. To this end, we suggest that the various constructions for ordinary lossy coding

be investigated in a functional context.

Specific Applications. There are several potential applications of functional quantization that

are interesting not just from a practical standpoint, but in the modifications to the theory that they

encourage. In control theory: within a feedback loop attempting to drive the output of a system to

a specific value, how should the observations be quantized? The feedback structure of this problem

complicates things greatly, but it also suggests an extension of FQ to network problems where Ĝ is

itself subject to computation at a future node.

One might also consider quantization of continuous data that is to be lossy compressed according

to a fixed algorithm in the discrete realm. Audio coding, for instance: how should a microphone’s

ADC quantize its voltage levels given that further compression will be taking place? Or compressive

sampling: how should random linear projections of a vector be quantized if they will be used to

recover the vector?
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