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Abstract
As 3-D imaging systems become more popular, the depth estimation which is their core
component should be made as accurate as possible at low power levels. In this thesis,
we consider the time of flight depth acquisition problem at low photon counts. We
first formulate the received light intensity at the photodetector as the convolution of
the source intensity and another signal which we call the scene impulse response. We
then present a new framework to calculate the scene impulse response given the scene
depth. Using that framework, we propose a richer parametric model than the model
being used in existing technologies. We use the maximum likelihood algorithm with
our proposed model on simulated data to estimate the depth parameters of the scene.
The simulation results show a uniformly better performance for our model relative to
the conventional model.
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Chapter 1

Introduction

RECENTLY, 3-D imaging has played a crucial role in a lot of different areas like the

gaming industry, gesture-based technologies, etc. To get a 3-D image, one has to

estimate the depth of different parts of the scene whose 3-D image is desired. Therefore,

an important component of 3-D imaging systems is the depth estimation block which

should work as precisely as possible depending on the application. In order to measure

depth, existing raster scanning time of flight technologies scan the scene by moving a

laser in a transverse plane and illuminate each part of the scene, get the reflections

from the scene back and using those data, they estimate the depth of the illuminated

part. In the end, they put these estimated depths together to form a 3-D image.

Therefore, for every illuminated patch, a depth estimation problem should be solved.

Let us consider the scene as a single patch in the rest of this work. Unfortunately, the

current technologies assume the most basic model for the scene; they assume the scene

is a fronto-parallel plane to the reference plane. In other words, they assume there is

no depth variation in the scene. Now, if the scene is not a fronto-parallel plane, the

model the existing technologies use becomes an approximation to the true scene which

may be significantly different from this approximation and the estimation performance

becomes very poor in that case.

In this thesis, we first formulate the received light intensity at the photodetector

as the convolution of the source intensity and another signal called the scene impulse

response which depends on the scene depth. We then employ useful tools from real

analysis to create a framework where one can calculate the scene impulse response given

the scene depth. The proposed framework to calculate the scene impulse response is very

general and works for any scene depth (linear, piecewise linear, nonlinear) assuming the

depth is precisely known as a function of transverse coordinates. Using that framework,

we first derive the model which is utilized in existing technologies (referred to as the

conventional model) and then derive a new model which precisely models a larger set of

13



14 CHAPTER 1. INTRODUCTION

scenes than the conventional model does. The proposed model assumes the scene to be

a tilted plane and if the plane tilt is zero, that model is exactly the same as assuming

the scene to be a fronto-parallel plane (i.e., the conventional model). Therefore, our

proposed model reduces to the conventional model when the true underlying scene has

no depth variation in it. Our model can also be considered as a linear approximation to

non-planar (nonlinear) scenes and consequently is better than a constant approximation

(i.e., the conventional model). Therefore, the proposed model in this work is closer than

the conventional model to the true underlying scene whether or not the scene is planar

(linear).

Here, one might ask why considering the depth variation in the scene is important

and why we cannot simply ignore that and approximate the depth as constant over the

area of interest. In other words, why can we not approximate the scene as a fronto-

parallel plane to the reference plane? The answer to this question is simple: In the

depth estimation problem, if we assume there were no depth variation while there is

a significant variation, we would be using a totally mismatched model for the received

signal and as is shown in Chapter 4, this can degrade the estimation results by a large

factor. This is mainly the reason behind this work; to improve the model accuracy and

to avoid getting wrong results due to significant model mismatch.

Also, one might argue that the available raster scanning depth acquisition systems

do not probably experience any large model mismatch. This is because the area they

illuminate on the scene at one time (referred to as pixel) is very small and there cannot

be a huge depth variation in that small area. This argument might be correct when

it comes to existing depth acquisition technologies. However, the model we are intro-

ducing in this thesis contains the conventional model (i.e., constant depth) and if the

conventional model is a good approximation, as shown in Chapter 4, using our model,

we would get the same results as the existing depth acquisition systems do. However,

it should be noted that our model is more complex than the conventional model and

hence, it has a higher computation cost in the estimation part. On the other hand,

knowing that in our model, we allow depth variation in each pixel, one might increase

the area of the laser beam which leads to less number of pixels required for a specified

transverse area and consequently reduces the time needed to scan the whole transverse

area (scene). Therefore, by employing our model, measurement time can be reduced

and that would compensate for the extra time we need in the estimation part. Further-

more, the model we introduce here can be easily utilized for the experiments where we

flood light the scene without any performance degradation (as long as the light inten-
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sity is uniform over the scene area) while obviously, for a large scene, assuming there is

no depth variation in the scene (i.e., using the conventional model) fails almost surely.

Also, the model for the received light intensity that we have introduced in this work

can be applied to full-waveform LiDAR problems similar to what the authors of [14]

have done (they however have considered mixture of Gaussians which is different from

our model). Therefore, the model introduced in this work can be put into practice in

many different ways.

Outline. In Chapter 2, we review the literature on parameter estimation from

the arrival times of a non-stationary Poisson process. We then formulate the depth

acquisition process and propose a general framework to calculate the scene impulse

response in Chapter 3. In Chapter 4, the maximum likelihood algorithm and two

classes for the scene impulse response will be used to estimate the parameters of the

scene depth and numerical simulations will be presented to verify the performance of

the estimation algorithm. Chapter 5 concludes the thesis and briefly discusses possible

future work.
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Chapter 2

Background

Since in this thesis, we consider the direct detection framework in order to measure light

intensity, we begin this chapter by describing the idealized model for direct detection

photodetectors (optical receivers) while explaining the notation employed throughout

this thesis. We also review the literature on relevant problems like signal detection,

and signal parameter estimation where, for the receiver end, the idealized model is

considered. We then present a relatively more complicated model for direct detection

photodetectors and review a few research works in that area. In the final section of

this chapter, we briefly talk about the third generation of LiDAR systems and how this

thesis is related to the models the existing literature considers for that problem.

� 2.1 Idealized Model for Direct Detection Photodetectors

The schematic in Fig. 2.1 represents the abstract model for idealized direct detection

photodetectors (optical receivers), especially when the received light power at the de-

tector (the number of received photons) is relatively low [24, 26, 27]. In this block

diagram, λ0(t) ≥ 0 is the squared magnitude of the electromagnetic field at the receiver

plane at time t, integrated over the aperture area and then normalized by the energy of

a photon, i.e., the normalized power received through the aperture area at time t. It is

also worth mentioning the model of Fig. 2.1 is valid only when the electromagnetic field

is single-mode. If there are different modes present in the transmitted laser beam, the

output should be a Poisson mixture instead [31, 32]. The overall effect of background

(ambient) light and dark count in the detector is denoted by γ ≥ 0 which is assumed to

be constant over time and independent of λ0(·). We shall refer to γ as background noise

in the rest of this thesis. Also, N(·), which is a staircase function, is a single realization

of the non-stationary (inhomogeneous) Poisson counting process with time-varying rate

λ(·) = λ0(·) + γ. In other words, N(t) is the cumulative number of photons received in

17
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λ0(t) +

γ

Poi(·) N(t), t ∈ (0, T ]
λ(t)

Figure 2.1. Block diagram for idealized direct detection photodetectors. The output is assumed to be
an inhomogeneous Poisson counting process N(·) with rate λ(·) and to be observed only over the time
interval (0, T ]. The rate of the Poisson process, λ(·), is modeled as the sum of two independent terms: a
constant term γ which represents the overall effect of ambient light and dark count of the photodetector
and a second term λ0(·) which models the normalized “signal” power received at the detector.

the time interval (0, t]. Throughout this work, we assume there is access to the output,

N(·), only over the time interval (0, T ] unless otherwise specified. We also follow the

convention and assume N(0) = 0 with probability one; i.e., there is no arrival before

or at time t = 0 with probability one [10, 41]. As it is known in probability theory

[10, 41], by utilizing the fact that it is continuous from right, the counting process can

be completely specified by its associated point process (arrival process) which consists

of the arrival times. An example for a sample path of a Poisson counting process along

with its associated point process is presented in Fig. 2.2 where λ(·) over the time inter-

val [0, 1] is 15 photons per second. It is clearly observed that the discontinuity jumps

in Fig. 2.2(a) (i.e., the arrivals in Fig. 2.2(b)) uniquely define the counting process. We

are going to use this fact later in this chapter.

The block diagram of Fig. 2.1 was first introduced for the optical communications

framework [24, 26, 27]. In that framework, λ0(·) is the communication signal which

carries information and hence, at the receiver, one should extract that information from

the observations, i.e., the realization of the counting process. Based on how information

has been embedded in the signal, the task of information extraction from observations

is usually categorized into two distinct classes as follows:

• Detection. When the set of possible signals for λ0(·) is countable, we need to

“detect” the true underlying signal from the observations. For example, to send a

bit, which can be 0 or 1, one can send nothing, i.e., λ0(·) = 0 or a constant positive

signal, say, λ0(·) = 1, respectively. At the receiver end, we should detect whether

λ0(·) = 0 or λ0(·) = 1 has been sent.

• Estimation. This scenario arises when all possible choices for λ0(·) constitute an

uncountably infinite set and the true underlying rate needs to be “estimated.” As

an example, suppose the receiver knows that the signal λ0(·) is a Gaussian pulse

shape with unit amplitude but the time shift of the Gaussian bump is not known
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(a) An example of a Poisson counting process.
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(b) The associated point process to the Poisson counting process shown above.

Figure 2.2. (a) A realization of cumulative number of photons (the Poisson counting process) and (b)
its associated point process over time interval (0, 1] where λ(t) = 15.

and has to be estimated from the observations.

In the previous example for the estimation problem, the set of all feasible solutions

is a parametric set; i.e., the candidates for the signal have a known deterministic para-

metric form and the parameters themselves are unknown and to be estimated. This

is a special case of what is called parametric statistical inference where the set of fea-

sible solutions is parametrized and the estimation algorithm estimates the parameters

in order to estimate the signal. On the other hand, for some problems, the possible

solutions are not modeled as parametric signals and only some general properties about

them are known, e.g., the signals are smooth, integrable, etc. This is an example of

non-parametric statistical inference which is out of the scope of this thesis. We are go-

ing to model the problem in this thesis as a parametric problem and hence, parametric

statistical inference framework shall be the core of this work.
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When the parametric inference framework is employed, there are two possible cases

for the parameters; they can either be constant or evolve over time. Because the

considered problem in this thesis has parameters which are constant over time, in the

rest of this section, we will talk about different research papers on the inference of

parametric signals with time-invariant parameters from Poisson observations.

The research papers on signal detection [1, 16, 18, 38] and the estimation of signal

parameters [5] from a single realization of the Poisson counting process in Fig. 2.1

date back to the 1960s. Utilizing the independence between the number of arrivals

in non-overlapping time intervals in the Poisson counting process, N(·), the authors in

[1, 16, 18, 38] devised different detection algorithms for unknown deterministic piecewise

constant signals. They first divided the time interval (0, T ] into L bins, each of length
T
L , assumed the signal λ0(·) to be constant over each interval and then worked with

the number of arrivals in each bin as the observables. From probability theory, those

random variables are known to be independent and Poisson distributed [10, 41] and

this fact probably was one of the main reasons the researchers wanted to work with

the Poisson counts [5]. However, because they used the notion of binning the time axis

and counting the number of arrivals in those bins, their algorithms were optimal only

for piecewise constant signals and suboptimal for arbitrary positive signals in general1

[5, 44]. On the other hand, Israel Bar-David worked with the Poisson arrival times

themselves rather than the number of arrivals in the aforementioned bins. As was

stated earlier in this chapter, the arrival times uniquely define the counting process

N(·) [10, 41] and hence, working with the time of arrivals results in no information loss

as opposed to working with Poisson counts in disjoint time bins. Intuitively speaking,

there is always a finite number of arrivals in the interval (0, T ] and this makes working

with the arrival times easier relative to working with the number of counts in disjoint

intervals. This is due to the fact that a complete description of the sample space of

the counting process requires infinitely many partitions for the interval (0, T ] [5] and

that makes working with Poisson counts impractical if one wants to capture the whole

sample space. On the other hand, if one wants to work with a specific partitioning of

that interval, as stated above, the resulting algorithm will be suboptimal.

In 1969, in his seminal paper titled “Communication under the Poisson Regime,”

1In the estimation problem, one of the main issues regarding working with the Poisson counts in given
time bins is that if the Poisson counts are not sufficient statistics for the to-be-estimated parameter,
some information is lost due to binning [42]. For example, for the estimation of a parameter like the
time shift of a known pulse shape, the algorithm accuracy would clearly be lower bounded by half of
the length of each time bin [5].
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λ0(t) +

γ

Poi(·) {t1, . . . , tM}λ(t)

M = # of arrivals in (0, T ]

Figure 2.3. Because of the one-to-one correspondence between the counting process and its associated
point process, considering arrival times {t1, . . . , tM} as the output of photodetector yields an equivalent
model to the original model which has the counting process at its output.

Israel Bar-David considered an equivalent model to the original model of Fig. 2.1 for

idealized direct detection photodetectors. The substitute model proposed by Bar-David

is shown in Fig. 2.3 in which he considered the exact arrival times as the output of

photodetector. We are going to refer to the model of Fig. 2.3 as the idealized model of

photodetector in the rest of this thesis (it is called idealized because of the exact arrival

times at the output of detector).

Bar-David derived the optimal detector for the detection problem where using the

arrival times at the output of photodetector, one decides which signal λ
(1)
0 (·) or λ(2)

0 (·)
has been sent (λ

(1)
0 (·) and λ

(2)
0 (·) are two known arbitrary positive signals) [5]. He also

addressed the estimation of the peak amplitude and time shift (delay) for a known

pulse shape in a maximum likelihood framework and introduced a matched filter to

estimate the time shift of the pulse from the Poisson arrival times at the output of

direct detection optical receiver [5]. According to Verdú [44], Bar-David was the first

person who had been able to find the optimal detector where the rate function was

allowed to be an arbitrary positive signal and optimal delay estimator for deterministic

signals with known shapes.

In [5], the author used the following three basic axioms for the Poisson process to

derive the probability density function (pdf) of the Poisson arrival times. It should be

noted that Pr(event name or description) stands for the probability of that event and

o(x) denotes any quantity that satisfies limx→0
o(x)
x = 0. Also, throughout this thesis,

whenever there is a Poisson process, its rate is assumed to be λ(·) unless otherwise

specified.

1. Pr (one arrival in (t, t+Δt]) = λ(t)Δt+ o(Δt), as Δt → 0+.

2. Pr (more than one arrival in (t, t+Δt]) = o(Δt), as Δt → 0+; i.e., this probability

goes to zero faster than Δt.

3. The numbers of arrivals in disjoint intervals are independent.
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Using the above three axioms, it is possible to show that the number of arrivals in

any interval is a Poisson random variable whose mean is equal to the integral of λ(·)
over that interval and hence, numbers of arrivals in disjoint intervals are independent

Poisson random variables [10]. Now, we are going to use these two facts to derive the

probability density function of the arrival times {t1, . . . , tM}2, where M , number of

arrivals in the interval (0, T ], itself is a random variable. Let us first define the event A

as the following:

A = exactly one arrival in each interval (ti −Δti, ti], i = 1, . . . ,M, M > 0,

and no arrival everywhere else in (0, T ],

where Δti’s are positive and small enough that there is no overlap between any two

consecutive intervals (ti −Δti, ti] and (ti+1 −Δti+1, ti+1]. Consequently, A can be in-

terpreted as the intersection of M +1 independent events (these events are the number

of arrivals in disjoint intervals and hence, using the third axiom, the events are inde-

pendent). Therefore, probability of the occurrence of event A is simply the product of

the probability of those M + 1 independent events and we get

Pr (A) = exp

(
−

M∑
i=0

∫ ti+1−Δti+1

ti

λ(t)dt

)
M∏
i=1

(
e
− ∫ ti

ti−Δti
λ(t)dt

∫ ti

ti−Δti

λ(t)dt

)

= exp

(
−

∫ T

0
λ(t)dt

) M∏
i=1

(∫ ti

ti−Δti

λ(t)dt

)
, M > 0, (2.1)

where t0 = 0 and tM+1 = T . Therefore, we can use

p
(
{ti}Mi=1

)
= lim

Δti→0
i=1,...,M

{
Pr (A)

M∏
i=1

(Δti)
−1

}
, M > 0,

to derive the pdf of arrival times, p
(
{ti}Mi=1

)
, as the following (note that we use lower

case letters for pdfs throughout this work):

p
(
{ti}Mi=1

)
= e−E

M∏
i=1

λ(ti), M > 0, (2.2)

2Without loss of generality, throughout this thesis, we assume arrival times are in ascending order,
i.e., 0 < t1 < t2 < · · · < tM ≤ T . Also, we always define t0 = 0.
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where

E =

∫ T

0
λ(t)dt (2.3)

represents the expected number of photons over the whole observation interval, (0, T ].

For the case where M = 0, which means no arrival, the probability is equal to e−E .

Now, let us assume the following parametric form for the rate of the Poisson process:

λ(t) = γ + λ0(t;α), (2.4)

where λ0(t;α) is a deterministic function of both t and α with a completely known

form. t is time and α ∈ R
n is a vector of unknown parameters and has to be estimated.

Also, γ represents the background noise which is constant over time and known. Let

us plug (2.4) into (2.2) and (2.3) to get the pdf of arrival times as the following:

p
(
{ti}Mi=1 ;α

)
= e−E(α)

M∏
i=1

(γ + λ0(ti;α)), M > 0, (2.5)

where E(α) =
∫ T
0 γ + λ0(t;α)dt represents the normalized energy (with unit of photons)

received at the detector over the observation interval. Equivalently, E(α) is the expected

total number of photons over the observation interval.

If one employs the maximum likelihood framework, estimating α is equivalent to

solving the following mathematical problem:

α̂ = argmax
α

p
(
{ti}Mi=1 ;α

)
= argmax

α

{
log p

(
{ti}Mi=1 ;α

)}
= argmax

α
log

(
e−E(α)

M∏
i=1

(γ + λ0(ti;α))

)

= argmax
α

{
−E(α) +

M∑
i=1

log (γ + λ0(ti;α))

}
, M > 0. (2.6)

Now, if we assume the received normalized energy E(α) does not vary with α, the

first term in (2.6) is therefore constant with respect to α and can be removed from the

optimization function. This is usually the case for ranging problems considered in the

literature as we are going to see later in this chapter [20]. Also, as is stated in Chapter

4, in the depth acquisition problem we consider in this work, the received normalized
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energy E(α) indeed does not vary with α. Now, by removing E(α) from (2.6), we get

α̂ = argmax
α

{
M∑
i=1

log (γ + λ0(ti;α))

}
, M > 0. (2.7)

Now, one can be more specific and consider α as the time shift of λ0(t) as Bar-David

did in [5]. To be more precise, let us assume λ0(t; τ0) = s(t− τ0), where s(t) is a known

positive signal and τ0 is unknown. If we assume the feasible range for τ0 is such that the

integral
∫ T
0 s(t− τ0)dt does not change with varying τ0 in that feasible set, we will get

the same problem as in (2.7). This is the case where s(t) is a short pulse (its support

is much smaller than T ) and the feasible range for τ0 is small enough that s(t− τ0) is

zero outside the time interval [0, T ]. Let us rewrite the optimization problem of (2.7)

for this case as the following:

τ̂ = argmax
τ

{
M∑
i=1

log (γ + s(ti − τ))

}
, M > 0. (2.8)

The author of [5] considered this problem (which we refer to as the time shift estimation

problem), assumed s(t) to be a differentiable short pulse and derived the mean square

error of the time delay estimate as the following

MSEτ � E[(τ̂ − τ0)
2] =

[∫ T

0

[ṡ(t)]2

γ + s(t)
dt

]−1

, (2.9)

where ṡ(t) denotes the derivative of s(t) with respect to t and E[·] is the expectation over

observations ti’s. Now, because s(t) is a positive signal, one can write s(t) = Esa
2(t),

where Es =
∫ T
0 s(t)dt is the expected number of “signal” photons due to s(t), and a(t)

is a nonnegative signal satisfying the constraint
∫ T
0 a2(t)dt = 1. It should be noted that

a(t) has information about the shape of the signal and Es carries information about the

signal energy [5]. By plugging s(t) = Esa
2(t) into (2.9) and after some simplifications,

for sufficiently large signal to noise ratio Es
γ , we get

MSEτ =
1

4
E−1

s W−2
a , (2.10)

where Wa is the effective bandwidth of a(t) in the frequency domain [5]; i.e., if we

define A(ω) as the Fourier transform of a(t), Wa �
∫∞
−∞ ω2|A(ω)|2 dω

2π . As Bar-David

pointed out in his paper [5], (2.10) yields nonzero MSEτ even for infinite signal to noise
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ratio (γ = 0) if Es is finite (this is not the case for the time delay estimation problem

when the noise is Gaussian). For the Poisson noise, we get nonzero MSEτ for finite Es

because of the random nature of the Poisson process (even with zero background noise,

the arrival times are random as opposed to noiseless observations in the Gaussian noise

scenario) [5]. Also, another important result we can get from (2.10) is that if the pulse

s(t) is differentiable, the mean square error of the time shift estimate, MSEτ , decreases

with E−1
s for large SNRs [5, 8].

In 1971, Bar-David used the relation for MSEτ given in (2.10), in another paper

[6], to calculate a lower bound on the capacity of a continuous time pulse position

modulation (PPM) channel where the information is encoded in the continuous time

shift of the transmitted pulse. We can assume the random variable τ to be the true

underlying time shift of the pulse and τ̂ to be its ML estimate. Now, we can write

τ̂ = τ + ε, where ε can be considered as additive noise and is independent of the channel

input τ . Then, we can use the rate distortion theory [9] and the fact that for all random

variables with the same variance, Gaussian random variable has the maximum entropy

to derive a lower bound for the channel capacity [6]. Comparing the lower bound derived

in [6] to the bounds for discrete time PPM, we can conclude the continuous time PPM

has an advantage over the discrete time PPM.

Israel Bar-David in 1975 found interesting results for the minimum mean square

error in the time shift estimation problem with no background noise [8]. He considered

three different types of signals for s(t) (rectangular, exponential and Gaussian) and

a uniform prior distribution for the time shift τ . In that setting, he then derived the

minimum mean square error (mmse) time delay estimators for those three pulse shapes.

According to his results [8], when s(t) is a rectangular pulse, the mid range of arrival

times is the mmse estimator, i.e., τ̂mmse =
1
2(t1+tM ) and for large enough signal energies

(i.e., large Es), minimum mean square error for the time shift (MMSEτ ) decreases with

E−2
s . If s(t) is an exponential pulse (e.g., s(t) = Es

D exp(− t
D )u(t) where u(t) is the unit

step function), the mmse estimator for the time delay has the form of τ̂mmse = t1 − D
M

and as in the rectangular pulse case, MMSEτ is proportional to E−2
s for large enough

Es. Finally, for the Gaussian pulse, the mmse estimator of the time shift is the center

of gravity of the arrival times, i.e., τ̂mmse = 1
M

∑M
i=1 ti and in this case, the minimum

mean square error decreases only with E−1
s as we saw earlier in (2.10) (note that the

Gaussian pulse is differentiable). The author in [8] then concluded that in the time

shift estimation problem without any background noise for pulse shapes with sharp

discontinuities like rectangular or exponential signals, MMSEτ has a sharper decay
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(∝ E−2
s ) than for differentiable pulses like Gaussian family where MMSEτ ∝ E−1

s (for

large enough signal energies Es). It should also be noted that the exponential signal has

frequently been used in the literature [8, 15, 41] because in the medical applications,

the bio-signals can be well modeled as exponential signals; however, in this thesis, we

do not consider those type of signals.

In 1975, parallel to Bar-David’s research on the performance characterization of

ML estimate for the time shift of a signal with known shape, Misra and Sorenson in

[34] derived lower bounds for the mean square error of pulse position estimate where

they considered both a box function and a step function for the signal s(t). They used

the general Ziv-Zakai lower bounds which had been derived in [46]. The lower bounds

derived in [34] were tighter than the bounds Bar-David calculated in [7, 8] only for the

low Es region. Also, Hero in 1989 used the notion of entropy power and other similar

information theoretic ideas as Bar-David used in [7] to derive possibly tighter lower

bounds on the estimator performance where the energy of the signal was assumed to

be independent of the parameters [20] (this is what we earlier assumed about E(α)

being independent of α). Hero’s lower bounds for the MSE of time shift estimate were

tighter than the bounds in [34] and [8] for the low SNR region while Bar-David’s lower

bounds were optimal in the high SNR region among all derived bounds [7, 8, 20, 34].

Also, recently, the authors in [17] have proposed a model to predict the performance

of the ML estimate for the time shift estimation problem where they have considered a

generalized Gaussian model for the signal s(t). Their model predicts the performance

quite well even for low SNR’s where the Cramér-Rao lower bound is not tight.

Up until now in this section, we have reviewed different research papers in which

the set of parameters in the rate of Poisson process are assumed to be time-invariant.

However, the parameters of the rate can be time-varying as Snyder in his paper [40]

considered a Markov process over time for the rate of the Poisson process. These Poisson

processes which are driven by another stochastic process are called doubly stochastic

Poisson processes [33, 40, 41]. Snyder’s paper started a large research arena on doubly

stochastic Poisson processes where researchers considered different types of stochastic

processes for the rate of the Poisson process.

There also is an extensive amount of research on pulse position modulation and pulse

amplitude modulation for photon-limited optical communications specifically from the

information theoretical point of view (cf. [44] and references therein). There are a

couple of papers on non-parametric estimation of the rate of Poisson processes as well

(cf. [2] and references therein). However, we are not going to consider these topics
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λ0(t) +

γ

Poi(·) p(t) Z(t)
Y (t)

Figure 2.4. Shot noise model for photodetector.

because they are out of the scope of this thesis.

� 2.2 Shot Noise Model for Direct Detection Photodetectors

In the previous section, we assumed the output of direct detection photodetectors to be

the exact photon arrival times as shown in Fig. 2.3. However, because detectors have

finite electrical bandwidth, we cannot have a train of impulses (each impulse located at

one of the arrival times) at the output of detector. A more accurate and more practical

model can be constructed by feeding that impulse train into a time invariant filter with

a finite bandwidth as shown in Fig. 2.4 [4]. p(t) represents that filter in the time domain

and its bandwidth in the frequency domain is the same as the electrical bandwidth of

the detector. p(t) is also the envelope we would see at the detector output for each single

photon arrival. Y (t) =
∑M

i=1 δ(t − ti), where δ(·) is the Dirac delta function. Also, we

have Z(t) = Y (t) ∗ p(t), where ∗ denotes the convolution operator and because Y (t) is

an impulse train, we get Z(t) =
∑M

i=1 p(t− ti), where Z(t) is called shot noise process

[4]. Now, if the rate of the Poisson process is low enough, the spacing between ti’s will

be large and therefore, one can get the exact arrival times by simply detecting the peaks

of Z(t). However, it is a different story when the Poisson rate is large, because in that

case, ti’s tend to be close to each other and therefore, there will be overlap between

adjacent pulses in Z(t) and peak detection algorithms will fail most likely [21]. In the

following part, we add another layer to our shot noise model for the detector and very

briefly list a handful of research papers considering that model.

� 2.2.1 Shot Noise Process Embedded in Gaussian Noise

The last modification to our model for a direct detection photodetector is adding white

Gaussian noise independent of shot noise process to the output of detector as depicted

in Fig. 2.5. W (t) denotes white Gaussian noise and X(t) = Z(t) +W (t) is the process

we get to observe. This model complements the model of Fig. 2.4 by taking into account

the existence of Gaussian noise at the output.
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λ0(t) +

γ

Poi(·) p(t) +

W (t)

X(t)
Y (t)

Figure 2.5. Shot noise process embedded in Gaussian noise.

Alfred Hero in his paper [21] titled “Timing Estimation for a Filtered Poisson Pro-

cess in Gaussian Noise” investigated the problem of time shift estimation using the

observations of Fig. 2.5. He again used information theoretic concepts to relate channel

capacity and rate distortion theory to the mean square error in the estimation problem

and derived lower bounds which matched Cramér-Rao lower bounds for high SNR’s and

were tighter than Cramér-Rao lower bounds for low SNR’s.

There is also another paper written in 1990 where the authors considered the time

shift estimation problem using the observations in Fig. 2.5 and compared the perfor-

mance of a few linear and nonlinear estimators [22]. Then in 1994, instead of only

theoretically analyzing the lower bounds on the estimator performance, Antoniadis and

Hero proposed an efficient and approximate expectation-maximization (EM) algorithm

to estimate the time-delay of the pulse in a filtered Poisson process in Gaussian noise

[3]. Considering the exact arrival times as the hidden variables, the authors in [3]

first formulated the exact EM algorithm. However, the expectation step turned out to

be hard to evaluate and therefore, they approximated that expectation with a linear

function which was easy to compute.

� 2.3 Full-Waveform LiDAR

One of the most commonly used methods to acquire depth is the light detection and

ranging (LiDAR) technique [11–14, 30, 36, 39, 45] where the scene is scanned by mov-

ing a laser source in a transverse area. Then, each illuminated point on the scene is

considered as a pixel and using the returned (received) reflections at the photodetector,

the distance of the pixel from the detector plane is estimated. In the end, the depths

of different pixels are put together to create an image which is called the depth map

of the scene (the depth map is precisely defined in the next chapter). Now, if the laser

source is a very short pulse in the time domain, the received signal (light intensity) at

the photodetector is a mixture signal which has a component (nearly) constant over

time because of the presence of ambient light and also exhibits one or more peaks due
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to the reflections of light from the object(s) present in the illuminated pixel. In the

first two generations of LiDAR systems, the main goal was only to estimate a single

range/ depth for each illuminated part (pixel). However, in the third generation LiDAR

systems, in order to extract more information about the scene, there has been quite a

lot of interest in using the whole received signal which is called the full-waveform in the

literature [12–14, 30, 36, 45]. The LiDAR techniques which use the full-waveform at

the detector are subsequently called full-waveform LiDAR methods [12–14, 30, 36, 45].

One major issue which comes with using the full-waveforms at the photodetector is the

storage and transmission cost of such those signals. Therefore, extensive research has

been carried out to efficiently compress the full-waveform [12–14, 30]. One method is to

model the full-waveform as a parametric signal such that one can store and/or transmit

the parameters of the received signal instead of the whole signal itself [12–14, 30].

The authors of [12, 13] have considered a sum of Dirac delta functions as the model

for the received signal when the illuminating laser source has been assumed to be an

impulse in time. Then, they have used finite rate of innovation (FRI) techniques along

with Cadsow’s denoising algorithm to estimate the locations of impulses in the full-

waveform. As we are going to discuss in Chapter 3, the sum of Dirac delta functions

corresponds to the scenario where the scene is assumed to be comprised of only fronto-

parallel planes to the detector plane. Therefore, the estimation technique in [12] suffers

from model mismatch if the true underlying scene is significantly different from the

fronto-parallel assumption. However, as the authors of [12, 13] have noted, their model

is one of the simplest models among the others in the literature because an impulse

mixture requires fewer parameters than the other existing models in the literature.

Another commonly used model for the full-waveform is a mixture of Gaussian model

which the authors of [11, 23, 30, 36] have considered. As it is stated in [30], sum of

Gaussian signals is a pretty good model for most of mapping applications in urban areas.

However, the Gaussian approximation always results in symmetric peaks which may not

match the asymmetric peaks seen in real full-waveform LiDAR data. Therefore, there

have been other papers where even more complicated models have been investigated for

the same problem [14]. The authors of [14] considered a mixture of log-normal signals

and also a mixture of generalized Gaussian signals for the full-waveform at the detector

and showed improved performance in comparison to the Gaussian mixture model for

the received signal. However, as was stated earlier in this section, these methods suffer

from having too many parameters and hence, high computational complexity.

It should be noted that the proposed model of Chapter 3 can be considered as
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another model for the received signal in full-waveform LiDAR systems. Also, we should

mention that up to the best of our knowledge, the existing literature on full-waveform

LiDAR has not considered the low-photon scenario while in this thesis, in addition

to proposing a new model for the full-waveform, we have investigated the low-photon

situation.

Now, after having reviewed the literature on similar problems as the problem con-

sidered in this thesis, we are going to introduce the model for our experiment and

formulate the problem in the next chapter.



Chapter 3

Depth Acquisition Model

In this chapter, we first define depth function and depth map in Section 3.1 and then,

in Section 3.2, we introduce a toy problem which sheds light on the time of flight

depth acquisition problem. Then, in Section 3.3, we add different layers to that simple

problem to make it more realistic and practical. The core of one of those layers is

the impulse response of the scene which is defined as the normalized power received at

the detector, due to an impulse illumination in time, and is modeled as a parametric

signal in Section 3.4. Having known all those layers, it is straightforward to derive a

relation between the scene depth (the scene impulse response) and the measurements

at the output of photodetector. This relation is going to serve as the foundation of

the inference algorithm proposed in Chapter 4 to estimate the scene depth. In the last

section of this chapter, we briefly talk about how to modify the model for the scene

impulse response to address depth acquisition with high range uncertainty.

� 3.1 Depth Function and Depth Map

When it comes to depth acquisition in three-dimensional space, first, a reference plane is

required from which the perpendicular distance of each point on the scene is measured.

Let us define this reference plane as the x-y plane (equivalently, the z = 0 plane).

Consequently, for each point with coordinates (x, y, z) on the scene, the associated

depth is z assuming z is non-negative. Also, the scene is assumed to be nontransparent;

therefore, if there are overlapping pieces in the scene (i.e., different points with the

same transverse coordinates (x, y) but different longitudinal coordinates z’s), the depth

associated to that specific (x, y) pair is the distance of the closest point to the reference

plane among those points. In other words, the associated depth is the smallest number

among those z’s. Therefore, for each transverse coordinate pair (x, y), there exists at

most one depth z. Mathematically speaking, one may therefore conclude that depth is a

31



32 CHAPTER 3. DEPTH ACQUISITION MODEL

function of transverse coordinates, i.e., z = f(x, y), where the field of view (FOV) in the

experiment setting specifies the domain of function f . Also, the range of this function

and how f maps its domain to its range are uniquely determined by the scene. In other

words, in a depth acquisition experiment, for a specific illumination/detection setup,

the field of view is fixed and one gets (possibly) different depth functions for different

scenes. We are going to refer to the function f as the depth function throughout this

work.

Throughout this chapter, we assume the light source in the experiment illuminates

only a part of the scene which is Dx-unit long along the x axis and Dy-unit long along

the y axis. Also, as we are going to see in Section 3.3, the field of view in our experiment

is exactly the part of the scene illuminated by the source. Therefore, without loss of

generality, the domain of the depth function is assumed to be (x, y) ∈ [0,Dx]× [0,Dy ].

Also, as we will see in Section 3.3.1, the depth function is required to be measurable

which is the case for all physical scenes without any doubt.

Having defined the depth function and its domain, we can now define the depth

map. The depth function is a function from a subset of R
2 to its range which is

a subset of positive real numbers. Throughout this work, we assume the range of

depth function is always a subset of [0, T ]. Therefore, we can make a gray scale image

out of the depth function where the normalized depth associated to a point (x, y)

determines the brightness of that point in the image. To be more precise, we use the

affine transformation b(x, y) = 1− f(x,y)
T where b(x, y) represents the brightness at point

(x, y) in the image (0 corresponds to black and 1 represents white). We call the resulting

image depth map of the scene where the closest point to the reference plane on the scene

has the brightest intensity and the farthest point on the scene is the darkest point.

Having defined the depth function and depth map, we introduce the basic idea

behind raster scanning time of flight cameras and how they measure depth of a scene

in the following section.

� 3.2 Basic Concept Behind Time of Flight Range Imaging

As shown in Fig. 3.1, let us assume there is a directional light source (drawn as a

black cross in Fig. 3.1) and it starts sending a spatially-narrow light beam (i.e., with

infinitesimal cross section area) at a reference time, say t = 0, with intensity Is(t) over

time. Also, let us assume the laser source is pointing in some direction, say the positive

direction of the z axis (the red arrow in Fig. 3.1 represents the laser beam). From
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Figure 3.1. Basic idea behind time of flight range imaging.

the optics literature [19], it is well known that the speed of light is finite. Therefore,

the time that the light beam arrives at a distance of d meters away from the source1

is t1 = d
c , where c = 3 × 108m

s is the speed of light [19]. Therefore, mathematically

speaking, we have

Id(t) = αIs(t− t1), (3.1)

where Id(t) denotes the light intensity at the object surface which has a distance d

from the source and α is the loss factor which is constant over time and decreases as

the distance d increases. However, for a well designed laser source, α does not change

drastically with d and is very close to one which means almost no loss. Throughout

this work, we assume α to be constant with respect to d. As was indirectly assumed

earlier, if there is an object located in the way of light beam in that distance, the light

beam hits an infinitesimal area on the object and gets reflected off the object surface.

Let us now assume the object surface is a diffuse surface, hence, the reflection of light

off that small area of the surface can be modeled as a hypothetical point source located

at that point with its power proportional to the received light intensity at that point

[35]. To be more precise, the power of the imaginary point source on the object at time

1Distance is measured along the same axis as the light has been sent along, i.e., the z axis here.
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t, denoted by Pd(t), is

Pd(t) = Id(t)Ar cos θ, (3.2)

where, Id(t) is the light intensity at the distance d from the source (received light

intensity on the object at time t), A is the surface area on the object that the light

beam illuminates and θ is the angle between the light beam and the normal vector at

that infinitesimal area on the surface as shown in Fig. 3.1 and models foreshortening

[35]. Also, r represents the reflectivity constant of the surface and is always less than

or equal to one. Therefore, by plugging (3.1) into (3.2), we get

Pd(t) = Is(t− t1)αAr cos θ, (3.3)

where it is observed that as long as the object reflectivity and its position do not

change over time, the proportionality constant (i.e., αAr cos θ) stays the same. Hence,

the power of the imaginary point source Pd(t) is a time-delayed and attenuated copy

of the source intensity Is(t). Furthermore, it is essential to note that the power of this

imaginary source is proportional to A cos θ which is the fronto-parallel area that the

laser beam illuminates and therefore, is exactly equal to the cross section area of the

laser beam itself. We are going to use this fact later in this chapter.

Now, the imaginary point source on the object emits light in all directions uniformly.

Dashed blue lines in Fig. 3.1 represent wavefronts of the emitted light which are spheri-

cal. Also, let us assume there is a detector at the same place as the source location (the

cross sign in Fig. 3.1); therefore, the light emitted from the imaginary point source on

the object arrives at the detector at time t2 =
d
c+

d
c = 2d

c and its intensity is equal to the

power of the point source multiplied by 4πd−2 due to the uniform spread of power on

a sphere of radius d. Therefore, we get the following equation for the received intensity

at the detector

Ir(t) =
1

4πd2
Pd(t− t1) =

αAr cos θ

4πd2
Is(t− t2), (3.4)

where t2 = 2d
c and the second equality is a direct result of replacing Pd(t) by (3.3).

Because we assume the object position does not change over time, d is constant and

therefore, the received light intensity at the detector Ir(t) has the same shape (within

an amplitude factor) in the time domain as the time delayed source intensity Is(t− t2)

does. Now, because the only difference (within an amplitude factor) between the sent

and the received signals is the difference of their positions in time, if one were able to

measure the exact light intensity at the detector, its time delay relative to the source



Sec. 3.3. Experiment Setup for Depth Acquisition and Its Model 35

intensity could be precisely known. Hence, the distance of a very small part of the

scene illuminated by the laser source from the source/detector plane could be measured

accurately using this method.

It is worth noting the scheme explained above and shown in Fig. 3.1 is the basic

idea behind raster scanning time of flight (ToF) ranging systems, specifically, raster

scanning LiDAR systems [25, 39]. These systems usually have a laser source which can

be moved on a grid in a transverse plane and by moving the laser source from point to

point, they scan a transverse area on the scene and measure depths associated with the

points in that area. For every position of the laser source, they face the same problem

as the problem depicted in Fig. 3.1. In the end, after solving all those problems, they

interpret the results obtained from each point as the depth of its corresponding pixel

on the scene and form a depth map by putting those pixels together.

In the following section, we consider the experiment outlined in this section (i.e.,

measuring depth only for a small area or pixel) while we try to be more precise in

modeling the physical experiment.

� 3.3 Experiment Setup for Depth Acquisition and Its Model

Before delving into explaining the experiment setup and its different parts, let us first

note that as we have seen in the previous section, when the illumination source and

photodetector are in the same place, the time delay of the received signal at the detector

relative to the source signal has the form of 2d
c where d is the distance of the point

from the source/detector plane. For the sake of simplicity and to avoid carrying c in

our equations, let us consider normalized speed of light such that the time delays are

exactly equal to their corresponding distances. In other words, let us assume c = 2.

Therefore, when it is said the delay is τ , we assume the distance of the point from the

reference plane is τ and vice versa. Clearly, this does not limit the generality of our

work and is only to simplify the equations.

Presented in Fig. 3.2 is a cartoon for the experiment setup we are going to build

this whole work upon. The coordinate axes are drawn such that the y axis goes into

the page and therefore, the figure can be interpreted as the top view of the experiment.

First of all, as we stated before, because we want to measure the distance (depth) along

the z axis, we illuminate the scene with light rays parallel to the z axis (red arrows in

the figure). This can be done using different schemes; as in LiDAR systems, one may

want to use a laser source which produces a spatially coherent light beam. The other
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Figure 3.2. Schematic for the physical setup we are going to consider throughout this thesis to measure
depth.

method is utilizing a point source and an optical collimator in front of the source as

shown in Fig. 3.2. The output of the collimator is a light beam parallel to the central

axis of collimator. Either way, the scene is illuminated with parallel light rays to the

z axis and the light after hitting the scene is reflected back toward the illumination

source. In Fig. 3.2, the scene is represented as a solid black line on the right and the

dashed blue arrows represent the reflections.

Here, it should be noted that as was stated in Section 3.1, the illumination source is

assumed to only illuminate the transverse area (x, y) ∈ [0,Dx]× [0,Dy ]. Furthermore,

let us assume its intensity over that area is spatially-uniform and therefore, every point

on the scene gets exactly the same intensity as other points do. We also utilize a lens

to focus the reflected light into a detector with no spatial resolution and co-located

with the source. It is also worth mentioning that when it is said source and detector or

lens and collimator are co-located, in the physical experiment, they are not perfectly

co-located; however, their separation is very small relative to other distances involved

in the experiment. Therefore, for the sake of simplicity, one can as well assume they

are in the same location and this is why every pair is drawn as one element in Fig. 3.2.

In addition, the scene is known to be somewhere between L and L+ T units away

from the source/detector plane where we call L the offset distance. Without loss of

generality, let us consider the source/detector plane to be at z = −L and therefore,

the uncertainty interval for the scene depth is [0, T ] as shown in Fig. 3.2. Furthermore,
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let us assume the scene is a tilted plane relative to the reference plane, its center is at

z = τ0 and its depth varies linearly from τ0 +
Δ0
2 to τ0 − Δ0

2 when x goes from 0 to

Dx = D as shown in Fig. 3.2. It is clear that if the scene is a fronto-parallel plane to

the reference plane, Δ0 is zero and there is no depth variation along the x axis in that

case.

Also, one might ask why, in Fig. 3.2, the reflections are drawn as light rays parallel

to the z axis because as was seen earlier in Section 3.2 and Fig. 3.1, they must be

radial with their origin at the reflection points. However, here, we assume the offset

distance L to be very large and the detector area to be small enough that the curvature

at the detector plane can be neglected. In other words, the received wavefront can

be approximated as a flat plane with no curvature and parallel to the detector plane,

hence, dashed blue lines are drawn as perpendicular to the lens plane. Therefore, we

can assume all the reflected light from the top point (x = 0) in the scene comes into the

detector with a time delay equal to L+ τ0 +
Δ0
2 and the time delay for the reflections

from the bottom point of the scene (x = D) is L+ τ0 − Δ0
2 .

Now, having defined all different parts of the depth acquisition experiment, we are

ready to improve the assumptions we made in Section 3.2 in order to model the low-

photon depth acquisition problem more accurately. In the following section, we use

linear systems theory and specifically, convolution to model the reflection of the light

off the scene more precisely. We, then in Section 3.3.2, model the effect of low signal

power received at the detector, dark count of the detector, existence of ambient light

and undesired reflections from the parts of the scene outside of the field of view. Finally,

modeling the effect of timing jitter of the detector is addressed in Section 3.3.3.

� 3.3.1 A Model for the Received Light Intensity

Contrary to what we assumed earlier in Section 3.2, in general, the received signal

(normalized power) at the detector, r(·), is not simply a time delayed copy of the

source signal (within an amplitude factor). However, the received signal, in general,

is a distorted copy of the source signal and the distortion is due to the fact that a

laser source (or any other light source) cannot be very spatially-narrow, contrary to

what was assumed in Section 3.2. Hence, there could be depth variation within the

part of the scene illuminated by that light beam as shown in Fig. 3.2 where there is

linear change in the depth along the x axis. Even if we could make a very spatially

narrow light beam, it would not be desired to do so. As was stated in Section 3.2, the

reflected power off the illuminated pixel is directly proportional to A cos θ where A is
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the surface area of the pixel and θ is the angle between the illumination beam and the

normal vector to the surface at that pixel. We also recall from Section 3.2 that A cos θ

is basically the orthogonal area that the beam illuminates and consequently is equal to

the cross section area of the laser beam itself. Therefore, for a fixed source intensity, it

is desired to have a laser beam with an area as large as possible to boost the received

power at the detector. Therefore, for a specified source intensity, there is a trade off

between the received signal power at the detector and how constant the depth is or in

other words, how undistorted the received signal is in comparison to the source signal.

In this section, we are going to quantify the distortion caused by reflecting off an area

of the scene which possibly has depth variation.

Let us consider the experiment shown in Fig. 3.2 and recall the transverse area which

is being illuminated by the source is (x, y) ∈ [0,Dx] × [0,Dy ], the offset distance is L

(the reference plane is at z = −L) and the depth function maps its domain to a subset

of [0, T ]. Therefore, the distance of each point with coordinates (x, y, f(x, y)) on the

scene from the source/detector plane is d(x, y) = L+ f(x, y). Also, let us assume the

illumination source in Fig. 3.2 has uniform intensity over the area [0,Dx]× [0,Dy ] and

its normalized power (referred to as the source signal) is s(t). Consequently, the source

intensity is Is(t) =
s(t)

DxDy
. Also, let us define the received signal r(t) as the normalized

power impinging on the photodetector. As discussed earlier, the received light intensity

on the detector area is assumed to be uniform, i.e., r(t) = ADIr(t) where AD is the

area of the detector2. Now, we are going to revisit (3.4) to find the relation between the

source signal s(t) and the received signal r(t). In order to be able to use (3.4), a very

necessary assumption to make is that the depth of the patch on the scene illuminated

by the light beam is constant over that area. Therefore, let us discretize the scene depth

into zk’s where zk = (k− 1) TK , k = 1, . . . ,K for a large enough K and use (3.4) for each

zk and its corresponding patch on the scene. For that purpose, for each k = 1, . . . ,K,

we should replace d by L + zk, A cos θ by μ ({(x, y)|f(x, y) ∈ (zk−1, zk]}) where z0 is

defined as a negative number, say z0 = −1 and μ(A) is the Lebesgue measure of set

A and is equivalent to the area occupied by the set if the set is in R
2. Also, recalling

t2 = d (due to the normalized speed of light), we replace t2 by L + zk. Therefore, we

2This is because the offset distance L and the detector area AD are assumed to be large and small
enough respectively that the curvature of the wavefront on the detector plane can be ignored.
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get

Ir(t; zk) =
αr

4π (L+ zk)
2 Is(t− (L+ zk))μ({(x, y)|f(x, y) ∈ (zk−1, zk]}), k = 1, . . . ,K,

(3.5)

where Ir(t; zk) represents the intensity at the detector at time t due to the reflections

from the patch with depth zk. The reflectivity constant is denoted by r and let us assume

it is equal to one over the whole scene; i.e., scene is assumed to be white. Furthermore,

as we stated earlier in Section 3.2, α, which is the forward path loss experienced by the

laser intensity, can be very well approximated as constant with respect to the distance.

Therefore, for the sake of simplicity, let us drop the constant factors in (3.5) to get the

following simplified equation for the contribution of patch with depth zk to the detector

intensity.

Ir(t; zk) =
1

(L+ zk)
2 Is (t− (L+ zk))μ({(x, y)|f(x, y) ∈ (zk−1, zk]}), k = 1, . . . ,K,

(3.6)

Now, we should note that because the detector has no spatial resolution, all the

contributions from different patches on the scene are added together to form the inten-

sity at the detector, i.e., Ir(t;K) =
∑K

k=1 Ir(t; zk), where Ir(t;K) denotes the received

intensity at the detector when the scene depth is descretized into K equidistant points

in the interval [0, T ]. Now if we let K go to infinity, the approximation becomes precise

and we get

Ir(t) = lim
K→∞

K∑
k=1

1

(L+ zk)
2 Is (t− (L+ zk))μ({(x, y)|f(x, y) ∈ (zk−1, zk]}), (3.7)

where Ir(t) is the received light intensity at the detector. Now to obtain the relation

between s(t) and r(t), let us assume the detector area to be one (AD = 1) which results

in r(t) = Ir(t). It is also easily observed that (3.7) is the definition of the Lebesgue

integral when the depth function f is measurable. Therefore, in (3.7), by substituting

the sum with integral and replacing Is(·) by 1
DxDy

s(·), we get

r(t) =
1

DxDy

∫ Dy

0

∫ Dx

0

1

(L+ f(x, y))2
s (t− (L+ f(x, y))) dxdy, (3.8)
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where we can use linear systems theory and write s(t− (L+f(x, y))) as the convolution

of s(t) with a time delayed impulse, s(t− (L+ f(x, y))) = s(t) ∗ δ(t− (L+ f(x, y))), to

get

r(t) =
1

DxDy

∫ Dy

0

∫ Dx

0

1

(L+ f(x, y))2

∫ ∞

−∞
s(t− t′)δ

(
t′ − (L+ f(x, y))

)
dt′dxdy,

(3.9)

where the innermost integral denotes the convolution integral. Now, we can change the

order of integrals3 in (3.9) to get the convolution of the source signal and the scene

impulse response as the following

r(t) = s(t) ∗ h̃(t) =
∫ ∞

−∞
s(t− t′)h̃(t′)dt′, (3.10)

where

h̃(t) � 1

DxDy

∫ Dy

0

∫ Dx

0

1

(L+ f(x, y))2
δ (t− (L+ f(x, y))) dxdy (3.11)

is defined as the impulse response of the scene. The reason that we call h̃(t) the scene

impulse response is that it is the received signal at the detector when s(t) = δ(t); i.e.,

when the illumination is an impulse in time domain.

It is worth noting that first we could have used linearity and time invariance prop-

erties of light propagation and reflection to conclude that the system (with its input as

s(t) and its output as r(t)) is linear and time invariant (LTI) and therefore, to char-

acterize the relation between its input and its output, it suffices to know the impulse

response of the system h̃(t). Then, we could have derived h̃(t) by directly evaluating

the received signal at the detector due to an impulse illumination in time domain which

would have yielded the same result as (3.11). From LTI systems theory, it is well known

that the response to an arbitrary input signal s(t) for the LTI system with the impulse

response h̃(t) is r(t) = h̃(t) ∗ s(t). This is how we formulated another time-resolved

imaging problem in our earlier work [29]. We should also note that h̃(t) in (3.11) is an

impulse h̃(t) = 1
(L+τ0)

2 δ (t− (L+ τ0)) if f(·, ·) is constant and equal to τ0 over its whole

domain. Otherwise, it would not be an impulse and therefore, r(t) = s(t) ∗ h̃(t) would
be a distorted copy of s(t). Taking the distortion into account is very crucial for the

3The order of integrals in (3.9) can be changed because the integrand is absolutely integrable; i.e.,
it is a function in L1 ([0, Dx]× [0, Dy ]× R).



Sec. 3.3. Experiment Setup for Depth Acquisition and Its Model 41

λ0(t) +

γ

Poi(·) {t1, . . . , tM}λ (t)

Figure 3.3. Simplified block diagram for a direct detection photodetector when the received light
intensity at the detector is low and there exists background noise. λ0(·) represents the normalized
power of the impinging light on the detector area due to the reflections off the scene and γ models
background noise. Also, the detector is assumed to output the exact photon arrival times {t1, . . . , tM}
in the time interval (L,L+ T ] where M itself is a random variable.

estimation problem in Chapter 4 because if f(·, ·) is assumed to be constant while it is

not (meaning that there is distortion in the received signal), the estimation algorithm

uses a mismatched model to estimate the depth and as we are going to see in Chapter

4, depending on how mismatched the model is, the results could be totally wrong. As

was stated in Chapter 1, one of the main contributions of this work is modeling the

distortion (the scene impulse response) as a parametric signal when there is linear depth

variation in the scene. We are going to talk more about this in Section 3.4.

� 3.3.2 Low Power, Ambient Light and Detector Dark Count

The framework outlined in Section 3.2 gives us a very good insight into the existing

raster scanning LiDAR technologies and what those systems do to measure the depth

of a pixel on the scene. However, the assumption made in that section about measuring

the exact received light intensity fails to hold especially when the received light intensity

at the detector is very low. The low power/intensity at the detector could be either due

to the large offset distance L between the scene and the illuminating laser source which

leads to a large intensity attenuation or because of power constraints at the source and

hence, using low power to illuminate the scene to begin with.

Furthermore, in a real experiment, there always exists ambient light. Also, there

could be reflections from other parts of the scene than the area (pixel) whose depth is to

be measured. As was stated in Chapter 2, for this low power situation with the existence

of background light, a more accurate model for the photodetector is the Poisson model

we introduced in that chapter and which we have redrawn in Fig. 3.3 for future reference.

The overall effect of ambient light, undesired reflections from other parts of the scene

(outside the field of view) and the dark count of photodetector can be modeled as an

additive independent rate γ which we introduced in detail in Chapter 2 and referred to

as background noise. λ0(·) is the normalized power (with unit of photons per second)
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received from the reflections off the area of the scene whose depth is to be measured. As

is observed in Fig. 3.3, the measurements at the output of photodetector are the photon

arrival times. These measurements are random and their joint probability distribution

is related to the depth function f which we are going to explain in more detail in Section

3.4. In the following section, we are going to explain how to modify λ0(·) in order to

take into account the effect of timing jitter in the detector.

� 3.3.3 Detector Timing Jitter

Another imperfection of the detector is due to its timing jitter. Timing jitter in the

detector causes uncertainty in the arrival times and its effect can be modeled as the

convolution of the probability density function (pdf) of the timing jitter with the nor-

malized power of received light at the detector [15]. To be more precise, if we assume

the normalized power of received light at the detector to be r(t) and the pdf of detector

timing jitter to be pJ(t), we get

λ0(t) = r(t) ∗ pJ(t), (3.12)

where ∗ represents the convolution operator and r(·) is the received signal and λ0(·) is
the signal part of the rate of the Poisson process as shown in Fig. 3.3. This by itself

makes the rate of the Poisson process different than a time delayed and attenuated copy

of the source signal as was assumed in Section 3.2. In other words, in addition to the

distortion we discussed in Section 3.3.1 due to the scene impulse response, the timing

jitter in the detector also introduces distortion in the received signal.

Now, using (3.12), it is known that due to timing jitter in the detector, the signal

part of the Poisson process rate is λ0(t) = r(t) ∗ pJ(t), where r(t) is given in (3.10).

Therefore, by plugging (3.10) into (3.12), we have

λ0(t) = s(t) ∗ h̃(t) ∗ pJ(t) = (s(t) ∗ pJ(t)) ∗ h̃(t), (3.13)

where for the second equality, we have used the commutativity of the convolution

operator. It is clearly seen that our model takes the jitter effect into account by just

defining a new source signal s̃(t) as the convolution of the original source signal s(t) and

the pdf of timing jitter pJ(t), i.e., s̃(t) = s(t) ∗ pJ(t). Therefore, we can have the block

diagram shown in Fig. 3.4 to model the relation between the scene impulse response

h̃(t) and the measurements at the output of photodetector {t1, . . . , tM} obtained over

the time interval (L,L + T ]. Using this block diagram, one can write the distribution
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h̃(t) s̃(t) +

γ

Poi(·) {t1, . . . , tM}λ0 (t) λ (t)

Figure 3.4. Block diagram for the depth acquisition procedure when the number of photons is low,
there exists background noise, the detector has timing jitter and the scene has an impulse response
h(t).

of {ti}Mi=1 in terms of h̃(t) which is unknown and has to be estimated.

In the next section, we are going to consider a few parametric families for the

depth function f and derive their corresponding impulse responses h̃(t) which will be

parametric as well and then in Chapter 4, we are going to restrict h̃(t) to belong to two

of those parametric families to form an estimation problem.

� 3.4 A Parametric Model for the Scene Impulse Response

In the rest of this thesis, for the sake of simplicity, we assume there is no depth variation

along the y axis in the scene and hence, z = f(x, y) = f(x) with slight abuse of notation.

It is worth noting that this assumption is only to simplify the mathematics to derive

the proposed parametric model for the scene impulse response h̃(t) in this section and

does not limit the generality of this work. Also, after introducing our model here, it is

straightforward to verify the model is valid even for a broader set of scenes. In addition,

assuming there is no depth variation along the y axis is a reasonable assumption in both

following situations.

• If it is known that the scene consists of only planes perpendicular to a single plane,

we can define the coordinate system such that the x-z plane is the plane which all

the other planes are perpendicular to. Therefore, the distance of points with same

x on the scene from the reference plane (the z = 0 plane) is the same regardless

of y (e.g., the scene depicted in Fig. 3.2 falls in this category). Clearly, the above

assumption is completely precise in this case.

• If the field of view along the y axis is so small that the scene depth variations

along that axis can be neglected, one can say the depth function approximately is

a function of x alone.
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Now, let us assume we have the first case here with Dx = D = 1 and Dy = 1.

Therefore, (3.11) can be rewritten as

h̃(t) =

∫ 1

0

1

(L+ f(x))2
δ (t− (L+ f(x))) dx, (3.14)

where L is the offset distance and h̃(t), the impulse response of the scene, at each time

instant t is expressed as a functional of the depth function f . Also, because f(x) > 0 for

all x in the domain of f , h̃(t) is zero before t = L. Now, because in the block diagram

of Fig. 3.4, the mapping from h̃(·) to λ(·) is time invariant, we can shift the time origin

to L (i.e., shift h̃(·) in the time domain) and therefore, λ(·) experiences the same time

shift and instead of obtaining measurements over the time interval (L,L + T ], we can

observe the output in the time interval (0, T ]. Therefore, let us define hL(t) � h̃(t+L)

to get

hL(t) =

∫ 1

0

1

(L+ f(x))2
δ (t− f(x)) dx. (3.15)

where hL(·) is a time-advanced copy of h̃(·). Because in the rest of this thesis, L is

always constant and never changes, let us drop the subscript L and note that when we

say h(t), we really mean hL(t) = h̃(t+ L) as in (3.15).

Because we are using a detector with no spatial resolution, and as it is seen in (3.15),

the mapping from f(·) to h(·) is not a one-to-one mapping. For example, it is easy to

verify that f(x) and f(1 − x) result in the same h(·). This should not be surprising

because in this experiment, if we get an impulse response h(t) which is nonzero over

an interval [τ0 − Δ0
2 , τ0 +

Δ0
2 ], we do not know which part of the scene has contributed

to a specific depth in that interval. In other words, we only know that specific depth

exists in the scene and do not know where in the scene it is located. Therefore, if the

scene is assumed to be a plane like in Fig. 3.2, some information about the orientation

of the plane is lost in this experiment. For example, we do not know whether the top

corner of that plane is closer to the scene or the bottom corner is closer. However,

this is not a big issue if the proposed framework in this thesis is employed in a bigger

problem. In that case, the considered problem in this work is equivalent to estimating

the depth of a single pixel. Therefore, we can overcome the spatial ambiguity by using

the spatial correlation among adjacent pixels and the fact that the depth map should

be smooth to find the right orientation for each pixel. Another way to mitigate the
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ambiguity is what the authors of CoDAC do [28]. They use another experiment on

top of the experiment we have described here to determine which part of the scene is

responsible for a specific depth in the scene. This is out of the scope of this thesis and

is not going to be discussed in more detail here; however, curious reader is encouraged

to refer to the CoDAC paper [28]. In this work, because we do not want to deal with

this spatial ambiguity, we assume the function f is piecewise continuous (with finite

number of discontinuities) and non-increasing in x (i.e., df
dx (x) < 0 over each continuous

piece and undefined at each discontinuity). This assumption guarantees a one-to-one

relation between f(·) and h(·).
Finally, as we stated earlier in this chapter, we always consider the range of the

depth function to be a subset of [0, T ]. Therefore, T can be considered as the length

of depth uncertainty interval. Now, let us assume that the offset distance L relative to

the length of depth uncertainty interval T , is so large that 1
L2 and 1

(L+T )2 are almost

the same. In other words, let us assume
(
T
L

)2 � 1. The physical interpretation of

this assumption is that we are trying to localize an object in a very short longitudinal

interval which is very far from the illumination/detection plane (equivalently, we are

considering a depth acquisition problem with low range uncertainty). Therefore, we can

approximate 1
(L+f(x))2 as 1

L2 for x ∈ [0, 1]. Also let us assume L to be one, therefore,

we can simplify the equation for the impulse response as the following

h(t) =

∫ 1

0
δ (t− f(x)) dx. (3.16)

In the rest of this thesis, except in Section 3.5, we are going to consider (3.16) for the

scene impulse response which implies we are considering the depth acquisition problem

with low range uncertainty. In Section 3.5, we investigate how to modify our model

to be suitable for problems with high range uncertainties. Furthermore, it should be

noted that h(t) in (3.16) always integrates to one regardless of what the depth function

f is (as long as the depth function is a measurable function) because∫ ∞

−∞
h(t)dt =

∫ ∞

−∞

∫ 1

0
δ(t− f(x))dxdt =

∫ 1

0

∫ ∞

−∞
δ(t − f(x))dtdx =

∫ 1

0
1 dx = 1.

(3.17)

In the following two sections, we consider two different simplified models for the

scene (its associated depth function) and derive their impulse responses.
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� 3.4.1 Scene Comprised of Only One Fronto-Parallel Plane

Here, we assume there is only one plane in the scene and it is parallel to the reference

plane with f(x) = τ0. Therefore, using (3.16), the scene impulse response reduces to an

impulse h(t) =
∫ 1
0 δ(t− τ0)dx = δ(t− τ0). This is what we refer to as the conventional

model in the rest of this thesis because in the existing LiDAR literature, they consider

constant depth for each pixel (scene) which is exactly equivalent to the model here

where the impulse response of the scene is a time-delayed impulse. The left panels

in Fig. 3.5 show an example for this case where the top panel depicts the scene (or

equivalently, the depth function z = f(x)) and the bottom panel is a plot of the scene

impulse response, h(t), which is a Dirac delta function located at t = τ0.

� 3.4.2 Scene Comprised of Only One Slanted Plane

In this section, we assume there is only one plane in the scene and it is tilted relative

to the reference plane (for example, the scene in Fig. 3.2). Therefore, f is an affine

function of the transverse coordinate x or in other words, depth variation in the scene

is linear. Let us assume f(0) = τ0 + Δ0
2 and f(1) = τ0 − Δ0

2 . Therefore, we get

f(x) = −Δ0x+ τ0 +
Δ0
2 (equivalently, we label the center of the interval that the scene

depth occupies as τ0 and label the depth spread in the scene Δ0). Now let us plug the

affine equation for f(x) derived above into (3.16) to compute h(t) as the following:

h(t) =

∫ 1

0
δ

(
t− (τ0 +

Δ0

2
−Δ0x)

)
dx

=
1

Δ0

∫ Δ0

0
δ

(
t− (τ0 +

Δ0

2
− x′)

)
dx′

= rect

(
t− τ0
Δ0

)
, (3.18)

where we use change of variable x′ = Δ0x to derive the second line from the first

line and rect(t) is a box function with unit amplitude for t’s between −1
2 and 1

2 and

zero everywhere else. By inspecting (3.18), we realize h(t) in this case is a box function

between t = τ0−Δ0
2 and t = τ0+

Δ0
2 with an amplitude equal to 1

Δ0
and zero everywhere

else. Therefore, as opposed to the scenario discussed in Section 3.4.1, if the scene is made

up of only one plane which is tilted relative to the reference plane, the impulse response

of the scene is not an impulse and is a box function instead. Clearly, if we consider

all such impulse responses by considering all possible choices of τ0 and Δ0, we have a

parametric class of functions for the scene impulse response which is characterized by
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Figure 3.5. Three different models for the scene (top row) and their corresponding impulse responses
(bottom row). The left panels depict the case where the scene is a single plane which is fronto-parallel
to the reference plane. The middle panels represent an example for when the scene is a single slanted
plane and the right belong to the scenario where the scene depth function is nonlinear.

two independent parameters, τ0 and Δ0. The middle panels in Fig. 3.5 represent an

example for this scenario where the top panel shows the scene (or the depth function

z = f(x)) and the bottom panel is a plot of the scene impulse response, h(t), which is

a box function.

� 3.4.3 Beyond One Linear Plane

In this part, we briefly talk about the situations where the scene consists of multiple

planes or the scene depth function is a nonlinear function (i.e., the scene is not piecewise

planar and there is curvature in the scene).

Piecewise Planar Scene

In this part, the scene is assumed to be piecewise planar and therefore, its depth function

can be considered as f(x) =
∑K

k=1 fk(x), whereK is the number of planes (linear pieces)

in the scene and each fk(·) represents a linear piece. Let us denote the domain of fk
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by Dk and note that the measure (length) of the interval Dk is equal to the area of the

orthogonal projection of kth plane onto the x−y plane (reference plane) for k = 1, . . . ,K.

Also, fk’s are assumed to have disjoint domains and the union of their domains is the

domain of the original depth function f which is D = [0, 1]. Mathematically speaking,

{Dk}Kk=1 partition the original domain D and we have
∑K

k=1 ak = 1, where ak is the

length of the interval Dk, k = 1, . . . ,K and hence, positive. Now, using (3.16), we get

h(t) =

∫ 1

0
δ

(
t−

K∑
k=1

fk(x)

)
dx

=
K∑
k=1

∫
Dk

δ (t− fk(x)) dx

=
K∑
k=1

ak

∫ 1

0
δ
(
t− fk(x

′)
)
dx′

=

K∑
k=1

akhk(t), (3.19)

where, in the second line, we are allowed to pull the sum out of the Dirac delta func-

tion because of the disjointness of Dk’s. The third line is a direct result of change of

integration variable such that each Dk gets mapped to [0, 1] and hence, we have the

coefficient ak in front of the new integral. Using our results from Sections 3.4.1 and

3.4.2, each hk(·) is either an impulse if its corresponding plane is fronto-parallel to the

reference plane or a box function if the piece is tilted relative to the reference plane. It

should also be noted that each hk(·) integrates to one according to (3.17). Therefore,

the integral of h(·) is also equal to one which is not surprising due to (3.17). Also, re-

calling that
∑K

k=1 ak = 1, the scene impulse response h(t) for a piecewise planar scene

is a convex combination of the impulse responses of planar pieces in the scene which

are either impulses or box functions according to our results from Sections 3.4.1 and

3.4.2.

Generic Nonlinear Scene

In this part, we derive the impulse response for a scene with an arbitrary depth function

f . First, let us exclude intervals with nonzero length (measure) where the derivative of

f is zero. In other words, let us exclude the intervals (with nonzero length) in which the

depth function is constant. This assumption is equivalent to assuming the derivative of
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the depth function with respect to x is nonzero over the domain of f , which is D = [0, 1],

except on possibly a set of points with zero measure. This is because the intervals with

nonzero measure in which the derivative of f is zero correspond to fronto-parallel planes

in the scene and we already know how to calculate their contribution to the impulse

response from the previous part. Also, because in the previous part, we learned how

to deal with discontinuities in the depth function f , let us assume f(x) is continuous

over its domain D. Furthermore, as we stated before, let us assume f is non-increasing

or equivalently df
dx(x) ≤ 0 for x ∈ D. Now, we can use (3.16) to derive the impulse

response of the scene as the following

h(t) =

∫ 1

0
δ (t− f(x)) dx

=

∫ zmax

zmin

1

|f ′(f−1(z))|δ(t− z)dz

=

⎧⎪⎨⎪⎩
1

|f ′(f−1(t))| zmin ≤ t ≤ zmax

0 o.w.,

(3.20)

where, in the second line, we change the integration variable to z = f(x) and f ′ is the
derivative of f with respect to x and f−1 is the inverse of the function f . Also, we

denote the smallest and largest depths in the scene by zmin and zmax, respectively. Here,

we should note that f−1 is well defined because we have assumed the depth function

to be monotonically decreasing over its domain and therefore, it is invertible. If the

depth function f belongs to a parametric family of functions, say positive second order

polynomials (parabola), then, according to (3.20), the scene impulse response is in a

parametric family too. An example for a nonlinear f and its corresponding impulse

response is presented in the right panels of Fig. 3.5. The top panel is the nonlinear

scene (depth function) and the bottom panel shows its impulse response which goes to

infinity at t = zmin, however, the impulse response is integrable according to (3.17).

� 3.5 How to Modify the Model for High Range Uncertainty

In the previous section, we assumed the depth acquisition problem to have low range

uncertainty and the radial fall-off factor 1
(L+f(x))2

was therefore approximated as L−2

which does not depend on where h(t) is located in the depth uncertainty interval [0, T ].

Intuitively speaking, this makes sense because the depth uncertainty interval for that

situation is assumed to be really small (relative to L) and therefore, where h(t) is
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located in that interval is immaterial for the radial fall-off calculation. However, this

is not the case when the length of the depth uncertainty interval [0, T ] is comparable

to the offset distance L (this situation is referred to as high range uncertainty). In this

case, we should use (3.15) to find the impulse response of the scene. The only difference

between (3.15) and (3.16)–(3.20) is the 1
(L+f(x))2

factor in (3.15) which we dropped in

(3.16)–(3.20). Therefore, by inspecting (3.20), it is straightforward to conclude that

the scene impulse response for the situation with high range uncertainty is simply

h(t) for the same scene derived in the previous section (with low range uncertainty

assumption) multiplied by (L + t)−2 over its support. In other words, if we denote

the scene impulse response for a high range uncertainty situation by hHRU(t), we have:

hHRU(t) = (L + t)−2h(t), where h(t) is calculated using (3.16)–(3.20) depending on

what the scene model is. For example, for a scene comprised of only one tilted plane,

we get hHRU(t) =
(L+t)−2

Δ0
rect

(
t−τ0
Δ0

)
which is not a box function on contrary to what

we observed for the low range uncertainty situation. Now, if we assume that the depth

spread of the scene, Δ0, is small enough, we can approximate (L+t)−2 as (L+τ0)
−2 and

get hHRU(t) =
(L+τ0)−2

Δ0
rect

(
t−τ0
Δ0

)
which is a box function with its amplitude depending

on the position of the center of the box, i.e., τ0. This situation happens when we have a

problem with high range uncertainty and the scene is known to have small depth spread

(the range of the depth function f is assumed to be small).

Having seen different models for the scene impulse response, we are ready to use

two of those models (the Dirac delta function and the box function) in the next chapter

to form a parametric estimation problem in order to estimate the scene depth.



Chapter 4

Depth Estimation: Algorithm and

Analysis

In the previous chapter, we formulated the relation between the photon arrival times at

the output of direct detection photodetector and the scene impulse response h(t) and

summarized that relation in the block diagram of Fig. 3.4. We also derived two simple

parametric models for the scene impulse response in Sections 3.4.1 and 3.4.2 among

other more complicated models. Furthermore, we know from Chapter 2 that when

the rate of the photon arrival times is parametric, we have a parametric estimation

problem which can be formulated as a maximum likelihood problem. Therefore, in the

following section, we employ the maximum likelihood method of Chapter 2 with the

two simple parametric models derived for the scene impulse response in Chapter 3 to

formulate optimization problems which will then be solved to estimate the depth of

the scene. We present numerical analysis of our method (maximum likelihood with the

parametric models for the scene impulse response) using simulation results in Section

4.2.

� 4.1 Inference Algorithm

We divide this section into two parts; in the first part, we consider the scenario where

the scene consists of only one fronto-parallel plane as was assumed in Section 3.4.1 and

solve an optimization problem to estimate the distance of that fronto-parallel plane

from the reference plane. We call this model the conventional model throughout the

rest of this work because that is what the existing raster scanning LiDAR technologies

use as we explained in Chapter 3. Then, in the second part of this section, we con-

sider the introduced model for the scene impulse response in Section 3.4.2 which has

two parameters and we formulate another optimization problem to estimate those two

51
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parameters and eventually the scene depth.

� 4.1.1 Only One Fronto-Parallel Plane in the Scene

Here, we assume the scene is made up of only one plane which is parallel to the reference

plane and therefore, as was discussed in Chapter 3, the scene depth function is constant

over its domain f(x, y) = τ0 and the scene impulse response is a time-delayed impulse

h(t) = δ(t − τ0), where τ0 is the distance of the scene from the reference plane. Now,

in order to estimate the depth of the scene, τ0, we use the block diagram of Fig. 3.4

and the maximum likelihood formulation of (2.7) with α replaced by τ . In other words,

we have λ0(t; τ) = s(t) ∗ δ(t − τ) = s(t− τ), where ∗ denotes the convolution operator

and s(t) is the source signal1. Also, from Chapter 2, we recall that we are allowed to

use (2.7) only if the received energy Es =
∫ T
0 λ0(t; τ)dt does not change by varying τ

in its feasible range. As we discussed in the previous chapter, this is the case if we

are considering a depth acquisition problem with low range uncertainty. Therefore, we

have

τ̂ = argmax
τ∈(0,T )

M∑
i=1

log (γ + s(ti − τ))

= argmax
τ∈(0,T )

M∑
i=1

log

(
1 +

1

γ
s(ti − τ)

)
, M > 0, (4.1)

where by subtracting M log γ from the first line and noticing that M log γ is constant

with respect to τ , the second line follows. Also, τ̂ denotes the time shift estimate when

there are M photons in the observation interval (0, T ] with arrival times {t1, . . . , tM}.
In the case of observing no photons, a number is picked uniformly randomly from the

interval (0, T ) which is the feasible set for τ0.

Let us denote the Poisson arrival process over the observation interval by P(0,T ],

where the subscript is the observation interval and according to our model for the

arrival times at the output of detector, P(0,T ]∼Poi (γ + s(t− τ0)). Now, because the

background noise, γ, is assumed to be independent of the source signal s(t) and the

scene depth τ0, the rate of P(0,T ] is the sum of two independent terms and from the

probability theory, it is known that this point process can be constructed by merging

two independent Poisson processes with rates γ and s(t− τ0). To be more precise, we

1If there is timing jitter in the detector, we simply substitute s(t) with s̃(t) which is the convolution
of the source signal and the jitter pdf; however, in this chapter, to avoid carrying the tilde sign, we
work only with s(t).
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have

P(0,T ]∼
{
Poi(γ) ∪ Poi(s(t− τ0))

}
, (4.2)

where the arrival times in (4.1), {ti}Mi=1, are a realization of P(0,T ]. Using (4.2), one can

say the arrival times have labels “γ” and “s” based on what Poisson process they have

come from; however, these labels are not known at the detector. Arrivals which come

from Poi(γ) are uniformly randomly spread in the whole observation interval while the

arrivals coming from Poi(s(t− τ0)) are clustered around t = τ0 and they are spread in

an interval whose length is equal to the width of the source signal. For example, if the

source signal is a Gaussian pulse with variance parameter σ2, the interval in which the

arrivals labeled “s” are located has an approximate length of 6σ (neglecting the tails

of Gaussian pulse) and is centered at t = τ0.

Using the argument in the previous paragraph about arrivals with different labels,

we can reorder the arrival times {t1, . . . , tM} to get
{
t
(s)
1 , . . . , t

(s)
Ms

, t
(γ)
1 . . . , t

(γ)
Mγ

}
, where

we have assumed there are Ms arrivals with label “s” and Mγ = M −Ms arrivals from

the background noise with label “γ”. The arrival times with superscript (s) are the

photon arrival times due to the source signal while superscript (γ) means the arrivals

are from the background noise. Also, without loss of generality, let us assume the arrival

times within each group
{
t
(s)
i

}Ms

i=1
and

{
t
(γ)
i

}Mγ

i=1
are in an ascending order. However,

there is no specific relation between two arrival times one from each set. Now, let us

take a closer look at the cost function in (4.1) and see if we can use this notion of

having two different sets of arrivals to get some insight into how solving (4.1) results

in an estimate for the time shift. We have the following decomposition for the cost

function in (4.1) which we call L(τ):

L(τ) �
M∑
i=1

log

(
1 +

1

γ
s(ti − τ)

)

=
Ms∑
i=1

log

(
1 +

1

γ
s(t

(s)
i − τ)

)
+

Mγ∑
i=1

log

(
1 +

1

γ
s(t

(γ)
i − τ)

)
= Ls(τ) + Lγ(τ), (4.3)

where the first line is just the definition of the cost function in (4.1). The first term

in the second line is called Ls and is constructed using the arrivals from the signal.

The second summation in the second line, called Lγ , is the noise component of the cost
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Figure 4.1. (a) The rate of P(0,T ] which consists of γ = 1.25 and s(t − τ0) where s(t) is a Gaussian
pulse with Es = 20, σ = 0.3 and the scene depth is τ0 = 40. The arrival times belong to a sample
function of P(0,T ] and are colored according to their labels where the noise arrivals are in green and the
signal arrivals are in magenta. (b) The cost function L(τ ) for the arrivals depicted in (a) and its signal
and noise components, Ls(τ ) and Lγ(τ ), respectively.

function because it is evaluated using the arrivals caused by the background noise. It

should be noted that we are not going to use the decomposition of (4.3) to estimate the

time shift because the labels cannot be known at the detector. However, we introduced

that decomposition to analyze how the log likelihood function looks like and what the

effect of background noise on the estimation problem is.

The two panels in Fig. 4.1 represent an example where the signal is a Gaussian pulse

with standard deviation σ = 0.3 and normalized energy of 20 photons per second. The

scene depth is τ0 = 40 and there is assumed to be background noise, γ = 1.25 photons
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per second. Therefore, the arrival times are from the Poisson process Poi(γ+s(t−τ0)).

Here, it should be noted that the arrivals are generated by merging the arrivals of

independent Poisson processes Poi(γ) and Poi(s(t − τ0)) which implies the merged

arrivals are from Poi(γ+s(t−τ0)) as was stated in (4.2). In Fig. 4.1(a), we have drawn

the rate of this Poisson process which is γ + s(t− τ0) with the observed arrivals in the

interval (30, 50) where the arrivals due to the signal component of the rate (referred to

as “signal” arrivals) are marked in magenta and the arrivals caused by the background

noise (referred to as “noise” arrivals) are in green. It is observed that the noise arrivals

are present in the whole observation interval while the signal arrivals are only within

the signal pulse boundaries. Also, in Fig. 4.1(b), the cost function L(τ) marked in blue

and its signal and noise components, Ls(τ) (marked in magenta) and Lγ(τ) (marked in

green), respectively are shown. As it can be seen in Fig. 4.1(b), the signal component

of the cost function has a peak which is very close to the true underlying value of depth

and its noise component has a random shape with a lot of peaks which are smaller

than the signal component peak. Therefore, using maximum likelihood of (4.1), we are

actually using the kernel log
(
1 + 1

γ s(−τ)
)

which with high probability has a totally

different behavior for the set of signal arrivals (resulting in Ls(τ)) than for the set of

noise arrivals (resulting in Lγ(τ)). Heuristically, this discrimination between the two

types of arrivals is what is expected from a good estimator and is the core of designing

an estimator for this problem. One may want to start from this point and devise a

more computationally-efficient estimation algorithm than the maximum likelihood of

4.1, however, we do not investigate other estimators in this work.

� 4.1.2 Only One Tilted Plane in the Scene

In the previous part, we introduced the maximum likelihood framework to estimate the

depth of the scene where the scene was assumed to consist of only one fronto-parallel

plane to the reference plane. In this section, we consider the second case, where the

scene is made up of only one slanted plane and therefore, from Section 3.4.2, its depth

function is f(x, y) = τ0 − Δ0

(
x− 1

2

)
for (x, y) ∈ [0, 1]2 where the two parameters τ0

(referred to as “time shift”) and Δ0 (referred to as “depth spread”) are unknown. Also,

we recall that the scene impulse response in this case is a box function centered at t = τ0

and has a width of Δ0. To be more precise, from Section 3.4.2, the impulse response is

as the following

h(t) =
1

Δ0
rect

(
t− τ0
Δ0

)
. (4.4)
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In this case, the scene impulse response h(t) integrates to one regardless of the values of

τ0 and Δ0 and we have λ0 (t; {τ0,Δ0}) = s(t) ∗ h(t) and it is straightforward to observe

Es =

∫
λ0 (t; {τ0,Δ0}) dt =

∫
s(t) ∗ h(t)dt

=

∫
s(t)dt

∫
h(t)dt =

∫
s(t)dt, (4.5)

where we have used the identity that the area under the convolution of two nonnegative

signals is the same as the product of the areas under each signal to get the second line.

And, in the end, we have used the fact that h(t) integrates to one regardless of the

values of its parameters. Therefore, from (4.5), we know that the normalized received

energy is the same as the energy of the source signal and hence, we call it Es. Now,

because this normalized energy Es does not vary with changing the value of the impulse

response parameters, we can again use the simplified maximum likelihood of (2.7) with

α being replaced by (τ,Δ). Before formulating the maximum likelihood problem, let us

define the received signal, for the case where the depth spread of the scene is assumed

to be Δ, as the following:

rΔ(t) = s(t) ∗ 1

Δ
rect

(
t

Δ

)
, (4.6)

where we can use rΔ(t) to formulate the maximum likelihood problem as the following:

(
τ̂ , Δ̂

)
= argmax

τ∈(0,T )
Δ∈[0,Δmax]

M∑
i=1

log (γ + rΔ(ti − τ))

= argmax
τ∈(0,T )

Δ∈[0,Δmax]

M∑
i=1

log

(
1 +

1

γ
rΔ(ti − τ)

)
, M > 0, (4.7)

where we have subtracted M log γ from the first line to get the second line because

that term is constant with respect to (τ,Δ) and can be omitted from the cost function.

Δmax is the maximum depth spread we consider for the scene. Like before, if there is

no arrival observed, (τ̂ , Δ̂) is a pair randomly picked from the feasible set for (τ,Δ).

The first point to note is that rΔ(t) given in (4.6) reduces to s(t) and (4.7) becomes

(4.1) in the case where Δ = 0 which makes the model of (4.4) contain the model

introduced in the previous section which we called the conventional model. This is a

key part of the present work where we have introduced a richer model that contains
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the conventional model and therefore, it is expected to perform at least as well as the

conventional model. This is going to be observed in Section 4.2.2 where we compare

the estimates obtained using our model with the results obtained by employing the

conventional model.

The second important note to make is that one might ask how using a maximum

likelihood framework as in (4.7) is justified while our ultimate goal is estimating the

depth function (or depth map)2. In other words, how do we want to justify the solution

in (4.7) yields a good estimate for depth map (i.e., it minimizes the MSE of the re-

constructed depth map)? Let us first write the MSE of the depth map reconstruction,

denoted as MSEDM, as the following:

MSEDM � E

[∫ 1

0

∫ 1

0

(
b̂(x, y)− b(x, y)

)2
dxdy

]
, (4.8)

where the expectation is taken over all possible arrival times (the sample space of arrival

times) and b(x, y) and b̂(x, y) represent the brightness of the point (x, y) on the depth

map and its estimate, respectively and are constructed as below:

b(x, y) = 1− 1

T

[
τ0 −Δ0

(
x− 1

2

)]
, (x, y) ∈ [0, 1]2, (4.9)

b̂(x, y) = 1− 1

T

[
τ̂ − Δ̂

(
x− 1

2

)]
, (x, y) ∈ [0, 1]2. (4.10)

Now, by plugging (4.9) and (4.10) into (4.8) we get

MSEDM =
1

T 2
E

[
(τ̂ − τ0)

2 +
1

12
(Δ̂−Δ0)

2

]
=

1

T 2

(
MSEτ +

1

12
MSEΔ

)
(4.11)

where MSEτ � E
[
(τ̂ − τ0)

2
]
and MSEΔ � E

[
(Δ̂ −Δ0)

2
]
. By inspecting (4.11), we

see that minimizing MSEτ and MSEΔ results in minimizing MSEDM. Therefore, if

one wants to minimize the MSE in the reconstruction of the depth map, they should

employ an algorithm which minimizes MSEτ and MSEΔ. It is very well known that the

posterior mean is the optimal estimator when the cost function is the squared error.

Also, it is known that the maximum likelihood problem in (4.7) is equivalent to the

maximum a posteriori problem if the prior joint distribution for τ0 and Δ0 is uniform

over the feasible set. Furthermore, for high enough Es, the mean of the posterior

2Because there is a one-to-one relation between the depth function and depth map as was discussed
in Section 3.1, from now on, we only consider the depth map.
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distribution is very close to its maximum. Therefore, loosely speaking, the maximum

likelihood framework of (4.7) gives an optimal estimate for high enough normalized

received energies which will be observed in Section 4.2.2.

� 4.2 Performance Analysis of the Estimation Algorithms

In this section, we analyze the performance of the maximum likelihood (ML) methods

proposed in the previous section. In the following section, we consider the scenario

where the scene has only one front-parallel plane and hence, the ML problem is a one

dimensional optimization problem and in Section 4.1.2, the situation where both time

shift and the scene spread are unknown is investigated.

� 4.2.1 Only Time Shift Is Unknown

In this part, we consider the maximum likelihood problem of (4.1) and its solution τ̂ to

which we refer as the ML estimate of time shift. Two of the most common performance

measures for the estimate τ̂ are its bias and mean square error defined as the following:

Biasτ � E[τ̂ − τ0], (4.12)

MSEτ � E
[
(τ̂ − τ0)

2
]
, (4.13)

where the expectations are over the Poisson arrival times whose joint probability dis-

tribution has the true underlying time shift τ0 as its parameter.

Now, let us start with assuming there is no background noise in the experiment, i.e.,

γ = 0, and the source signal, s(t), is a Gaussian pulse with parameter σ. Therefore, we

get the following maximum likelihood problem:

τ̂ = argmax
τ∈(0,T )

M∑
i=1

log s(ti − τ) = argmax
τ∈(0,T )

M∑
i=1

log

(
Es√
2πσ2

e−
(ti−τ)2

2σ2

)

= argmax
τ∈(0,T )

M∑
i=1

−(ti − τ)2 =
1

M

M∑
i=1

ti, (4.14)

where the second line follows directly from the first line by omitting the constant terms

in the first line. It should also be noted that the optimization problem in the second

line is straightforward to solve and its analytical solution is the average of arrival times.

Because we are assuming a Gaussian source signal here and the scene impulse response

is an impulse and there is no background noise, we have λ(t) = s(t − τ0) which is



Sec. 4.2. Performance Analysis of the Estimation Algorithms 59

a Gaussian pulse centered at τ0 and from probability theory [10], it is known that

given the number of arrivals in the observation interval is m, the arrival times can be

considered as m independent samples from a distribution whose pdf is λ(t) multiplied

by a normalization constant so it integrates to one. Therefore, in this case, given that

the number of arrivals is m > 0, the arrival times are independent Gaussian random

variables with mean equal to τ0 and a variance of σ2. Consequently, the estimator of

(4.14) (the average of arrival times) has a mean equal to τ0 and a variance of σ2

m . Now,

we can easily calculate the bias of τ̂ given in (4.14) as the following:

Biasτ � E [τ̂ − τ0]
(a)
= EM [E[τ̂ − τ0|M ]]

= (
T

2
− τ0)e

−Es +

∞∑
m=1

e−Es
Em

s

m!
(τ0 − τ0)

= (
T

2
− τ0)e

−Es , (4.15)

where (a) is simply because of the law of “iterated expectations” from the probability

theory [10] and M is the random variable representing the number of arrivals which

is Poisson with mean equal to Es. Now, if there is no arrival M = 0, a number is

picked randomly from the interval (0, T ). This event has a probability of e−Es and the

mean of the estimate in this case is T
2 and hence, we have the first term in the second

line. For nonzero number of arrivals, as we discussed earlier, the mean of the estimate

is τ0, hence, we have the term τ0 − τ0 in the summation. From (4.15), for the case

where τ0 >
T
2 (as in our simulation results presented later in this section), we conclude

that the bias of the estimator is always negative and decays to zero exponentially with

increasing Es. Having calculated the bias of the estimate given in (4.14), let us now

evaluate its MSE as the following:

MSEτ � E
[
(τ̂ − τ0)

2
] (a)
= EM

[
E

[
(τ̂ − τ0)

2|M]]
(b)
= ν2e−Es +

∞∑
m=1

e−Es
Em

s

m!

σ2

m

= e−Es

{
ν2 + σ2

∫ Es

0

ex − 1

x
dx

}
, (4.16)

where (a) is iterated expectations, (b) is simply the expectation over M where the first

term (ν2e−Es) corresponds to the case where there is no arrival and the summation

corresponds to the estimate in (4.14). If there is no arrival observed, ν2 = T 2

12 +(T2 −τ0)
2
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where the first term is the variance of a uniform variable with support (0, T ) and the

second term is because the mean of that uniform random variable is not the same as τ0

(i.e., nonzero bias). The last line in (4.16) follows from the second line and using the

identity
∑∞

m=1
1
m

Em
s

m! =
∫ Es

0
ex−1
x dx. Now, by taking 10 log10 of the MSEτ in (4.16), we

get MSEτ in dB as the following:

MSEτ (dB) =
10

log 10

{
log ν2 − Es + log

(
1 +

σ2

ν2

∫ Es

0

ex − 1

x
dx

)}
, (4.17)

where log denotes the natural logarithm.

In Fig. 4.2, we have compared the numerical bias and mean square error of the time

shift estimate to the analytical results of (4.15) and (4.17) when the source signal s(t)

is Gaussian with parameter σ. The numerical results are obtained using Monte-Carlo

simulations with 10, 000 independent trials where τ0 = 40. Also, we have considered

three different values (0.3, 0.9, and 1.5) for the source pulse width, σ. It should be noted

that because the bias in (4.15) is independent of σ, we have drawn the analytical curve

only once in Fig. 4.2(a). The first observation is that the analytical formulas of (4.15)

and (4.17) are completely precise for the case where there is no background noise as

in Fig. 4.2. In Fig. 4.2(b), two different regions for the MSEτ are observed. For small

Es’s, MSEτ is exponential in logEs because the first two terms in (4.17) dominate the

third term. However, mean square error has a linear behavior in logEs after a threshold

around Es = 10 and this is because for large enough Es’s, the third term in (4.17) is

the dominant term which is linear in logEs. To be more precise, for large enough Es,

MSEτ ≈ σ2

Es
which results in a linear MSEτ (dB) with respect to logEs. It should also be

mentioned this linear behavior of MSEτ is the same as the asymptotic performance that

Bar-David [5] derived for the ML estimate and we presented in (2.10). We should also

note that the Cramér-Rao lower bound (CRB) is the same as the asymptotic behavior

in (2.10). Therefore, when there is no background noise, the ML estimate in (4.14)

reaches the CRB for high enough Es (Es’s larger than the threshold). Also, as was

stated above and Bar-David pointed out in [5], the linear region is proportional to σ2

which justifies the intuition behind using a narrower source signal to get a better time

shift estimate.

It is also observed that the bias of the time shift estimate in Fig. 4.2(a) goes to zero

at an energy level (Es ≈ 7) smaller than the energy required to reach the linear region

in Fig. 4.2(b) which is Es ≈ 10. Now, let us analyze why this phenomenon happens.

For the signal energies between these two thresholds (7 < Es < 10), eEs is large enough
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Figure 4.2. Numerical bias and mean square error (MSE) in dB of the time shift estimate for three
different pulse widths (σ = 0.3, 0.9, 1.5) using Monte-Carlo simulations with 10, 000 independent trials
along with the analytical bias and MSE. The source signal is a Gaussian pulse with parameter σ and
we have τ0 = 40, T = 60 and γ = 0.001.

relative to
∣∣T
2 − τ0

∣∣ that makes the bias in (4.15) almost zero while for MSEτ in (4.16),

σ2
∫ Es

0
ex−1
x dx is not significantly larger than ν2 = (T2 − τ0)

2 + T 2

12 and therefore, we see
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a nonlinear behavior in MSEτ for those intermediate signal energies in Fig. 4.2(b). In

other words, for the intermediate signal energies, although the probability of getting an

estimate far from the true time shift is very small, in MSEτ , the squared error due to

that estimate is big and cannot be ignored.

Now, let us consider the maximum likelihood estimate in (4.1) where there is back-

ground noise, γ. Like before, let us consider a Gaussian source signal with parameter

σ and analyze how the ML estimate of the time shift behaves for different source sig-

nal energies. The bias and MSE of the time shift estimate are depicted in Fig. 4.3

where we have used Monte-Carlo simulations with 10, 000 independent trials to calcu-

late the bias and MSE. In Fig. 4.3, we have considered two values for the σ parameter

of the Gaussian source (σ = 0.3, 0.9) and two values for the background noise level

(γ = 0.001, 1.25), where γ = 0.001 is the same case as in Fig. 4.2 which we refer to as

the noiseless case. First of all, it is observed in Fig. 4.3(a) that the bias for the noisy

case like in the noiseless case is always negative and decays to zero for large enough

Es’s. This is because with some probability, say β, Lγ(τ) in (4.3) has a maximum larger

than the maximum of Ls(τ) in (4.3) and this results in an estimate which has a uniform

distribution over the observation interval (0, T ). Therefore, with probability equal to

β, the mean of the time shift estimate is T
2 and with probability 1 − β, the peak of

the signal component of the log likelihood function, i.e., Ls(τ), is larger than the peaks

in Lγ(τ) and therefore, the mean of the time shift estimate is τ0 (because the source

signal is symmetric around τ0). Assuming τ0 = 40 and T = 60 as in Fig. 4.3, we get a

negative bias equal to β(T2 − τ0) where β decreases with Es. In the noisy problem, as

opposed to the noiseless problem, β depends on the width of the source signal and is a

larger number for wider signals when the signal energy is held constant. This is why, in

Fig. 4.3(a), we observe a bigger bias for σ = 0.9 than the σ = 0.3 scenario when there

is noise in the experiment (γ = 1.25). Also, β is surely larger than e−Es because we see

larger bias for the noisy case than the bias in the noiseless case in Fig. 4.3(a).

The second difference between the noiseless and noisy problem is that the source

signal energy for which the bias goes to zero in the noisy problem is bigger than the

threshold in the noiseless problem and it is because β is bigger than e−Es and therefore,

we have a situation where e−Es(T2 −τ0) is very close to zero while β(T2 −τ0) is significantly

nonzero. The same phenomenon happens for MSEτ in Fig. 4.3(b). Also, the same

relation between the threshold for MSEτ and the threshold for Biasτ holds for the noisy

case as we saw for the noiseless case; i.e., the bias threshold happens at smaller Es while

the threshold for MSEτ happens for larger Es.
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Figure 4.3. Bias and MSE in dB for the time shift estimate for two different pulse widths (σ = 0.3, 0.9)
and two different background noise levels (γ = 0.001, 1.25) using Monte-Carlo simulations with 10, 000
independent trials. The source signal is a Gaussian pulse with parameter σ and we have τ0 = 40,
T = 60.

The last point to make about the MSEτ is that for large enough Es’s, the existence

of background noise γ in the experiment does not matter and the performance of the

ML estimate of the time shift is equivalent to the performance of the noiseless ML
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estimate which is the Cramér-Rao lower bound as well and for a Gaussian source is

MSEτ ≈ σ2

Es
as stated earlier in this section. Therefore, the ML estimator for the time

shift reaches the CRB in both noiseless and noisy cases for large enough signal energy,

Es. Finally, we should note that because for low Es, the probability of getting large

errors (as we call it β) increase with σ and for large Es, MSEτ is proportional to σ2, it

is desired to have a narrower source pulse as the intuition suggests.

Having investigated different aspects of the estimation problem where the source

signal is a Gaussian pulse, we can now discuss the case where the source signal is a

rectangular signal. As Israel Bar-David in [8] pointed out, the MSEτ dependence on

the signal energy in the linear region of MSEτ is different than what we observed in

Fig. 4.3 where the source signal was a Gaussian pulse. For signals which do not have

a flat top (by flat top, we mean having zero derivative over an interval like in a box

function which has a “flat” top), MSEτ for large Es is proportional to E−1
s as we derived

in (2.10) which is the Cramér-Rao lower bound. However, as Bar-David discussed in

[8], for a rectangular source signal, the mean square error obtained in the time shift

estimation using maximum likelihood framework is proportional to E−2
s for large enough

Es’s. In Fig. 4.4, we have shown the numerically evaluated bias and the mean square

error for two different background noise levels (γ = 0.001, 1.25) and two different width

parameters (σ = 0.3, 0.9) where the source signal is a rectangular signal and is nonzero

over an interval with length σ
√
12. We ran 10, 000 independent iterations for the results

shown in Fig. 4.4 where the true time shift is τ0 = 40 and the length of the uncertainty

interval for the time shift is T = 60. It is clearly observed that MSEτ is proportional

to E−2
s in the linear region. Everything else that we discussed for the Gaussian case is

the same in the rectangular pulse case.

It should be noted that according to the simulations we have presented up until

now, the ML estimator in (4.1) can be thought of as a denoising algorithm followed

by an optimal estimator to find the mean of a distribution where the pdf associated to

the distribution has the same shape as the source signal. If a Gaussian signal is being

utilized, the efficient estimator of the mean is the empirical average as we derived in

(4.14) and the empirical average has a variance inversely proportional to the number

of samples (arrivals here). The number of arrivals is a Poisson random variable with

mean Es and therefore, the E−1
s behavior in the MSEτ is observed. However, if a

rectangular pulse is being employed as the source signal, the optimal estimator for the

mean of the distribution (which is uniform in this case) is the mid range of the arrival

times whose variance decays proportional to M−2 where M is the number of arrivals
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Figure 4.4. Bias and MSE in dB for the time shift estimate for two different pulse widths (σ = 0.3, 0.9)
and two different background noise levels (γ = 0.001, 1.25) using Monte-Carlo simulations with 10, 000
independent trials. The source signal is a rectangular pulse with parameter σ and we have τ0 = 40,
T = 60.

(samples) and therefore, we observe the E−2
s behavior in the linear region of MSEτ .

Interpreting the ML estimate as a denoising algorithm followed by the optimal mean

estimator, we can easily see why the ML estimate reaches the CRB which is the lowest
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possible MSE one can hope for. Using the same interpretation, one can argue that if the

signal s(t) we formulate the maximum likelihood problem in (4.1) with is different from

the true underlying source signal which has generated the arrivals, we have a situation

where we use a suboptimal mean estimator for a distribution. For example, if the real

source signal is Gaussian and we use a maximum likelihood framework with s(t) being

a rectangular pulse, we expect to have MSEτ proportional to (logEs)
−1 rather than

E−1
s because when the maximum likelihood uses a rectangular s(t), we are taking the

mid range of denoised arrival times as the estimate for their mean and for Gaussian

arrival times, it is known that the variance of the mid range is inversely proportional

to logM where M is the number of samples (arrivals).

� 4.2.2 Time Shift and Depth Spread Are Unknown

In this section, we analyze the performance of the maximum likelihood algorithm of

(4.7) for the joint estimation of time shift and depth spread of the scene impulse re-

sponse. We also recall that the maximum likelihood problem in (4.7) is the direct result

of using the parametric model for the scene impulse response given in (4.4) which we

originally derived in Section 3.4.2 to model a possibly tilted planar scene. Clearly, if

the planar scene is fronto-parallel to the reference plane, the conventional model, which

assumes the scene impulse response is a time-delayed impulse, is accurate. In that

case, our model reduces to the conventional model because in our model, when the

depth spread Δ0 approaches to zero, the box function reduces to an impulse (the depth

spread is a measure of the plane tilt and zero depth spread corresponds to fronto-parallel

plane). Therefore, for the case where the scene consists of only one plane parallel to the

reference plane, we expect to get the same performance using either of these two mod-

els. However, when the scene is composed of a tilted plane, we expect to get a better

performance by using our model than the conventional model because the conventional

model in this case is mismatched to the true underlying scene impulse response which is

a box function as in (4.4). Here, using simulation results, we investigate this difference

between the conventional and our model.

Before, getting to simulation results for the algorithm, let us first define L(τ,Δ) as

the ML cost function in (4.7):

L(τ,Δ) �
M∑
i=1

log

(
1 +

1

γ
rΔ(ti − τ)

)
, (4.18)
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Figure 4.5. Contour plot of the log-likelihood function of the Poisson arrival times where τ0 = 40 and
Δ0 = 2.

where rΔ(t) is defined in (4.6) and is the convolution of the source signal s(t) and a box

function with width of Δ. It is worth mentioning that L(τ,Δ) is highly non-convex with

a lot of peaks and valleys and therefore, we could not use any gradient algorithms to

solve the optimization problem in (4.7). We instead evaluated the cost function in (4.18)

over a dense two dimensional grid (one dimension representing τ and the other denoting

Δ) and picked the maximum by searching over that grid. This is the downside of our

model which makes the optimization problem more computationally expensive because

of introducing a new parameter (i.e., Δ) into the ML problem. However, if one can

devise a more computationally efficient estimation algorithm than the brute-force search

over the aforementioned grid, the proposed model in this work will greatly improve the

depth estimation results as we will see later in this section. An example for the contour

plot of the cost function L(τ,Δ) is shown in Fig. 4.5, where a Gaussian source signal

with Es = 20 and σ = 0.1 is used and the parameters of the scene are τ0 = 40, Δ0 = 2.

Also, background noise in the experiment is assumed to be γ = 1.25. The red color

represents the largest function value and the blue color denotes the smallest value; it is

clear that L(τ,Δ) has a maximum close to the true underlying parameters, however, a

lot of local minimums and maximums are observed in Fig. 4.5 as well.

In the previous section, we interpreted the ML estimator as a hypothetical denoising

block followed by the optimal estimator for the mean of the distribution of arrival times.
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We also recall that the ML estimate of (4.14) was exactly the optimal estimate for the

mean of the distribution in the noiseless problem. Now, it should be noted that in the

noiseless scenario (i.e., γ = 0) in this section, the pdf of the Poisson arrival times is

rΔ(t − τ0) = s(t) ∗ h(t) multiplied by a normalization factor so the pdf integrates to

one. Therefore, because the pdf of arrival times is the convolution of two signals, the

arrival times can be considered as the sum of two independent random variables3; one

of them has a pdf equal to source signal s(t) multiplied by a normalization constant and

the other random variable has a pdf equal to h(t) which implies that random variable

is a uniform random variable with mean τ0 and with variance
Δ2

0
12 . Consequently, the

mean of the arrival times is τ0 because the mean of the random variable with pdf s(t) is

zero. Also, because the variance of sum of two independent random variables is equal

to the sum of their variances, the variance of the arrival times is σ2 +
Δ2

0
12 assuming the

source signal is Gaussian with a known width parameter σ. Using this interpretation,

we can now say that the estimator we should use to solve our problem has to reduce

to the optimal estimator for the mean and the variance of the Poisson arrival times

(i.e., τ0 and σ2 +
Δ2

0
12 , respectively) in the noiseless problem. Also, the algorithm, in

the noisy scenario, should be able to denoise the arrival times first and then find the

mean and variance of the time of arrivals. If there exists such an estimator, then,

it should achieve the Cramér-Rao lower bound for large enough signal energies which

means enough number of samples from the underlying distribution. The good news is

that solving the two dimensional ML problem in (4.7) gives us an estimate satisfying

all the above requirements; i.e, the ML estimate of τ0 and Δ0 achieves the CRB for

MSEτ and MSEΔ for large enough Es’s as shown in Figs. 4.6–4.9.

Now, let us consider the maximum likelihood problem of (4.7) with true underlying

parameters τ0 = 40 and Δ0 = 2. Also, let us assume the depth uncertainty interval is

(0, T ) where T = 60. We have run 1000 independent trials of Monte-Carlo simulations

to numerically evaluate MSEτ for the noiseless and noisy problems in Figs. 4.6 and 4.7,

respectively, where the noisy problem has background noise with γ = 1.25. MSEΔ is

also plotted in Figs. 4.8 and 4.9 for the noiseless and noisy problem, respectively. In

each of Figs. 4.6–4.9, a Gaussian pulse with parameter σ is used as the source signal and

each panel corresponds to a different σ. The top panel of those figures represents the

results where σ = 0.1 which means the source signal is much narrower than the scene

impulse response (with Δ0 = 2). This yields to a huge gap between the performance of

3From probability theory [10], it is known that the pdf of the sum of two independent random
variables is the convolution of their pdf’s.
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the conventional model and our model. As we observe in Figs. 4.6(a) and 4.7(a), the

mean square error, obtained by using the conventional model, changes very slowly by

increasing Es and the reason behind this is that although increasing Es gives us more

samples, because the conventional model is a mismatched model to the true underlying

impulse response, we cannot benefit from more samples. On the other hand, our model

achieves the best possible performance predicted by CRB for large enough Es’s. We

have also presented the results of another algorithm which we have called “oracle (Δ0

known)”. That is basically using maximum likelihood to estimate the time shift when

the depth spread of the scene is exactly known at the estimator; i.e., we have solved

the ML problem of (4.1) with s(t) replaced by rΔ0(t). As we can see in all the panels

of Figs. 4.6 and 4.7, the performance of our model, for high enough Es, matches the

performance of the ML algorithm using oracle and also the CRB prediction of the best

performance.

In the middle panels of Figs. 4.6 and 4.7, we have increased the σ parameter of the

Gaussian source to 0.4 which implies the source is approximately 2.4 units wide which

is almost the same as the depth spread of the scene, Δ0 = 2. In the noiseless problem in

Fig. 4.6(b), the performance of all methods and CRB are almost the same up to some

intermediate energy level (Es ≈ 100) and then the performance of conventional method

starts deviating from the performance of other methods and CRB. This is because the

Kullback-Leibler distance between the distributions of arrival times in the conventional

model and our model is relatively small for σ = 0.4 and therefore, in order to distinguish

these two distributions from each other, we need a lot of samples. Hence, as long as

the signal energy which determines the number of samples is low or intermediate, there

is no difference between the conventional model and our model. However, for large

number of samples (corresponding to large Es), we start distinguishing between the

distribution obtained by using the conventional model and the distribution obtained by

our model. In the noisy problem in Fig. 4.7(b), the performance of the conventional

model is uniformly worse than the other models and CRB because the denoising part

using the conventional model is not performed as well as it is done using the correct

model.

In the bottom panels of Figs. 4.6 and 4.7, the σ of the Gaussian source has been

increased to 1.6 which results in a very wide source signal relative to the true depth

spread. Therefore, as it is observed, in both noiseless and noisy problems, there is

no performance gap between the conventional model and our model and both match

the performance of ML algorithm using oracle and the CRB. Therefore, as we have
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seen in Figs. 4.6 and 4.7, when the width of the Gaussian source (approximately 6σ)

is small relative to the depth spread, the conventional model has a very poor perfor-

mance in comparison to our model which achieves the Cramér-Rao lower bound. As

σ increases, the difference between the conventional model and our model gets more

and more indistinguishable and therefore, we need more samples (large Es) to get a

better performance using our model relative to the conventional model. At some point,

when the σ of Gaussian source is very large, we basically cannot distinguish between

the conventional model and our model for the signal energies we have considered in our

simulations. Therefore, the parameter σ of the source signal plays a key role in our

estimation problem and puts a fundamental limit on how small Δ0 can be in order to

be distinguishable from Δ = 0 which corresponds to the conventional model.

In Figs. 4.8 and 4.9, we have plotted theMSEΔ for the noiseless and noisy problems,

respectively. Everything is the same as for the time shift estimation in the sense that

we lose precision as σ gets larger and our model achieves the CRB for large enough

Es’s. However, in the depth spread estimation problem when the σ parameter of the

source signal is small (σ = 0.1, Figs. 4.8(a) and 4.9(a)) and the signal energy is low

or intermediate, our method is slightly worse than using the ML algorithm with the

exact value of τ0 (referred to as “oracle (τ0 known)”). This was not the case in the

time shift estimation problem where our method was always as well as having oracle

regardless of the signal energy level. Also, when σ = 1.6, because Δ = 2 and Δ = 0

are indistinguishable, the mean square error of the depth spread estimate is relatively

poor even for large signal energies as shown in Figs. 4.8(c) and 4.9(c). It should also be

noted that the scale of the vertical axis in each of Figs. 4.6–4.9 is the same among the

panels to emphasize that the estimate MSE gets worse as we increase σ in both time

shift and depth spread estimation problems.

As the last remark in this chapter, we should note that the off-diagonal entries in

the Fisher information matrix are zero (see Appendix A), therefore, the time shift and

depth spread parameters, in theory, can be estimated independently which could help

reduce the computation complexity by a large factor. However, because we do not have

time to investigate this thoroughly, we consider it as a future work which we discuss

more in the next chapter.



10
0

10
1

10
2

10
3

−40

−30

−20

−10

0

10

20

30

Normalized E
s
 (photons)

M
S

E
τ (

dB
)

 

 
Conventional Model

Our Model

Oracle (Δ
0
 known)

CRB

(a) Source signal is a Gaussian pulse with σ = 0.1.

10
0

10
1

10
2

10
3

−40

−30

−20

−10

0

10

20

30

Normalized E
s
 (photons)

M
S

E
τ (

dB
)

 

 

Conventional Model
Our Model
Oracle (Δ

0
 known)

CRB

(b) Source signal is a Gaussian pulse with σ = 0.4.

10
0

10
1

10
2

10
3

−40

−30

−20

−10

0

10

20

30

Normalized E
s
 (photons)

M
S

E
τ (

dB
)

 

 

Conventional Model

Our Model

Oracle (Δ
0
 known)

CRB

(c) Source signal is a Gaussian pulse with σ = 1.6.

Figure 4.6. Empirical mean square error in dB for the ML estimate of the time shift for three different
models evaluated using Monte-Carlo simulations with 1000 independent trials. The conventional model
assumes Δ = 0; oracle (Δ0 known) is the ML estimate where the depth spread of the scene is exactly
known. Here, we have Δ0 = 2, τ0 = 40, T = 60, γ = 0.001.
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(c) Source signal is a Gaussian pulse with σ = 1.6.

Figure 4.7. Empirical mean square error in dB for the ML estimate of the time shift for three different
models evaluated using Monte-Carlo simulations with 1000 independent trials. The conventional model
assumes Δ = 0; oracle (Δ0 known) is the ML estimate where the depth spread of the scene is exactly
known. Here, we have Δ0 = 2, τ0 = 40, T = 60, γ = 1.25.
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(c) Source signal is a Gaussian pulse with σ = 1.6.

Figure 4.8. Empirical mean square error in dB for the ML estimate of Δ for two different models
evaluated using Monte-Carlo simulations with 1000 independent trials. Oracle (τ0 known) is the ML
estimate where the time shift of the scene center is exactly known in advance. Here, we have Δ0 = 2,
τ0 = 40, T = 60, γ = 0.001.
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10
0

10
1

10
2

10
3

−30

−20

−10

0

10

Normalized E
s
 (photons)

M
S

E
Δ (

dB
)

 

 

Our Model

Oracle (τ
0
 known)

CRB

(c) Source signal is a Gaussian pulse with σ = 1.6.

Figure 4.9. Empirical mean square error in dB for the ML estimate of Δ for two different models
evaluated using Monte-Carlo simulations with 1000 independent trials. Oracle (τ0 known) is the ML
estimate where the time shift of the scene center is exactly known in advance. Here, we have Δ0 = 2,
τ0 = 40, T = 60, γ = 1.25.



Chapter 5

Discussion and Conclusion

In this thesis, we considered a generic time-of-flight depth acquisition problem with

low photon count, where there could be ambient light present in the experiment and

the photodetector could have dark count and timing jitter. However, we assumed

the photon arrival times at the output of detector to be precisely known. We then

decomposed the received light intensity at the detector as the convolution of the source

intensity and a signal which we called the impulse response of the scene. After that,

we used tools from calculus to formulate a general framework where given the scene,

one can calculate the scene impulse response. Therefore, if the scene belongs to a

parametric class of scenes, one gets a parametric impulse response. We specifically

considered the two most basic parametric classes for the scene impulse response where

one of them is the model being used in the existing ranging technologies and we refer

to it as the conventional model and the other model is new and a key part of this work.

Our proposed model is accurate for planar scenes and can be thought of as a better

approximation for non-planar scenes than the conventional model. We then in Chapter

4, analyzed the performance of the conventional and the proposed models and compared

the scene parameter estimates obtained by using those two models. It was observed that

the proposed model of this work performs much better than the conventional model if

the true underlying scene is a tilted plane with large tilt (relative to the width of the

source signal used in the experiment). The reason behind this performance gap is the

fact that the conventional model in that case is a totally mismatched model to the true

underlying scene and therefore, the estimation of parameters is poor if one wants to

use the conventional model in the estimation problem. Also, it should be noted that

our proposed model is basically the same as the conventional model if the source signal

with which we illuminate the scene is very wide in time domain and hence, both models

have the same performance. Therefore, the proposed model in this work always has a

uniformly better or equal performance to what one can get by using the conventional
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model which emphasizes the importance of this work. However, we also noted that the

computational complexity of the maximum likelihood algorithm with our model is quite

high and the performance improvement is at the expense of more computation.

As future work, one may want to develop a more computationally efficient estimation

algorithm than the maximum likelihood we used in this thesis. Specifically, because the

off-diagonal entries in the Fisher information matrix in our estimation problem are

zero, in theory, we should be able to estimate the two parameters of the proposed

model separately by solving two independent one-dimensional problems instead of a

two-dimensional problem. For example, one may want to work with the empirical

moments of the arrival times to form an overdetermined system of equations to find the

closest match for the parameters of the model. This may lead to huge computational

reduction while the solution may remain close to the optimal solution.

Also, one can use the framework we derived in Chapter 3 to devise more complicated

models to get better approximation to the true scene impulse response if the scene is

known to belong to a specific class of scenes. Furthermore, the methodology employed

in this thesis with the right model for the scene impulse response (e.g., the convex

combination of box functions which corresponds to piecewise linear scenes) can be easily

applied to the experiments where the scene is flood-lighted. Moreover, the framework

introduced in this work can be extended to more accurate models of the photodetector

(e.g., the shot noise models we introduced in Chapter 2 to take into account the Gaussian

noise and finite electrical bandwidth of the photodetector) and the resulting problems

can be solved by the expectation-maximization (EM) algorithm with our formulation

as its foundation.

One may also consider solving a bigger problem where using the spatial correlation of

depths in adjacent pixels, it is possible to get super resolution in the reconstruction step.

This can be achieved using some framework like Generalized Approximate Message

Passing (GAMP) of [37] where the estimator investigated in this work will be the scalar

estimator of the GAMP formulation.

Finally, we should note that, in this thesis, we treated the problem of photon-limited

depth acquisition only from a parametric perspective. However, one may consider using

non-parametric inference algorithms which can sometimes be implemented using fast

iterative methods.



Appendix A

Cramér-Rao Lower Bounds

In this appendix, we derive the Cramér-Rao lower bounds for the mean square error of

any estimate for the time shift parameter in the time shift estimation problem and the

mean square error of the time shift and depth spread in the joint estimation problem.

In the following section, we derive the CRB for the time shift estimation problem and

in Section A.2, we calculate the CRB for the joint estimation of the time shift and

depth spread. First, let us prove the following lemma which will come in handy when

we derive the CRB’s.

Lemma A.0.1. Suppose the arrivals of a Poisson process with rate λ(t) are being

observed over the interval (0, T ] and the arrival times are {ti}Mi=1 where M , the number

of arrivals, is a Poisson random variable with mean E =
∫ T
0 λ(t)dt. The expected

value of the function g̃ ({ti}i;α) =
∑

i g(ti;α), where α is a vector of deterministic

parameters, is as follows (g̃ = 0 if there is no arrival):

G(α) � E [g̃({ti}i;α)] =
∫ T

0
λ(t)g(t;α) dt. (A.1)

Proof. From probability theory, it is known that conditioned on the number of arrivals,

the Poisson arrival times can be considered as independent and identically distributed

(iid) random variables with their marginal pdf equal to λ(t)
E . Therefore, to calculate the

expectation of (A.1), we can first condition on the number of arrivals and then take the

expectation with respect to the Poisson distribution for the number of arrivals as the

following (basically, iterated expectations):
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G(α) � E [g̃({ti}i;α)]
(a)
=

∞∑
m=1

e−mEm

m!
E

[
m∑
i=1

g(ti;α)
∣∣M = m

]
(b)
=

∞∑
m=1

e−mEmm

m!
E

[
g(t1;α)

∣∣M = m
]

(c)
=

∞∑
m=1

e−mEmm

m!

∫ T

0
g(t1;α)

λ(t1)

E
dt1

(d)
=

( ∞∑
m=1

e−EEm−1

(m− 1)!

)∫ T

0
g(t1;α)λ(t1) dt1

(e)
=

∫ T

0
λ(t)g(t;α) dt, (A.2)

where (a) is the law of iterated expectations (g̃ is zero if there is no arrival and therefore,

the summation starts from m = 1) and (b) is due to the fact that the expectation is

linear and given the number of arrivals, the arrival times are iid. (c) follows from (b)

by replacing the expectation by its definition. Getting (d) from (c) is straightforward

and (e) results directly from (d) because the summation is one. �

� A.1 CRB for Estimation of Time Shift

In this section, we consider the scenario where the scene is assumed to be only one

fronto-parallel plane with depth τ0. Therefore, assuming the background noise is γ and

the source signal is s(t), the rate of the Poisson arrival times is λ(t) = s(t− τ0)+ γ and

the log likelihood function is as follows:

L(τ) =
∑
i

log

(
1 +

1

γ
s(ti − τ)

)
. (A.3)

Now, from the estimation theory [43], it is known that the Fisher information can be

derived as the following:



Sec. A.2. CRB for Joint Estimation of Time Shift and Depth Spread 79

I(τ0) � −E

[
∂2L(τ)

∂τ2

∣∣∣∣
τ=τ0

]

(a)
= −E

⎡⎢⎣∑
i

1
γ s̈(ti − τ0)

1 + 1
γ s(ti − τ0)

−
(
1
γ ṡ(ti − τ0)

)2

(
1 + 1

γ s(ti − τ0)
)2

⎤⎥⎦
(b)
= −E

[∑
i

1
γ s̈(ti − τ0)

1 + 1
γ s(ti − τ0)

]
+ E

⎡⎢⎣∑
i

(
1
γ ṡ(ti − τ0)

)2

(
1 + 1

γ s(ti − τ0)
)2

⎤⎥⎦
(c)
= −

∫ T

0
s̈(t− τ0) dt+

∫ T

0

(ṡ(t− τ0))
2

γ + s(t− τ0)
dt

(d)
=

∫ T

0

(ṡ(t− τ0))
2

γ + s(t− τ0)
dt

(e)
=

∫ T

0

(ṡ(t))2

γ + s(t)
dt, (A.4)

where ṡ(t) and s̈(t) are the derivative and second derivative of s(t) with respect to t. In

(a), we have used (A.3) to calculate ∂2L(τ)
∂τ2

∣∣∣∣
τ=τ0

and (b) directly follows (a) because the

expectation is linear. (c) is the result of applying Lemma A.0.1 to the expectations in

(b) and finally, we get (d) because we assume the derivative of s(t− τ0) at the interval

boundaries is zero. Because we always assume the feasible set for τ0 is much smaller

than the observation interval (0, T ), we can shift the integrand in (d) by τ0 to get (e).

Now, we can use the Fisher information in (A.4) to derive the Cramér-Rao lower bound

as the following:

MSEτ ≥ 1

I(τ0) =

(∫ T

0

(ṡ(t))2

γ + s(t)
dt

)−1

. (A.5)

� A.2 CRB for Joint Estimation of Time Shift and Depth Spread

In this section, we consider the case where the scene is a tilted plane and therefore, there

are two parameters to be estimated (time shift, τ0, and depth spread, Δ0). Assuming

background noise level is γ and the source signal is s(t), we can write the log likelihood
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function as the following:

L(τ,Δ) =
∑
i

log

(
1 +

1

γ
rΔ(ti − τ)

)
, (A.6)

where

rΔ(t) = s(t) ∗ 1

Δ
rect

(
t

Δ

)
. (A.7)

Also, in this case, the rate of the Poisson arrival times is λ(t) = γ + rΔ0(t− τ0). Here,

because we have two parameters which should be estimated, the Fisher information

takes a matrix form as the following:

I(τ0,Δ0) =

[
I11 I12
I21 I22

]
, (A.8)

where we have

I11 � −E

[
∂2L

∂τ2
(τ,Δ)

∣∣∣∣
(τ0,Δ0)

]

(a)
= −E

⎡⎣ ∂2rΔ0
(τ)

∂τ2

∣∣
τ=ti−τ0

γ + rΔ0(ti − τ0)

⎤⎦+ E

⎡⎢⎣
(
∂rΔ0

(τ)

∂τ

∣∣
τ=ti−τ0

)2

(γ + rΔ0(ti − τ0))
2

⎤⎥⎦
(b)
= E

⎡⎢⎣
[

1
Δ0

(
s(ti − τ0 +

Δ0
2 )− s(ti − τ0 − Δ0

2 )
)]2

(γ + rΔ0(ti − τ0))
2

⎤⎥⎦
(c)
=

∫ T

0

[
1
Δ0

(
s(t− τ0 +

Δ0
2 )− s(t− τ0 − Δ0

2 )
)]2

γ + rΔ0(t− τ0)
dt

(d)
=

∫ T

0

[
1
Δ0

(
s(t+ Δ0

2 )− s(t− Δ0
2 )

)]2
γ + rΔ0(t)

dt, (A.9)

where in (a), we have expressed the second derivative of L in terms of the derivatives

of rΔ0 . It should also be noted that the first term in (a) is zero because it is equivalent

to the integral of the second derivative of rΔ0 which is zero as we saw in the one-

dimensional case. Also, in (b), we have replaced the derivative of rΔ0 by the numerator

there. By using Lemma A.0.1, (c) directly follows from (b) and (d) is just a time-shifted

copy of (c).
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I22 � −E

[
∂2L

∂Δ2
(τ,Δ)

∣∣∣∣
(τ0,Δ0)

]

(a)
= −E

⎡⎣ ∂2rΔ0
(τ)

∂Δ2

∣∣
τ=ti−τ0

γ + rΔ0(ti − τ0)

⎤⎦+ E

⎡⎢⎣
(
∂rΔ0

(τ)

∂Δ

∣∣
τ=ti−τ0

)2

(γ + rΔ0(ti − τ0))
2

⎤⎥⎦
(b)
= E

⎡⎢⎣
[

1
Δ0

(
rΔ0(ti − τ0)− 1

2s(ti − τ0 +
Δ0
2 )− 1

2s(ti − τ0 − Δ0
2 )

)]2
(γ + rΔ0(ti − τ0))

2

⎤⎥⎦
(c)
=

∫ T

0

[
1
Δ0

(
rΔ0(t− τ0)− 1

2s(t− τ0 +
Δ0
2 )− 1

2s(t− τ0 − Δ0
2 )

)]2
γ + rΔ0(t− τ0)

dt

(d)
=

∫ T

0

[
1
Δ0

(
rΔ0(t)− 1

2s(t+
Δ0
2 )− 1

2s(t− Δ0
2 )

)]2
γ + rΔ0(t)

dt, (A.10)

where as before in (a), the first expectation is zero because
∂2rΔ0

(τ)

∂Δ2 is antisymmetric

around τ = τ0 and the second expectation is expanded in (b). Also, using Lemma A.0.1,

(b) can be rewritten as (c) and as before, (d) is the result of shifting the integrand in

(c) by τ0.

I21 = I12 � −E

[
∂2L

∂τ∂Δ
(τ,Δ)

∣∣∣∣
(τ0,Δ0)

]

(a)
= −E

⎡⎣ ∂2rΔ0
(τ)

∂τ∂Δ

∣∣
τ=ti−τ0

γ + rΔ0(ti − τ0)

⎤⎦+ E

⎡⎢⎢⎢⎣
(
∂rΔ0

(τ)

∂τ

∂rΔ0
(τ)

∂Δ

) ∣∣∣∣
τ=ti−τ0

(γ + rΔ0(ti − τ0))
2

⎤⎥⎥⎥⎦
(b)
= −

∫ T

0

∂2rΔ0(τ)

∂τ∂Δ

∣∣
τ=t−τ0

dt+

∫ T

0

(
∂rΔ0

(τ)

∂τ

∂rΔ0
(τ)

∂Δ

) ∣∣∣∣
τ=t−τ0

γ + rΔ0(t− τ0)
dt

(c)
= − ∂2

∂τ∂Δ

∫ T

0
rΔ0(τ) dτ + 0

(d)
= 0, (A.11)
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where (a) is just the expansion of the second derivative and using Lemma A.0.1, we get

(b) from (a) and the integrand in the second integral in (b) is antisymmetric around

τ0. Also, the derivative in the first integral of (b) can be pulled out of the integral and

because rΔ0 always integrates to Es regardless of the values of τ0 and Δ0, we get zero.

Therefore, the Fisher information matrix is I(τ0,Δ0) =

(
I11 0

0 I22

)
where I11 and I22

are given in (A.9) and (A.10). Now, because the Fisher information matrix is a diagonal

matrix, using (A.9) and (A.10), we have the following Cramér-Rao lower bounds for

the mean square error of time shift and depth spread:

MSEτ ≥ 1

I11 =

⎛⎜⎝∫ T

0

[
1
Δ0

(
s(t+ Δ0

2 )− s(t− Δ0
2 )

)]2
γ + rΔ0(t)

dt

⎞⎟⎠
−1

, (A.12)

MSEΔ ≥ 1

I22 =

⎛⎜⎝∫ T

0

[
1
Δ0

(
rΔ0(t)− 1

2s(t+
Δ0
2 )− 1

2s(t− Δ0
2 )

)]2
γ + rΔ0(t)

dt

⎞⎟⎠
−1

. (A.13)



Bibliography

[1] K. Abend. Optimum photon detection. IEEE Trans. Inform. Theory, 12(1):64–65,

Jan. 1966.

[2] A. Antoniadis and J. Bigot. Poisson inverse problems. Ann. Stat., 34(5):2132–2158,

2006.

[3] N. Antoniadis and A. O. Hero. Time-delay estimation for filtered Poisson processes

using an EM-type algorithm. IEEE Trans. Signal Process., 42(8):2112–2123, Aug.

1994.

[4] I. Bar-David. Statistics of nonstationary shot processes and the fluctuations of

detected signals. Proc. IEEE, 56(12):2167–2168, Dec. 1968.

[5] I. Bar-David. Communication under the Poisson regime. IEEE Trans. Inform.

Theory, 15(1):31–37, Jan. 1969.

[6] I. Bar-David. On the extension of the discrete model for optical detection. Proc.

IEEE, 59(11):1612, Nov. 1971.

[7] I. Bar-David. Information in the time of arrival of a photon packet: Capacity of

PPM channels. J. Opt. Soc. Amer., 63(2):166–170, Feb. 1973.

[8] I. Bar-David. Minimum-mean-square-error estimation of photon pulse delay. IEEE

Trans. Inform. Theory, 21(3):326–330, May 1975.

[9] T. Berger. Rate Distortion Theory. Prentice-Hall, New York, 1971.

[10] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena Scientific,

Nashua, NH, 2008.

83



84 BIBLIOGRAPHY

[11] F. Bretar, A. Chauve, C. Mallet, and B. Jutzi. Managing full waveform LiDAR

data: A challenging task for the forthcoming years. International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B1):

415–420, 2008.

[12] J. Castorena and C. D. Creusere. Compressive sampling of LiDAR: Full-waveforms

as signals of finite rate of innovation. In Proc. 20th European Signal Process. Conf.

(EUSIPCO 2012), pages 984–988, Bucharest, Romania, Aug. 2012.

[13] J. Castorena, C. D. Creusere, and D. Voelz. Using finite moment rate of innovation

for LiDAR waveform complexity estimation. In Conf. Rec. Asilomar Conf. on

Signals, Syst. & Computers, pages 608–612, Pacific Grove, CA, 2010.

[14] A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. Plerrot-Deseilligny, and W. Puech.

Processing full-waveform LiDAR data: Modeling raw signals. International

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,

36(Part 3/W52):102–107, Sep. 2007.

[15] N. H. Clinthorne, N. A. Petrick, W. L. Rogers, and A. O. Hero. A fundamental

limit on timing performance with scintillation detectors. IEEE Trans. Nucl. Sci.,

37(2):658–663, Apr. 1990.

[16] T. F. Curran and M. Ross. Optimum detection thresholds in optical communica-

tions. Proc. IEEE, 53(11):1770–1771, Nov. 1965.

[17] B. I. Erkmen and B. Moision. Maximum likelihood time-of-arrival estimation of op-

tical pulses via photon-counting photodetectors. In Proc. IEEE Int. Symp. Inform.

Theory, pages 1909–1913, Seoul, Korea, Jul. 2009.

[18] R. M. Gagliardi and S. Karp. M-ary Poisson detection and optical communications.

IEEE Trans. Commun. Tech., 17(2):208–216, Apr. 1969.

[19] J. W. Goodman. Statistical Optics. Wiley, 1985.

[20] A. O. Hero. Lower bounds on estimator performance for energy-invariant param-

eters of multidimensional Poisson processes. IEEE Trans. Inform. Theory, 35(4):

843–858, Jul. 1989.

[21] A. O. Hero. Timing estimation for a filtered Poisson process in Gaussian noise.

IEEE Trans. Inform. Theory, 37(1):92–106, Jan. 1991.



BIBLIOGRAPHY 85

[22] A. O. Hero, N. Antoniadis, N. H. Clinthorne, W. L. Rogers, and G. D. Hutchins.

Optimal and sub-optimal post-detection timing estimators for PET. IEEE Trans.

Nucl. Sci., 37(2):725–729, Apr. 1990.

[23] M. A. Hofton, J. B. Minster, and J. B. Blair. Decomposition of laser altimeter

waveforms. IEEE Trans. Geoscience and Remote Sens., 38(4):1989–1996, 2000.

[24] E. V. Hoversten, D. L. Snyder, R. O. Harger, and K. Kurimoto. Direct-detection

optical communication receivers. IEEE Trans. Commun., 22(1):17–27, Jan. 1974.

[25] A. V. Jelalian. Laser Radar Systems. Artech House, Boston-London, 1992.

[26] S. Karp, E. L. O’Neill, and R. M. Gagliardi. Communication theory for the free-

space optical channel. Proc. IEEE, 58(10):1611–1626, Oct. 1970.

[27] P. L. Kelley and W. H. Kleiner. Theory of electromagnetic field measurement and

photoelectron counting. Phys. Rev. A, 136(2):316–334, Oct. 1964.

[28] A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal. Exploiting sparsity in

time-of-flight range acquisition using a single time-resolved sensor. Opt. Expr., 19

(22):21485–21507, 2011.

[29] A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal. Diffuse imaging:

Creating optical images with unfocused time-resolved illumination and sensing.

IEEE Signal Process. Lett., 19(1):31–34, Jan. 2012.

[30] C. Mallet and F. Bretar. Full-waveform topographic LiDAR: State-of-the-art. IS-

PRS J. Photogrammetry and Remote Sensing, 64(1):1–16, 2009.

[31] L. Mandel. Phenomenological theory of laser beam fluctuations and beam mixing.

Phys. Rev., 138(3B):B753–B762, May 1965.

[32] L. Mandel and E. Wolf. Coherence properties of optical fields. Rev. Mod. Phys.,

37(2):231–287, Apr. 1965.

[33] P. N. Misra and H. W. Sorenson. Statistical theory of estimation in doubly-

stochastic Poisson processes. Information Sciences, 6:343–358, 1973.

[34] P. N. Misra and H. W. Sorenson. Parameter estimation in Poisson processes. IEEE

Trans. Inform. Theory, 21(1):87–90, Jan. 1975.



86 BIBLIOGRAPHY

[35] M. Oren and S. K. Nayar. Generalization of the Lambertian model and implications

for machine vision. Int. J. Comput. Vis., 14(3):227–251, Apr. 1995.
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