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Frame permutation quantization (FPQ) is a new vector quantization technique using finite
frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame
expansion. This means that the encoding is a partial ordering of the frame expansion
coefficients. Compared to ordinary permutation source coding, FPQ produces a greater
number of possible quantization rates and a higher maximum rate. Various representations
for the partitions induced by FPQ are presented, and reconstruction algorithms based
on linear programming, quadratic programming, and recursive orthogonal projection are
derived. Implementations of the linear and quadratic programming algorithms for uniform
and Gaussian sources show performance improvements over entropy-constrained scalar
quantization for certain combinations of vector dimension and coding rate. Monte Carlo
evaluation of the recursive algorithm shows that mean-squared error (MSE) decays as
M−4 for an M-element frame, which is consistent with previous results on optimal decay
of MSE. Reconstruction using the canonical dual frame is also studied, and several results
relate properties of the analysis frame to whether linear reconstruction techniques provide
consistent reconstructions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Redundant representations obtained with frames are playing an ever-expanding role in signal processing due to design
flexibility and other desirable properties [1,2]. One such favorable property is robustness to additive noise [3]. This robust-
ness, carried over to quantization noise (without regard to whether it is random or signal-independent), explains the success
of both ordinary oversampled analog-to-digital conversion (ADC) and Σ–� ADC with the canonical linear reconstruction.
But the combination of frame expansions with scalar quantization is considerably more interesting and intricate because
boundedness of quantization noise can be exploited in reconstruction [4–12] and frames and quantizers can be designed
jointly to obtain favorable performance [13].

This paper introduces a new use of finite frames in vector quantization: frame permutation quantization (FPQ). In FPQ,
permutation source coding (PSC) [14,15] is applied to a frame expansion of a vector. This means that the vector is repre-
sented by a partial ordering of the frame coefficients (Variant I) or by signs of the frame coefficients that are larger than
some threshold along with a partial ordering of the absolute values of the significant coefficients (Variant II). FPQ provides
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a space partitioning that can be combined with additional signal constraints or prior knowledge to generate a variety of
vector quantizers.

Beyond the explication of the basic ideas in FPQ, the focus of this paper is on how—in analogy to works cited above—
there are several decoding procedures that can sensibly be used with the encoding of FPQ. First, we consider using the
ordinary PSC decoding for the frame coefficients followed by linear synthesis with the canonical dual; from the perspective
of frame theory, this is the natural way to reconstruct. For this, we find conditions on the frame used in FPQ that relate
to whether the canonical reconstruction is consistent. Second, taking a geometric approach based on imposing consistency
yields instead optimization-based algorithms. Third, algorithms with lower complexity can have similar performance by
recursively imposing consistency only locally [8,12].

There are two distinct ways to measure the performance of FPQ, and these correspond to different potential uses of
FPQ: data compression and data acquisition. The accuracy of signal representation—here measured by mean-squared error
(MSE)—is important in either case. For data compression, accuracy is traded off against a coding rate (bits per sample). The
standard alternative is scalar quantization, and for low delay and complexity, one considers moderate signal dimensions. It
is remarkable that introducing redundancy through a frame expansion can improve compression, and we find that it does
so only when the redundancy is low. For data acquisition, accuracy is traded off against the number of samples collected
(number of frame elements). Sensors that operate at low power and high speed by outputting orderings of signal levels
rather than absolute levels have been demonstrated and are a subject of renewed interest [16,17]. By showing that the MSE
can decay quickly as a function of the number of samples collected, we may encourage the further development of such
sensors. Here computational complexity of reconstruction is more important because the data are recoded prior to storage
or transmission. This is in close analogy to oversampling in analog-to-digital conversion, which is ubiquitous even though it
is not advantageous in terms of accuracy as a function of bit rate unless there is recoding at or near Nyquist rate [18,19].
Note also that for both historical and practical reasons, data compression is typically studied for random vectors while data
acquisition is studied for nonrandom vectors within some bounded set [20]. This paper mixes Bayesian and non-Bayesian
formulations accordingly.

The paper is organized as follows: Before formal introduction to frame expansions, permutation source codes, or their
combination, Section 2 provides a preview of the geometry of FPQ. This serves both to contrast with ordinary scalar-
quantized frame expansions and to see the effect of frame redundancy. Section 3 provides the requisite background by
reviewing PSCs, frames, and scalar-quantized frame expansions. Section 4 formally defines FPQ, emphasizing constraints
that are implied by the representation and hence must be satisfied for consistent reconstruction. Section 4 also provides
reconstruction algorithms based on applying the constraints for consistent reconstruction globally or locally. The results on
choices of frames in FPQ appear in Section 5. These are necessary and sufficient conditions on frames for linear reconstruc-
tions to be consistent. Section 6 provides numerical results that demonstrate improvement in operational distortion–rate
compared to ordinary PSC and optimal decay of distortion as a function of the number of samples. Proofs of the main
results are given in Section 7. Preliminary results on FPQ were mentioned briefly in [21].

2. Preview through R2 geometry

Consider the quantization of x ∈ RN , where we restrict attention to N = 2 in this section but later allow any finite N .
The uniform scalar quantization of x partitions RN in a trivial way, as shown in Fig. 1(a). (An arbitrary segment of the plane
is shown.) If over a domain of interest each component is divided into K intervals, a partition with K N cells is obtained.

A way to increase the number of partition cells without increasing the scalar quantization resolution is to use a frame
expansion. A conventional quantized frame expansion is obtained by scalar quantization of y = F x, where F ∈ RM×N with
M � N . Keeping the resolution K fixed, the partition now has K M cells. An example with M = 6 is shown in Fig. 1(d). Each
frame element φk (transpose of row of F ) induces a hyperplane wave partition [22]: a partition formed by equally-spaced
(N − 1)-dimensional hyperplanes normal to φk . The overall partition has M hyperplane waves and is spatially uniform.
A spatial shift invariance can be ensured formally by the use of subtractively dithered quantizers [23].

A Variant I PSC represents x just by which permutation of the components of x puts the components in descending order.
In other words, only whether x1 > x2 or x2 > x1 is specified.1 The resulting partition is shown in Fig. 1(b). A Variant II PSC
specifies (at most) the signs of the components of x1 and x2 and whether |x1| > |x2| or |x2| > |x1|. The corresponding
partitioning of the plane is shown in Fig. 1(c), with the vertical line coming from the sign of x1, the horizontal line coming
from the sign of x2, and the diagonal lines from |x1| ≷ |x2|.

While low-dimensional diagrams are often inadequate in explaining PSC, several key properties are illustrated. The par-
tition cells are (unbounded) convex cones, giving special significance to the origin and a lack of spatial shift invariance.
The unboundedness of cells implies that some additional knowledge, such as a bound on ‖x‖ or a probabilistic distribution
on x, is needed to compute good estimates. At first this may seem extremely different from ordinary scalar quantization or
scalar-quantized frame expansions, but those techniques also require some prior knowledge to allow the quantizer outputs

1 The boundary case of x1 = x2 can be handled arbitrarily in practice and safely ignored in the analysis. When the source vector has an absolutely
continuous distribution, the boundary affects neither the rate nor the distortion. For an optimal quantizer, the boundaries will have zero probability even if
the source has a discrete component [24, p. 355].
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Fig. 1. Partition diagrams for x ∈ R
2. (a) Scalar quantization. (b) Permutation source code, Variant I. (c) Permutation source code, Variant II. (Both permu-

tation source codes have n1 = n2 = 1.) (d) Scalar-quantized frame expansion with M = 6 coefficients (real harmonic tight frame). (e) Frame permutation
quantizer, Variant I. (f) Frame permutation quantizer, Variant II. (Both frame permutation quantizers have M = 6, m1 = m2 = · · · = m6 = 1, and the same
random frame.)

to be represented with finite numbers of bits. We also see that the dimension N determines the maximum number of
cells (N! for Variant I and 2N N! for Variant II); there is no parameter analogous to scalar quantization step size that allows
arbitrary control of the resolution.

To get a finer partition without changing the dimension N , we can again employ a frame expansion. With y = F x as
before, PSC of y gives more relative orderings with which to represent x. If φ j and φk are frame elements (transposes of
rows of F ) then 〈x, φ j〉 ≷ 〈x, φk〉 is 〈x, φ j − φk〉 ≷ 0 by linearity of the inner product, so every pair of frame elements can
give a condition on x. An example of a partition obtained with Variant I and M = 6 is shown in Fig. 1(e). There are many
more cells than in Fig. 1(b). Similarly, Fig. 1(f) shows a Variant II example. The cells are still (unbounded) convex cones.
If additional information such as ‖x‖ or an affine subspace constraint (not passing through the origin) is known, x can be
specified arbitrarily closely by increasing M .

3. Background

Having illustrated the basic idea of PSC and our generalization using frames to provide resolution control, we now formal-
ize the background material. We assume throughout fixed-rate coding and the conventional squared-error fidelity criterion
‖x − x̂‖2 between source x and reproduction x̂. Some statements—especially those pertaining to data compression—assume
a known source distribution over which performance is measured in expectation. Most statements for data acquisition with
M → ∞ apply pointwise over x.

3.1. Vector quantization

A vector quantizer is a mapping from an input x ∈ RN to a codeword x̂ from a finite codebook C . Without loss of
generality, a vector quantizer can be seen as the combination of an encoder

α : RN → I
and a decoder

β : I → RN ,

where I is a finite index set. The encoder partitions RN into |I| regions or cells {α−1(i)}i∈I , and the decoder assigns a
reproduction value to each cell. Examples of partitions are given in Fig. 1. For the quantizer to output R bits per component,
we have |I| = 2N R .
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For any codebook (i.e., any β), the encoder α that minimizes ‖x − x̂‖2 maps x to the nearest element of the codebook.
The partition is thus composed of convex cells. Since the cells are convex, reproduction values are optimally within the
corresponding cells—whether to minimize mean-squared error distortion, maximum squared error, or some other reason-
able function of squared error. To minimize maximum squared error, reproduction values should be at centers of cells; to
minimize expected distortion, they should be at centroids of cells. Reproduction values being within corresponding cells is
formalized as consistency:

Definition 3.1. The reconstruction x̂ = β(α(x)) is called a consistent reconstruction of x when α(x) = α(x̂) (or equivalently
β(α(x̂)) = x̂). The decoder β is called consistent when β(α(x)) is a consistent reconstruction of x for all x.

In practice, the pair (α,β) usually does not minimize any desired distortion criterion for a given codebook size because
the optimal mappings are hard to design and hard to implement [24]. The mappings are commonly designed subject to
certain structural constraints, and β may not even be consistent for α [4,6].

3.2. Permutation source codes

A permutation source code is a vector quantizer with the defining characteristic that codewords are related through
permutations and, possibly, sign changes. Permutation codes were originally introduced as channel codes by Slepian [25].
They were then applied to a specific source coding problem, through the duality between source encoding and channel
decoding, by Dunn [14] and developed in greater generality by Berger et al. [15,26,27]. Permutation codes are generated by
the group action of a permutation group and are thus examples of group codes [28].

3.2.1. Definitions
There are two variants of permutation codes:
Variant I: Here codewords are related through permutations, without sign changes. Let μ1 > μ2 > · · · > μK be real

numbers, and let n1,n2, . . . ,nK be positive integers that sum to N (an (ordered) composition of N). The initial codeword of
the codebook C has the form

x̂init = (μ1, . . . ,μ1←−n1−→
,μ2, . . . ,μ2←−n2−→

, . . . ,μK , . . . ,μK←−nK −→
), (1)

where each μi appears ni times. When x̂init has this form, we call it compatible with (n1,n2, . . . ,nK ). The codebook is the
set of all distinct permutations of x̂init. The number of codewords in C is thus given by the multinomial coefficient

LI = N!
n1!n2! · · ·nK ! . (2a)

The permutation structure of the codebook enables low-complexity nearest-neighbor encoding [15]: map x to the code-
word x̂ whose components have the same order as x; in other words, replace the n1 largest components of x with μ1, the
n2 next-largest components of x with μ2, and so on.

Variant II: Here codewords are related through permutations and sign changes. Let μ1 > μ2 > · · · > μK � 0 be nonneg-
ative real numbers, and let (n1,n2, . . . ,nK ) be a composition of N . The initial codeword has the same form as in (1), and
the codebook now consists of all distinct permutations of x̂init with each possible sign for each nonzero component. The
number of codewords in C is thus given by

LII = 2h N!
n1!n2! · · ·nK ! , (2b)

where h = N if μK > 0 and h = N − nK if μK = 0.
Nearest-neighbor encoding for Variant II PSCs can be implemented as follows [15]: map x to the codeword x̂ whose

components have the same order in absolute value and match the signs of corresponding components of x. Since the
complexity of sorting a vector of length N is O (N log N) operations, the encoding complexity for either PSC variant is much
lower than with an unstructured source code and only O (log N) times higher than scalar quantization.

With the codebook sizes given in (2), the per-component rate is defined as

R = N−1 log2 L. (3)

Under certain symmetry conditions on the source distribution, all codewords are equally likely so the rate cannot be re-
duced by entropy coding. This generation of fixed-rate output—avoiding the possibility of buffer overflow associated with
entropy coding of the highly nonequiprobable outputs of a quantizer [29]—is a known advantage of PSCs [15]. An efficient
enumeration of permutations, to generate a binary representation, is described in [30].
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3.2.2. Partition properties
For both historical reasons and to match the conventional approach to vector quantization, PSCs were defined above in

terms of a codebook structure, and the codebook structure led to an encoding procedure. Note that we may now examine
the partitions induced by PSCs separately from the particular codebooks for which they are nearest-neighbor partitions.

The partition induced by a Variant I PSC is completely determined by the composition (n1,n2, . . . ,nK ). Specifically, the
encoding mapping can index the permutation P that places the n1 largest components of x in the first n1 positions (without
changing the order within those n1 components), the n2 next-largest components of x in the next n2 positions, and so on;
the μi s are actually immaterial. This encoding is placing all source vectors x such that P x is n-descending in the same
partition cell, defined as follows.

Definition 3.2. Given a composition n = (n1,n2, . . . ,nK ) of N , a vector in RN is called n-descending if its n1 largest entries
are in the first n1 positions, its n2 next-largest components are in the next n2 positions, etc.

The property of being n-descending is to be descending up to the arbitrariness specified by the composition n.
Because this is nearest-neighbor encoding for some codebook, the partition cells must be convex. Furthermore, multi-

plying x by any nonnegative scalar does not affect the encoding, so the cells are convex cones. (This was discussed and
illustrated in Section 2.) We develop a convenient representation for the partition in Section 4.

The situation is only slightly more complicated for Variant II PSCs. The partition is determined by the composition
(n1,n2, . . . ,nK ) and whether or not the signs of the smallest-magnitude components should be encoded (whether μK = 0,
in the codebook-centric view).

The PSC literature has mostly emphasized the design of PSCs for sources with i.i.d. components. But as developed
in Section 4, the simple structured encoding of PSCs could be combined with unconventional decoding techniques for
other sources. The possible suitability of PSCs for sources with unknown or time-varying statistics has been previously
observed [15].

3.2.3. Codebook optimization
With the encoding procedure now fixed, let us turn to the decoder (or codebook) design. For this we assume that x is

random and that the components of x are i.i.d.
Let ξ1 � ξ2 � · · · � ξN denote the order statistics of random vector x = (x1, . . . , xN ) and η1 � η2 � · · · � ηN denote

the order statistics of random vector |x| �= (|x1|, . . . , |xN |).2 For a given initial codeword x̂init, the per-letter distortion of
optimally-encoded Variant I and Variant II PSCs are given by

D I = N−1 E

[
K∑

i=1

∑
	∈Ii

(ξ	 − μi)
2

]
(4a)

and

D II = N−1 E

[
K∑

i=1

∑
	∈Ii

(η	 − μi)
2

]
, (4b)

where Ii s are the sets of indexes generated by the composition:

I1 = {1,2, . . . ,n1}, (5a)

Ii =
{(

i−1∑
k=1

nk

)
+ 1,

(
i−1∑
k=1

nk

)
+ 2, . . . ,

(
i∑

k=1

nk

)}
, i � 2. (5b)

These distortions can be deduced simply by examining which components of x are mapped to which elements of x̂init.
Optimization of (4a) and (4b) over both {ni}K

i=1 and {μi}K
i=1 subject to (3) is difficult, partly due to the integer constraint

of the composition. However, given a composition (n1,n2, . . . ,nK ), the optimal initial codeword can be determined easily
from the means of the order statistics. In particular, the optimal {μi}K

i=1 of Variant I and Variant II PSCs are given by

μi = n−1
i

∑
	∈Ii

E[ξ	], for Variant I, (6a)

and

μi = n−1
i

∑
	∈Ii

E[η	], for Variant II. (6b)

2 For consistency with earlier literature on PSCs, we are reversing the usual sorting of order statistics [31].
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The analysis of [26] shows that when N is large, the optimal composition gives performance equal to optimal entropy-
constrained scalar quantization (ECSQ) of x. Performance does not strictly improve with increasing N; permutation codes
outperform ECSQ for certain combinations of block size and rate [32].

3.3. Frame definitions and classifications

The theory of finite-dimensional frames is often developed for a Hilbert space CN of complex vectors. In this paper, we
use frame expansions only for quantization using PSCs, which rely on order relations of real numbers. Therefore we limit
ourselves to real finite frames. We maintain the Hermitian transpose notation ∗ where a transpose would suffice because
this makes several expressions have familiar appearances.

The Hilbert space of interest is RN equipped with the standard inner product (dot product),

〈x, y〉 = xT y =
N∑

k=1

xk yk,

for x = [x1, x2, . . . , xN ]T ∈ RN and y = [y1, y2, . . . , yN ]T ∈ RN . The norm of a vector x is naturally induced from the inner
product,

‖x‖ = √〈x, x〉.

Definition 3.3. (See [3].) A set of N-dimensional vectors, Φ = {φk}M
k=1 ⊂ RN , is called a frame if there exist a lower frame

bound, A > 0, and an upper frame bound, B < ∞, such that

A‖x‖2 �
M∑

k=1

∣∣〈x, φk〉
∣∣2 � B‖x‖2, for all x ∈ RN . (7a)

The matrix F ∈ RM×N with kth row equal to φ∗
k is called the analysis frame operator. F and Φ will be used interchangeably

to refer to a frame. Equivalent to (7a) in matrix form is

AIN � F ∗ F � B IN , (7b)

where IN is the N × N identity matrix.

The lower bound in (7) implies that Φ spans RN ; thus a frame must have M � N . It is therefore reasonable to call the
ratio r = M/N the redundancy of the frame. A frame is called a tight frame if the frame bounds can be chosen to be equal.
A frame is an equal-norm frame if all of its vectors have the same norm. If an equal-norm frame is normalized to have all
vectors of unit norm, we call it a unit-norm frame (or sometimes normalized frame or uniform frame). For a unit-norm frame,
it is easy to verify that A � r � B . Thus, a unit-norm tight frame (UNTF) must satisfy A = r = B and

F ∗ F = r IN . (8)

Naimark’s theorem [33] provides an efficient way to characterize the class of equal-norm tight frames: a set of vectors
is an equal-norm tight frame if and only if it is the orthogonal projection (up to a scale factor) of an orthonormal basis of
an ambient Hilbert space on to some subspace.3 As a consequence, deleting the last (M − N) columns of the (normalized)
discrete Fourier transform (DFT) matrix in CM×M yields a particular subclass of UNTFs called (complex) harmonic tight frames
(HTFs). One can adapt this derivation to construct real HTFs [34], which are always UNTFs, as follows.

Definition 3.4. The real harmonic tight frame of M vectors in RN is defined for even N by

φ∗
k+1 =

√
2

N

[
cos

kπ

M
, cos

3kπ

M
, . . . , cos

(N − 1)kπ

M
, sin

kπ

M
, sin

3kπ

M
, . . . , sin

(N − 1)kπ

M

]
(9a)

and for odd N by

φ∗
k+1 =

√
2

N

[
1√
2
, cos

2kπ

M
, cos

4kπ

M
, . . . , cos

(N − 1)kπ

M
, sin

2kπ

M
, sin

4kπ

M
, . . . , sin

(N − 1)kπ

M

]
, (9b)

where k = 0,1, . . . , M − 1. The modulated harmonic tight frames are defined by

ψk = γ (−1)kφk, for k = 1,2, . . . , M, (10)

where γ = 1 or γ = −1 (fixed for all k).

3 The theorem holds for a general separable Hilbert space of possibly infinite dimension.
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HTFs can be viewed as the result of a group of orthogonal operators acting on one generating vector [2]. This property
has been generalized in [35,36] under the name geometrically-uniform frames (GUFs). Note that a GUF is a special case
of a group code as developed by Slepian [25,28]. An interesting connection between PSCs and GUFs is that under certain
conditions, a PSC codebook is a GUF with generating vector x̂init and the generating group action provided by all permutation
matrices [37].

Classification of frames is often up to some unitary equivalence [34]. Adopting the terminology of Holmes and
Paulsen [38], we say two frames in RN , Φ = {φk}M

k=1 and Ψ = {ψk}M
k=1, are

(i) Type I equivalent if there is an orthogonal matrix U such that ψk = Uφk for all k;
(ii) Type II equivalent if there is a permutation σ(·) on {1,2, . . . , M} such that ψk = φσ(k) for all k; and

(iii) Type III equivalent if there is a sign function in k, δ(k) = ±1 such that ψk = δ(k)φk for all k.

It will be evident that FPQ performance is always invariant to Type II equivalence; invariant to Type I equivalence when the
source distribution is rotationally invariant; and invariant to Type III equivalence under Variant II but not, in general, under
Variant I.

It is important to note that for M = N + 1 there is exactly one equivalence class of UNTFs [34, Thm. 2.6]. Since HTFs are
always UNTFs, the following property follows directly from [34, Thm. 2.6].

Proposition 3.5. Assume that M = N + 1, and Φ = {φk}M
k=1 ⊂ RN is the real HTF. Then every UNTF Ψ = {ψk}M

k=1 can be written as

ψk = δ(k)Uφσ(k), for k = 1,2, . . . , M, (11)

where δ(k) = ±1 is some sign function in k, U is some orthogonal matrix, and σ(·) is some permutation on the index set {1,2, . . . , M}.

Another important subclass of UNTFs is defined as follows:

Definition 3.6. (See [39,40].) A UNTF Φ = {φk}M
k=1 ⊂ RN is called an equiangular tight frame (ETF) if there exists a constant a

such that |〈φ	,φk〉| = a for all 1 � 	 < k � M .

ETFs are sometimes called optimal Grassmannian frames or 2-uniform frames. They prove to have rich application in com-
munications, coding theory, and sparse approximation [38,39,41]. For a general pair (M, N), the existence and constructions
of such frames is not fully understood. Partial answers can be found in [40,42,43].

In our analysis of FPQ, we will find that restricted ETFs—where the absolute value constraint can be removed from
Definition 3.6—play a special role. In matrix view, a restricted ETF satisfies F ∗ F = r IN and F F ∗ = (1 − a)IM + a J M , where
J M is the all-1s matrix of size M × M . The following proposition specifies the restricted ETFs for the codimension-1 case.

Proposition 3.7. For M = N +1, the family of all restricted ETFs is constituted by the Type I and Type II equivalents of modulated HTFs.

Proof. See Section 7.1. �
The following property of modulated HTFs in the M = N + 1 case will be very useful.

Proposition 3.8. If M = N + 1 then a modulated harmonic tight frame is a zero-sum frame, i.e., each column of the analysis frame
operator F sums to zero.

Proof. We only consider the case when N is even; the N odd case is similar. For each 	 ∈ {1,2, . . . , N}, let φ	
k denote the

	th component of vector φk and let S	 = ∑M
k=1 φ	

k denote the sum of the entries in column 	 of matrix F .
For 1 � 	 � N/2, using Euler’s formula, we have

S	 = ±
√

2

N

M−1∑
k=0

(−1)k cos
(2	 − 1)kπ

M
∝

M−1∑
k=0

e jkπ [
e j(2	−1)kπ/M + e− j(2	−1)kπ/M]

=
M−1∑
k=0

e jπ((2	−1)/M+1)k +
M−1∑
k=0

e− jπ((2	−1)/M+1)k = 1 − e jπ(2	+M−1)

1 − e jπ((2	−1)/M+1)
+ 1 − e− jπ(2	+M−1)

1 − e− jπ((2	−1)/M+1)
= 0, (12)

where (12) follows from the fact that 2	 + M − 1 = 2	 + N is an even integer.
For N/2 < 	 � N , we can show that S	 = 0 similarly, and so the proposition is proved. �
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Algorithm 1: Consistent reconstruction from scalar-quantized frame expansion.

Inputs: Analysis frame operator F , quantization step size �, and quantized frame expansion ŷ
Output: Estimate x̂ consistent with ŷ and as far from the partition boundaries as possible

1. Let A = [ F 1M×1
−F 1M×1

]
and b = [ ŷ

− ŷ

]
.

(Consistency as in (14) is expressed as A
[ x

0

] � b.)
2. Let c = [ 0N×1

−1

]
.

3. Use a linear programming method to minimize cT
[ x

δ

]
subject to A

[ x
δ

] � b.

Return the first N components of the minimizer as x̂.

3.4. Reconstruction from frame expansions

A central use of frames is to formalize the reconstruction of x ∈ RN from the frame expansion yk = 〈x, φk〉, k =
1,2, . . . , M , or estimation of x from degraded versions of the frame expansion. Using the analysis frame operator we have
y = F x, and (7) implies the existence of at least one linear synthesis operator G such that G F = IN . A frame with analysis
frame operator G∗ is then said to be dual to Φ .

The frame condition (7) also implies that F ∗ F is invertible, so the Moore–Penrose inverse (pseudo-inverse) of the frame
operator

F † = (
F ∗ F

)−1
F ∗

exists and is a valid synthesis operator. Using the pseudo-inverse for reconstruction has several important properties in-
cluding an optimality for mean-squared error (MSE) under assumptions of uncorrelated zero-mean additive noise and linear
synthesis [3, Sect. 3.2]. This follows from the fact that F F † is an orthogonal projection from RM onto the subspace F (RN ),
the range of F . Because of this special role, reconstruction using F † is called canonical reconstruction and the corresponding
frame is called the canonical dual. In this paper, we use the term linear reconstruction for reconstruction using an arbitrary
linear operator.

When y is quantized to ŷ, it is possible for the quantization noise ŷ− y to have mean zero and uncorrelated components;
this occurs with subtractive dithered quantization [23] or under certain asymptotics [44]. In this case, the optimality of
canonical reconstruction holds. However, it should be noted that even with these restrictions, canonical reconstruction is
optimal only amongst linear reconstructions.

When nonlinear construction is allowed, quantization noise may behave fundamentally differently than other additive
noise. The key is that a quantized value gives hard constraints that can be exploited in reconstruction. For example, suppose
that ŷ is obtained from y by rounding each element to the nearest multiple of a quantization step size �. Then knowledge
of ŷk is equivalent to knowing

yk ∈
[

ŷk − 1

2
�, ŷk + 1

2
�

]
. (13)

Geometrically, 〈x, φk〉 = ŷk − 1
2 � and 〈x, φk〉 = ŷk + 1

2 � are hyperplanes perpendicular to φk , and (13) expresses that x must
lie between these hyperplanes; this may be visualized as one pair of parallel lines in Fig. 1(d). Using the upper and lower
bounds on all M components of y, the constraints on x imposed by ŷ are readily expressed as (see [6])[

F
−F

]
x �

[ 1
2� + ŷ
1
2� − ŷ

]
, (14)

where the inequalities are elementwise. For example, all 2M constraints specify a single cell in Fig. 1(d). This formulation
inspires Algorithm 1, which is a modification of [6, Table I] using the principle of maximizing slackness of inequalities that
was also implemented in [8]. Section 4.3 presents analogues to (14) and Algorithm 1 for FPQ.

The cost of Algorithm 1 may be prohibitive if M is large. In particular, Algorithm 1 uses a linear program with N + 1
variables and 2M constraints, and solving this has cost that is superlinear in M . One way to reduce the cost to linear in M is
to use each of M quantized coefficients only once and in a computation with constant cost. Algorithm 2 uses each constraint
(13) once, recursively, in isolation of all other constraints. It uses yk by orthogonally projecting a running estimate x̂k−1 to
the set consistent with (13). Remarkably, even though the final estimate is generally not consistent with all M constraints of
the form (13), the optimal Θ(M−2) decay of ‖x − x̂‖2 as a function of the number of coefficients M can be attained under
appropriate technical conditions [8,12].

4. Frame permutation quantization

With background material on permutation source codes and finite frames in place, we are now prepared to formally
introduce frame permutation quantization. FPQ is simply PSC applied to a frame expansion.
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Algorithm 2: Recursive estimation from scalar-quantized frame coefficient sequence.

Inputs: Analysis frame sequence {φ j}M
j=1, quantization step size �, and quantized coefficients { ŷ j}M

j=1
Output: Estimate x̂

1. Let x̂0 = 0N×1 and let k = 1.
2. If 〈x̂k−1, φk〉 < ŷk − 1

2 �, let x̂k = x̂k−1 + ( ŷk − 1
2 � − 〈x̂k−1, φk〉)φk/‖φk‖2;

else if 〈x̂k−1, φk〉 > ŷk + 1
2 �, let x̂k = x̂k−1 + ( ŷk + 1

2 � − 〈x̂k−1, φk〉)φk/‖φk‖2;
else let x̂k = x̂k−1.

3. If k = M , return x̂k; else increment k and go to step 2.

4.1. Encoder definition and canonical decoding

Definition 4.1. A frame permutation quantizer with analysis frame F ∈ RM×N , composition m = (m1,m2, . . . ,mK ), and initial
codeword ŷinit compatible with m encodes x ∈ RN by applying a permutation source code with composition m and initial
codeword ŷinit to F x. The canonical decoding gives x̂ = F † ŷ, where ŷ is the PSC reconstruction of y.

The two variants of PSCs yield two variants of FPQ. We sometimes use the triple (F ,m, ŷinit) along with a specification of
Variant I or Variant II to refer to such an FPQ.

For Variant I, the result of the encoding can be expressed as a permutation P from the permutation matrices of size M .
The permutation is such that P F x is m-descending. For uniqueness in the representation P chosen from the set of permu-
tation matrices, we can specify that the first m1 components of P y are kept in the same order as they appeared in y, the
next m2 components of P y are kept in the same order as they appeared in y, etc. Then P is in a subset G(m) of the M × M
permutation matrices and∣∣G(m)

∣∣ = M!
m1!m2! · · ·mK ! . (15)

Notice that, analogous to the discussion in Section 3.2.2, the encoding uses the composition m but not the initial codeword
ŷinit. The PSC reconstruction of y is P−1 ŷinit, so the canonical decoding gives F † P−1 ŷinit.

For Variant II, we will sidestep the differences between the μK = 0 and μK 
= 0 cases in Section 3.2 by specifying that
the signs of the mK smallest-magnitude components of F x are not encoded and mK = 0 is allowed. Now the result of
encoding can be expressed similarly as P ∈ G(m) along with a diagonal matrix V with ±1 on its diagonal. These matrices
are selected such that the elementwise absolute values of V P F x are m-descending and also the first M − mK entries of
V P F x are positive. The last mK diagonal entries of V do not affect the encoding and are set to +1. Thus V is in a subset

Q(m) of the M × M sign-changing matrices and∣∣Q(m)
∣∣ = 2M−mK . (16)

The PSC reconstruction of y is P−1 V −1 ŷinit, so the canonical decoding gives F † P−1 V −1 ŷinit.
The sizes of the sets G(m) and G(m) × Q(m) are analogous to the codebook sizes in (2), and the per-component rates of

FPQ are thus defined as

R I = N−1 log2
M!

m1!m2! · · ·mK ! , for Variant I, (17a)

and

R II = N−1
(

M − mK + log2
M!

m1!m2! · · ·mK !
)

, for Variant II. (17b)

4.2. Expressing consistency constraints

Suppose FPQ encoding of x ∈ RN with frame F ∈ RM×N , composition m = (m1,m2, . . . ,mK ), and initial codeword ŷinit
compatible with m results in permutation P ∈ G(m) (and, in the case of Variant II, V ∈ Q(m)) as described in Section 4.1.
We would like to express constraints on x that are specified by (F ,m, ŷinit, P ) (or (F ,m, ŷinit, P , V )). This will provide an
explanation of the partitions induced by FPQ and lead to reconstruction algorithms in Section 4.3.

Knowing that a vector is m-descending is a specification of many inequalities. Recall the definitions of the index sets
generated by a composition given in (5), and use the same notation with nks replaced by mks. Then z being m-descending
implies that for any i < j,

zk � z	, for every k ∈ Ii and 	 ∈ I j .

By transitivity, considering every i < j gives redundant inequalities. Taking only j = i + 1, we obtain a full description
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zk � z	 for every k ∈ Ii and 	 ∈ Ii+1 with i = 1,2, . . . , K − 1. (18)

For one fixed (i, 	) pair, (18) gives |Ii | = mi inequalities, one for each k ∈ Ii . These inequalities can be gathered into an
elementwise matrix inequality as

[0mi×Mi−1 Imi 0mi×(M−Mi)]z � [0mi×(	−1) 1mi×1 0mi×(M−	)]z,
where Mk = m1 + m2 + · · · + mk , or D(m)

i,	 z � 0mi×1, where

D(m)
i,	 = [0mi×Mi−1 Imi 0mi×(	−Mi−1) − 1mi×1 0mi×M−	] (19a)

is an mi × M differencing matrix. Allowing 	 to vary across Ii+1, we define the mimi+1 × M matrix

D(m)
i =

⎡⎢⎢⎢⎢⎢⎣
D(m)

i,Mi+1

D(m)
i,Mi+2

...

D(m)
i,Mi+mi+1

⎤⎥⎥⎥⎥⎥⎦ (19b)

and express all of (18) for one fixed i as D(m)
i z � 0mimi+1×1.

Continuing our recursion, it only remains to gather the inequalities (18) across i ∈ {1,2, . . . , K − 1}. Let

D(m) =

⎡⎢⎢⎢⎢⎣
D(m)

1

D(m)
2
...

D(m)
K−1

⎤⎥⎥⎥⎥⎦ , (19c)

which has

L(m) =
K−1∑
i=1

mimi+1 (20)

rows. The property of z being m-descending can be expressed as D(m)z � 0L(m)×M . The following example illustrates the
form of D(m):

D((2,3,2)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 0
0 1 −1 0 0 0 0
1 0 0 −1 0 0 0
0 1 0 −1 0 0 0
1 0 0 0 −1 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0
0 0 1 0 0 0 −1
0 0 0 1 0 0 −1
0 0 0 0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice the important property that each row of D(m) has one 1 entry and one −1 entry with the remaining entries 0. This
will be exploited in Section 5.

Now we can apply these representations to FPQ.
Variant I: In this case, we know P F x is m-descending. Consistency is thus simply expressed as

D(m) P F x � 0. (21)

Variant II: The second variant has an m-descending property after V has made the signs of the significant frame coef-
ficients (all but last mK ) positive: D(m)V P F x � 0. In addition, we have the nonnegativity of all of the first M − mK sorted
and sign-changed coefficients. To specify

[IM−mK 0(M−mK )×M ]V P F x � 0(M−mK )×1
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Algorithm 3: Estimation of source on [− 1
2 , 1

2 ]N for Variant I frame permutation quantization.

Inputs: Analysis frame operator F , composition m, and FPQ encoding P
Output: Estimate x̂ consistent with (F ,m, P ) and as far from the partition boundaries as possible

1. Let A =
[

−D(m) P F 1L(m)×1
−IN 1N×1
IN 1N×1

]
and b = 1

2

[
0L(m)×1
12N×1

]
,

where D(m) is defined in (19) and L(m) is defined in (20).
(Consistency with (21) and x ∈ [− 1

2 , 1
2 ]N is expressed as A

[ x
0

] � b.)
2. Let c = [ 0N×1

−1

]
.

3. Use a linear programming method to minimize cT
[ x

δ

]
subject to A

[ x
δ

] � b.
Return the first N components of the minimizer as x̂.

is redundant with what is expressed with the m-descending property. The added constraints can be applied only to the
entries of V P F x with indexes in I K−1 because all the earlier entries are already ensured to be larger. We thus express
consistency as[

D(m)

0mK−1×MK−1 ImK−1 0mK−1×mK

]
︸ ︷︷ ︸

D̃(m)

V P F x � 0. (22)

4.3. Consistent reconstruction algorithms

The constraints (21) and (22) both specify unbounded sets, as discussed previously and illustrated in Fig. 1(e) and (f).
To be able to decode FPQs in analogy to Algorithm 1, we require some additional constraints. We develop two examples:
a source x bounded to [− 1

2 , 1
2 ]N (e.g., having an i.i.d. uniform distribution over [− 1

2 , 1
2 ]) or having an i.i.d. standard Gaussian

distribution. For the remainder of this section, we consider only Variant I because adjusting for Variant II using (22) is easy.

4.3.1. Source bounded to [− 1
2 , 1

2 ]N

To impose (21) along with x ∈ [− 1
2 , 1

2 ]N is trivial because x ∈ [− 1
2 , 1

2 ]N is decomposable into 2N inequality constraints:[
IN

−IN

]
x � 1

2

[
1N×1

−1N×1

]
.

A linear programming formulation will return some corner of the consistent set, depending on the choice of cost function.
The unknown vector x can be augmented with a variable δ that represents the slackness of the inequality constraint with
the least slack. Maximizing δ moves the solution away from the boundary of the consistent set (partition cell) as much as
possible. Reconstruction using this principle is outlined in Algorithm 3.

If the source x is random and the distribution p(x) is known, then one could optimize some criterion explicitly. For
example, one could maximize p(x) over the consistent set or compute the centroid of the consistent set with respect
to p(x). This would improve upon reconstructions computed with Algorithm 3 but presumably increase complexity greatly.

4.3.2. Source with i.i.d. standard Gaussian distribution
Suppose x has i.i.d. Gaussian components with mean zero and unit variance. Since the source support is unbounded,

something beyond consistency must be used in reconstruction. Here we use a quadratic program to find a good bounded,
consistent estimate and combine this with the average value of ‖x‖.

The problem with using (21) combined with maximization of minimum slackness alone (without any additional bound-
edness constraints) is that for any purported solution, multiplying by a scalar larger than 1 will increase the slackness of
all the constraints. Thus, any solution technique will naturally and correctly have ‖x̂‖ → ∞. Actually, because the partition
cells are convex cones, we should not hope to recover the radial component of x from the partition. Instead, we should only
hope to recover a good estimate of x/‖x‖.

To estimate the angular component x/‖x‖ from the partition, it would be convenient to maximize minimum slackness
while also imposing a constraint of ‖x̂‖ = 1. Unfortunately, this is a nonconvex constraint. It can be replaced by ‖x̂‖ � 1
because slackness is proportional to ‖x̂‖. This suggests the optimization

maximize δ subject to ‖x‖ � 1 and D(m) P F x � δ1L(m)×1.

Denoting the x at the optimum by x̂ang, we still need to choose the radial component, or length, of x̂.
For the N (0, IN ) source, the mean length is [45]

E
[‖x‖] =

√
2π

β(N/2,1/2)
≈ √

N − 1/2.

We can combine this with x̂ang to obtain a reconstruction x̂.
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Algorithm 4: Estimation of N (0, IN ) source for Variant I frame permutation quantization.

Inputs: Analysis frame operator F , composition m, and FPQ encoding P
Output: Estimate x̂ consistent with (F ,m, P ) and as far from the partition boundaries as possible

while keeping ‖x̂‖ = E[‖x‖]
1. Let A = [−D(m) P F 1L(m)×1] and b = 0L(m)×1,

where D(m) is defined in (19) and L(m) is defined in (20).
(Consistency with (21) is expressed as A

[ x
0

] � b.)

2. Let c = [ 0N×1
−1

]
and H = [ IN 0N×1

01×N 0

]
.

3. Use a quadratic programming method to minimize 1
2

[ x
δ

]T
H
[ x

δ

]+ cT
[ x

δ

]
subject to A

[ x
δ

] � b. Denote the first N components of the minimizer as x̂ang.

4. Return (
√

2π/β(N/2,1/2))x̂ang.

We use a slightly different formulation to have a quadratic program in standard form. We combine the radial component
constraint with the goal of maximizing slackness to obtain

minimize
1

2
xT x − λδ subject to − D(m) P F x � −δ1L(m)×1,

where λ trades off slackness against the radial component of x. Since the radial component will be replaced with its
expectation, the choice of λ is immaterial; it is set to 1 in Algorithm 4.

4.4. Recursive estimation algorithms

Algorithms 3 and 4 are practical for small values of N and M , as one would encounter in data compression applications,
but not for large values of N and M , as may be of interest in data acquisition. Specifically, Algorithm 3 uses a linear program
with N + 1 variables and L(m)+ 2N constraints, while Algorithm 4 uses a quadratic program with N + 1 variables and L(m)

constraints. The costs of these computations are superlinear in L(m), and L(m) is at least M − 1.
One way to lower the reconstruction complexity is to sacrifice global consistency in favor of recursive computability, in

analogy to Algorithm 2. For recursive algorithms, we restrict our attention to the composition m = (1,1, . . . ,1). We also
again restrict our attention to Variant I because adjusting for Variant II is straightforward.

With all-1s compositions, FPQ encoding produces a successive or embedded representation of x: a representation with a
k-element analysis frame is a ranking of {〈x, φ j〉}k

j=1 (for Variant I), and adding a vector φk+1 to the analysis frame amounts
to inserting 〈x, φk+1〉 in the ranked list. Equivalently, the encoding of x with a k-element frame is the set

sign
(〈x, φi〉 − 〈x, φ j〉

)
, i, j ∈ {1,2, . . . ,k},

and adding φk+1 to the analysis frame adds

sign
(〈x, φk+1〉 − 〈x, φ j〉

)
, j ∈ {1,2, . . . ,k},

to the representation without removing any of the previous information.
In estimating x from FPQ with the full (k + 1)-element analysis frame, one could impose

sign
(〈x̂, φi − φ j〉

) = sign
(〈x, φi − φ j〉

)
, i, j ∈ {1,2, . . . ,k + 1} (23)

(equivalent to (21)) for global consistency. However, for a recursive computation we will compute an estimate x̂k+1 from an
estimate x̂k and some subset of the constraints

sign
(〈x̂, φk+1 − φ j〉

) = sign
(〈x, φk+1 − φ j〉

)
, j ∈ {1,2, . . . ,k}. (24)

Updating x̂k to satisfy any of the constraints (24) can cause constraints (23) with i < k + 1 to be violated, so a strategy of
imposing local consistency does not ensure global consistency. However, we will demonstrate by extending results from [8,
12] that optimal MSE decay as a function of M can still be obtained.

A recursive computation that uses local consistency is described explicitly in Algorithm 5. For each k, the set Jk repre-
sents the indexes j for which the constraint (24) is used. Any one of them is used (in Step 3b) by orthogonally projecting
the running estimate x̂k−1 to the half-space consistent with (24). This yields a monotonicity result analogous to [8, Thm. 1]
and [12, Lem. 7.2]:

Theorem 4.2. Let x ∈ RN be a unit vector. The sequence of estimates produced in Algorithm 5 satisfies

‖x − x̂k+1‖ � ‖x − x̂k‖.
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Algorithm 5: Recursive estimation for Variant I frame permutation quantization.

Inputs: Analysis frame sequence {φ j}M
j=1, FPQ representation νi, j = sign(〈x, φi − φ j〉) for j = 1,2, . . . , M ,

i = 1,2, . . . , j − 1, and index sets J2, J3, . . . , JM with Jk ⊂ {1,2, . . . ,k − 1}
Output: Estimate x̂M

1. Let x̂1 be a vector chosen uniformly at random from the unit sphere in R
N and let k = 2.

2. Let x̂k = x̂k−1.
3. For each j ∈ Jk , taken in random order:

3a. Let ψk, j = φk − φ j .
3b. If sign(〈x̂k, ψk, j〉) 
= νk, j , update x̂k to x̂k − 〈x̂k, ψk, j〉ψk, j/‖ψk, j‖2.

4. If k = M , return x̂k/‖x̂k‖; else increment k and go to step 2.

Proof. Since Step 3b is an orthogonal projection to a convex set containing x, no occurrence of this step can increase the
estimation error. �

The number of projection steps in Algorithm 5 depends on the sizes of the Jks. At one extreme, each Jk is a singleton
so there are M − 1 projections. At the other extreme, each Jk has k − 1 elements and there are 1

2 M(M − 1) projections. The
empirical behavior in Section 6.3 shows that the MSE decays as the square of the number of projection steps. This behavior
is provable in some cases. One such result is the following theorem, analogous to [8, Thm. 2] and presumably extendable to
match [12, Thm. 7.9]:

Theorem 4.3. Let x and {φk}∞k=1 be i.i.d. vectors drawn from the uniform distribution on the unit sphere in RN , and for each
k ∈ {2,3, . . .}, let Jk = {1}. Then the normalized sequence of estimates produced by Algorithm 5 satisfies

‖x − x̂k‖2kp → 0 almost surely, for every p < 2. (25)

Proof. We give only a brief sketch of a proof since the main ideas have been developed by Rangan and Goyal [8] and
Powell [12].

According to [8, Thm. 2], Algorithm 2 gives performance satisfying (25) under the following assumptions:

1. Quantization noise is on a known, bounded interval;
2. the frame sequence is i.i.d. and independent of the quantization noise; and
3. the frame vectors are bounded and satisfy

E
[∣∣〈z, φk〉

∣∣] � ε‖z‖ for all z ∈ RN

for some ε > 0.

Assumption 1 can be loosened to quantization noise known to lie in [−1,∞) or (−∞,1] without changing the conclusion
that (25) holds; it is qualitatively like discarding half of the quantized frame coefficients since each frame coefficient gives
one half-space constraint rather than two. Assumption 3 is a very mild condition that simply ensures that there is no
nonzero vector z ∈ RN such that all of the probability mass of the frame vector distribution is orthogonal to z; such
orthogonality implies {〈x, φk〉}∞k=1 gives no information about the component of x in the subspace generated by z and
hence makes recovery from the inner product sequence impossible even without quantization.

An FPQ representation is through sign(〈x,ψk, j〉) where ψk, j = φk − φ j , j ∈ Jk , and k = 2,3, . . . . This is equivalent to a
quantized frame expansion with analysis vectors ψk, j and quantization noise bounded to [−1,∞) when the signum function
returns 1 and bounded to (−∞,1] when the signum function returns −1. Due to the symmetric distribution of x and its
independence of the frame sequence, the quantization noise is independent of the frame sequence.

We are considering reconstruction where each Jk is {1}, so we are interested in whether quantized versions of {〈x,ψk,1〉}
are adequate to ensure the error decay (25). While the vectors {ψk,1}∞k=2 are identically distributed and (through spherical
symmetry) satisfy Assumption 3 above, they are not independent. Nevertheless, we can employ [8, Thm. 2] as follows:
Conditioned on any value of φ1, the vectors {ψk,1}∞k=2 are conditionally independent, so by eliminating the radial component
of x, one can conclude that the error decay (25) holds conditionally. Since the almost sure convergence in (25) holds under
every conditional probability law specified by φ1, it must also hold unconditionally. �

Extensions of [8, Thm. 2] and [12, Thm. 7.9] to non-i.i.d. frame sequences would lead to extensions of Theorem 4.3
beyond singleton Jks.

5. Conditions on the choice of frame

In this section, we provide necessary and sufficient conditions so that a linear reconstruction is also consistent. We first
consider a general linear reconstruction, x̂ = R ŷ, where R is some N × M matrix and ŷ is a decoding of the PSC of y. We
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then restrict attention to canonical reconstruction, where R = F †. For each case, we describe all possible choices of a “good”
frame F , in the sense of the consistency of the linear reconstruction.

5.1. Arbitrary linear reconstruction

We begin by introducing a useful term.

Definition 5.1. A matrix is called column-constant when each column of the matrix is a constant. The set of all M × M
column-constant matrices is denoted J .

We now give our main results for arbitrary linear reconstruction combined with FPQ decoding of an estimate of y.

Theorem 5.2. Suppose A = F R = aIM + J for some a � 0 and J ∈ J . Then the linear reconstruction x̂ = R ŷ is consistent with
Variant I FPQ encoding using frame F , an arbitrary composition and an arbitrary Variant I initial codeword compatible with it.

Proof. We start the proof by pointing out two special properties of any matrix J ∈ J :

(P1) P J P−1 ∈ J for any permutation matrix P ; and

(P2) D(m) J = 0L(m)×1 for any composition m.

(P1) follows from the fact that neither left multiplying by P nor right multiplying by P−1 disturbs column-constancy. (P2) is
true because each row of D(m) has zero entries except for one 1 and one −1.

Suppose m = (m1,m2, . . . ,mK ) is an arbitrary composition of M and ŷinit is an arbitrary Variant I initial codeword
compatible with m. Let P be the Variant I FPQ encoding of x using (F ,m, ŷinit). We would like to check that x̂ = R ŷ is
consistent with the encoding P . This is verified through the following computation:

D(m) P F x̂ = D(m) P F R ŷ

= D(m) P F R P−1 ŷinit (26)

= D(m) P A P−1 ŷinit

= D(m) P (aIM + J )P−1 ŷinit (27)

= aD(m) ŷinit + D(m) Ĵ ŷinit for some Ĵ ∈ J (28)

= aD(m) ŷinit (29)

� 0L(m)×1, (30)

where (26) uses the conventional decoding of a PSC; (27) follows from the hypothesis of the theorem on A; (28) follows
from (P1); (29) follows from (P2); and (30) follows from the definition of Variant I initial codewords compatible with m,
and the nonnegativity of a. This completes the proof. �

The key point of the proof of Theorem 5.2 is showing that the inequality

D(m) P A P−1 ŷinit � 0, (31)

where A = F R , holds for every composition m and every initial codeword ŷinit compatible with it. It turns out that the
form of matrix A given in Theorem 5.2 is the unique form that guarantees that (31) holds for every pair (m, ŷinit). In other
words, the condition on A that is sufficient for any composition m and any initial codeword ŷinit compatible with it is also
necessary for consistency for every pair (m, ŷinit).

Theorem 5.3. Consider Variant I FPQ using frame F with M � 3. If linear reconstruction x̂ = R ŷ is consistent with every composition
and every Variant I initial codeword compatible with it, then matrix A = F R must be of the form aIM + J , where a � 0 and J ∈ J .

Proof. See Section 7.2. �
The column-constant matrices are those obtained by multiplying an all-1s matrix on the right by a diagonal matrix. Thus,

except in the case of an all-0s matrix, a column-constant matrix has rank 1. A matrix of the form aIM + J where a > 0 and
J ∈ J thus has rank M − 1 or M . Since A = F R has rank at most N because of the dimensions of F and R , the necessary
and sufficient condition from Theorems 5.2 and 5.3 imply M = N or M = N + 1.

Similar necessary and sufficient conditions can be derived for linear reconstruction of Variant II FPQs. Since the partition
cell associated with a codeword of a Variant II FPQ is much smaller than that of the corresponding Variant I FPQ, we expect
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the condition for a linear reconstruction to be consistent to be more restrictive than that given in Theorems 5.2 and 5.3.
The following two theorems show that this is indeed the case.

Theorem 5.4. Suppose A = F R = aIM for some a � 0 and M = N. Then the linear reconstruction x̂ = R ŷ is consistent with Variant II
FPQ encoding using frame F , an arbitrary composition, and an arbitrary Variant II initial codeword compatible with it.

Proof. Suppose that m = (m1,m2, . . . ,mK ) is an arbitrary composition of M and ŷinit is an arbitrary Variant II initial code-
word compatible with it. Let (P , V ) be the Variant II FPQ encoding of x using (F ,m, ŷinit). We would like to check that
x̂ = R ŷ is consistent with the encoding (P , V ). This is verified through the following computation:

D̃(m)V P F x̂ = D̃(m)V P F R ŷ

= D̃(m)V P F R P−1 V −1 ŷinit (32)

= D̃(m)V P A P−1 V −1 ŷinit

= D̃(m)V PaIM P−1 V −1 ŷinit (33)

= aD̃(m) ŷinit

� 0L(m)×1, (34)

where (32) uses the conventional decoding of a PSC; (33) follows from the hypothesis of the theorem on A; and (34)
follows from the definition of Variant II initial codewords compatible with m, and the nonnegativity of a. This completes
the proof. �
Theorem 5.5. Consider Variant II FPQ using frame F with M � 3. If linear reconstruction x̂ = R ŷ is consistent with every composition
and every Variant II initial codeword compatible with it, then matrix A = F R must be of the form aIM , where a � 0 and M = N.

Proof. See Section 7.3. �
The two theorems above show that, if we insist on linear consistent reconstructions for Variant II FPQs, the frame must

degenerate into a basis. For nonlinear consistent reconstructions, we could use algorithms analogous to those presented in
Section 4.3 for an arbitrary frame that is not necessarily a basis.

5.2. Canonical reconstruction

We now restrict the linear reconstruction to use the canonical dual; i.e., R is restricted to be the pseudo-inverse F † =
(F ∗ F )−1 F ∗ . The following corollary characterizes the nontrivial frames for which canonical reconstructions are consistent.

Corollary 5.6. Consider Variant I FPQ using rank-N frame F with M > N and M � 3. For canonical reconstruction to be consistent
with every composition and every Variant I initial codeword compatible with it, it is necessary and sufficient to have M = N + 1 and
A = F F † = IM − 1

M J M , where J M is the M × M all-1s matrix.

Proof. Sufficiency follows immediately from Theorem 5.2. From Theorem 5.3, it is necessary to have A = F F † = aIM + J for
some a � 0 and J ∈ J . The rank condition further implies a > 0, so we must have M = N + 1 by the argument following
Theorem 5.3. Now since A is an orthogonal projection operator, it is self-adjoint so

aIM + J = (aIM + J )∗ = aIM + J∗. (35)

Thus, J = J∗ , and it follows that J = b J M , for some constant b. The idempotence of A gives

aIM + b J M = (aIM + b J M)2 = a2 IM + (
2ab + b2M

)
J M . (36)

Equating the two sides of (36) yields a = 1 and b = −1/M as desired. �
We continue to add more constraints to frame F . Tightness and equal norm are common requirements in frame de-

sign [1]. By imposing tightness and unit norm on our analysis frame, we can progress a bit further from Corollary 5.6 to
derive the form of F F ∗ .

Corollary 5.7. Consider Variant I FPQ using unit-norm tight frame F with M > N and M � 3. For canonical reconstruction to be
consistent for every composition and every Variant I initial codeword compatible with it, it is necessary and sufficient to have M = N +1
and
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F F ∗ =

⎡⎢⎢⎢⎢⎣
1 − 1

N · · · − 1
N

− 1
N 1 · · · − 1

N

...
...

. . .
...

− 1
N − 1

N · · · 1

⎤⎥⎥⎥⎥⎦ . (37)

Proof. Corollary 5.6 asserts that M = N + 1 and

F
(

F ∗ F
)−1

F ∗ =

⎡⎢⎢⎢⎢⎣
N
M − 1

M · · · − 1
M

− 1
M

N
M · · · − 1

M

...
...

. . .
...

− 1
M − 1

M · · · N
M

⎤⎥⎥⎥⎥⎦ . (38)

On the other hand, the tightness of a unit-norm frame F implies

(
F ∗ F

)−1 = N

M
IN . (39)

Combining (38) with (39), we get (37). �
Recall that a UNTF that satisfies (37) is a restricted ETF. Therefore Corollary 5.7 together with Proposition 3.7 gives us a

complete characterization of UNTFs that are “good” in the sense of canonical reconstruction being consistent.

Corollary 5.8. Consider Variant I FPQ using unit-norm tight frame F with M > N and M � 3. For canonical reconstruction to be
consistent for every composition and every Variant I initial codeword compatible with it, it is necessary and sufficient for F to be a
modulated HTF or a Type I or Type II equivalent.

6. Numerical results

In this section, we provide simulations to demonstrate some properties of FPQ. For data compression, we demonstrate
that FPQ with decoding using Algorithms 3 and 4 can give performance better than entropy-constrained scalar quantization
(ECSQ) and ordinary PSC for certain combinations of signal dimension and rate. For data acquisition, we demonstrate that
FPQ with recursive estimation through Algorithm 5 empirically gives the optimal decay of MSE, inversely proportional to
the square of the number of orthogonal projection steps, validating Theorem 4.3 but also suggesting that this holds more
generally.

6.1. Fixed-rate compression experiments

All FPQ compression simulations use modulated harmonic tight frames and are based on implementations of Algo-
rithms 3 and 4 using MATLAB, with linear programming and quadratic programming provided by the Optimization Toolbox.
For every data point shown, the distortion represents a sample mean estimate of N−1 E[‖x − x̂‖2] over at least 106 trials.
Testing was done with exhaustive enumeration of the relevant compositions. This makes the complexity of simulation high,
and thus experiments are only shown for small N and M . Recall the encoding complexity of FPQ is low, O (M log M) opera-
tions. The decoding complexity is polynomial in M for either of the algorithms presented explicitly, and in some applications
it could be worthwhile to precompute the entire codebook at the decoder. Thus much larger values of N and M than used
here may be practical.

6.1.1. Uniform source
Let x have i.i.d. components uniformly distributed on [− 1

2 , 1
2 ]. Algorithm 3 is clearly well suited to this source since

the support of x is properly specified and reconstructions near the centers of cells is nearly optimal. Fig. 2 summarizes the
performance of Variant I FPQ for several frames and an enormous number of compositions. Also shown are the performances
of ordinary PSC and optimal ECSQ [32,46]. Approaching the indicated performance of ECSQ requires entropy coding over
many quantized symbols.

Using F = IN makes FPQ reduce to ordinary PSC. We see that, consistent with results in [32], PSC is sometimes better
than ECSQ. Next notice that FPQ is not identical to PSC when F is square but not the identity matrix. The modulated
harmonic frame with M = N provides an orthogonal matrix F . The set of rates obtained with M = N is the same as PSC,
but since the source is not rotationally-invariant, the partitions and hence distortions are not the same; the distortion is
sometimes better and sometime worse. Increasing M gives more operating points—some of which are better than those for
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Fig. 2. Performance of Variant I FPQ on an i.i.d. uniform([− 1
2 , 1

2 ]) source using modulated harmonic tight frames ranging in size from N to 7. Also shown
are the performances of ordinary PSC (equivalent to FPQ with frame F = IN ), and optimal entropy-constrained scalar quantization.

Fig. 3. Performance of Variant I FPQ on an i.i.d. N (0,1) source using modulated harmonic tight frames ranging in size from N to 7. Performance of PSC is
not shown because it is equivalent to FPQ with M = N for this source. Also plotted are the performance of entropy-constrained scalar quantization and the
distortion–rate bound.

lower M—and a higher maximum rate.4 In particular, for both N = 4 and N = 5, it seems that M = N + 1 gives several
operating points better than those obtainable with larger or smaller values of M .

6.1.2. Gaussian source
Let x have the N (0, IN ) distribution. Algorithm 4 is designed precisely for this source. Fig. 3 summarizes the performance

of Variant I FPQ with decoding using Algorithm 4. Also shown are the distortion–rate bound and the performances of two
types of entropy-constrained scalar quantization: uniform thresholds with uniform codewords (labeled ECUSQ) and uniform
thresholds with optimal codewords (labeled ECSQ). At all rates, the latter is a very close approximation to optimal ECSQ; in
particular, it has optimal rate–distortion slope at rate zero [48]. Of course, the distortion–rate bound can only be approached
with N → ∞; it is not presented as a competitive alternative to FPQ for N = 4 and N = 5.

We have not provided an explicit comparison to ordinary PSC because, due to rotational-invariance of the Gaussian
source, FPQ with any orthonormal basis as the frame is identical to PSC. (The modulated harmonic tight frame with M = N

4 A discussion of the density of PSC rates is given in [47, App. B].
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Fig. 4. Performance of Variant I FPQ for fixed- and variable-rate coding of an i.i.d. uniform ([− 1
2 , 1

2 ]) source with N = 4 using modulated harmonic tight
frames of sizes 6 and 7. Also plotted is the performance of entropy-constrained scalar quantization.

is an orthonormal basis.) The trends are similar to those for the uniform source: PSC and FPQ are sometimes better than
ECSQ; increasing M gives more operating points and a higher maximum rate; and M = N + 1 seems especially attractive.

6.2. Variable-rate compression experiments and discussion

We have posed FPQ as a fixed-rate coding technique. As mentioned in Section 3.2, symmetries will often make the
outputs of a PSC equally likely, making variable-rate coding superfluous. This does not necessarily carry over to FPQ.

In Variant I FPQ with modulated HTFs, when M > N + 1 the codewords are not only nonequiprobable, some cannot even
occur. To see an example of this, consider the case of (N, M) = (2,4). Then

F =
⎡⎢⎣

1 0
−ζ −ζ

0 1
ζ −ζ

⎤⎥⎦ , where ζ denotes 1/
√

2.

If we choose the composition m = (2,2), we might expect six distinct codewords that are equiprobable for a rotationally-
invariant source. The permutation matrices consistent with this composition are⎧⎪⎨⎪⎩

⎡⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎦ ,

⎡⎢⎣
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎦ ,

⎡⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤⎥⎦ ,

⎡⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎦ ,

⎡⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

⎡⎢⎣
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤⎥⎦
⎫⎪⎬⎪⎭ .

The first and fifth of these occur with probability zero because the corresponding partition cells have zero volume. Let us
verify this for the fifth permutation matrix (P = I4). By forming D((2,2)) I4 F , we see that the fifth cell is described by⎡⎢⎣

1 −1
−ζ −1 − ζ

1 − ζ ζ

−2ζ 0

⎤⎥⎦[
x1
x2

]
�

⎡⎢⎣
0
0
0
0

⎤⎥⎦ . (40)

This has no nonzero solutions. (Subtracting the second and third inequalities from the first gives 2ζ x1 � 0, which combines
with the fourth inequality to give x1 = 0. With x1 = 0, the first and third inequalities combine to give x2 = 0.)

While further investigation of the joint design of the composition m and frame F —or of the product D(m) P F as P
varies over the permutations induced by m—is merited, it is beyond the scope of this paper. Instead, we have extended our
experiments with uniform sources to show the potential benefit of using entropy coding to exploit the lack of equiprobable
codewords.

Fig. 4 summarizes experiments similar to those reported in Figs. 2 and 3. Each curve in this figure shows, for any given
rate R on the horizontal axis, the lowest distortion can be achieved at any rate not exceeding R . The source x ∈ R4 has
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Fig. 5. Performance of recursive estimation for Variant I FPQ. The signal is of dimension N = 8 and various index sets Jk are used.

i.i.d. components uniformly distributed on [− 1
2 , 1

2 ], and Variant I FPQ with modulated harmonic tight frames of sizes M = 6
and 7 were used. Performance with rate measured only by (15) as before is labeled fixed rate. The codewords are
highly nonequiprobable at all but the lowest rates. To demonstrate this, we alternatively measure rate by the empirical
output entropy and label the performance variable rate. Clearly, the rate is significantly reduced by entropy coding at
all but the lowest rates.

6.3. Recursive estimation experiments

The recursive estimation technique detailed in Algorithm 5 remains computationally feasible for large N and M . Here
we simulate it with x ∈ RN a nonrandom unit vector and {φk}∞k=1 an i.i.d. sequence of vectors drawn from the uniform
distribution on the unit sphere in RN . Several choices for the Jk sets are used:

• Singleton sets: Jk = {k − 1};
• Square-root sets: Jk ⊂ {1,2, . . . ,k − 1} is chosen uniformly at random from subsets of size �√k�; and
• Exhaustive sets: Jk = {1,2, . . . ,k − 1}.

Fig. 5 shows the sample mean estimate of N−1 E[‖x − x̂‖2] over 1000 trials with N = 8 and M up to 10 000.
With singleton sets, we expect to see ‖x − x̂M‖2 = Θ(M−2) when M is increased without bound for any fixed N;

Theorem 4.3 gives an upper bound of this order, and related lower bound results include [22, Thm. 6.1] and [8, Thm. 3]. With
exhaustive sets, the total number of projections is 1

2 M(M −1), so squared error decay with the square number of projections
would give ‖x − x̂M‖2 = Θ(M−4), and we indeed see this. Similarly, the empirical behavior is ‖x − x̂M‖2 = Θ(M−3) with
square-root sets.

7. Proofs

7.1. Proof of Proposition 3.7

In order to prove Proposition 3.7, we need the following lemmas.

Lemma 7.1. Assume that M = N + 1 and let W = e j2π/M . Then for all α ∈ R we have

N/2∑
i=1

W α(2i−1)/2 = (−1)α − W α/2

W α − 1
, if N is even;

and

(N−1)/2∑
i=1

W αi = (−1)α − W α

W α − 1
, if N is odd.
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Proof. By noting that W M/2 = −1, we have the following computations:
N even:

N/2∑
i=1

W α(2i−1)/2 = W −α/2 ·
N/2∑
i=1

W αi = W −α/2 · W α(N+2)/2 − W α

W α − 1

= W −α/2 · (W M/2)αW α/2 − W α

W α − 1
= (−1)α − W α/2

W α − 1
.

N odd:

(N−1)/2∑
i=1

W αi = W α(N+1)/2 − W α

W α − 1
= (W M/2)α − W α

W α − 1
= (−1)α − W α

W α − 1
. �

Lemma 7.2. For M = N + 1, the HTF Φ = {φk}M
k=1 satisfies 〈φk, φ	〉 = (−1)k−	+1/N, for all 1 � k < 	 � M.

Proof. Consider the two following cases:
N even: Using Euler’s formula, for k = 0,1, . . . , M − 1, φ∗

k+1 can be rewritten as√
2

N

[
W k + W −k

2
,

W 3k + W −3k

2
, . . . ,

W (N−1)k + W −(N−1)k

2
,

W k − W −k

2 j
,

W 3k − W −3k

2 j
, . . . ,

W (N−1)k − W −(N−1)k

2 j

]
.

For 1 � k < 	 � M , let α = k − 	. After some algebraic manipulations we can obtain

N · 〈φk, φ	〉 =
N/2∑
i=1

W (k−	)(2i−1)/2 +
N/2∑
i=1

W (	−k)(2i−1)/2 = (−1)α − W α/2

W α − 1
+ (−1)−α − W −α/2

W −α − 1

= (−1)αW −α/2 − 1

W α/2 − W −α/2
− (−1)αW α/2 − 1

W α/2 − W −α/2
= (−1)α+1, (41)

where (41) is obtained using Lemma 7.1.
N odd: Similarly, for 1 � k < 	 � M and α = k − 	, we have

N · 〈φk, φ	〉 = 1 +
(N−1)/2∑

i=1

W (k−	)i +
(N−1)/2∑

i=1

W (	−k)i = 1 + (−1)α − W α

W α − 1
+ (−1)−α − W −α

W −α − 1

= 1 + (−1)α W −α/2 − W α/2

W α/2 − W −α/2
− (−1)α W α/2 − W −α/2

W α/2 − W −α/2
= 1 − (−1)α − 1 = (−1)α+1, (42)

where (42) is due to Lemma 7.1. �
Proof of Proposition 3.7. For a modulated HTF Ψ = {ψk}M

k=1, as defined in Definition 3.4, for all 1 � k < 	 � M we have

〈ψk,ψ	〉 = 〈
γ (−1)kφk, γ (−1)	φ	

〉
= γ 2(−1)k+	(−1)k−	+1/N (43)

= (−1)k+	(−1)k−	+1/N (44)

= −1/N, (45)

where (43) is due to Lemma 7.2; and (44) is true because |γ | = 1 for all 1 � k < 	 � M . Since the inner product is preserved
through an orthogonal mapping, (45) is true for Type I and/or Type II equivalences of modulated HTFs as well. The tightness
and unit norm of the HTF are obviously preserved for Type I and/or Type II equivalences. Therefore, the modulated HTFs
and their equivalences of Type I and/or Type II are all restricted ETFs.

Conversely, from Proposition 3.5, every restricted ETF Ψ = {ψ}M
k=1 can be represented up to Type I and Type II equiva-

lences as follows:

ψk = δ(k)φk, for all 1 � k � M,
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where δ(k) = ±1 is some sign function on k. Thus, the constraint 〈ψk,ψ	〉 = a for some constant a of a restricted ETF is
equivalent to

aN = Nδ(k)δ(	) · 〈φk, φ	〉 = δ(k)δ(	)(−1)k−	+1, for all 1 � k < 	 � M.

Therefore, δ(k)δ(	)(−1)k−	 is constant for all 1 � k < 	 � M . If we fix k and vary 	, it is clear that the sign of δ(	) must be
alternatingly changed. Thus, Ψ is one of the two HTFs specified in the proposition, completing the proof. �
7.2. Proof of Theorem 5.3

The following lemmas are all stated for Variant II initial codewords. They are somewhat stronger than what we need for
the proof of Theorem 5.3 because a Variant II initial codeword is automatically a Variant I initial codeword. However, these
lemmas will be reused to prove Theorem 5.5 in Section 7.3.

For convenience, if {i1, . . . ik} is a subset of {1,2, . . . , M} and σ is a permutation on that subset, we simply write

P =
(

i1 i2 · · · ik

σ(i1) σ (i2) · · ·σ(ik)

)
if P y maps yi	 to yσ(i	) , 1 � 	 � k, and fixes all the other components of vector y. This notation with parentheses should
not be confused with a matrix, for which we always use square brackets.

Proofs of the lemmas rely heavily on the key observation that the operator P (·)P−1 first permutes the columns of the
original matrix, then permutes the rows of the resulting matrix in the same manner.

Lemma 7.3. Assume that M � 3. If the entries of matrix A satisfy ak,1 
= a	,1 for some 1 < k < 	, then there exists a pair (P , ŷinit),
where P is a permutation matrix and ŷinit is a Variant II initial codeword compatible with some composition, such that the inequal-
ity (31) is violated.

Proof. Consider the two following cases:
Case 1: If ak,1 < a	,1, choose P = IM , and ŷinit = (μ1,μ2, . . . ,μM). Consider the following difference:

�k,	 = 〈
(ak, j) j, ŷinit

〉− 〈
(a	, j) j, ŷinit

〉 = M∑
j=1

ak, jμ j −
M∑

j=1

a	, jμ j

= (ak,1 − a	,1)μ1 +
(

M∑
j=2

ak, jμ j −
M∑

j=2

a	, jμ j

)
.

Fix μ2 > μ3 > · · · > μM � 0 and let μ1 go to +∞. Since ak,1 < a	,1, �k,	 will go to −∞. Thus, there exist μ1 > μ2 > · · · >
μM � 0 such that �k,	 < 0. On the other hand, for m = (1,1, . . . ,1), inequality (31) requires that �k,	 � 0 for all k < 	.
Therefore the chosen pair violates inequality (31).

Case 2: If ak,1 > a	,1, choose P = (
k 	
	 k

)
. Since k, 	 
= 1, the entries of matrix A′ = P A P−1 will satisfy a′

k,1 < a′
	,1. We return

to the first case, completing the proof. �
Lemma 7.4. Assume that M � 3. If the entries of matrix A satisfy ak, j 
= a	, j , for any pairwise distinct triple (k, j, 	), then there exists
a pair (P , ŷinit), where P is a permutation matrix and ŷinit is a Variant II initial codeword compatible with some composition, such
that the inequality (31) is violated.

Proof. We first show that there exists some permutation matrix P1 such that Ã = P1 A P−1
1 satisfies the hypothesis of

Lemma 7.3. Indeed, consider the following cases:

1. If j = 1, it is obvious to choose P1 = IM .
2. If j > 1 and k > 1, choosing P1 = ( 1 j

j 1

)
yields ãk,1 = ak, j 
= a	, j = ã	,1, since k, 	 /∈ {1, j}.

3. If j > 1 and k = 1, choosing P1 = ( 1 j
j 1

)
yields ã j,1 = ak, j 
= a	, j = ã	,1, since k = 1, and 	 /∈ {1, j}. Note that in this case,

j 
= 1, and so Ã satisfies the hypothesis of Lemma 7.3.

Now with P1 chosen as above, according to Lemma 7.3 there exists a pair (P2, ŷinit), where P is a permutation matrix and
ŷinit is a Variant II initial codeword compatible with some composition, such that

0 � D(m) P2 Ã P−1
2 ŷinit = D(m) P2

(
P1 A P−1

1

)
P−1

2 ŷinit = D(m) P A P−1 ŷinit,

where P
�= P2 P1. Since the product of any two permutation matrices is also a permutation matrix, the pair (P , ŷinit) violates

the inequality (31). �
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Lemma 7.5. Suppose that A is a diagonal matrix. Then the inequality (31) holds for every composition and every Variant II initial
codeword compatible with it, only if A is equal to the identity matrix scaled by a nonnegative factor.

Proof. Suppose that A = diag(a1,a2, . . . ,aM). We first show that ai � 0 for every i by contradiction.
If a1 < 0, we can choose P = IM and μ1 > μ2 > · · · > μM � 0, where μ1 is large enough relative to μ2, . . . ,μM to

violate inequality (31).
If a j < 0 for some 1 < j � M , using P = ( 1 j

j 1

)
yields a′

1 = a j < 0, where a′
1 is the first entry on the diagonal of matrix

A′ �= P A P−1. Repeating the previous argument, we get the contradiction.
Now we show that if ak 
= a	 for some 1 � k < 	 � M , there exists a pair (P , ŷinit), where P is a permutation matrix and

ŷinit is a Variant II initial codeword compatible with some composition, such that inequality (31) is violated.
Case 1: if ak < a	 , choose P = IM and consider ŷinit = (μ1,μ2, . . . ,μM), where μ	 = μk − ε for some positive ε. Choose

μk such that

μk >
εa	

a	 − ak
� 0. (46)

On the other hand, we can choose ε small enough so that μ	 is positive as well. The other components can therefore be
chosen to make ŷinit a Variant II initial codeword compatible with composition m = (1,1, . . . ,1). For the above choice of
μk we can easily check that �k,	 = akμk − a	μ	 < 0, violating inequality (31).

Case 2: if ak > a	 , choosing P = (
k 	
	 k

)
yields P A P−1 = diag(a1,a2, . . . ,a	, . . . ,ak, . . . ,aM).

We return to case 1, completing the proof. �
Proof of Theorem 5.3. First note that a Variant II initial codeword is always a Variant I initial codeword, therefore, Lem-
mas 7.3, 7.4, and 7.5 also apply for Variant I initial codewords. From Lemma 7.4, all entries on each column of matrix A are
constant except for the one that lies on the diagonal. Thus, A can be written as A = Ĩ + J , where Ĩ = diag(a1,a2, . . . ,aM),
and

J =

⎡⎢⎢⎢⎣
b1 b2 · · · bM

b1 b2 · · · bM

...
...

...

b1 b2 · · · bM

⎤⎥⎥⎥⎦ ∈ J .

Recall that from properties (P1) and (P2) of J we have

D(m) P J P−1 = 0, for any m.

Hence,

D(m) P Ĩ P−1 ŷinit � 0, for any m and any ŷinit. (47)

From (47) and Lemma 7.5, we can deduce that Ĩ = aIM , for some nonnegative constant a. �
7.3. Proof of Theorem 5.5

In order for R to produce consistent reconstructions, we need the following inequality (noting that V = V −1 for any
V ∈ Q(m)):

D̃(m)V P A P−1 V ŷinit � 0, for any V ∈ Q(m) and P ∈ G(m), (48)

where A = F R . We first fix the sign-changing matrix V to be the identity matrix IM . Then the first L(m) rows of (48)
exactly form the inequality (31). Since Lemmas 7.3, 7.4, and 7.5 are stated for Variant II initial codewords, it follows from
Theorem 5.3 that A must be of the form aIM + J , where a � 0 and J ∈ J . Substituting in to (48), we obtain

aD̃(m) ŷinit + D̃(m)V P J P−1 V ŷinit � 0. (49)

Now we show that J = 0 by contradiction. Suppose all entries in column i of J are bi , for 1 � i � M . Consider the following
cases:

1. If b1 is negative, choose V = P = IM and ŷinit = (μ1,μ2, . . . ,μM) compatible with composition m = (1,1, . . . ,1). Con-
sider the last row of inequality (49):

b1μ1 + aμM−1 +
M∑

biμi � 0. (50)

i=2
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Since M � 3, M − 1 
= 1. Therefore the scale associated with μ1 in the left-hand side of inequality (50) is b1 < 0. Hence,
choosing μ1 large enough certainly breaks inequality (50), and therefore violates inequality (49).

2. If b1 is positive, choosing P = IM , V = diag(−1,1,1, . . . ,1) makes the first entry of the (M − 1)th row of matrix
V P J P−1 V negative (note that M − 1 
= 1 and the operator V (·)V first changes the signs of columns of the original
matrix and then changes the signs of rows of the resulting matrix in the same manner). Repeating the argument in the
first case we can break the last row of inequality (49) by appropriate choice of ŷinit.

3. If column 	 of J , 1 < 	 � M , is different from zero, choosing P = (
1 	
	 1

)
leads us to either case 1 or case 2.

Hence,

A = F R = aIM . (51)

Equality (51) states that the row vectors of F and the column vectors of R form a biorthogonal basis pair of RN within
a nonnegative scale factor. Since the number of vectors in each basis cannot exceed the dimension of the space, we can
deduce M � N . On the other hand, M � N because F is a frame. Thus, M = N .
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