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A human being should be able to change a diaper, plan an invasion, butcher
a hog, conn a ship, design a building, write a sonnet, balance accounts,
build a wall, set a bone, comfort the dying, take orders, give orders, co-
operate, act alone, solve equations, analyze a new problem, pitch manure,
program a computer, cook a tasty meal, fight efficiently, die gallantly.
Specialization is for insects.

Robert A. Heinlein, Time Enough for Love
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ABSTRACT

Lidar is an increasingly prevalent technology for depth sensing, with applications

including scientific measurement and autonomous navigation systems. While conven-

tional systems require hundreds or thousands of photon detections per pixel to form

accurate depth and reflectivity images, recent results for single-photon lidar (SPL)

systems using single-photon avalanche diode (SPAD) detectors have shown accurate

images formed from as little as one photon detection per pixel, even when half of those

detections are due to uninformative ambient light. The keys to such photon-efficient

image formation are two-fold: (i) a precise model of the probability distribution of

photon detection times, and (ii) prior beliefs about the structure of natural scenes.

Reducing the number of photons needed for accurate image formation enables faster,

farther, and safer acquisition. Still, such photon-efficient systems are often limited

to laboratory conditions more favorable than the real-world settings in which they

would be deployed.

This thesis focuses on expanding the photon detection time models to address

challenging imaging scenarios and the effects of non-ideal acquisition equipment. The
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processing derived from these enhanced models, sometimes modified jointly with the

acquisition hardware, surpasses the performance of state-of-the-art photon counting

systems.

We first address the problem of high levels of ambient light, which causes tra-

ditional depth and reflectivity estimators to fail. We achieve robustness to strong

ambient light through a rigorously derived window-based censoring method that sep-

arates signal and background light detections. Spatial correlations both within and

between depth and reflectivity images are encoded in superpixel constructions, which

fill in holes caused by the censoring. Accurate depth and reflectivity images can then

be formed with an average of 2 signal photons and 50 background photons per pixel,

outperforming methods previously demonstrated at a signal-to-background ratio of 1.

We next approach the problem of coarse temporal resolution for photon detec-

tion time measurements, which limits the precision of depth estimates. To achieve

sub-bin depth precision, we propose a subtractively-dithered lidar implementation,

which uses changing synchronization delays to shift the time-quantization bin edges.

We examine the generic noise model resulting from dithering Gaussian-distributed

signals and introduce a generalized Gaussian approximation to the noise distribution

and simple order statistics-based depth estimators that take advantage of this model.

Additional analysis of the generalized Gaussian approximation yields rules of thumb

for determining when and how to apply dither to quantized measurements. We im-

plement a dithered SPL system and propose a modification for non-Gaussian pulse

shapes that outperforms the Gaussian assumption in practical experiments. The re-

sulting dithered-lidar architecture could be used to design SPAD array detectors that

can form precise depth estimates despite relaxed temporal quantization constraints.

Finally, SPAD dead time effects have been considered a major limitation for fast

data acquisition in SPL, since a commonly adopted approach for dead time mitigation
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is to operate in the low-flux regime where dead time effects can be ignored. We

show that the empirical distribution of detection times converges to the stationary

distribution of a Markov chain and demonstrate improvements in depth estimation

and histogram correction using our Markov chain model. An example simulation

shows that correctly compensating for dead times in a high-flux measurement can

yield a 20-times speed up of data acquisition. The resulting accuracy at high photon

flux could enable real-time applications such as autonomous navigation.
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Chapter 1

Introduction

Engineering is a philosophical endeavor. Given a problem to solve and the constraints

of resources, regulations, and human knowledge, engineers must answer the question,

“what matters?” The universe of potential influences on a problem is too large to

account for all of them, so any proposed solution implicitly or explicitly determines

which factors to consider relevant by choosing a model. The model may be derived

from mathematical abstraction of physical laws or determined empirically from a set

of observations, but every model will fail to capture some level of detail as infinite

factors are reduced to a finite number of parameters. While the model itself will always

fall short of representing reality with perfect accuracy, its quality may be judged by

how well it can be used to solve a particular problem. As George Box succinctly

summarized [27], “All models are wrong, but some are useful.” Engineers seek models

that account for the most important influences—the factors that measurably affect

outcomes—while preferably maintaining the model’s simplicity.

One example of a technology for which the choice of model has a large impact on

performance is single-photon lidar (SPL). Lidar (sometimes claimed to be an acronym

for “light detection and ranging”) operates with the same principle as radar, using

echoes detected from optical-wavelength illuminations to determine the positions and

reflectivities of points in the surrounding environment. In SPL, the time-of-flight

of individual photons is used to measure the distances to objects. Although range

measurements had previously been made using time-resolved single-photon detec-
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tion [126, 127], the introduction of “First-Photon Imaging” (FPI) in 2014 revolution-

ized SPL by detailing how depth and reflectivity maps could be accurately formed

from only a single photon detection per pixel location, even when half of the incident

photons were due to uninformative ambient light [104]. The two key components

enabling the success of FPI were:

1. an acquisition model, used to determine the probabilistic nature of any photon

detection time, and

2. a scene model, used to reconstruct depth and reflectivity maps by taking ad-

vantage of prior beliefs about the structure of natural scenes.

From the perspective of an optimization problem, these components correspond to a

data fidelity term and a regularization term. Both models—of the measurement tool

and the subject of the measurements—were more principled than had been used in

previous approaches, thus enabling significant strides in recovering depth and reflec-

tivity images from very little detected light.

This thesis focuses primarily on the first component of FPI, exploring practical

problems for which existing models are too simple to be useful. We then perform what

Box calls “model robustification,” i.e., the identification of the main sources of error

and their subsequent incorporation into a more elaborate acquisition model. Unlike

many first-order signal processing approaches, we cannot assume that SPL data takes

the form of independent measurements from a linear, time-invariant system with ad-

ditive, white Gaussian noise. Instead, this work accounts for the inherent Poisson

randomness of photon counting, the nonlinear effects of quantization, and the statis-

tical dependences incurred from system dead times. Through mathematical analysis,

simulation, and experimental validation, we demonstrate how each additional layer

of modeling describes the underlying acquisition process accurately enough to better

solve a particular problem while keeping our understanding as simple as possible.
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1.1 Time-Correlated Single Photon Counting

The key to more useful SPL acquisition models is a thorough understanding of time-

correlated single photon counting (TCSPC), the operating principle of SPL. Early

versions of TCSPC were introduced in 1961 by Bennett [20] and Bollinger and Thomas

[24] for measuring the time dependence of the light intensity in scintillators and early

lasers (“optical masers”). The basic concept of TCSPC is that of a stopwatch. An

illumination source—usually a laser—is pulsed in order to cause a desired optical

interaction with an object of interest, e.g., fluorescence, back-reflection, etc. Simulta-

neous with the illumination is the “start” signal for the timer, either from an electrical

trigger signal or a trigger photodiode coupled to the illumination. When the interac-

tion occurs, photons may be generated or reflected back to a single-photon detector

such as a single-photon avalanche diode (SPAD), which produces the “stop” signal

when a photon detection event occurs. The detection time is then the time difference

between the stop and start signals. TCSPC is often used to build up a histogram

of detection times and use the empirical distribution to estimate a physical prop-

erty. The rest of this section introduces some context for two of the most common

applications of TCSPC: fluorescence lifetime imaging and single-photon lidar.

1.1.1 Fluorescence Lifetime Imaging

Fluorescence is the phenomenon of photon emission from a molecule after an electron

excited into a higher energy state returns to the ground state [15, 181]. Intensity

measurements from fluorescent molecules called fluorophores are commonly used for

biological imaging of ion concentrations and protein binding, but intensity measure-

ments are sensitive to fluorophore concentration, photobleaching, and acquisition set-

tings such as focusing and detector gain, all of which may be spatially varying [38].

Additionally, the intensity measurements for fluorophores with similar excitation and
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emission wavelengths cannot be spectrally separated.

The time the excited electron spends in the higher energy state is called the

fluorescence lifetime and has an exponential distribution. The lifetime of a fluo-

rophore depends on the molecular environment, not on the fluorophore concentra-

tion, so the measurement of different lifetimes can indicate protein interactions, pH,

viscosity, temperature, refractive index, the presence of a chemical or nanoparticle,

etc. [16, 112, 181]. Fluorescence lifetimes are thus a useful quantitative measure that

can act as an additional dimension for providing contrast, similar to how proton re-

laxation times provide the contrast in magnetic resonance imaging (MRI) [112]. For

example, fluorescence lifetime measurement is the most reliable method of identify-

ing Förster resonance energy transfer (FRET), which can indicate the proximity of

proteins below the optical resolution limit [181].

Nanosecond-scale measurements of fluorescence lifetimes have been made

since 1926 by Gaviola [66], and lifetime measurement was a main application of

early TCSPC systems [21, 113, 137]. Lakowicz [112] first introduced fluorescence

lifetime imaging (FLIM) with high spatial resolution from a gated, intensified charge-

coupled device (CCD) camera. Previous attempts at FLIM using a scanned TCSPC

system had extremely poor spatial resolution (e.g., 10×10 pixels) due to hardware

limitations [210]. Modern improvements in laser excitation sources, detectors, timing

electronics, and memory capacity have greatly improved scanned TCSPC systems,

however, such that they now provide the highest time resolution and sensitivity to

the lowest light levels of all FLIM implementations, with capabilities for simultane-

ous multispectral sensing and multi-exponential estimation [17]. TCSPC thus enables

FLIM of weakly-fluorescent samples or the use of a low excitation energy, facilitating

new scientific discoveries while reducing damage to a sample [38, 102, 162].
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1.1.2 Single-Photon Lidar

Non-contact depth measurement has a wide range of uses, from industrial to mili-

tary or scientific purposes. Active optical methods such as lidar are especially useful

due to their high spatial resolution relative to radar or ultrasound methods [5]. Al-

though laser ranging has been under development since the 1960s, mostly for military

use, terrain mapping, or atmospheric monitoring [131], commercial lidar development

has greatly accelerated since 2005, when all vehicles that completed the DARPA

autonomous driving Grand Challenge employed lidar for depth mapping [19].

A number of strategies exist for using light to make range measurements. The

most straightforward approach is pulsed lidar, which transmits a short-duration pulse

of light at a target and measures the time until the reflected echo is detected. Because

the speed of light is well-known, the range can be directly measured from the round-

trip time. Aside from its simplicity, the key benefit of pulsed lidar is that the range

accuracy depends only weakly on the distance, with the detected pulse amplitude

decreasing with the square of the distance [5]. Short-duration pulses can be used

to achieve a large peak power while maintaining an eye-safe average power, allowing

longer-range measurements [18]. High-bandwidth timing electronics are required to

achieve fine range resolution.

Laser ranging can alternatively be performed using continuous, rather than pulsed,

illumination. Continuous-wave (CW) lidar, operated with a constant amplitude and

frequency, can be used to measure velocity from the Doppler shift [213]. By modu-

lating the light’s amplitude or frequency, range measurements can also be performed.

The amplitude-modulated continuous-wave (AMCW) method, employed by time-

of-flight cameras such as the Microsoft Kinect version 2, measures the phase shift

between a typically sinusoidal modulation of the transmitted light and its received

echo [62]. The range is encoded in the correlation between transmitted and received
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signals, which is ideally also sinusoidal and can therefore be recovered from as few

as three measurements [213]. However, AMCW is limited to both moderate preci-

sion and range by the modulation bandwidth and the average power output, respec-

tively [18].

Unlike pulsed and AMCW methods, frequency-modulated continuous-wave

(FMCW) lidar maintains a constant optical intensity and instead modulates the fre-

quency, typically with a linear chirp. The optical interference of the received signal

and a local oscillator creates a beat frequency that is proportional to the distance

scaled by the known chirp rate [5, 103]. The range is thus determined by sam-

pling the beat signal and performing Fourier analysis, allowing for sub-micrometer

precision despite the use of low-bandwidth electronics [12]. The coherent receiver

also makes FMCW more robust to ambient light and interference than pulsed and

AMCW approaches [18]. Unfortunately, practical implementation of FMCW lidar

is more challenging than amplitude-modulated approaches, as the optical frequency

must be tunable, and linear chirping is difficult to achieve [5]. Furthermore, the max-

imum range for FMCW lidar depends on the coherence length of the laser—the range

for which the phase noise is coherent. Modulating the wavelength of a laser while

keeping the phase noise low enough for ranging of targets at distances greater than

100 m is considered one of the major challenges of FMCW [103, 220]. Typically this is

considered a hardware challenge—requiring a laser with a narrow spectral linewidth—

although signal processing approaches have been proposed to perform long-distance

ranging despite the lack of coherence [103].

The maximum range is one of the largest remaining challenges for the deployment

of lidar in autonomous vehicles (AVs) because it affects driving performance directly:

early identification of a potential hazard gives the vehicle more time to make safe

driving decisions [85]. At American highway speeds of 65 mph (105 km/h), for in-
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stance, a range extension of 30 meters provides an additional second of reaction time.

The baseline performance necessary for AVs is generally listed as the ability to detect

dark objects with a reflectivity of 10% from a distance of at least 200 m.

The rapidly evolving technology of SPL has potential to overcome the range prob-

lem by combining pulsed illumination with single-photon detectors, while achieving

high timing precision with TCSPC. Following FPI [104], additional SPL implemen-

tations have likewise demonstrated remarkable photon efficiency, forming accurate

depth and reflectivity images from about 1.0 detected photon per pixel on aver-

age [3, 170, 171]. Such extreme sensitivity means that SPL can handle low-power

lasers, fast acquisitions, or large attenuations due to very long distances or fog. For

example, experiments with SPL have been used to form point clouds from standoff

distances of several hundred meters up to 45 km [116, 143], and even to measure the

distance to points on the moon with centimeter precision [54]. By the same princi-

ple, airborne SPL systems have been used to measure depth and reflectivity values

from greater heights, allowing more efficient scanning of large areas [83, 183]. An ex-

tended discussion of SPL system implementation, probabilistic modeling, and basic

estimation is the subject of Chapter 2.

1.2 Preview of Main Contributions

This thesis addresses three challenges to TCSPC acquisition. Although modeling

modifications and imaging improvements are shown only for SPL, FLIM is limited

by the same constraints of ambient light, temporal quantization, and detector dead

times, and some methods developed in this thesis could have direct application in

FLIM as well. We now preview some of the improvements that can be achieved by

improving the probabilistic modeling in SPL.
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Figure 1·1: Reflectivity and depth estimation results under photon-
starved, high ambient light conditions, with about 4 signal detections
per pixel and 25 times as many background detections per pixel on
average. We propose a method that censors background detections
by searching for clusters of signal detections for each pixel and joins
together detection data from similar neighboring pixels.

Improving Robustness to Strong Ambient Light

Initial photon-efficient lidar experiments were limited to the laboratory, where mod-

erately favorable imaging conditions could be maintained by controlling the ambient

light levels. However, practical outdoor uses for SPL must tolerate much stronger

ambient light without increasing acquisition times. Chapter 3 describes a method

for censoring background detections based on the probability that detections cluster

together in time. Spatial correlations between neighboring pixels of similar reflec-

tivity are exploited to extend the censoring to dark regions in which very few pixels

have any signal detections. The proposed method is demonstrated on simulated and

experimental datasets, such as those shown in Figure 1·1, in which there are only a

handful of signal detections and 25 times as many background detections per pixel

on average. This material has previously appeared in [147].
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Figure 1·2: Depth estimation results for TCSPC systems with coarse
timing resolution. The implementation of subtractive dither and the
careful choice of an estimator yields substantial improvement in the
ability to precisely estimate fine features.

Mitigating Coarse Temporal Quantization

SPAD array detectors promise fast depth imaging through parallelized acquisition,

but current SPAD cameras trade off a higher pixel count for lower timing resolution,

which means the precision of measurements using short-duration laser pulses is often

limited by the temporal quantization bin size. Chapter 4 demonstrates that imple-

menting subtractive dither within an SPL system can reduce the effects of coarse

quantization. Simple estimators are derived and analyzed to efficiently use each

photon detection. Experimental results in Figure 1·2 exemplify the improvement in

resolving fine features that can be achieved with dithered SPL. Most of this material

has previously appeared in [148, 149, 150].

Compensating for Detector Dead Times

Even in the first TCSPC measurements by Bollinger and Thomas [24], detector dead

times were acknowledged as a problem skewing the temporal response histogram

if the incident flux was too high. For SPL, dead times can erroneously shift depth

estimates, and the standard mitigation approach limits the dynamic range of the scene

that can be estimated. Chapter 5 establishes a new way of modeling the absolute
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Figure 1·3: Depth estimation results for simulated detections illus-
trate the effectiveness of using the Markov chain modeling for high-flux
acquisition. The proposed method approximately matches the conven-
tional performance with 20× fewer illuminations, greatly speeding up
acquisition.

sequence of photon detection times as a Markov chain. Simulated results in Figure 1·3
show an example of how our proposed modeling can avoid the conventional need

for attenuation, allowing accurate depth imaging to be performed with far fewer

illuminations. Most of this material has previously appeared in [151, 152, 153].
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Chapter 2

Background on Single-Photon Lidar

2.1 Overview

Following a pulsed laser illumination, whether and when a photon will be detected

is a random process. The first step toward forming estimates from SPL data is to

understand the various factors affecting the distribution of photon detection times.

This chapter begins by discussing the basic components of an SPL system, specifying

key details of the laser, detector, and timing electronics, as well as the effects of scene

interactions. Next, properties of those components are used to build up a probabilistic

model of photon detection times under certain simplifying assumptions. Finally, the

basics of reconstructing depth and reflectivity information are discussed, serving as

the foundation for the methods introduced in later chapters.

2.2 Acquisition System

The key components of a standard SPL system are shown in Figure 2·1. The laser

illumination source pulses at megahertz rates and is directed toward one point in a

scene by a pair of galvo mirrors. Light reflected back from the scene reaches the SPAD

after passing through a bandpass filter at the illumination wavelength and a lens

focusing light onto the SPAD’s active area. An optional neutral-density filter may also

be inserted in the detector path to reduce the flux incident on the detector. Differences

between the photon detection times and the most recent laser pulse are recorded by



12
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Figure 2·1: A single-photon lidar system shown in a raster-scanned,
confocal configuration. The scene is illuminated by a laser pulse (solid
line) passing through a beam-splitter (BS) and raster-scanned via a
pair of galvo mirrors. Photons reflected back from the scene (dashed
line) pass through a bandpass filter (BPF) tuned to the operating wave-
length (a neutral-density filter (ND) providing additional attenuation is
optional), before being focused by a lens onto the SPAD. Time correla-
tion between illuminations and detections is performed by the TCSPC
module, which streams data to the control computer.

timing electronics in a TCSPC module and sent to a computer for processing.

Figure 2·1 highlights that the four main influences on the probabilistic model

for SPL—the pulsed laser, single-photon detector, and timing electronics of the SPL

system, plus the environmental interactions that occur between light emission and

detection—can be divided into two groups based on whether their properties are

dominated by optical (red) or electrical (blue) effects. The following sections describe

these effects and emphasize how most probabilistic modeling characterizes only the

optical interactions and assumes ideal acquisition equipment. A significant focus of

this thesis is to also integrate the effects of non-idealized electronics when relevant.
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2.2.1 Optical Factors

Optical factors encompass all influences on the light reaching the sensor, including

the laser illumination, atmospheric attenuation, surface reflections, and ambient light.

We begin with a discussion of the key laser properties and then describe some of the

environmental interactions affecting the transient response. We assume throughout

a raster-scanned lidar implementation, although the optical model for light reaching

a single pixel in a detector array is broadly similar.

Laser Properties

The first component in an SPL system is the laser, the source of any useful photon

detections. Through excitation of an optical gain medium within a resonant structure,

lasers can radiate a beam of light with a narrow spectral width and high power, either

continuously or in short pulses [173]. The most important properties of lasers for SPL

are the operating wavelength, beam size, pulse duration, peak power, and repetition

rate.

The laser wavelength is important for several reasons. The wavelength governs

which materials in a scene will reflect, absorb, or even transmit the illumination. The

operating wavelength also determines which types of single-photon detector may be

used. Silicon SPADs are effective for visible light and some of the ultraviolet spectrum,

but their efficiency drops off quickly as the wavelength increases into the infrared

range [31]. Active imaging in the near infrared (NIR) and short-wavelength infrared

(SWIR) is advantageous because there is little solar contribution in the wavelengths

around 1.3 µm and the human eye can tolerate much higher optical power safely,

although the available single-photon detectors are less desirable due to manufacturing,

temperature, or noise constraints [29]. The experiments presented in this thesis use

only visible light illumination for convenience.
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A small illumination spot allows for a Dirac transverse sampling model, which

means opaque objects have a single depth per pixel and the temporal response func-

tion is mostly invariant to the surface normal. A short pulse duration allows mea-

surements with a low depth uncertainty. The peak power is important because it

determines in part the number of photons received by the detector. Finally, the

repetition rate influences the acquisition speed. As described later in this chapter,

typically only a small fraction of illumination pulses lead to photon detections, so

it is generally desirable to use high repetition rates to acquire enough detections as

fast as possible. However, it is important to note that periodic illumination limits

the maximum range that can be unambiguously estimated, so the repetition rate is

usually chosen to be the highest rate that can measure the scene extent without depth

aliasing.

Diode lasers are usually the illumination source of choice for TCSPC in general

and SPL in particular. Compared to other laser technologies, diode lasers can be

manufactured in the smallest size package and with the highest differential power

efficiency and longest lifetime [165]. A diffraction-limited beam quality is possible,

yielding a small spot size. By applying gain-switching, diode lasers can be designed

with pulse durations on the order of tens of picoseconds at easily-adjustable repe-

tition rates from kHz to GHz, also allowing for external triggering [10, 117, 142].

The maximum optical power of a gain-switched diode laser is typically in the range

of a few tens or hundreds of milliwatts, although fiber amplification is also possi-

ble [165]. The pulse’s temporal profile is most symmetric (e.g., closest to a Gaussian

shape) at the lowest power, i.e., just above the lasing threshold. Otherwise, secondary

“after-pulses” closely following the main peak become noticeable as the pulse energy

increases, a phenomenon not to be confused with the SPAD afterpulsing described

later in this chapter.
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Environmental Interactions

After the laser illuminates a short-duration pulse, any of the Q surfaces within the

beam width will reflect some light back, delayed by a time dependent on the distance

zq to surface q, and attenuated by the surface reflectivity αq. The amount of light

reflected back is also proportional to the optical intensity of the laser illumination. In

addition, ambient light at the same wavelength as the laser, or more generally within

the spectral range of the detector, will reach the detector, although the timing of that

incident light does not contain any depth information.

Since SPL has been deployed in a wide variety of environments, from controlled

laboratory settings to mountings on aircraft or autonomous vehicles, it is important

to consider the associated optical interactions and their effects on signal acquisition.

Number of Photons. The number of incident photons may be small or even zero

for several reasons: the number of illuminations nr is kept low for real-time acquisi-

tion, the surface reflects very little light because it is weakly-reflective or far away, etc.

Beyond the absolute number of photons, an important factor is the relative numbers

of informative signal and uninformative ambient photons. For example, estimation is

particularly challenging if the ratio between the number of photons due to the laser

and ambient illuminations, referred to as the signal-to-background ratio (SBR), is

low. Even though optical methods (e.g., confocal configurations, bandpass filters)

are used to limit the amount of ambient light that reaches the detector, strong day-

light, especially when combined with a weak surface reflection, can result in far more

detection events associated with background photons than from signal photons.

Number of Surfaces. The most basic 3D reconstruction methods assume a single

surface (Q = 1) at each pixel location. If a pixel has no object in its line of sight

(Q = 0), then the histogram contains only background detection events. On the other
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hand, there may be reflections from multiple surfaces present at one pixel (Q > 1).

This may occur because the light passes through a semi-transparent material such

as glass. Alternatively, the pixel size or field of view increases with distance (e.g.,

due to the laser divergence in a scanned setting), so the spot is more likely to cover

multiple surfaces. This same principle is often used in foliage-penetrating airborne

lidar used for terrain mapping, for example to find an ancient city hidden under dense

rainforest [35].

Pulse Width. Surfaces are generally assumed to be opaque and approximately nor-

mal to the illumination beam so that the reflected temporal response closely resembles

the shape of the illumination pulse. However, sub-surface scattering or oblique-angled

surfaces due to beam divergence at long distances will return broadened pulse pro-

files [185].

Attenuating Media. Particles in the beam path, such as fog, smoke, rain, or snow,

affect the acquired light by scattering photons in different directions after both the

illumination (forward path) and reflection (return path). To some extent, the re-

sult is similar to that of a signal weakened by additional attenuation and increased

background due to scattered photons [188], although the near-range effects of scat-

tering also reshape the temporal distribution of background, with more detections

at earlier times [163]. Similar effects are also encountered for lidar in underwater

environments [80].

2.2.2 Detection Electronics

After light is reflected back toward the detector, the acquisition electronics determine

which photon detection events are registered and what time information is stored for

each event.
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Single-Photon Avalanche Diodes

Although numerous single photon detection technologies have been employed in SPL,

we focus here on SPADs due to their widespread use, including in this work. SPADs

are reverse-biased photodiodes biased above the breakdown voltage with basic oper-

ation as follows [15, 42, 56, 177]. When a photon hits a SPAD’s active area, a charge

carrier may be generated via the photoelectric effect. Due to the reverse bias, gener-

ation of one carrier will further cause an avalanche of carriers, generating a current

that is detectable as a digital signal. In order for the detection circuit to be sensitive

to subsequent photon arrivals and to protect the avalanche from damaging the diode,

the avalanche is quenched by either passively or actively reducing the bias below the

breakdown voltage. In actively-quenched detectors, the bias voltage is reset to its

initial level after a fixed hold-off time tho, and the duration of the hold-off plus the

reset is considered to be the detector dead time td. This operation lends itself to a

nonparalyzable detector model, in which a fixed-duration dead time of insensitivity

follows each detection event.

Not all photons incident on the detector actually cause an avalanche of electrons.

The photon detection efficiency η is the probability that a photon incident on the

detector will cause a detection event registered by the TCSPC system. In a SPAD,

this value is the product of the quantum efficiency (the probability of an incident

photon generating a carrier, which depends on material properties), and the avalanche

triggering probability (the probability that a carrier initiates a detectable avalanche,

which depends on the photodiode bias voltage) [67]. Detector efficiency varies greatly

depending on the photodetector technology and operating wavelength [56]. Our work

assumes the detection efficiency is binary during the detection process, i.e., equal

to zero during the dead time and equal to the steady-state value η otherwise. In

actual circuits, however, the return of the bias voltage to its initial level after hold-
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off is not immediate and is sometimes referred to as the reset time [177, 42]. The

hold-off time plus the reset time, which is the total time between a photon detection

and when the detector is returned to its fully-armed state, is sometimes called the

recovery time. The dead time may then refer to either the hold off time (when

the probability of photon detection is zero) or the recovery time (the time until

the detector is fully reset); if the reset time is sufficiently short, the definitions are

equivalent, but the nomenclature is ambiguous nonetheless. It is also useful for the

reset time to be as short as possible because photons arriving during the reset time

may cause unpredictable delays in their detection time [67], leading to a perceived

arrival rate dependence in the afterpulsing probability [212].

Photons incident on the detector may be due to the desired signal, e.g., back-

reflected illumination in lidar or fluorescence from a stimulated molecule in mi-

croscopy, or the photons may result from ambient light. Not all avalanches are

caused by electrons generated by the photoelectric effect, however. Dark counts are

false detection events caused in SPADs by thermally-generated carriers that trig-

ger avalanches independent of any incident photons [71]. Dark counts are typically

assumed to occur at a constant rate. Afterpulses are also false detection events,

but unlike dark counts, they are correlated with previous detections [42]. In SPADs,

charge carriers can become trapped in semiconductor defect sites during an avalanche;

carriers emitted or “detrapped” after the SPAD has been reset can cause subsequent

avalanches triggering a detection [47, 96]. Several models have been proposed for the

temporal distribution of afterpulses based on the device physics and empirical mea-

surements, including a multi-exponential model [47, 71, 106] and a power-law fit [96],

although the best fit model can vary by device [221]. Typically, SPADs are held off

long enough for the probability of an afterpulse detection to be sufficiently small and

indistinguishable from dark counts [93].
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TCSPC Timing Electronics

While the SPAD provides single-photon sensitivity and a fast response, precise timing

is achieved using specialized TCSPC electronics. The classical approach, introduced

by Bollinger and Thomas in 1961 and still used by the Becker & Hickl systems popu-

lar for FLIM, is based on a stopwatch principle in which one signal starts and another

signal stops a timer [15, 24]. The most straightforward implementation has a syn-

chronization signal simultaneous with the illumination to provide the “start,” with

a detection event stopping the timer. However, most TCSPC operation occurs with

a low-flux input, so that the probability of a detection after any excitation is low,

and in most cycles the timer would start without ever receiving a stop signal. Clas-

sical systems are thus more commonly operated in reverse start-stop mode instead,

in which the timer is started by a detection event and the stop signal is a previous

synchronization signal that has been delayed by a known duration. Classical TC-

SPC systems rely on an analog implementation called a time-to-amplitude converter

(TAC), which charges a capacitor in the time between the start and stop signals [99].

The time duration is encoded as the capacitor voltage and can be read out via a

high-resolution analog-to-digital converter (ADC). Note that in early TAC implemen-

tations, the recording was not digitized but rather captured via other analog means,

e.g., a film camera recording an analog oscilloscope, or a mechanical trace [160].

TAC/ADC architectures are incorporated into the highest-resolution commercial sys-

tems, such as the SPC-150NXX from Becker & Hickl, which has a minimum bin width

of 203 fs. Unfortunately, TAC-based TCSPC is poorly suited to lidar applications due

to the slow readout speed, temperature sensitivity, short total measurement range,

and inability to record more than one detection event per cycle [99, 207].

An alternative approach to classical TAC-based TCSPC relying on time-to-digital

converters (TDCs) has gained popularity since the 1990s. The basic idea of a TDC
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is that the time need not first be converted to an analog voltage before conversion

to a digital number [158]. Instead, synchronized digital timers can be applied to

each input channel (one for the illumination synchronization signal and one for each

detector input), and the time differences can be computed digitally. This architecture

enables a virtually unlimited measurement range, fast digital readout, the “multi-

stop” capability of recording multiple stop signals within one cycle, and monolithic

integration [99].

The simplest TDC implementation is a counter driven by a high-speed reference

clock; however, the minimum time resolution is then limited by the clock speed, so a

1-THz clock would be required to achieve 1-ps resolution [99, 205]. Instead, most mod-

ern TDC-based TCSPC systems combine a coarse, crystal clock-based counter with

finer timing that interpolates within clock cycles. To achieve the highest-resolution

TDCs, the fine interpolation has typically required an analog component similar to

a TAC [205]. A linear voltage ramp or pure sinusoid synchronized with the coarse

clock can be sampled and processed to achieve 1-ps resolution, while still maintaining

the multi-stop and unlimited range capabilities of the coarse counter. Because such

precise measurements require the circuitry to have recovered between event record-

ings, such TCSPC systems—like the HydraHarp 400 from PicoQuant—enforce a dead

time te (of around 80 ns) via a monostable [208, 206]. Purely digital fine interpola-

tion can be performed with a tapped delay line linked to the overall clock through

a delay-locked loop [158]. This approach is known as a “Flash TDC” because of the

fast digital readout time, but the gate speed of the delay elements usually limits the

resolution to be on the order of tens of picoseconds. One commercial example using

purely digital timing is the TimeHarp 260 from PicoQuant, which has a short dead

time (25 ns) but lower minimum bin resolution (25 ps) [209]. Another all-digital fine

interpolator uses a Vernier oscillator approach, but that architecture can lead to much
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longer readout times [99]. While these all-digital TDCs are usually implemented in

application-specific integrated circuits (ASICs), a number of designs propose direct

TDC implementation in a field-programmable gate array (FPGA) [60]. Recently,

purely digital TDCs using tapped delay lines implemented in FPGAs, such as the

Time Tagger Ultra from Swabian Instruments, have achieved 1-ps resolution with

only 2.25-ns dead times [61].

2.2.3 Acquisition Variations

The vast majority of SPL systems use a standard combination of the laser, SPAD, and

timing electronics, as described above. However, the particular equipment and the

acquisition methodology affect how data is acquired and what information is encoded.

This section discusses several of the most notable variations in SPL data acquisition.

Transverse Resolution

Transverse resolution is achieved through either the illumination or detection or both,

each approach presenting different advantages and drawbacks. SPL systems have

conventionally employed raster-scanned illumination, as illustrated in Figure 2·1. A

laser aimed at one spot in a scene repeatedly pulses for a certain dwell time before

being redirected to the next spot by a pair of galvo mirrors [128]. Scanned illumination

enables the use of a single-pixel or bucket detector, which is often in a confocal

configuration as depicted in Figure 2·1, using a beamsplitter to allow the illumination

and detection components to share a common optical axis. The advantage of the

confocal arrangement is that the SPAD has a narrow field-of-view (FOV), observing

only the region of the scene toward which the laser is aimed and thereby rejecting

multipath interference and reducing the contribution of ambient light from other

parts of the scene. However, aligning a confocal system can be complicated, so many

laboratory setups operating at short range and with controllable ambient light opt
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for the simplicity of a non-confocal or bistatic configuration, in which the SPAD has

a wide FOV and is simply placed next to the galvos to be approximately monostatic.

Although the SPAD then detects ambient light from all parts of the scene at each

pixel location, an advantage is that the background rate is constant throughout the

scene acquisition, allowing calibration with a single simple measurement while the

laser is turned off. The background rate for a confocal system must be estimated

separately for each pixel. Most of the experimental data presented in this thesis were

acquired with a bistatic configuration.

Imaging with a scanned illumination source is sometimes called pseudoarray imag-

ing in that it idealizes the array rather than compensating for array-specific non-

uniformities. Unfortunately, raster scanning is an inherently slow, serial process. A

more recent approach has been to broadly illuminate a swath of the scene and achieve

spatial resolution with an array of single-photon sensitive elements [171]. While de-

tector arrays promise faster, parallelized acquisition, existing arrays are still limited

in their spatial resolution. One alternative approach is to use a sequence of illumi-

nations patterned by a higher-resolution digital micromirror device (DMD) or other

spatial light modulator (SLM) in conjunction with a single-pixel detector. While this

technique faces the challenges of nonlinear encoding of depth information and a loss

of directional information in the mixed measurements, several implementations have

shown that the inherent sparsity of depth maps enables accurate depth and reflec-

tivity recovery via compressed sensing algorithms applied to a reduced number of

measurements [45, 92, 182]. Still, broadly diffusing the laser power over a large area

reduces the signal strength received at each pixel location. One compromise is the

use of a line illumination and line array detector, which reduces the spatial scanning

to a single dimension and limits the diffusion of the laser power [119].
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Dwell Time

An important acquisition consideration is determining for how long photons should be

acquired at each pixel. This is particularly important for scanned acquisition because

the photons are acquired independently for each pixel, so it is easier to introduce

acquisition variations. The initial method of photon-efficient SPL proposed in [104]

acquired exactly one photon per pixel, which thus required a random number of

illuminations before the photon was detected. However, random dwell times are

challenging to implement for scanned systems, since real-time feedback is required

from the detection electronics to the galvo control, and is impractical for existing

detector arrays, which transfer data after fixed numbers of illuminations. Thus the

standard SPL acquisition approach uses a fixed dwell time (i.e., a fixed number of

illuminations nr) at each pixel, with the number of detected photons randomized by

the acquisition and scene properties [170]. Alternative dwell time strategies have

also been suggested, such as [129], which proposes an adaptive stopping rule that

depends on the number of both illuminations and detections, or [87], which proposes

continuous laser scanning (no dwell time at any pixel), with the transverse position

of a photon detection determined during the reconstruction.

Illumination Coding

The standard SPL implementation uses a periodic laser illumination with repetition

period tr. The periodicity places a hard limit on the maximum scene depth zmax

that can be unambiguously measured without distance aliasing. If instead zmax is

greater than the unambiguous range ctr/2, it is possible to avoid aliasing as long

as the extent of the scene can be captured within one period. Making absolute

range measurements then requires a combination of high and low repetition rate

acquisitions [128]. Alternatively, the unambiguous range can be extended arbitrarily
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by using non-periodic illumination. For instance, Hiskett et al. [91] and Krichel et al.

[108] avoid range ambiguity by triggering the illumination with a pseudo-random

pulse sequence that is then cross-correlated with the detection time histogram to

identify the correct delay.

2.2.4 Basic Experimental Setup

Later chapters present experimental results acquired with the same or a similar ex-

perimental setup and procedure as described in [104, 105]. While we highlight the

variations or modifications made when relevant, here we describe the basic setup that

informs the derivation of the measurement model.

A picosecond laser (PicoQuant LDH-P-C-640B) at operating wavelength 640 nm is

pulsed by the laser driver (PicoQuant PDL-800-D), typically with repetition frequency

fr = 10 MHz (corresponding to a repetition period tr = 100 ns). The illumination

spot is redirected by a pair of galvo mirrors (Thorlabs GVS012), which is controlled

by software through a data acquisition (DAQ) interface (such as the National Instru-

ments USB-6363). Simultaneously with the illumination trigger, the laser sends a

synchronization signal to the TCSPC electronics (PicoQuant HydraHarp 400), which

starts a timer.

The “stop” signal for the timer is a detection event registered by the SPAD de-

tector (Micro Photon Devices PDM-series, with photon detection efficiency ≈ 35%

at 640 nm). Mounted in front of the SPAD is a bandpass filter (Thorlabs FB-640-10)

with a transmission efficiency of ≈ 50% at the operating wavelength and a FWHM

bandwidth of 10 nm to reduce the amount of ambient light incident on the detector.

The laser is directed by the galvos to illuminate each point in sequence for a

specified dwell time per point. Detected photons are time-stamped by the TCSPC

module and streamed to the computer. When the DAQ changes the galvo voltages

to change the coordinates of the laser position, it simultaneously sends a marker to
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the TCSPC module indicating the position change. The standard configuration is

not confocal, so that while the laser is scanned, the detector has a wide field of view

encompassing the entire scene. Importantly, this nonconfocal configuration implies

that the intensity of background light is uniform over all pixels.

2.3 Basic Probabilistic Measurement Model

In this section, we describe the probabilistic model for a periodically-illuminated,

raster-scanned SPL system, such as those used for the experiments presented later in

this thesis. As before, we structure our discussion by the source of the effect on the

model: whether the effect is due to how the illumination interacts with the scene or

how the electrical signal is recorded.

2.3.1 Optical Effects

The laser is directed toward each scene patch indexed by (i, j) ∈ {(1, . . . , ni) ×
(1, . . . , nj)}, and the laser illuminates each patch with nr pulses. The arrival times of

photons incident on the detector from each (i, j) are described by a Poisson process

with intensity ri,j(t) [174]. Due to the pseudo-array imaging, which has identical

illumination and detection properties for each (i, j), we drop the pixel indexing to

describe acquisition at one pixel with less tedious notation. The illumination is pe-

riodic with period tr, and the process intensity in one period is approximately given

as

r(t) = ba +

Q∑

q=1

αqβs(t− 2zq/c), for t ∈ [0, tr), (2.1)

where ba is the intensity of the ambient light at the illumination wavelength, assumed

to be constant for the duration of the acquisition; αq ∈ [0, 1] is the reflectivity of

surface q, combining attenuation effects due to object reflectance, radial falloff, view

angle, etc.; β ∈ [0,∞) is the illumination gain, corresponding to the expected number
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of photon arrivals per illumination from a unit-reflectivity object; s(t) is the illumi-

nation pulse shape normalized to be a valid probability density function (PDF) of

arrival times; zq is the depth of surface q; Q is the number of surfaces present in the

field of view; and c is the speed of light (around 3× 108 m/s in air). For the majority

of this work, we assume the pulse shape is Gaussian s(t) = (2πσ2
p)1/2 exp(−t2/2σ2

p)

with standard deviation σp, and β and ba are assumed constant for all (i, j).

Detectable Events

At the detector, the photon flux is attenuated by the detection efficiency η ∈ [0, 1).

Detector dark counts are assumed to be generated as a homogeneous Poisson process

with intensity bd. Both of these effects maintain the overall nature of detectable

events—those that could be registered in an ideal system—as a Poisson process with

total detection intensity given by

λ(t) = ηr(t) + bd

= ηβ

[
Q∑

q=1

αqs(t− 2zq/c)

]
+ (ηba + bd), for t ∈ [0, tr). (2.2)

It is useful to consider the first term as the intensity of an inhomogenous Poisson pro-

cess λs(t) combining all informative signal contributions, while the second term is the

intensity of a homogenous Poisson process λb representing uninformative background

counts.

The expected number of signal photon arrivals per period at (i, j) is defined as

Si,j =

tr∫

0

λs
i,j(t)dt = αi,jηβ, (2.3)

where αi,j =
∑Q

q=1 αq, and the expected number of background arrivals is B = λbtr.

The total flux at each point is given as Λi,j = Si,j + B, and the average signal-to-
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background ratio is

SBR =
ηβ

ninjB

ni∑

i=1

nj∑

j=1

αi,j. (2.4)

Detection Probability Distributions

SPL systems are typically operated in the low-flux regime, where Λ � 1, so the

probability of a detection in any given illumination period is small, and the probability

of multiple detections in one period is negligible. Little error is thus incurred by

ignoring the detector dead time effects at this stage of the model. Each detection

time can then be described an independent, identically distributed random variable

X with common probability density [174]

pX(x) =
λ(x)

Λ
, x ∈ [0, tr). (2.5)

Unlike in [104], which uses a randomized dwell time to collect a fixed number of detec-

tions per pixel, we assume the detection process is observed for a fixed, deterministic

number of illumination repetition periods; thus, no information is conveyed by the

order of the detection times or the identities of the repetition intervals in which the

detections occur. The TCSPC histogram acquisition mode exploits the periodicity

of λ(t) to wrap detection times (relative to the illumination time) into one period,

discarding any indicator of the illumination cycle in which each particular detection

occurred. We thus fold time interval [0, nrtr) down to [0, tr) to obtain an equivalent

model in which all detections occur within one illumination period due to a process

with intensity

λnri,j(x) = nr[λ
s
i,j(x) + λb] (2.6)

and rate

Λnr
i,j = nr(Si,j +B). (2.7)



28

The distribution of photon counts is

Ki,j ∼ Poisson(Λnr
i,j) (2.8)

and the probability density of detection times remains as (2.5). The number of

detections due to signal is Mi,j ∼ Poisson(nrSi,j), and the number of detections due

to background is Ni,j ∼ Poisson(nrB).

Binomial vs. Poisson Modeling

In initial photon-efficient SPL experiments [104, 170, 171], the duration of the SPAD

dead time was similar to the repetition period tr. Thus, initial probabilistic models

assumed at most one detection event could be recorded for each pulse-repetition

period. As developed in [170], under the simplifying approximation that a dead

period ends at the subsequent pulse-repetition boundary, this makes detection within

each pulse-repetition period a Bernoulli trial and the total number of detections in nr

pulse-repetition periods a binomial random variable. More precisely,

Ki,j ∼ binomial(nr, 1− P0), (2.9a)

where

P0(αi,j) = exp[−(Si,j +B)] (2.9b)

is the probability of zero detections in one pulse-repetition period.

Under a low-flux assumption, the models (2.8) and (2.9) for Ki,j are approximately

equal; a formal equivalence can be shown through the Poisson limit theorem. A

downside of the binomial model is philosophical: it encourages one to discard the

detection times when estimating reflectivity, as is done in [104, 170, 171]. The Poisson

model instead encourages the separation into signal and background processes, which

leads to a separation of Ki,j into its constituents (Mi,j, Ni,j); estimation of reflectivity
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from Mi,j is more accurate than from Ki,j, especially when SBR is low, as discussed

in Chapter 3.

2.3.2 Non-ideal Electronics Effects

Although the occurrence of detectable events may be correctly described by a Poisson

process with continuous-valued arrival times, practical TCSPC systems can neither

capture every incident photon nor record detection times with infinite precision. We

next describe how the acquisition electronics affect the measurement model in two

key ways.

Temporal Quantization

Most important to the basic acquisition process is the effect of temporal quantization.

Each photon detected by the SPAD is assigned a time stamp, where the resolution ∆

is dictated by the TCSPC electronics. The detection times are recorded in sequence,

and we refer to the absolute detection times when periodicity is not taken into con-

sideration (i.e., with nr illumination cycles, we have 0 < t1 ≤ t2, . . . ,≤ tK ≤ nrtr).

Since a large number of bits is required to store picosecond-resolution time tags for

acquisitions that can last from seconds to hours, it is more common for periodic il-

lumination to store the relative detection times x1, . . . , xK , referring to the time of

detection relative to the most recent illumination pulse, which is the absolute detec-

tion time modulo tr. Rather than processing each of the K photon detection times

separately, especially if the number of detections exceeds the number of time bins,

classical approaches to SPL typically form a histogram [y1, . . . , ynb ] of nb = dtr/∆e
time bins, which is constructed using the detection times at each pixel (i, j). The

observation model for each time bin is then a Poisson random variable, where the
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parameter integrates the Poisson process intensity over that bin:

yn ∼ Poisson




n∆∫

(n−1)∆

λnr(x) dx


 , for n = 1, . . . , nb. (2.10)

When considered together, forming a histogram for each of the ni × nj transverse

pixel locations yields a 3D data cube.

The ability to accurately resolve transient information depends on the width of

the histogram bins. For raster-scanning systems, the bin resolution that can be

achieved currently is on the order of picoseconds, which is typically much less than

the duration of pulse s(t), so quantization effects on the depth estimation can be

neglected. However, the timing resolution of detector arrays is usually coarser for each

element than for a single-pixel device due to hardware and readout constraints. The

single-photon-sensitive elements and timing electronics can easily be constructed as

separate elements for a single pixel, whereas in 2D arrays, the timing electronics must

be integrated on-chip for each pixel, resulting in a trade-off between the fill factor

of the photo-sensitive detector and timing components. This becomes particularly

problematic if the bin size ∆ is larger than the duration of pulse s(t). In that case,

the depth resolution that can be achieved is quantization-limited and can make object

detection and recognition more difficult. The problem of quantization-limited depth

estimation is the subject of Chapter 4.

Dead Times

As previously described, both the detector and the timing electronics have a reset

period known as a dead time following each detection, during which no further photons

can be registered. One of the main implications of these dead times is that the

sequence of detection times can no longer be described by a Poisson process: whether

a photon will be detected now depends on the time of the most recent detection.
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Dead times are thus much more significant in the high-flux regime, where Λ � 1

is no longer valid. The dead time effect, if not handled properly, causes distortions

in the detection time histogram that may result in erroneous depth and reflectivity

estimates, thereby making accurate localization or object recognition more difficult.

Properly modeling and mitigating the effects of dead times is the subject of Chapter 5.

2.4 Reconstruction Basics

2.4.1 Depth Map vs. Point Cloud

The aim of a reconstruction has an important role both in how the reconstruction

is performed and how it can be evaluated. A key distinction is between methods is

the number of surfaces assumed per pixel. One category of problem is called target

detection [4, 184], in which at most one surface is present per pixel (Q ≤ 1). More

generally, some methods aim to reconstruct a point cloud, a set of points with 3D co-

ordinate and reflectivity information. Point clouds are useful when there are multiple

surfaces present in some pixels, although reconstruction becomes far more challenging

due to multi-modal detection time likelihoods and more complicated priors. One set

of strategies for solving the multi-depth problem aims to estimate a 3D volume of

reflectivity values, where the volume is sparse (the 3D points correspond to a rela-

tively small number of nonzero reflectivity values). Sparsity is promoted by various

convex relaxations: the `1-norm in [172] promotes sparsity within histograms, the

`2,1-norm in [81] promotes correlations across neighboring pixels, and [82] also con-

siders non-local correlations. A second strategy directly estimates a 3D point cloud,

where the dimension of the parameter space (i.e., the number of 3D points) is a priori

unknown. This approach generally uses reversible-jump Markov chain Monte Carlo

(RJ-MCMC) algorithms to handle the varying dimensions and a spatial point process

prior to model the manifold structure of 3D surfaces [89, 90, 186, 185], Unfortunately,
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having an unknown number of surfaces per pixel also makes reconstruction accuracy

difficult to quantify.

In the tradition of [104, 170], this thesis strictly assumes Q = 1, meaning there

is exactly one surface for each scanned pixel. The goal of a reconstruction is then to

produce a depth and reflectivity map, with one depth or reflectivity value per pixel.

We let z and α denote the full depth and reflectivity images, and ẑ and α̂ denote their

estimates, respectively. The success of a reconstruction can then be easily quantified.

The mean-squared error (MSE) used for reflectivity estimation is given as

MSE(α, α̂) =
1

ninj

ni∑

i=1

nj∑

j=1

(αi,j − α̂i,j)2, (2.11)

which is sometimes reported in dB, i.e., 10 log10(MSE). The root mean-square error

(RMSE) is used for depth estimates with units of meters:

RMSE(z, ẑ) =

√√√√ 1

ninj

ni∑

i=1

nj∑

j=1

(zi,j − ẑi,j)2. (2.12)

2.4.2 Parameter Estimation

Basic parameter estimation procedures for reflectivity and depth maps assume one

surface per pixel (Q = 1), a known background rate B, and negligible quantization

and dead time effects. The form of the reflectivity estimate varies slightly depending

on the measurement model (binomial vs. Poisson).

Binomial Model of Detection

The binomial model (2.9) developed by Shin et al. [170] results in a constrained ML

(CML) reflectivity estimate given by

α̂CML
i,j = max

{
1

ηβ

[
log

(
nr

nr − ki,j

)
−B

]
, 0

}
. (2.13)
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Using the approximation

log

(
nr

nr − ki,j

)
= log

(
1 +

ki,j
nr − ki,j

)
≈ ki,j

nr − ki,j
≈ ki,j

nr
,

the bracketed quantity in (2.13) is essentially the fraction of illumination intervals

with a detection, adjusted by B because B is the expected number of background

detections per illumination period; thus the bracketed quantity is an estimate of

the fraction of illumination periods with a signal process detection. Informally, the

quality of α̂CML
i,j as an estimate of αi,j depends on nrB being a good estimate of the

true number of background detections Ni,j. Since the variance of Ni,j is proportional

to B, large background rates—especially relative to Si,j—lead to poor performance

of α̂CML
i,j . This is consistent with Cramér–Rao lower bound computations in [170,

App. A].

Reflectivity Estimation from a Poisson Process

By instead approaching detection entirely as an inhomogeneous Poisson process, one

can take advantage of the detection times in both the reflectivity and depth esti-

mates. Estimation of αi,j then requires the same approach as estimation in amplitude-

modulated optical communication as described in [11]. The likelihood function for

the set of observed photon detections {x(`)
i,j }

ki,j
`=1 is

p
[
{x(`)

i,j }
ki,j
`=1 ; αi,j, zi,j

]
= e−Λnr

i,j

ki,j∏

`=1

λnri,j(x
(`)
i,j ),

which yields a constrained maximum likelihood (CML) estimate given by

α̂CML
i,j = arg max

αi,j≥0

ki,j∑

`=1

log
[
nr(ηβαi,js(x

(`)
i,j − 2zi,j/c) + (ηba + bd))

]
− Λnr

i,j). (2.14)
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Differentiating with respect to αi,j, we have

ki,j∑

`=1

ηβs(x
(`)
i,j − 2zi,j/c)

ηβαi,js(x
(`)
i,j − 2zi,j/c) + (ηba + bd)

= nrηβ. (2.15)

Since all terms in (2.15) are nonnegative, the left-hand side is monotonically decreas-

ing in α, so a unique optimal estimate of αi,j exists. Unfortunately, this expression

requires knowledge of the true depth for the optimal estimate.

At high SBR, an approximate solution is given by

α̂CML
i,j = max

{
ki,j − nrB

nrηβ
, 0

}
, (2.16)

which preserves the non-negativity of α and simplifies to

α̂ML,background−free
i,j =

ki,j
nrηβ

(2.17)

if background is completely eliminated. Conveniently, these estimates have a closed

form solution, which is simply the normalized photon count. When background is low,

all detections are due to signal, so the count is a sufficient statistic for the reflectivity

and knowledge of the detection times or true depth is no longer necessary.

Depth Estimation

The process of depth estimation from the set of detection times is also derived in [11].

The CML depth estimate is given by

ẑCML
i,j = arg max

zi,j∈[0,zmax)

ki,j∑

`=1

log
[
ηαi,js(x

(`)
i,j − 2zi,j/c) + (ηbν + bd)

]
. (2.18)

We can see that this requires knowledge of the true αi,j value, and furthermore that

the background term adds a nonconvexity. In practice, ẑi,j is computed by finding

the delay that maximizes the output of a log-matched filter (LMF), equivalent to
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cross-correlating the detection time histogram with the logarithm of s(t).

Again we remark on the case of zero background, where the depth estimate is

given by

ẑCML
i,j = arg max

zi,j∈[0,zmax)

ki,j∑

`=1

log
[
s(x

(`)
i,j − 2zi,j/c)

]
. (2.19)

In this case the background-free solution is also greatly simplified, as it is convex and

has no dependence on αi,j.
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Chapter 3

Unmixing Signal and Background Light

3.1 Overview

The methods of [104, 170] for performing photon-efficient SPL imaging allow the

formation of accurate depth and reflectivity maps in low-light scenarios where his-

togramming techniques perform poorly. However, the imaging accuracy degrades

significantly in the presence of high background, which is of particular importance for

long-distance or low-power measurements in daylight, when the rate of photon detec-

tion from ambient light may be significantly higher than the detection rate from the

active illumination. A key contribution of [104, 170] is the use of photon-by-photon

processing—using the rank-ordered absolute deviation (ROAD) filter [65] in [104] and

the rank-ordered mean (ROM) filter [1] in [170]—that attempts to remove the detec-

tions that are likely due to background. While this censoring is also an exploitation

of spatial structure, it is introduced primarily to remove a nonconvexity inherent to

ML estimation of depth in the presence of background. Furthermore, it is applied

only to depth estimation—not to reflectivity estimation. The censoring in [171] is

also applied only to depth estimation and is based on the depths in the entire field of

view being sparse after appropriate discretization.

Building primarily upon [170], this chapter reexamines the model of low-flux de-

tection as an inhomogeneous Poisson mixture process, as laid out in Section 2.3.1

and Section 2.4.2. Given that estimation from few detections has been demon-

This chapter includes research conducted jointly with Vivek Goyal [147].



37

strated when signal and background levels are equal, we aim to use new insights

from the model to make accurate imaging possible when background levels are in-

creased twenty-five-fold (with signal levels and other imaging conditions unchanged).

The central idea is that by effectively separating the signal and background contri-

butions, estimates can be computed that are almost as good as an oracle that uses

only the signal detections. Here we use detection times and intuition from the Pois-

son process model to approximately unmix signal and background contributions at

each pixel. Namely, we observe that signal photons times tend to cluster together, so

ML depth estimates are reasonable if the largest cluster of detection times is due to

signal photons. Conversely, background detections are uniformly distributed over the

range of interest, so the largest cluster of detection times being due to background

photons can yield significant errors in the ML depth estimate. We thus search for

the largest cluster at each pixel and derive detection count thresholds based on the

order statistics of uniform random variables to decide whether clustered detection

times are likely to be due to background or signal. For pixels with clusters likely due

to background, we introduce spatial adaptivity to add detection data from similar

neighboring pixels rather than accept low-reliability depth estimates. While some

key concepts are first introduced within a pixelwise ML estimation framework, as in

previous works [104, 170, 171], we ultimately apply regularization to improve image

formation.

3.2 Unmixing Signal and Background Processes

The key observation from the overview of basic parameter estimation in Section 2.4.2

is that the reflectivity and depth estimates are coupled and complicated in the pres-

ence of background, but both are greatly simplified if background is removed. Indeed,

if we could unmix detection into its component signal and background processes, we
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could ignore the background detections and simply apply the background-free esti-

mators. Rather than a conventional approach of forming estimates first and then

denoising, this observation is motivation for separating signal from background first

and then forming estimates.

3.2.1 Pixelwise Unmixing

At an individual pixel, no marker distinguishes between signal and background de-

tections, so no explicit information is available to separate the signal from the back-

ground. In order to unmix the processes, the only information we have a priori is the

different probabilistic models of the detection processes. The signal process rate is

related to the short-duration illumination pulse, so signal detection times have a small

variance, conditioned on the true depth zi,j. This suggests that when several signal

photons are detected at the same pixel, the detections will be clustered together near

the true depth, as illustrated in Figures 3·1(a) and 3·1(b). The background process

has a constant rate, meaning no time is more likely than any other to have a back-

ground detection. Since the background photons are uniformly distributed in time,

we expect them to be fairly spread out in general, unless the background detection

rate is very high.

Since signal detections tend to cluster together more readily than background

detections, an intuitive approach to identifying signal photons is to search for the

largest of those clusters. One way to define a cluster of detections is to choose a

window of duration twind and a minimum cluster size Ncl. The window duration

should be chosen such that tp < twind � tr, so that a well-placed window (one shifted

by approximately 2zi,j/c) is large enough to capture most or all signal detections,

without accepting too many background detections. If at (i, j) there are at least Ncl

detections within some window of duration twind, then we can consider (i, j) as having

a cluster of detections. If there happen to be multiple clusters at (i, j), we choose
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𝜆𝑖,𝑗(𝑡)

2𝑧𝑖,𝑗
𝑐
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(a)
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0 tr
2𝑧𝑖,𝑗
𝑐

Figure 3·1: (a) Detection can be described as an inhomogeneous Pois-
son process (shown in blue), which is the sum of inhomogeneous signal
(green) and homogeneous background (red) processes. As in the ex-
ample set of detections in (b), signal detections tend to form clusters
more readily than the background detections, suggesting windowing as
an approach to unmixing signal and background. Pixels with similar
transverse position and reflectivity tend to belong to the same object
and therefore have similar depth, as in (c). Using this observation leads
to borrowing detections from similar neighboring pixels, as illustrated
in (d), which can help amplify low signal levels by making signal de-
tection clusters more apparent.

the window with the most detections kmax
i,j as our signal cluster. From the shift of

the window, we have an estimate of the depth zi,j, and since the mean number of

background detections in a short interval twind is close to zero, kmax
i,j yields a rather

accurate estimate of the number of signal detections mi,j analogously to (2.16). As

detailed later, the purpose of the Ncl minimum—rather than to seek the largest cluster

regardless of its size—is to have a mechanism to produce no depth estimate rather

than an unreliable one.

In fact, this intuitive windowing approach falls out of the ML reflectivity and

depth estimates in Section 2.4.2. Crudely approximating s(t) by a square wave of

duration tp centered at 2zi,j/c, the reflectivity estimate in (2.15) is due only to de-

tections that occur within tp/2 of the true depth. Even for a more realistic pulse
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shape, only detections within a short duration around the true depth contribute non-

negligible weight to the reflectivity estimate. Furthermore for the depth estimate,

again approximating s(t) as a square wave, the log-matched filter is maximized at the

window containing the largest number of detections.

In the following sections, we derive approximations for probabilities of clusters

due to background and due to signal.

Background Clusters

Since detection of background photons is a homogeneous Poisson process, given n

background detections, the detection times {x(`)
i,j }n`=1 are distributed as the order

statistics of n independent uniform random variables on [0, tr) [174]. Rescaling the

set of ordered detections 0 < x(1) < · · · < x(n) < tr by tr so they occur in the

range [0, 1], the gth order statistic X(g) has the beta distribution Beta(g, n + 1− g).

According to [51, Sect. 2.3], the time difference D
(g)
h−g = X(h) −X(g) between the gth

and hth detections where 1 ≤ g < h ≤ n is distributed as Beta((h−g), n+1−(h−g)),

which depends only on the difference between the h and g indices and not on their

particular values.

Recall that Ncl denotes the minimum number of detections needed in a window

of size twind to consider that window as having a cluster of detections. To have Ncl

detections in a window beginning at the gth detection, we must have D
(g)
(g+Ncl−1)−g =

D
(g)
Ncl−1 < twind/tr. Now for pixel (i, j) to not have any clusters, we need all candidate

windows to not have clusters. Since there are n background detections, any of the

first n− (Ncl − 1) detections may be followed by Ncl − 1 additional detections within

an interval of twind and thus these are candidates for the beginning of a cluster. Then
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the probability of no clusters is

Pr[no cluster at (i, j) |Ni,j = n]

= Pr[{no cluster starting at detection 1} ∩ . . .

∩ {no cluster starting at detection (n− Ncl + 1)}|Ni,j = n].

The different candidate windows are overlapping and thus the intersected events above

are not independent. Making an independence assumption greatly simplifies the com-

putation and gives an approximation that is supported by the numerical evaluations

shown in Fig. 3·2(b):

Pr[no cluster at (i, j) |Ni,j = n]

≈ (Pr[no cluster starting at detection 1 |Ni,j = n])n−Ncl+1

= (1− Pr[D
(1)
Ncl−1 < twind/tr |Ni,j = n])n−Ncl+1. (3.1)

From this, we have that the conditional probability of a cluster satisfies

Pr[cluster at (i, j) |Ni,j = n]

≈ 1− (1− Pr[D
(1)
Ncl−1 < twind/tr |Ni,j = n])n−Ncl+1. (3.2)

Finally, since Ni,j is Poisson-distributed, we can approximate the unconditional prob-

ability of a cluster by

Pr[cluster at (i, j)]

≤
∞∑

n=Ncl

Pr[Ni,j = n]︸ ︷︷ ︸
Poisson(Nsp

i,jnrB)

(
1− (1− Pr[D

(1)
Ncl−1 < twind/tr |Ni,j = n]

︸ ︷︷ ︸
Beta(Ncl−1,n+1−(Ncl−1))

)n−Ncl+1
)
. (3.3)

Note that N sp
i,j is defined later in Section 3.2.2 to account for the increased background

rate when combining detection data from N sp
i,j pixels.
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Signal Clusters

We would like to derive the probability of clusters due to signal in a manner similar

to that for the background, but the order statistics for many distributions, including

our Gaussian pulse shape assumption, are not available in closed form. Instead, we

restrict ourselves to consider a cluster present only when Ncl signal detections occur

in a window of length twind centered at the true depth. Since we omit other window

positions, we obtain a lower bound for the probability of a signal cluster being present.

The detection time of a signal photon, shifted based on the true depth and di-

vided by tp, is given by a standard normal random variable. Denoting the standard

normal cumulative distribution function (CDF) by Φ, we have the probability of any

particular detection landing in the centered window as

Pwind = Φ

(
twind
tp

)
− Φ

(
−twind

tp

)
. (3.4)

Given m signal detections, the probability that exactly q of them land in the centered

window is

Pr[exactly q detections in centered window |Mi,j = m]

=

(
m

q

)
(Pwind)q(1− Pwind)m−q. (3.5)

The conditional probability of no signal cluster at (i, j) is the probability of having

fewer than Ncl of the m detections in the window, which is

Pr[no cluster in centered window |Mi,j = m]

=

Ncl−1∑

q=0

(
m

q

)
(Pwind)q(1− Pwind)m−q. (3.6)

Finally, since Mi,j is Poisson-distributed, the unconditional probability of a signal
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cluster at (i, j) is bounded as

Pr[cluster at (i, j)]

≥ Pr[cluster in centered window]

=
∞∑

m=Ncl

Pr[Mi,j = m]︸ ︷︷ ︸
Poisson(nrηαi,jS)

(
1−

Ncl−1∑

q=0

(
m

q

)
(Pwind)q(1− Pwind)m−q

︸ ︷︷ ︸
binomial(m,Pwind) cdf at Ncl−1

)
. (3.7)

Neyman-Pearson Censoring

Figures 3·2(a) and 3·2(b) compare these derivations to Monte Carlo simulations of

clustering based on the detection model, confirming that these derivations produce

reasonable probability estimates and that the simplifying assumptions are minor.

For all experiments and derivations, twind was fixed to 2tp, where tp = 270 ps is the

measured RMS pulse width of the experiments in [170]. This window size covers

more then 95% of the probability mass of signal detection for a Gaussian pulse shape

approximation. The pulse repetition period tr = 100 ns is also used from [170].

Using the plots of these probabilities in Fig. 3·2, we observe that for some rates

of signal and background detection, our intuition of finding clusters of detections by

windowing is justified. For instance, if the signal and background rates were each 10

photons per pixel (ppp), the probability of observing a cluster of signal detections

would be about 1 for any of the minimum cluster sizes shown (see Fig. 3·2(a)), whereas

the probability of observing a cluster of background detections would be negligible

for Ncl > 2 (see Fig. 3·2(b)). The largest cluster of detections is likely to have more

than two detections, and thus the largest cluster could be safely assumed to contain

at least one signal detection.

Ideally, we could select optimal twind and Ncl values for each pixel based on both the

local signal and background rates. However, we only know the background rate from
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Figure 3·2: In comparing the theoretical approximations (solid lines)
and Monte Carlo simulation (dashed lines) of the probability of cluster
occurrence due to signal (a) or background (b) at various values of Ncl,
it is apparent that the derivations in the Sections 3.2.1 and 3.2.1 give
close approximations to the true clustering probabilities.

calibration; the signal rate is unknown since it depends on the unknown reflectivity

parameter. Our approach from the given data is to fix a reasonable window size and

choose Ncl based solely on the background rate, which is known from a calibration ac-

quisition with the laser off, thus capturing only the background input. Given that we

assume the largest cluster at a pixel is due to signal, we restrict our minimum cluster

size to limit the number of clusters falsely accepted as signal when they are actually

due to background. As in Fig. 3·2(b), we set a threshold τFA for the probability of

clusters due to background that we will allow. For any given background rate, we

can then choose the smallest Ncl that will yield Pr[background cluster] < τFA. This

method of choosing Ncl as a function of the background rate is illustrated in Fig. 3·3.

Since the theoretical derivation tends to slightly overestimate Pr[background cluster],

we are likely to see even fewer clusters due to background than the actual threshold

we set.

Now that a reasonable cluster definition is established, we can window the detec-

tions at each pixel, and if kmax
i,j > Ncl(nrB, τFA, twind), we discard all detections except
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Figure 3·3: Since only the effective background rate is known, setting
a performance threshold τFA as in Fig. 3·2(b) yields a cluster size rule
that limits acceptance of background clusters to probabilities less than
or equal to τFA.

those in the best window as background. We dub this Neyman–Pearson censoring

because of the optimization under bounded false acceptance rate.

3.2.2 Spatially-Adaptive Unmixing

While setting a low τFA is a good approach for limiting the number of accepted back-

ground clusters, the resulting Ncl may be too high at some pixels for any cluster to be

found. Moreover, for photon-efficient imaging, it is common for large regions of scenes

to have very few signal detections, such as in [170], where some scenes were reported

as having 54% of pixels with no detections. Even with no background present, it

would be impossible to estimate the depth purely from windowing, since there are

no detections from which to identify clusters. As a result, relying on windowing for

low-α, low-SBR data often yields too many pixels with no depth estimate.

A key insight into solving this problem comes from analyzing the behavior of ML

depth estimates in background. Fig. 3·4 shows the results of Monte Carlo simulations

of depth estimation for various α and SBR values, where we see a thresholding be-
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Figure 3·4: Results of a Monte Carlo simulation of ML depth esti-
mates where the background is uniformly distributed over the acqui-
sition interval and s(t) is approximated by a Gaussian pulse of RMS
width approximately equal to our measured laser pulse.

havior that is common to nonlinear estimators [57]. In particular, the plot suggests

two conditions for high-accuracy ML depth estimates. First, for any fixed SBR, the

ML depth estimate has a low mean-squared error (MSE), so long as enough signal

detections are present. This phenomenon is due to the small variance of the signal

process relative to the background, resulting in a strong peak in the log-matched

filter output where large numbers of signal detections cluster together, even if the

number of signal detections mi,j is much less than the total number of background

detections ni,j. When faced with the problem of making accurate depth estimates,

the obvious solution is then to repeat the measurements enough times that sufficient

signal photons are detected. This is the approach of conventional photon-counting

lidar systems, which make hundreds or thousands of detections per pixel to ensure

enough signal is present [30].

The second key observation from Fig. 3·4 is that for a fixed number of signal

detections, the accuracy improves as the SBR increases (i.e., the background level
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diminishes). This observation is particularly relevant for photon-efficient imaging,

since collecting additional data may be impossible due to time constraints or simply

undesirable due to the resulting decrease in photon efficiency. While increasing the

SBR may be possible, it is practically a more difficult approach to reducing error than

increasing the acquisition time. Either prior information about the scene depth must

be known, so that range gating can be applied pre- or post-detection, or a method

like windowing is needed to identify background detections and censor them.

As previously discussed, reducing the background level alone is insufficient for

low-α, low-SBR data. In such cases, we are motivated to combine both approaches—

increasing the signal level and the SBR—to achieve an acceptable level of error. More

specifically, in combination with windowing, we are tasked with finding an approach

that mimics collecting more data, without actually increasing the acquisition time. A

few observations about natural scenes suggest a useful solution. First, the depth maps

of natural scenes are generally smooth except at object boundaries, so neighboring

pixels often have approximately equal depth. This was the justification for the total

variation (TV) regularization used in [170], since TV regularization tends to smooth

out background while still preserving jump discontinuities [121]. Secondly, edges in

reflectivity and object boundaries in depth tend to be co-located, so scene patches that

are similar in both reflectivity and transverse position are likely similar in longitudinal

position (depth) as well.

These observations can be codified through the construction of superpixels, over-

segmentations of an image into small regions of similar pixels, which are a common

tool in computer vision applications. Superpixels were originally introduced in [154]

with the idea that pixels are arbitrary elementary units of digital images, and that

breaking images into more natural building blocks could improve and speed up further

processing such as larger-scale image segmentation and object detection. The general
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reasoning is that pixels that are similar in both some color space (e.g., Lab) and in

transverse position have a high probability of belonging to the same object. As a

result, superpixels have been used as a preprocessing tool to provide noise robustness

and to fill in gaps of depth maps for stereo [222, 34], RGB-d [194], and lidar [124]

systems.

Our approach is to use a variant of superpixels to artificially extend acquisition

times, which facilitates depth estimation. Consider a small neighborhood of pixels in

a scene, such as the one illustrated in Fig. 3·1(c). Assuming that the scene has been

sampled with adequate transverse spatial resolution, pixels within this neighborhood

will have similar depth values, unless the neighborhood crosses a boundary between

objects. If (a, b) is in the neighborhood of (i, j), then pXi,j
(x) ≈ pXa,b

(x) for all

x ∈ [0, tr). Thus, combining detections from (a, b) into the (i, j) vector is almost

equivalent to doubling the acquisition time at (i, j). This borrowing will maintain

SBR but increase mi,j, helping to reduce the estimation error, as we observed in

Fig. 3·4. Borrowing creates some smoothing in the transverse directions, and the

ideal trade-off between background reduction and this smoothing probably occurs

just to the left of the estimation threshold illustrated in Fig. 3·4.

For practical purposes, reinforcing the signal by borrowing detections from neigh-

boring pixels will enhance the size of signal clusters and make windowing more reliable

and useful, as illustrated in Fig. 3·1(d). When superpixels are formed, the back-

ground rate is effectively amplified by N sp
i,j , the number of pixels that contributed to

the enhanced detection vector at (i, j), so we update our cluster size requirement for

windowing to Ncl(N
sp
i,jnrB, τFA, twind) to avoid falsely accepting background clusters.

This formulation in fact describes the generic windowing procedure, where N sp
i,j = 1

if the detections at only a single pixel are used.

There are many existing superpixel definitions and implementations, each designed
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to meet particular performance criteria [2]. In principle, any definition could be used

within our algorithm to select groups of similar pixels from which to borrow photon

detections. A key difference of our approach to that of the other depth-estimation

applications of superpixels in [222, 34, 194, 124] is that the existing methods all

incorporate a conventional digital camera. Superpixels are formed using the high-

quality color images, and then the assumed redundancy of these regions is applied

to corresponding regions of a lower-quality depth map to fill in gaps or filter out

background. In our system, reflectivity is a grayscale value estimated from the same

active illumination data used to estimate the depth. Due to the low signal counts

and high background levels, the intensity data is much less reliable than that from a

conventional camera. As a result, we use a simple definition of selecting the subset of

pixels in a square region that meet a reflectivity tolerance compared to (i, j). Since

pixels are chosen within a fixed distance of (i, j), the set of candidate pixels changes

slightly from one pixel of interest to the next. We use this particular definition in

order to promote a high degree of localization, which helps preserve small changes in

reflectivity and depth. Other superpixel definitions that consider each region to be

homogeneous would smooth over these small changes.

3.3 Unmixing Algorithm

Our method for forming depth and reflectivity images from the raw detection data

builds off the image formation procedure of Shin et al. [170] (which we denote as

PML+ROM because it combines penalized ML estimation with a ROM filter censor-

ing step), adding in the windowing and spatial adaptivity introduced in Section 3.2.

The raw data input to the algorithm is the set of photon detections {x(`)
i,j }

ki,j
`=1 for

each patch (i, j), which implicitly includes the values ki,j. It is also assumed that B,

the mean background count per patch per pulse-repetition period, and ηβ, the mean
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Table 3.1: Assumptions about scene, signal, and background proper-
ties

Assumptions

One depth per pixel
Low photon flux (so dead time is negligible)
All depths in [0, ctr/2) (so no depth aliasing)
Background detection rate constant in time, uniform over the scene
ba, bd, η, and s(t) known (from calibration)

signal count per pulse in the absence of any attenuation, have been measured through

calibration or approximated from environmental conditions and hardware specifica-

tions. Assumptions for scene, signal, and background properties are summarized in

Table 3.1. The procedure is summarized by the block diagram in Fig. 3·5, and we

now detail each component. A small number of algorithm parameters are introduced

as needed.

3.3.1 Windowing

The process of background censoring at patch (i, j) by adaptive windowing uses two

parameters: a window length twind and a target probability of false acceptance of

a background cluster τFA. It is performed as follows, assuming for the moment no

borrowing of detections from neighboring patches:

1. For each ` ∈ {1, . . . , ki,j}, find the set of detections in the interval of length twind

starting at the detection time x
(`)
i,j :

D` =
{
x

(k)
i,j : x

(`)
i,j ≤ x

(k)
i,j < x

(`)
i,j + twind

}
. (3.8)

2. Among these sets, select a set Wi,j with the largest number of detections:

Wi,j satisfies |Wi,j| = max
`
|D`|, (3.9)

and define kmax
i,j = |Wi,j|. Resolve ties by choosing uniformly at random among
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Figure 3·5: Block diagram of the basic algorithmic sequence. The
unmixing procedure continues until enough pixels have reliable depth
estimates so that inpainting is needed for only a small fraction with
missing entries.

the sets with kmax
i,j detections.

3. Using false acceptance threshold τFA, compute minimum cluster size Ncl as the

smallest integer such that

Pr[background cluster ; Ncl, N
sp
i,jnrB, twind] < τFA, (3.10)

where Pr[background cluster] is derived in (3.3) and N sp
i,j = 1 for windowing a

single pixel. Note that this step does not depend on the detection time data

and thus desirable values of Ncl may be precomputed.

4. If kmax
i,j ≥ Ncl, retain only the detections that fall in the selected window Wi,j
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and censor the rest, yielding the set of uncensored detections {x(`)
i,j }`∈Vi,j , where

Vi,j =
{
` ∈ {1, . . . , ki,j} : x

(`)
i,j ∈ Wi,j

}
. (3.11)

When this windowing is applied with superpixels (i.e., N sp
i,j > 1), the detection time

data {x(`)
i,j }

ki,j
`=1 is replaced by augmented detection times {x̃(`)

i,j }
k̃i,j
`=1.

3.3.2 Reflectivity Estimation

In the windowWi,j, the expected number of background detections is N sp
i,jnrBtwind/tr,

which is small even at low SBR and is considerably lower than the number of detec-

tions due to background on the entire [0, tr) interval. Since background detection is a

homogeneous Poisson process, the variance in the number of background detections

in the window is also small, so N sp
i,jnrBtwind/tr is a good estimate of the number of

background detections. Thus, we can modify (2.16) to estimate αi,j from the window

output as

α̂wind
i,j = max

{
kmax
i,j −N sp

i,jnrBtwind/tr

N sp
i,jnrηβ

, 0

}
. (3.12)

For those pixels where kmax
i,j < Ncl, this formula tends to slightly overestimate the

reflectivity, since we have likely chosen the window with the largest cluster of back-

ground detections. However, the α̂wind
i,j estimate is temporary for those pixels, since

the value of kmax
i,j will be updated after windowing the augmented data from the

superpixels.

We form a reflectivity image by regularized ML estimation with a regularization

parameter ζα ∈ [0,∞). Using (2.8), the negative log-likelihood of the scene reflectivity

αi,j given the number of detections in Wi,j is

Lα(αi,j; k
max
i,j ) = N sp

i,jnrηαi,jS − kmax
i,j log

[
N sp
i,j(nrηαi,jS + nrBtwind/tr)

]
, (3.13)

ignoring terms not dependent on αi,j. As in [170], we take advantage of spatial
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correlations in natural scenes to form a penalized ML (PML) estimate that enforces

smoothness:

α̂PML = arg min
α:αi,j≥0

ni∑

i=1

nj∑

j=1

Lα(αi,j; k
max
i,j ) + ζα penα(α). (3.14)

3.3.3 Superpixel Formation

After windowing, all pixels have a reflectivity estimate, but only those (i, j) where

kmax
i,j ≥ Ncl have reliable depth estimates. For those pixels with insufficient signal

detection counts, superpixels are formed so that strongly correlated depth data from

similar neighboring pixels can be combined to improve the performance of windowing.

The key to our superpixel formation is to set bounds for what constitutes a similar

pixel. In this chapter, superpixels borrow detections from all neighboring pixels within

a fixed distance and a fixed reflectivity tolerance of our pixel of interest. In particular,

fix a neighborhood distance dsp (typically 1, 2, or 3) and a reflectivity tolerance τsp

(typically around 5% of the full range of α̂PML values). The superpixel at (i, j) is

defined as

Mi,j =
{

(a, b) ∈ {1, . . . , ni} × {1, . . . , nj} :

|i− x| ≤ dsp, |j − y| ≤ dsp, |α̂PML
i,j − α̂PML

a,b | ≤ τsp

}
. (3.15)

The set of superpixel detections {x̃(u)
i,j }

k̃i,j
u=1 is then defined as

{x̃(u)
i,j }

k̃i,j
u=1 =

⋃

(a,b)∈Mi,j

{t(`)a,b}
ka,b
`=1, (3.16)

where k̃i,j is the new detection count for the superpixel at (i, j). In this way, the

algorithm searches a small local area and adaptively borrows from pixels that are

similar in both transverse position and reflectivity.

Once superpixel vectors have been formed, the windowing process of Section 3.3.1
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and the reflectivity estimation of Section 3.3.2 are repeated. The windowing is per-

formed on the set of superpixel detections {x̃(u)
i,j }

k̃i,j
u=1, resulting in a different (usually

larger) value of kmax
i,j . Note that the Ncl computation and the reflectivity estimate

change to account for the number of pixels N sp
i,j contributing to the superpixel vector.

Ideally, the smallest possible N sp
i,j such that kmax

i,j ≥ Ncl would be chosen at each

pixel, which would ensure accurate depth estimates with the minimum amount of

spatial smoothing. This could be accomplished by incorporating detections from one

pixel at a time and re-windowing to check whether the Ncl criterion had been met.

Unfortunately, this repeated windowing of new detection vectors is too computation-

ally intensive for large images. Instead, we take a coarser approach that gradually

increases the candidate neighborhood for forming superpixels by incrementing dsp.

We cycle through the procedures of windowing, estimating reflectivity, and form-

ing superpixels, gradually increasing dsp with each iteration from dsp = 0 until either

kmax
i,j ≥ Ncl for all (i, j) or some terminal neighborhood size dmax

sp has been reached. For

any remaining pixels without a reliable depth estimate, ẑi,j is filled in by inpainting

during the depth estimation procedure.

3.3.4 Depth Estimation

It is assumed that all detections retained in Vi,j are due to signal, although if too many

background clusters are falsely accepted, further rank-ordered mean (ROM) censoring

as in [170] can be useful in cleaning up the data. The negative log-likelihood of the

depth zi,j given only signal detections is

Lz
(
zi,j; {x̃(`)

i,j }`∈Vi,j
)

= −
∑

`∈Vi,j

log[s(x̃
(`)
i,j − 2zi,j/c)]. (3.17)
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Again applying a smoothness penalization appropriate for depth maps of natural

scenes, the PML depth estimate is

ẑPML = arg min
z : zi,j∈[0,zmax)

ni∑

i=1

nj∑

j=1

Lz
(
zi,j; {x(`)

i,j }`∈Vi,j
)

+ ζz penz(z), (3.18)

where ζz ∈ [0,∞) controls the amount of penalization.

3.4 Results

The experimental setup and procedure follows the basic outline in Section 2.2.4, and

a detailed account is given in [104, 105]. The important quantities for our algorithm

are the illumination pulse width, measured to be tp = 270 ps, and the pulse repetition

period tr = 100 ns. The SPAD detector quantum efficiency was η = 0.35.

In [104] and [170], the photon-efficient methods are compared to “ground truth”

reconstructions of reflectivity and depth, generated using conventional lidar process-

ing on data from long acquisition times. While these measurements serve as effective

baseline comparisons, they still suffer from the same shortcomings as all lidar data. In

particular, the conventional processing assumes only one depth exists at each point in

the image, and we make this assumption as well. Taking into account multiple depths

at a single pixel as in [172] would require adjustments to our algorithm, since super-

pixels would borrow detections from multiple true depths, only one of which would

be registered. Experimental lidar data has effects of shadowing (from nonconfocal

configurations) or reflections from multiple depths, so we consider the conventional

processing to produce “baseline” estimates but not ground truth.

3.4.1 Simulated Results

In order to quantify the algorithm performance compared to an actual ground-truth

reference, we first simulated data sets using the model outlined in Section 2.3, where
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each pixel has only a single true depth. The same parameters from the experiments

were used in the simulation in order to maintain consistency. Furthermore, although

detections are generated from a model, we use real physical scenes from the Middle-

bury dataset [164] to form α and z. In particular, we chose the Art and Bowling

scenes as representative of fairly complex and fairly simple scenes, respectively. The

Art scene is 695× 555 pixels, and the Bowling scene is 626× 555 pixels.

Signal counts were generated as Poisson random variables with parameters equal

to scaled pixel intensities. Signal detection times were generated from a Gaussian

pulse shape with mean zi,j and σp = tp/2. Background detection counts were also

generated as Poisson random variables, and given the count at each pixel, the detec-

tion times were generated as samples from a uniform distribution over the repetition

period [0, tr). In order to meet the low-flux requirement, scenes were simulated so

that the average pixel would require 500 illuminations to generate one signal photon.

Thus, performance evaluation of scenes with 2.0 and 3.0 signal ppp used 1000 and

1500 illumination periods per pixel, respectively. At the maximum evaluated back-

ground level (with SBR = 0.04), the average photon detection rate was one detection

in approximately 5% of illumination periods, meeting the conventional guideline for

operating in the low-flux regime. Performance is quantified as the mean-squared error

(MSE) in dB for reflectivity and the root mean-square error (RMSE) with units of

meters for depth, as defined in Section 2.4.

Fig. 3·6 shows example simulation results for both scenes at SBR = 0.04 and only

2.0 signal photons per pixel on average. The normalized raw photon count and the log-

matched filter (LMF) output are shown as a reference for what conventional methods

produce from noisy, low-light data. We compare the results of our proposed method

with PML+ROM, which was the state-of-the-art for photon-efficient imaging at lower

background intensities. We also show the ideal results from a signal oracle, which
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Figure 3·6: Simulated processing results for Art and Bowling
scenes [164] at SBR = 0.04 and 2.0 signal photons per pixel on average.
Note that the depth estimates with the PML+ROM method [170] are
completely out of range of the actual scene and are instead shown for
the range of 6 to 8 meters.
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Reflectivity error Depth error

Figure 3·7: Absolute error maps for the proposed method applied to
simulations with the Art and Bowling scenes [164] at SBR = 0.04 and
2.0 signal photons per pixel on average. The largest depth errors tend
to be located at object boundaries.

represents the ideal case of perfect unmixing and uses only the signal detections for

estimation (equivalently, SBR = ∞). Throughout the simulations, we use dmax
sp = 3,

τsp = 0.05, and τFA = 0.01 for our algorithm, which work for a variety of scenes and

experimental conditions. These parameters were mainly tuned for very-low SBR data

(around 25 times as much background as signal) and could be adjusted to optimize

performance for different background conditions or a particular scene.

The results in Fig. 3·6 exemplify the typical performance of the different methods.

For reflectivity, it is clear that high levels of background reduce contrast too much for

PML+ROM to produce a good estimate from detection counts alone. The unmixing

does a much better job at estimating the number of signal detections at each pixel.

In particular, the absolute error maps in Figure 3·7 show the smallest errors for the

darkest regions, where formation of superpixels allows for precise fractional estimates

of signal photon counts.

In the case of depth estimation, PML+ROM fails, as background detections pull
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the depth estimates towards the mean scene depth (7.5 meters in this case). For

our unmixing method, the windowing procedure is much more effective at handling

the high-variance background. Figure 3·7 shows that the largest errors that remain

in our depth estimation occur in the darkest regions of the scene, particularly at

object boundaries. In many of the dark regions, forming superpixels is enough to

overcome the low signal photon count. At object boundaries, however, N sp
i,j decreases

since many candidate pixels in the neighborhood fall outside the reflectivity tolerance

so the signal clusters are too small, or if the reflectivity contrast between objects at

different depths is not sufficient, the superpixels will borrow pixels at multiple depths,

causing errors. Nevertheless, the unmixing process produces depth estimates that are

almost as good as the signal oracle in many cases.

3.4.2 Performance Analysis

Simulating detections from the Art and Bowling scenes allows for a thorough eval-

uation of the effects of changing signal and background intensities on the unmixing

algorithm performance. Fig. 3·8 contains plots comparing the oracle, PML+ROM,

and unmixing methods for 2.0 and 3.0 signal detections per pixel at various SBR

levels. The MSE and RMSE metrics are shown for the ζα and ζz regularization pa-

rameter values that produced the best average performance over 10 trials at each

value of SBR.

As expected, the best performance is achieved by the oracle estimator with the

most signal detections per pixel, since this case has the most signal information avail-

able and is not corrupted by background. Estimation of both parameters improves

in general for all methods as the signal detection count increases. It is also clear that

the reflectivity and depth estimation performance of PML+ROM degrades signifi-

cantly as SBR decreases. This is due to the shortcomings of the binomial estimator

for reflectivity and the limitations of the ROM censoring for removing background
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Figure 3·8: Performance evaluation for reflectivity and depth estima-
tion for simulated data sets with 2.0 and 3.0 signal photon detections
per pixel on average and a range of SBR values. Oracle refers to perfor-
mance of a penalized ML estimator using only signal detections (SBR
= ∞). Shin refers to PML+ROM, the method of Shin et al. [170].
Unmixing refers to the proposed method. Plotted performance is the
average error of 10 trials for each value of SBR.
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detections at low SBR. For our proposed unmixing method, the parameter estima-

tion accuracy also tends to decrease as SBR decreases, although the change in error

is smaller than for PML+ROM, indicating a higher robustness to background. At

SBR = 0.04, our reflectivity estimate outperforms PML+ROM by about 15 dB. The

difference in depth estimation error is even more stark—at SBR = 0.04, our method

has RMSE almost two orders of magnitude better than PML+ROM.

Fig. 3·9 contains plots showing the dependence of the various methods’ perfor-

mance on the average number of signal photons per pixel. First, we observe that the

oracle performs as expected; since no background is present, the oracle performance

depends only on the number of signal detections present, and it is clear that with

more signal photons, both reflectivity and depth estimates are improved.

For the unmixing and PML+ROM methods, the reflectivity estimate is likewise

improved with higher numbers of signal detections. It is interesting to note that the

performance of these methods tends to surpass the oracle for fewer than one signal

photon per pixel on average, with the PML+ROM method applied to the Bowling

scene being a particularly good example. When the average number of detected

signal photons over a scene is very low (especially less than one), many pixels have no

signal detections. In the background-free setting, this means that dark patches like

the bowling ball likely have no detections over a large area, and the oracle method

underestimates the true reflectivity in those areas. On the other hand, when a small

amount of background is present, the background detections act like dither for the

reflectivity estimate. Occasional background detections in dark regions are smoothed

over by regularization, with a resulting estimate that ends up closer to the true

reflectivity value for the unmixing and PML+ROM methods.

Like the oracle method, unmixing also produces better depth estimates when more

signal is present, although the algorithm appears to suffer from diminishing returns.
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Figure 3·9: Performance evaluation for reflectivity and depth esti-
mation for simulated data sets with SBRs of 0.1 and 1.0 and a range
of average signal photon detections per pixel. Oracle refers to perfor-
mance of a penalized ML estimator using only signal detections (SBR
= ∞). Shin refers to PML+ROM, the method of Shin et al. [170].
Unmixing refers to the proposed method. Plotted performance is the
average error of 10 trials for each value of SBR.
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One possible cause is the behavior of the superpixels; although they provide large

improvements for background reduction overall, borrowing from neighboring pixels

may cause enough smoothing that a few significant errors remain at object boundaries.

Unlike the other methods, the results from PML+ROM prove to be fairly constant

with respect to the number of signal photons. Since the background increases with

the signal for SBR held constant, and since the method of Shin has limited denoising

ability, it appears it does not realize the same benefits of additional signal.

The lack of monotonicity in Figures 3·8 and 3·9 is not due primarily to pseudo-

random variations in the simulated data; hence, we did not include error bars. The

discrete jumps in superpixel sizes and the particular ζα and ζz gridding used are the

primarily contributors to the lack of smoothness of these curves.

3.4.3 Experimental Results

We further evaluate the performance of our unmixing algorithm on the 1000 × 1000

pixel dataset of the Mannequin scene from [199], with results shown in Fig. 3·10.

Baseline estimates were formed using conventional lidar processing on detection data

from long acquisition times under constant conditions at SBR = 1. The data was

first range-gated to capture the extent of the scene (4.2 to 6 meters), while limiting

the influence of background on the baseline estimates. Depth estimates were then

formed by applying the log-matched filter to the first 200 detections at each pixel.

Reflectivity estimates were formed by scaling the detection count by the number of

illumination pulses required to reach 200 detections at each pixel.

Truncated photon-efficient datasets were created by using only the first 3000 illu-

mination periods (300 µs per pixel), which resulted in 4.05 signal photons per pixel

on average. The signal oracle processing was computed on the truncated data with

the same range-gating as the baseline estimates to remove as many background detec-

tions as possible. Since the data was collected with some ambient light present in the
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Figure 3·10: Results of methods on the experimentally-acquired Man-
nequin data with about 4.05 signal detections per pixel and additional
synthetically-generated noise to set the SBR at about 0.04. The er-
ror metrics are approximate, since the baseline lidar data is not ex-
actly a ground truth for the scene. Note that the depth estimates with
PML+ROM (the method of [170]) are completely out of range of the
actual scene and are instead shown for the range of 5 to 8 meters.

scene, the resulting SBR is approximately 8.3, so the oracle data represented favorable

(although not entirely background-free) conditions. To evaluate the background per-

formance of the other methods, additional background detections were synthetically

generated as uniformly distributed detection times on [0, tr), given a Poisson number

of background detections. Including the background detections already present in the

data, the background rate was adjusted to set the SBR to 0.04 to match the simulated

data. For our algorithm, we use dmax
sp = 4, τsp = 0.05, and τFA = 0.01. The higher

value of dmax
sp is used to account for the larger image size compared to the simulations.

Although there is little distinction when comparing the approximate MSE for

all three reflectivity estimates, there is a clear advantage to using our method over

that of PML+ROM. The results using PML+ROM are far more smoothed with less

contrast, making the text unreadable and the facial features harder to distinguish.
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Reflectivity error Depth error

Figure 3·11: Absolute error maps for the proposed algorithm applied
to the experimentally acquired Mannequin data with about 4.05 signal
detections per pixel and SBR 0.04.

Our method instead produces much clearer results, which compare favorably to the

oracle and baseline reflectivity estimates.

For the estimate of scene depth, the benefit of unmixing is even more striking.

As in the simulations, PML+ROM yields an estimate that is completely out of the

range of the true scene. The ROM censoring is insufficient at low SBR, so the entire

estimate is dominated by background, which yields an estimate very close to zmax/2.

The resulting RMSE is then mostly an indication of how close the scene subject was

to the middle of the imaging range: since the simulated scenes were positioned farther

from the center of the scene, the RMSE measures were larger. On the other hand,

our unmixing method proves to be considerably more effective at handling the high

levels of background.

One important note for this data set is the large discrepancy in reflectivity between

the dark and bright regions of the scene. Since the background rate is uniform

over the scene, the result is a local SBR that varies greatly with the region being

imaged. The depth estimation performance depends on the SBR, so the estimation

error varies locally in the same way. Figure 3·11 shows that the brightest regions (the

wall, the mannequin’s face, and the shirt around the text) have low absolute depth

error. The largest errors occur as in the simulations at object boundaries and in the

darkest regions, such as several small patches of the mannequin’s shirt. The effect
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of the brightness variation is further apparent in the results from the log-matched

filter and PML+ROM; those methods are insufficiently robust to background and

thus perform best in the bright regions with less relative background. The effect

of the background is a depth estimate biased toward tr/2, the midrange point of the

acquisition interval. For pixels at the same depth but with different reflectivities (such

as the bright text on the dark shirt), the darker pixel depth estimates are biased more

towards the midrange, allowing the text to be visible in the depth image. This same

phenomenon also occurs in the simulations, such as the crayon text in the Art scene

or the bowling pin neck, although the effect is less pronounced there. Finally, the

discrepancy in brightness over the mannequin scene required a higher average number

of signal detections to achieve acceptable performance in the darkest regions.

3.5 Further Performance Evaluation

Due to the large improvement in performance over the previous state of the art,

the algorithm described in this chapter has become a standard for benchmarking the

performance of other algorithms in photon-starved, high-background acquisitions. We

discuss some of the works that compare directly with this algorithm, which we refer

to as the unmixing approach.

• Most notably, Lindell et al. [118] aimed to explicitly achieve better perfor-

mance than the unmixing approach via the use of convolutional neural networks

(CNNs), which could be trained to identify clusters of signal detections with

more flexibilty than the algorithm presented here. From the raw detection data

alone, the CNN approach did not outperform the unmixing algorithm for the

parameters evaluated in [118]. However, incorporating a ground-truth reflec-

tivity image captured from a coaxial conventional camera did show improved

performance with the CNN. Naturally, using a ground-truth reflectivity image
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to form more precise superpixels in the unmixing algorithm would likely also

lead to improved performance. Lindell et al. also found that the unmixing al-

gorithm performed worse if the SBR value was not correctly known, e.g., if the

background calibration was incorrect.

• Tachella et al. [186] introduced an RJ-MCMC approach called ManiPoP for the

estimation of point clouds with potentially multiple surfaces per pixel under

challenging photon-starved and high-background conditions. In tests with only

a single surface per pixel, the unmixing approach performs comparably to Ma-

niPoP for reflectivity estimation but is slightly better at recovering depths in

the most photon-starved case, and with significantly shorter computation times.

However, the unmixing approach had worse performance for datasets in which

not all pixels actually contained surfaces.

• Halimi et al. [82] compared against unmixing in their evaluation of a convex al-

gorithm (NR3D) for multi-depth, multi-spectral, and multi-temporal SPL data.

While unmixing is not designed for such scenarios, it did slightly outperform

NR3D for depth estimation and some reflectivity estimation in the single-depth,

photon-starved, high-background regime, again with significantly shorter com-

putation times. The same algorithm was also tested in [188] for datasets col-

lected through obscurants, including canister smoke, glycol-based smoke, and

water-based fog. These obscuring media reduce both the amount of the laser il-

lumination that reaches each pixel and the amount of light reflected back to the

detector. The unmixing approach again performed comparably to the proposed

NR3D algorithm.

• Li et al. [116] present the longest terrestrial photon-efficient SPL image acqui-

sitions known to date, with depths up to 45 km. At such distances, the laser
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beam has substantially diverged to cover multiple depths within one pixel. As a

result, Li et al. show improved results from their novel algorithm outperforming

the unmixing approach on a dataset with 2.59 signal ppp and an SBR≈ 0.03.

• Finally, the unmixing algorithm was shown to perform well in [78] after correc-

tion for dead time effects.

3.6 Conclusions

The conventional approaches to active imaging in significant ambient light are to

increase either the acquisition time or the illumination power. In many situations,

neither solution is practically feasible. In the case of autonomous navigation, for

instance, vehicle lidar systems need rapid depth acquisition using eye-safe laser inten-

sities and without draining the limited power resources. The only possible approach

is a photon-efficient solution, which can make accurate measurements from very little

incident signal illumination, even when the ambient light levels are high.

Based on key observations of the probabilistic nature of the signal and background

detection processes, a simple windowing approach yields an effective unmixing of the

component detection processes. By setting cluster size requirements based on the

easily-measured background rate, we ensure that the number of falsely accepted back-

ground detections is limited. Remaining gaps where too few signal detections were

collected can be effectively filled through the spatially-adaptive process of forming

superpixels and aggregating detections within those regions.

While the unmixing algorithm was designed as a general-purpose approach to

adaptively handle high levels of background, specific situations that violate some

assumptions in Table 3.1 or incorporate additional prior information may benefit

more from alternative approaches. For instance, scenes that are highly textured

or patterned (many reflectivity edges) may be difficult to image because the depth
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and reflectivity edge locations are less correlated. For scenes where an object and

the background appear to have the same reflectivity (too few reflectivity edges), the

superpixel algorithm will likely borrow detections from objects at different depths,

oversmoothing the edges. Other works listed in Section 3.5 have shown that unmixing

also does not consistently succeed for scenes with partially transmissive or partially

occluding surfaces because the superpixel formation and windowing stages assume a

single depth per pixel. Another case where better approaches are available is when

all scene patches have similar depths. Forming a histogram of the entire data cube

as in [171] can then globally find the cluster of signal detections because the spatial

adaptivity of the superpixels is unnecessary.

Nevertheless, a great benefit to our approach is the modularity of the algorithm,

which leaves room for improvement and customization with upgrades to the compo-

nent blocks. For the results presented in this chapter, we perform only a few loops

through the algorithm using well-tuned parameters that provide good results at low

SBR. While forming superpixels helps fill in values for many pixels with empty depth

estimates, we still require some inpainting to fill in the rest. An ideal approach would

likely perform more iterations, incrementing N sp
i,j by one until each pixel has a reason-

able depth estimate. A major factor preventing this “Goldilocks” approach for the

just-right N sp
i,j at each pixel is the computational cost of concatenating and windowing

many large vectors of detections. Better implementations of our code could take ad-

vantage of the embarrassingly parallel problem structure [132] with more distributed

or GPU-accelerated computations. Additional approaches to possibly improve results

include alternative superpixel definitions, such as the fast SLIC method [2], or regu-

larizers such as Joint Basis Pursuit [189] that take further advantage of correlations

between depth and reflectivity images.
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Chapter 4

Subtractively-Dithered Ranging

4.1 Overview

Although depth imaging with SPADs as previously described provides extremely fine

depth resolution, the standard acquisition process is often too slow for real-time appli-

cations, since the single-pixel detectors require the scene to be raster-scanned with a

laser [128]. Arrays of SPADs promise dramatic reductions in acquisition time, as the

entire scene can be simultaneously illuminated, with spatial resolution derived from

the multiple SPAD elements sensing in parallel [122]. The main problem with current

SPAD cameras is that they trade off a higher pixel count for coarser timing resolu-

tion [201], which means the precision of range measurements using short-duration

laser pulses is often limited by the temporal quantization bin size. Some recent ap-

proaches such as [187, 203] have proposed alternative designs for SPAD arrays in

which the time-to-digital convertor (TDC) circuitry uses ring oscillators to encode

the finer bits; however, such per-pixel TDCs still limit the array fill factor.

Our goal instead is to improve the precision of lidar depth estimates for exist-

ing SPAD arrays in a statistically efficient manner, so that the time reduction of

parallelized acquisition is not lost by requiring too many photon detections. Such

an improvement cannot be achieved by better probabilistic modeling alone but also

requires modifications to the standard acquisition procedure. In [171], temporally

This chapter includes research conducted jointly with Robin Dawson and Vivek Goyal [148, 149,
150].
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spreading a narrow laser pulse, equivalent to adding non-subtractive Gaussian dither,

was found to reduce the effects of the detector’s coarse temporal resolution on rang-

ing accuracy. This chapter demonstrates that implementing subtractive dither can

likewise reduce the effects of coarse quantization.

We begin by examining subtractive dither in generic measurement scenarios not

limited to lidar by determining performance limits, optimal estimators, and when

one form of dither might be preferable over the other. The estimators developed

in this chapter are based on a generalized Gaussian (GG) approximation for the

combination of sample variation and quantization noise. We show that our framework

is valid for a general set of problems in which quantization of a scalar Gaussian signal

occurs. We propose a number of estimators for additive GG noise and find a clear

computational advantage with negligible loss in accuracy for simple estimators based

on order statistics. We then implement a subtractively-dithered SPL system and show

how the GG model performs for lidar data. Finally, we introduce a refined model

to compensate for the mismatch between the lidar pulse profile and the Gaussian

assumption. We note that since reflectivity estimation can be performed as before,

we focus only on recovering depth in this chapter.

4.2 Formulation, Background, and Motivation

4.2.1 Measurement Model

The basic lidar imaging setup follows the description in Section 2.2.4, with modifi-

cations described later in this chapter. We assume the background level is negligible

due to spectral filtering or censoring (e.g., as described in Section 3) removing con-

tributions due to ambient light. We further assume that one pixel of a SPAD camera

corresponds to a single patch of the scene, such that all back-reflected photons corre-

spond to the single true depth, and that the pulse shape is approximately Gaussian.
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The resulting problem of estimating the mean of a Gaussian signal from quantized

measurements applies to a broader class of acquisition methods than lidar alone, so

we first consider the more generic case of an unknown constant signal µX corrupted

by additive, zero-mean Gaussian noise Z ∼ N (0, σ2
Z). Estimation of µX from K

independent samples

Xi = µX + Zi, i = 1, 2, . . . , K, (4.1)

is straightforward, as the sample mean µ = (1/K)
∑K

i=1Xi is well known to be an

efficient estimator of the mean of a Gaussian distribution.

However, all measurement instruments perform some quantization, and the pre-

cision of the sample mean estimator strongly depends on the coarseness of the quan-

tization. For instance, consider a uniform midtread quantizer q(·) with bin size ∆

applied to Xi when σZ � ∆. Except when µX is close to a quantizer threshold, it

will be the case that Ui = q(Xi) is identical for all i, so that the “quantized-sample

mean” given as

µ̂Q =
1

K

K∑

i=1

Ui, (4.2)

is no more informative an estimate of µX than any single measurement. For σZ not

too small compared to ∆, estimation error can be reduced by properly accounting for

the quantization and the underlying distribution, e.g., via the maximum likelihood

estimator for quantized samples of a Gaussian signal [198, 135]:

µ̂QML = arg max
µX

K∑

i=1

log

[
Φ

(
ui − µX + ∆

2

σZ

)
− Φ

(
ui − µX − ∆

2

σZ

)]
, (4.3)

where Φ(·) is the cumulative distribution function (CDF) of a standard normal ran-

dom variable. Still, µ̂QML is no more accurate than µ̂Q when all of the samples

have the same value. Because of the coarse quantization mapping every value in
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[j∆−∆/2, j∆ + ∆/2] to j∆ for j ∈ Z, the resolution of an estimate µ̂X is limited by

the bin size ∆ and the quantization error is signal-dependent.

Statisticians have long recognized that working with rounded data is not the

same as working with underlying continuous-valued data. We consider the contin-

uous random variable Xhist with density constant on intervals ((j − 1
2
)∆, (j + 1

2
)∆)

with P(Xhist ∈ ((j − 1
2
)∆, (j + 1

2
)∆)) = P(U = j∆), for all j ∈ Z. Because of the

piecewise-constant form, Xhist is said to have a histogram density [197]. Sheppard

[168, 169] introduced widely known corrections that relate the moments of the dis-

crete random variable U and the moments of Xhist [101]. However, the moments of

Xhist being close to the moments of the underlying continuous random variable X

depends on continuity arguments and ∆ being small. In contrast, our interest is in

situations like SPL with SPAD arrays where the quantization is coarse relative to the

desired precision in estimating µX .

When quantizing Xhist, the quantization error Ehist = q(Xhist)−Xhist is uniformly

distributed on [−∆/2, ∆/2] and independent of Xhist. In general, however, quantiza-

tion error being uniformly distributed and independent of the input does not extend to

the quantization of X; approximating quantization error as such—without regard to

whether the input has a histogram density—is often called the “additive-noise model,”

“quantization-noise model,” or “white-noise model.” A substantial literature is de-

voted to understanding the validity of this approximation, e.g. [214, 176, 43, 202, 125].

One approach to improving the precision of estimates from quantization-limited

measurements is the use of dither, a small signal introduced before the discretization

to produce enough variation in the input such that it spans multiple quantization

levels. By combining multiple dithered measurements, estimates can achieve resolu-

tion below the least-significant bit and the result may also have desirable statistical

and perceptual properties, such as whitened noise. Early applications empirically
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demonstrating the benefits of dither include control systems [123, 95], image dis-

play [74, 159], and audio [98], with numerous contributions to the statistical theory

developed in [64, 97, 214, 166, 176, 75, 211], among others. More recent work has fo-

cused on varying the quantizer thresholds primarily for 1-bit measurements in wireless

sensing networks, including [140, 161, 157, 49, 58, 59, 68].

4.2.2 Subtractively-Dithered Quantization

When not only the dither distribution but also the exact value is known for each sam-

ple, it is possible to achieve an additional reduction in estimation error. Papadopoulos

et al. [140] showed that a sawtooth waveform was optimal for known dither, whereas

further improvement could be achieved with adaptively-selected dither values. How-

ever, a deterministic-length dither sequence is ill-suited to applications such as single-

photon lidar, for which the number of measurements is random, and adaptive dither

may be infeasible to implement for such high-speed systems. Instead, we consider

subtractively-dithered quantization, which uses a random dither signal that is mea-

sured for every sample. The ML estimator for subtractive dither can be shown to be

equivalent to generic quantization schemes with known dither values, e.g., [157, 68].

However, principled selection of the subtractive dither signal distribution makes the

quantization error uniformly distributed and independent of the input, which we show

can lead to simple, non-iterative estimators.

Define the dither signal Di, i = 1, . . . , K as a sequence of i.i.d. random variables,

independent of the noisy quantizer input Xi. The output of a subtractively-dithered

quantizer is

Yi = q(Xi +Di)−Di, (4.4)

with the quantization error defined as

Wi = Yi −Xi. (4.5)
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Define the characteristic function of the dither signal probability density function

(PDF) as

MD(ju) = E[ejuD]. (4.6)

Then Schuchman’s condition [166] is the property of the dither PDF that

MD(j2π`/∆) = 0, ` ∈ Z \ 0. (4.7)

As long as the quantizer has a sufficient number of levels so that it does not overload,

by [176, 75] the Schuchman condition is necessary and sufficient for Xi to be indepen-

dent of Wj for all i, j, with i.i.d. Wi ∼ U [−∆/2,∆/2]. Subtractive dither often uses

a uniform dither signal with D ∼ U [−∆/2,∆/2] because its characteristic function

MD(ju) =
sin(u∆/2)

u∆/2

meets Schuchman’s condition (4.7).

The rest of this chapter considers only when Schuchman’s condition is met, with

an i.i.d. input signal of the form Xi = µX +Zi, Z ∼ N (0, σ2
Z), an i.i.d. dither signal

Di ∼ U [−∆/2,∆/2] independent of the input signal, and a non-overloading uniform

quantizer. Since Gaussian noise has infinite support, in principle the quantizer must

have an infinite number of levels. Then the dithered measurements take the form

Yi = µX + Zi +Wi, (4.8)

and the problem of estimating µX simply becomes one of mitigating independent

additive noise. The sum of the Gaussian and uniform terms can be combined into a

single total noise term to obtain

Yi = µX + Vi, (4.9)
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where Vi = Zi + Wi are i.i.d. Then the means and variances simply add so that

µV = 0 and σ2
V = σ2

Z + ∆2/12.

For convenient shorthand, we refer to measurements from a quantizer without

dither as “quantized” and measurements from a subtractively-dithered quantizer as

“dithered.” The usual approach to estimating µX from K dithered measurements Yi,

i = 1, 2, . . . , K, is via the sample mean

µ̂mean =
1

K

K∑

i=1

Yi. (4.10)

The MSE of the sample mean is

MSE(mean) = σ2
V /K, (4.11)

which is O(K−1). Although using the sample mean is logical when σZ � ∆ so that

the contribution of the uniform noise component is negligible, the sample mean is not

in general an efficient estimator. For example, in an alternative case of σZ = 0, a

maximum likelihood (ML) estimator is the midrange

µ̂mid =
1

2

(
Y(1) + Y(K)

)
, (4.12)

where Y(1) ≤ Y(2) ≤ · · · ≤ Y(K) are the order statistics of the K measured samples.

We note that any statistic in [Y(n) − ∆/2, Y(1) + ∆/2] is an ML estimator for the

mean of a uniform distribution with known variance [133, p. 282]. The midrange is

commonly used because it is unbiased and the minimum-variance estimator among

linear functions of order statistics [120]. However, no uniformly minimum-variance

unbiased estimator exists [133, p. 331]. Whereas the MSE of the sample mean for

σZ = 0 is ∆2/(12K), the MSE of the midrange is

MSE(mid) = ∆2/[2(K + 1)(K + 2)], (4.13)
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which is O(K−2) and hence better than the sample mean by an unbounded fac-

tor [120]. Nevertheless, the midrange is not a good estimator in the general case of

σZ > 0, as it relies on the finite support of the uniform distribution. If instead σZ is

much larger than ∆, rendering the uniform component negligible, then the MSE of

the midrange would only improve as O(1/ log(K)) [28]. We observe that normalizing

the MSE by ∆2 removes the separate dependence on σZ and ∆, resulting in

NMSE(mean) = [(σZ/∆)2 + 1/12]/K, (4.14)

and

NMSE(mid) = 1/[2(K + 1)(K + 2)]. (4.15)

Except in trivial cases (σZ � ∆ or σZ � ∆), V has neither Gaussian nor uni-

form distribution, so the conventional mean and midrange estimators are expected

to be suboptimal. Furthermore, existing nonlinear processing schemes for dithered

measurements do not adapt to best suit the noise statistics [37].

The key figure of merit for determining estimator performance for quantized Gaus-

sian measurements without dither is then σZ/∆, a measure of the relative sizes of

the noise components [198, 135]. A first approach to finding a better estimator for

arbitrary σZ/∆ is to derive the ML estimator for the dithered noise model. From the

definitions of the random variables, the PDF of W is

fW (w) =





1/∆, w ∈ [−∆/2,∆/2]

0, otherwise,

(4.16)

and the PDF of Z is fZ(z) = φ(z/σZ)/σZ , where φ(x) is the standard normal PDF.

Since the total noise is the sum of independent noise terms, the PDF of the samples
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is given by the convolution

fV (v) = fZ(z) ∗ fW (w) =
1

∆

∆
2∫

−∆
2

fZ(v − τ)dτ

=
1

∆

[
Φ

(
v + ∆

2

σZ

)
− Φ

(
v − ∆

2

σZ

)]
. (4.17)

For i.i.d. samples from a dithered quantizer, the likelihood function is then

L
(
{yi}Ki=1;µX

)
=

K∏

i=1

fV (yi − µX)

=
K∏

i=1

1

∆

[
Φ

(
yi − µX + ∆

2

σZ

)
− Φ

(
yi − µX − ∆

2

σZ

)]
. (4.18)

From the log-likelihood, the dithered-sample ML estimator of µX is

µ̂DML = arg max
µX

K∑

i=1

log

[
Φ

(
yi − µX + ∆

2

σZ

)
− Φ

(
yi − µX − ∆

2

σZ

)]
. (4.19)

The ML estimator is notably identical to (4.3), except the dithered measurements are

not discrete-valued as are the samples used for µ̂QML.

To determine the efficiency of the mean, midrange, and DML estimators, we

derive the Cramér-Rao bound (CRB), which is a limit on the MSE that an unbiased

estimator can achieve [195, Chapter 4.2.2]. The CRB normalized by ∆2 is derived in

Appendix 4.A for one dithered measurement to be

NCRB(µX) =
(σZ/∆)2

∫
[
φ
(
u−1/2
σZ/∆

)
− φ
(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du

, (4.20)

which can be evaluated via numerical integration. Note that the uniform PDF does

not meet the regularity condition required for the CRB to apply, so (4.20) is not
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expected to be meaningful for σZ/∆ = 0.

Fig. 4·1 illustrates the suboptimality of the mean and midrange estimators com-

pared to µ̂DML for intermediate values of σZ/∆. In a Monte Carlo simulation with

T = 20000 trials, K = 125 measurements were generated according to (4.4), where

both µX and D were selected uniformly at random over [−∆/2,∆/2]. Computing the

normalized MSE of the µ̂mean, µ̂mid, and µ̂DML estimates as

NMSE(µ̂X) =
1

T

T∑

t=1

(
µX − µ̂X

∆

)2

(4.21)

reveals how the performance of each estimator changes as a function of σZ/∆.

Fig. 4·1 highlights three distinct regimes of estimator behavior. In Regime I (red),

the Gaussian noise component is negligible, so the ML estimator and the midrange

are nearly identical and outperform the mean. In Regime III (blue), the uniform

noise component is negligible, so the ML estimator and the mean are nearly identical

and outperform the midrange. In Regime II (green), neither the uniform nor the

Gaussian component dominates, and the DML estimator performs significantly better

than both the mean and midrange. Still, µ̂DML does not achieve the CRB for small

σZ/∆, indicating that an efficient estimator of µX does not exist; however, µ̂DML is

asymptotically efficient in K for σZ/∆ > 0 [100, Theorem 7.1].

From the results in Fig. 4·1, it may seem obvious that µ̂DML is a better choice

than µ̂mean or µ̂mid for any value of σZ/∆. However, µ̂DML requires iterative solution,

thus making it far more computationally complex than the mean and midrange. One

of the primary aims of this chapter is to find a computationally simple estimator

that can likewise outperform the mean and midrange in Regime II. We show that a

generalized Gaussian approximation to the total noise of a dithered quantizer gives

rise to order statistics-based estimators that approach the performance of µ̂DML. In

addition, we compare their results to those from quantized measurements without
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Figure 4·1: Applied to subtractively-dithered measurements, the
midrange is approximately optimal only for small σZ/∆ (Regime I,
red), and the sample mean is approximately optimal only for large
σZ/∆ (Regime III, blue). For confirmation, in Regime I the midrange
approaches NMSE = 1/[2(K+1)(K+2)] ≈ 3.12×10−5 and the mean ap-
proaches NMSE = (1/12)/K ≈ 6.67×10−4, and in Regime III the mean
approaches NMSE = (σZ/∆)2/K, which is 8.00 × 10−3 at σZ/∆ = 1.
We seek an estimator simpler than the dithered-sample maximum like-
lihood that performs at least as well as the mean and midrange for
intermediate values of σZ/∆ (Regime II, green).

dither, leading to design rules for when to use dither and which estimator to apply.

4.3 Generalized Gaussian Approximation and Estimation

In order to find a simple estimator for Regime II, we begin by examining the other

two regimes and the simple forms of the ML estimator there. We notice that the

uniform and Gaussian noise distributions in Regimes I and III are special cases of the

generalized Gaussian distribution (GGD), which has PDF [196]

fṼ (v;µ, σ, p) =
1

2Γ(1 + 1/p)A(p)
exp

{
−
( |v − µ|

A(p)

)p}
, (4.22)
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where A(p) =
√
σ2Γ(1/p)/Γ(3/p) and Γ(·) is the Gamma function. In addition to

mean and variance parameters µ and σ2, the GG density has a third parameter p

that controls the exponential decay of its tails. When p = 2 or p → ∞, the GGD

simplifies to the Gaussian or uniform distributions, respectively. Another common

special case of the GGD is the Laplace distribution for p = 1.

For each of the special cases, we further notice that the ML estimator (median,

mean, and midrange for p = 1, 2, ∞) is a linear combination of order statistics.

When p = 1, only the middle order statistic has nonzero weight, whereas the reverse

is true for p → ∞, with all weight on the two extreme samples. For p = 2, all of

the order statistics are equally weighted. With these two observations in mind, we

hypothesize that, if there is a value of p that approximates intermediate combinations

of uniform and Gaussian noise, then there may be a corresponding order statistics-

based estimator that approaches the performance of µ̂DML.

4.3.1 Approximation

For our stated purpose, it would be ideal if proper selection of p exactly represented

nontrivial sums of Gaussian and uniform terms. Unfortunately the sum of any two

independent GG random variables (GGRVs) is another GGRV only when p = 2 for

each addend1 [219]. Nevertheless, the sum of independent GGRVs has many of

the same properties as a GGRV, and can be well-approximated as a GGRV through

a number of approximation methods. A simple approach from [175] matches the

mean, variance, and kurtosis of the GG approximation to the corresponding moments

of the true noise distribution as follows. Defining Ṽ as the GG approximation to

V = Z +W , then since the uniform and Gaussian noise components are independent

random variables, the mean and variance parameters of the GG noise approximation

1The limiting distribution of the sum of i.i.d. GGRVs is Gaussian by the Central Limit Theo-
rem [133, Chapter 5.4.2], but the sum of any finite number of GGRVs will only be approximately
Gaussian unless each term is Gaussian.
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Figure 4·2: The value of p̂Ṽ goes to infinity as σZ/∆ decreases and
converges to p̂Ṽ = 2 as σZ/∆ increases, with convergence beginning
around σZ/∆ = 1/3 matching the anticipated behavior.

are simply given as µṼ = µW + µZ and σ2
Ṽ

= σ2
Z + σ2

W . The shape parameter

approximation p̂Ṽ for the special case of uniform and Gaussian addends is computed

as the unique solution to

Γ(1/p̂Ṽ )Γ(5/p̂Ṽ )

Γ(3/p̂Ṽ )2
= 3− 6

5

1
[
12
(
σZ
∆

)2
+ 1
]2 (4.23)

(see derivation in Appendix 4.B). We thus see that p̂Ṽ depends on σZ/∆, with the

relationship plotted in Fig. 4·2. Solving (4.23) is fast, and the values of p̂Ṽ for a range

of σZ/∆ values could be precomputed and stored in a table if necessary. A rough

approximation and good initial value for a solver is p̂
(0)

Ṽ
= max{2,∆/σZ}.

To verify the quality of the generalized Gaussian approximation to the output

noise distribution using the kurtosis match, Fig. 4·3 shows comparisons between the

true density, computed numerically according to (4.17), and its GG approximation

from (4.22). We test σZ/∆ = 0.004, 0.04, and 0.4, maintaining ∆ = 1 for consis-

tency. For σZ � ∆, the distribution is close to uniform, and at σZ ≈ ∆, the dis-

tribution is almost Gaussian. In the intermediate regime, however, the distribution

combines attributes of each component, with the flat top of the uniform distribution

and exponential tails of the Gaussian distribution. The GGD appears to be a good
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Figure 4·3: The three plots show the noise PDF calculated numeri-
cally from the true density (4.17) (solid red) and via the GG approxi-
mation (4.22) (dashed black). The close agreement suggests the GGD
is a good approximation for the noise.

approximation of the true noise distribution, almost perfectly matching the shape

behavior.

4.3.2 Estimation

For i.i.d. samples of a GG distribution, the likelihood function is

L({vi}Ki=1;µ, σ, p) =
K∏

i=1

fṼ (v;µ, σ, p). (4.24)

By differentiating the log of (4.24) with respect to µ, the ML estimator µ̂GGML for

the mean of a GGRV is given in [196] as the solution to

K∑

i=1

sgn(yi − µ̂GGML)|yi − µ̂GGML|p−1 = 0, (4.25)
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Figure 4·4: As p increases beyond p = 2, β(p) becomes much less
than 1, implying that MSE(µ̂GGML) is much lower than MSE(µ̂mean).

and is shown to be asymptotically normal and efficient in K for p ≥ 2, which is the

regime of interest. The asymptotic variance of µ̂GGML normalized by ∆2 is given by

NVar(GGML) =
β(p)[(σZ/∆)2 + 1/12]

K
, (4.26)

where

β(p) =
Γ2(1/p)

p2Γ
(

2p−1
p

)
Γ(3/p)

. (4.27)

We notice that (4.26) decreases as O(K−1), but the coefficient β(p), which is plotted

in Fig. 4·4, is much less than 1 for large p, suggesting that µ̂GGML should outperform

µ̂mean for p̂Ṽ > 2. Since the GGD closely approximates the total noise distribution, it

would be ideal if µ̂GGML reduced to a computationally simple estimator such as one

based on order statistics for all p. Unfortunately, the ML estimator does not generally

have a closed-form expression, except in special cases such as p = 1, 2,∞ (an explicit

expression has also recently been derived for p = 4 [14]), so iterative solution would

again be necessary.

We have already observed that the ML estimators for p = 1, 2,∞ all belong to

a class of linear combinations of order statistics called L-estimates [9], which are
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attractive because they have closed-form definitions of the form

µ̂X =
K∑

i=1

aiY(i). (4.28)

We thus consider how to obtain the coefficients ai for L-estimates that perform well

for GG noise when p is not one of the special cases.

An effective L-estimate should weight the order statistics in accordance with the

noise distribution. Notable past approaches include that of Lloyd [120], who derived

the best linear unbiased estimator (BLUE) of the order statistics. This formulation

is impractical, however, as it requires the correlations of the order statistics for a

given distribution, which are often not known even for common special cases like the

Gaussian distribution. Bovik et al. [25, 26] further specified the minimum variance

unbiased L-estimate and then numerically computed results for several values of p

from samples of a GGD with K = 3.

A number of approximations to Lloyd’s formulation exist to more simply compute

near-optimal coefficients for linear combinations of order statistics, including [79, 23].

Öten and de Figueiredo [138] introduced one such method using Taylor expansion ap-

proximations to get around the difficulties of knowing distributions of order statistics.

This method does still require knowledge of the inverse CDF of the noise distribution,

and while there is no closed form expression for the GGD, the necessary values can

be pre-computed numerically.

Simpler L-estimates have much longer histories, with consideration of trimming

extreme or middle order statistics at least as old as the anonymous suggestion of [6]

in 1821 (credited to Gergonne in [180]) The first known mathematical analysis was

by Daniell, who called such an estimate the “discard-average” [50, 179]. The method

now known as the α-trimmed mean and popularized by Tukey [192, 193] avoids ex-

tensive computation of the weights by trimming a fixed fraction α from the extremes
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of the order statistics. Restrepo and Bovik [156] defined a complementary α-“outer”

trimmed-mean, which retains a fraction α of the data by trimming the middle or-

der statistics and is suitable for distributions with short tails within the range from

Gaussian to uniform distributions. They tabulated several instances of the trimmed

mean for GGDs with multiple combinations of K and p.

Lastly, Beaulieu and Guo [13] introduced an estimator specifically for the GGD

but using nonlinear combinations of the order statistics. The weighting of the order

statistics depends on p via a heuristically-justified function and is shown to perform

almost identically to µ̂GGML. This estimator is unbiased and exactly matches the ML

estimator for the special cases of p = 2 and ∞.

In the following section, we consider three of the most computationally-efficient

order statistics-based estimators to use for the GG approximation: the nearly-best

L-estimate µ̂NB of Öten and de Figueiredo [138], the trimmed-mean estimator µ̂α

modeled on [156], and the non-linear estimator µ̂NL of Beaulieu and Guo [13]. Each

estimator takes the form of (4.28) with different computations of the coefficients ai.

While µ̂NL is specifically designed for use with GG noise, we modify the more general

µ̂NB and µ̂α to match the GG approximation. For µ̂NB, we use the PDF and inverse

CDF (computed numerically) of the GG approximation to determine the coefficients.

One could alternatively compute the coefficients for µ̂NB directly from the true noise

distribution in (4.17); however, additional numerical evaluation would be required

for the inverse CDF, which we eschew in our search for computationally efficient

estimators. There is no explicit distribution assumed by µ̂α, but we propose a choice

of the trimmed fraction α based on the estimated p̂Ṽ value to implicitly link the

estimator to the GGD.
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4.4 Estimator Implementations

4.4.1 ML Estimators

An EM algorithm for obtaining the quantized-sample ML estimate µ̂QML was intro-

duced by Papadopoulos et al. [140, Appendix E]:

µ̂
(j+1)
QML = µ̂

(j)
QML +

σZ

K
√

2π

K∑

i=1

exp

(
−

[
ui−∆

2
−µ̂(j)

QML

]2

2σ2
Z

)
− exp

(
−

[
ui+

∆
2
−µ̂(j)

QML

]2

2σ2
Z

)

Φ

(
ui+

∆
2
−µ̂(j)

QML

σZ

)
− Φ

(
ui−∆

2
−µ̂(j)

QML

σZ

) . (4.29)

[223] derived a gradient descent algorithm equivalent to that in (4.29) for the special

case of a repeated scalar input and no mixing (i.e., the mixing matrix is a column

of 1s). They also showed the negative log-likelihood to be convex, so the EM algo-

rithm converges to the ML estimate. A good initialization is µ̂
(0)
QML = µ̂Q, since the

estimators are equal for σZ = 0,∞. Since µ̂DML has the same formulation as µ̂QML,

the same algorithm also works for continuous-valued dithered measurements:

µ̂
(j+1)
DML = µ̂

(j)
DML +

σZ

K
√

2π

K∑

i=1

exp

(
−

[
yi−∆

2
−µ̂(j)

QML

]2

2σ2
Z

)
− exp

(
−

[
yi+

∆
2
−µ̂(j)

QML

]2

2σ2
Z

)

Φ

(
yi+

∆
2
−µ̂(j)

QML

σZ

)
− Φ

(
yi−∆

2
−µ̂(j)

QML

σZ

) .

We initialize with µ̂
(0)
DML = µ̂mid, since the midrange is known to be the ML estimator

for σZ = 0. A solver for µ̂GGML was likewise initialized with µ̂
(0)
GGML = µ̂mid.

4.4.2 Order Statistics-Based Estimators

To evaluate the GG noise approximation and find the best non-iterative estimator, we

compared the three simplest estimators based on the order statistics: the nearly-best

L-estimate, the α-outer mean, and the nonlinear combination from [13]. Since the

GGD is symmetric, the coefficients of an unbiased order statistics-based estimator are
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defined symmetrically and only half must be uniquely computed. It is thus useful to

define M = bK/2c and N = dK/2e using the floor and ceiling functions, respectively.

To derive the nearly-best L-estimate of [138]

µ̂NB =
K∑

i=1

aNB
i Y(i), (4.30)

we first compute

b1 = fṼ (c1)[−2fṼ (c1) + fṼ (c2)], (4.31a)

bi = fṼ (ci)[fṼ (ci−1 − 2fṼ (ci) + fṼ (ci+1)], i = 2, . . . , N − 1,

bN = fṼ (cN)[fṼ (cN−1)− fṼ (cN)], (4.31b)

where ci = F−1

Ṽ
(i/(K + 1)), and F−1

Ṽ
is the inverse of the GG CDF. From this, the

weights are derived for i = 1, . . . , N as

aNB
i = aNB

K−i+1 =





bi/
(

2
∑N

i=1 bi

)
, K even;

bi/
(
bN + 2

∑M
i=1 bi

)
, K odd.

(4.32)

For the simulations in Python, the inverse CDF was numerically computed with the

stats.gennorm.ppf GGD percentile function in scipy, as no closed-form expression

exists.

For the α-outer mean estimate

µ̂α =
K∑

i=1

aαi Y(i), (4.33)

the order statistics’ weights aαi are only given by Restrepo and Bovik [156] for a
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symmetric filter applied to an odd number of samples:

aαi = aαK−i+1 =





1

Kα
, i ≤ b1

2
Kαc

1
2
Kα− b1

2
Kαc

Kα
, i = b1

2
Kαc+ 1,

α ∈ [0, 1− 1/K];
Kα− 2b1

2
Kαc

Kα
, i = b1

2
Kαc+ 1,

α ∈ [1− 1/K, 1];
0, otherwise.

(4.34)

Since an even number of measurements is also possible, we similarly define, for all

α ∈ [0, 1],

aαi = aαK−i+1 =





1

Kα
, i ≤ b1

2
Kαc;

1
2
Kα− b1

2
Kαc

Kα
, i = b1

2
Kαc+ 1;

0, otherwise.

(4.35)

Note that the outer mean is equivalent to µ̂mean when α = 1 and reduces to µ̂mid for

α = 0. To match the GGD behavior, we thus propose to define α = 2/p̂Ṽ , which

yields the ML estimate for both p̂Ṽ = 2 and p̂Ṽ =∞.

Finally, the nonlinear estimator of [13] is given as

µ̂NL =
K∑

i=1

aNL
i Y(i), (4.36)

where the data-dependent coefficients are given for i = 1, . . . ,M by

aNL
i = aNL

K−i+1 =
1

2

[Y(K−i+1) − Y(i)]
p−2

∑M
j=1[Y(K−j+1) − Y(j)]p−2

. (4.37)

Note that if K is odd, the median term (i = N) is ignored, as it would correspond to

a numerator of zero.
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4.5 Dither Noise Regimes

To better understand the dither noise behavior, we have previously described three

regimes of the dither noise distribution, with Regimes I and III corresponding to ap-

proximately uniform and Gaussian noise, respectively. We have furthermore proposed

the GGD with p ∈ (2,∞) as an approximation for the noise distribution in Regime II.

However, the boundaries of these regions are imprecise, and we aim to more rigorously

define them in this section. We first define ξ1 and ξ2 as the values of the ratio σZ/∆

separating the regimes such that the noise distribution is approximately uniform for

σZ/∆ < ξ1, generalized Gaussian for ξ1 ≤ σZ/∆ < ξ2, and Gaussian for σZ/∆ ≤ ξ2.

In each regime, we have an expression for the expected MSE or asymptotic variance

of the ML estimator, so we use the intersection or approximate point of convergence

of these expressions to define ξ1 and ξ2.

4.5.1 Defining ξ1

We define ξ1, marking the transition in noise characteristics from uniform to general-

ized Gaussian (p <∞), as the value of σZ/∆ where NMSE(mid) and NVar(GGML)

intersect, which from (4.15) and (4.26) is the solution to

β(p̂Ṽ )[(σZ/∆)2 + 1/12] =
K/2

K2 + 3K + 2
(4.38)

for a given K, recalling that p̂Ṽ is also dependent on σZ/∆ as shown in (4.23).

Fig. 4·5(a) shows that ξ1 decreases as K increases, since the probability of observing

at least one “outlier” measurement due to the exponential tails increases with K, so

a lower σZ/∆ value (i.e., with shorter tails) is needed for the midrange estimator to

achieve nearly-optimal performance. The figure shows the exact values of ξ1 computed
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(a) (b)

Figure 4·5: The value of ξ1 substantially decreases and ξ2 slowly
increases as K increases, expanding Regime II. (a) A log-log-cubic fit
can be used to compute a close approximation to ξ1 for all K, while
a log-log-linear fit suffices for K > 20. (b) The square root of a log-
quadratic fit closely approximates ξ2.

by solving (4.38) as well as a log-log-cubic least-squares fit

log ξ1 ≈ 0.0104(logK)3 − 0.1760(logK)2 + 0.0274(logK)− 1.8511, (4.39)

which can be used quickly to calculate an approximation for a desired value of K.

Since the relationship appears fairly linear for K > 20, the simple log-log-linear fit

log ξ1 ≈ −0.9301(logK)− 0.1963, (4.40)

which can be rewritten as ξ1 ≈ 0.8217/K0.9301, is also useful for quick computation.

The natural logarithm is used in each case.

4.5.2 Defining ξ2

Defining a useful value of ξ2, marking the transition in noise characteristics from gener-

alized Gaussian (2 < p <∞) to Gaussian (p = 2), is more subtle. Since NMSE(mean)

and NVar(GGML) both have 1/K factors, they converge where β(p̂Ṽ ) = 1, which is
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only the case for p̂Ṽ = 2. This suggests that equality requires the noise to be exactly

Gaussian, which only occurs for σZ/∆→∞. Instead, we can look for a point where

NVar(GGML) and NMSE(mean) can reasonably be considered to have converged

(i.e., the GG is close enough to a Gaussian).

We propose that a reasonable definition of ξ2 is the value of σZ/∆ that mini-

mizes NMSE(Q), the expected normalized MSE of µ̂Q. Intuitively, as σZ/∆ increases

from ξ2, the Gaussian variance will dominate for both quantized and dithered mea-

surements, so that the effect of the quantization error is negligible, whether signal-

independent for dithered measurements or signal-dependent without dither. Thus

the point at which NMSE(Q) is minimized indicates where the Gaussian variance

begins to dominate and is a reasonable place to consider a GG approximation to be

sufficiently Gaussian. We derive in Appendix 4.C that NMSE(Q) is given as

NMSE(Q) = E[(µ̂Q − µX)2]/∆2

=
1

12
+

1

K

1/2∫

−1/2

M∑

m=−M

m2Ψ(m,µX)dµX

+
K − 1

K

1/2∫

−1/2

(
M∑

m=−M

mΨ(m,µX)

)2

dµX

− 2

1/2∫

−1/2

µX

M∑

m=−M

mΨ(m,µX)dµX , (4.41)

where

Ψ(m,µX) = Φ

(
m+ 1/2− µX

σZ/∆

)
− Φ

(
m− 1/2− µX

σZ/∆

)
. (4.42)

Defining

ξ2 = arg min
σZ/∆

E[(µ̂Q − µX)2]/∆2 (4.43)

and solving via a Nelder-Mead algorithm [136] and numerical integration, we show in
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Fig. 4·5(b) that the value of ξ2 changes only slightly as a function of K. This range

of values is notably very close to the value σZ/∆ = 1/2 recommended by Vardeman

and Lee [198], or the value σZ/∆ = 1/3 at which Moschitta et al. [135] suggest that

the loss of information from quantizing samples of a Gaussian distribution becomes

negligible in estimation of the mean. For quick computation, ξ2 can be approximated

by the square root of a log-quadratic fit:

ξ2 ≈
√
−0.000756(logK)2 + 0.328 logK. (4.44)

We notice that the Regime boundary definitions are inconsistent for K < 3, as

ξ1 > ξ2; however, the Regime definitions are meaningless for K = 1 or 2 anyway,

as symmetric order statistics-based estimators (e.g., mean, median, midrange) are

all equivalent for such small numbers of measurements, so there is no advantage

to distinguishing between noise distributions. We notice also that since ξ1 decreases

monotonically and ξ2 increases monotonically withK, Regime II grows asK increases,

since small mismatches between the assumed and true PDFs become easier to observe.

Intuitively, ξ1 decreases much faster than ξ2 increases because the difference between

a PDF with finite support (σZ/∆ = 0) and one with infinite support (σZ/∆ > 0)

is more significant for large K than the difference between finite σZ/∆ (e.g., GG

approximation with p̂Ṽ > 2 and σZ/∆→∞ corresponding to p̂Ṽ = 2).

4.6 Numerical Results

Monte Carlo simulations were performed to compare the NMSE performance of the

generalized Gaussian and order statistics-based estimators (µ̂NB, µ̂NL, µ̂α) against

the ML estimators (µ̂DML, µ̂GGML) and the conventional sample mean (µ̂mean) and

midrange (µ̂mid). Estimates were also computed applying the sample mean (µ̂Q)

and ML estimator (µ̂QML) to the quantized data to determine under which condi-
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tions subtractive dithering actually provides an advantage. As in the motivating

example in Section 4.2, for each Monte Carlo trial, µX was chosen uniformly at ran-

dom from [−∆/2,∆/2], and K samples of signal noise Z ∼ N (0, σ2
Z) and dither

D ∼ U(−∆/2,∆/2) were generated for (4.4). The quantization bin size was main-

tained at ∆ = 1 throughout. The normalized MSE was computed for T = 20,000

trials.

4.6.1 Normalized MSE vs. σZ/∆

We begin by discussing the plots in Fig. 4·6 of NMSE as a function of σZ/∆ for K =

5, 25, and 125. The overlapping curves for nine separate estimators and 4 NMSE

bounds can make the plots difficult to follow, so a flowchart is included in Fig. 4·7
that summarizes the results and provides a decision-making process for whether to

use dither and which estimator to choose.

Generalized Gaussian Estimators

The GG-based estimators (µ̂NB, µ̂NL, µ̂α, µ̂GGML) have effectively identical perfor-

mance and match that of µ̂DML. The actual differences in performance vary on the

order of a few percent over large ranges of K and σZ/∆, compared to the orders of

magnitude differences for the mean and midrange. The negligible performance dif-

ference further validates approximating the total noise with the GGD. For this same

reason, we collectively discuss µ̂DML and the GG-based estimators in the following

sections.

The GG-based estimators meet or exceed the performance of all other estimators

for all σZ/∆ and for all K. More specifically, the GG estimators converge to and

match the performance of the midrange in Regime I and likewise converge to and

match the performance of the mean in Regime III. In Regime II, the GG estimators

outperform both the mean and the midrange. Thus, a GG estimator should be the
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Figure 4·7: The results of our Monte Carlo simulations lead to
a simplified decision process for when and how to use dither. If
σZ/∆ > ξ2 (≈ 1/3), there is no benefit to using anything but µ̂Q

applied to the quantized measurements, whereas dither leads to re-
duced estimation error when σZ/∆ ≤ 1/3. If subtractive dithering is
not possible, the best performance can be achieved by adding Gaus-
sian noise to set σZ/∆ ≈ 1/3 and applying µ̂QML (although µ̂Q can be
used if simplicity is required). However, larger performance improve-
ments can be achieved with a subtractively-dithered quantizer. For
K subtractively-dithered measurements, compute ξ1 from either (4.39)
or (4.40) to determine whether to use µ̂mid (in Regime I) or µ̂α (in
Regime II).

default estimator choice for any σZ/∆.

Given the approximate equivalence of the GG estimators, the trimmed-mean µ̂α is

the best choice of general-purpose estimator for dithered data. The other estimators

either require iterative solvers (µ̂DML, µ̂GGML), rely on numerical computation for the

GG inverse CDF (µ̂NB), or are data-dependent (µ̂NL). On the other hand, µ̂α has a

simple closed-form solution that can be tabulated if needed.

Performance by Regime—Dithered Measurements

The plots in Fig. 4·6 validate the concept of three distinct regimes of noise behavior. In

the plots, the approximate regime boundaries are computed to be ξ1 = {0.1098, 3.85×
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10−2, 9.56×10−3} and ξ2 = {0.2296, 0.3132, 0.3737} for K = {5, 25, 125}, respectively,

confirming that Regime II expands as K increases. In Regime I, the NMSE perfor-

mance of all estimators on the dithered data is basically flat and equal to NMSE(mid).

This suggests that for a practical system where σZ/∆ can be tuned, once the system

is operating in Regime I (dependent on a fixed K), there is no benefit from further

decreasing σZ/∆; performance can only be improved by increasing K. In Regime II,

the GG-based estimators approach NCRB(µX), especially for large K. We note that

while NVar(GGML) and NCRB(µX) are close in Regime II, NCRB(µX) is a tighter

bound, as it is based on the true noise distribution, although NVar(GGML) may be

easier to compute for a rough estimate of performance. In Regime III, the NMSE

performance of all estimators on the dithered data is equal to NMSE(mean). In both

Regimes II and III, the NMSE decreases as σZ/∆ decreases. Performance likewise

improves with increasing K.

Performance by Regime—Quantized Measurements

While the three Regimes were technically defined for dithered measurements in par-

ticular, they are also informative of the behavior of estimators applied to quantized

measurements. In Regime I, σZ/∆ is so small that, unless µX lies on the boundary

between quantization bins, all measurements are quantized to the same value. As a

result, the NMSE of both µ̂Q and µ̂QML is dominated by the squared bias term, which

is 1/12 (the variance is zero). Further decreasing σZ/∆ or increasing K provides no

benefit.

In Regime II, σZ/∆ is large enough that there is often some variation in the mea-

surements due to signal even without the addition of dither. This phenomenon is

sometimes referred to in the literature as self-dithering, equivalent to adding nonsub-

tractive Gaussian dither to a constant signal µX [36]. Within Regime II, both µ̂Q

and µ̂QML improve as σZ/∆ increases because the increased signal variation reduces
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the bias term of the NMSE faster than the variance increases. The NMSE is min-

imized for µ̂Q by definition at ξ2, and then the NMSE increases as σZ/∆ increases

in Regime III. This suggests that if σZ/∆ is small and subtractive dither cannot

be used, then quantized measurements benefit from adding nonsubtractive Gaussian

dither such that σZ/∆ = ξ2, which is approximately 1/3. It is in Regime II that

µ̂QML shows the largest improvement in performance over µ̂Q, with the ML estimator

accounting for the form of the signal variation for quantized measurements.

In Regime III, the NMSE of µ̂Q and µ̂QML matches that of the best estimators

applied to dithered data. Clearly, σZ/∆ is large enough that even the quantized

measurements contain sufficient information about the signal variation. This suggests

that dither provides no benefit in Regime III, since equal performance can be achieved

without dither. Again for both Regimes II and III, the NMSE decreases as K is

increased.

4.6.2 Order Statistics-Based Estimator Coefficients

To better understand why the order statistics-based estimators have essentially iden-

tical performance, in Fig. 4·8 we plot the coefficients ai from (4.28) for each estimator.

The top row shows example measurements for K = 20, ∆ = 1, and σZ/∆ = 0.004,

0.04, and 0.4, respectively, with the samples spreading out as the Gaussian variance

increases. The second row of plots depicts the resulting coefficients for µ̂NB, µ̂NL, and

µ̂α using the estimated value p̂Ṽ . Fig. 4·8(d) shows the coefficients are equivalent to

those of µ̂mid for small σZ/∆. In Figs. 4·8(e) and 4·8(f), the coefficients of the various

estimators are no longer identical. However, the coefficients follow the same trends

for each estimator, with zero weight on the middle order statistics for small σZ/∆ and

more evenly-distributed weights as the noise model approaches a Gaussian. We note

that the coefficients for µ̂NL vary depending on the particular set of measurements

shown in the top row, and that different sample realizations can result in coefficients
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p̂Ṽ = 14.3

5 10 15 20
i

0.0

0.2

0.4

a
i

µ̂NB

µ̂α

µ̂NL

(e)
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Figure 4·8: Example dithered measurements are shown in (a-c) for
σZ/∆ = 0.004, 0.04, and 0.4 with K = 20. Plots (d-f) show the result-
ing coefficient values for the GG estimators given the estimated value of
p̂Ṽ above. In (g), σZ/∆ = 0.04 and K = 100, highlighting how the co-
efficients change as K increases. Note that the coefficients of the order
statistics for the NL estimator depend on the measured data sequence
shown above.

more or less similar to those of µ̂NB and µ̂α. To show the behavior of the coefficients

as K increases, we also plot {ai}Ki=1 for K = 100 and σZ/∆ = 0.04 in Fig. 4·8(g).

This plot underscores that the coefficients for µ̂α are basically indicators of the most

significant non-zero coefficients of µ̂NB and µ̂NL. Using the simple formulation of µ̂α

as a guide, in the limit as K →∞, only Kα coefficients would have nonzero weight.

Since the performance of all three order statistics-based estimators is similar, this fur-

ther suggests that the selection of which order statistics are used is more important

than exactly how much they are weighted.
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4.6.3 Normalized MSE vs. K

To better understand how the number of measurements affects the estimators’ per-

formance, results are plotted for three fixed values of σZ/∆ in each regime (0.004,

0.04, 0.4) while varying K in Fig. 4·9.

In Fig. 4·9(a), µ̂mid follows NMSE(mid) as expected for Regime I until K ≈ 200.

At that point, the NMSE of the midrange begins to diverge, with slower improvement

as K increases. Similarly, the GG estimators follow NMSE(mid) until K ≈ 200

and then switch to NCRB(µX). This suggests that σZ/∆ = 0.004 is in Regime I

for K < 200 and in Regime II for K > 200. This switch between regimes occurs

near the intersection of NMSE(mid) and NVar(GGML) as a function of K, further

validating these bounds as useful demarcations of estimator performance. For all K

in the plotted range, the midrange and GG estimators outperform the mean. The

quantized estimators show almost no improvement as K increases.

In Fig. 4·9(b), the midrange performance is similar to that in Fig. 4·9(a), with

µ̂mid following NMSE(mid) until the intersection of NMSE(mid) and NVar(GGML)

and then improving more slowly as a function of the number of measurements, even-

tually being outperformed by µ̂mean for large K. The GG estimators likewise follow

NMSE(mid) for small K and switch to following NCRB(µX) after the intersection.

For large K, the NMSE of the GG estimators is a constant factor lower than that of

µ̂mean, with this factor approximately given by β(p̂Ṽ ). The NMSE of the quantized

estimators decreases slowly as K increases, with marginally better performance for

µ̂QML than µ̂Q.

Figures 4·9(a) and 4·9(b) help answer the question of how the order statistics-based

estimators “between” the midrange and the mean would perform as a function of K.

The results suggest that these estimators ultimately have O(K−1) NMSE reduction,

although this reduction is faster for small values of K.
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In Fig. 4·9(c) where σZ/∆ = 0.4, the noise can be sufficiently described as Gaus-

sian for K < 359 because σZ/∆ > ξ2 as shown in Fig. 4·5(b); however, σZ/∆ < ξ2

for K ≥ 359, so the noise distribution transitions from Regime III to Regime II. The

midrange has poor performance for all K, while the other dithered estimators and the

quantized estimators have essentially identical performance for K < 359. Those esti-

mators follow NMSE(mean), NVar(GGML), and NCRB(µX), which have converged.

In Regime III, it is clear that there is no benefit to using dither, as there is mini-

mal improvement in performance even for large K. In fact, implementing a dithered

quantizer is likely more complicated in practice and is discouraged for Regime III.

4.7 Subtractively-Dithered Single-Photon Lidar

Assuming negligible background, a Gaussian pulse shape, and low-flux acquisition,

photons arrival times in SPL have a Gaussian distribution as in (4.1), where cµX/2

corresponds to the true depth. Unfortunately, photon detection times are quantized

with bin resolution ∆, which may be coarse relative to the pulse width σZ , limiting

the precision of depth estimates. We have demonstrated that estimation from quan-

tized measurements significantly benefits from the use of both dither in general and

generalized Gaussian modeling in particular. We now aim to verify that the improve-

ments in estimation also transfer to actual experimental SPL data. Since a TCSPC

system measures time, a dithered system amounts to the insertion of delays in the sig-

nal path before quantization occurs. We discuss how these delays can be introduced

by controlling the system timing via a digital delay generator. We then show depth

imaging results from a dithered lidar system using the generalized Gaussian analysis.

Finally, we modify that analysis to better account for the empirical distribution of

detection times due to the detector hardware.
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4.7.1 Architecture and Dither Implementation

Typical TCSPC systems use a control signal from the laser driver to synchronize

the illumination with the start of a timer. The SPAD provides the stop signal to

the timer when a photon is detected. Dither can be added into the measurement

by inserting variable delays into the synchronization signal. Since the dither value

must be known so it can be subtracted from the quantized measurement, the delays

are most practically implemented as discrete random variables. While discrete dither

does not exactly meet the requirements for the quantization error to be independent

of the signal, by using a large set of delay values, the behavior of the discrete dither

approaches that for a continuous uniform random variable [204].

Because we do not have access to a SPAD camera, we use the system shown

in Figure 4·10 to perform pseudoarray imaging by raster-scanning a laser spot over

the scene and detecting with a single-pixel SPAD. The laser driver (PicoQuant PDL

828 “Sepia II”) is connected to a 640-nm diode laser (PicoQuant LDH P-C-640B)

which has a pulse profile with σZ = 300 ps. The SPAD (Micro Photon Devices

PDM-series) is connected to the TCSPC module (PicoQuant HydraHarp 400). A

narrowband bandpass filter centered at the laser wavelength is placed in front of the

SPAD to reduce the amount of ambient light incident on the sensor. An electronic

signal synchronizing the timing of the illumination and detection is transmitted via

a cable connecting the sync output from the laser driver to the sync input of the

HydraHarp. A digital acquisition (DAQ) board (a LabJack U3 with an LJTick-DAC

card) controls the 2-axis galvo (ThorLabs GVS012) and connects to a Marker input

of the HydraHarp to simultaneously indicate when the galvo position changes.

To incorporate dither into the experiment, instead of using the internal clock of

the laser driver, we externally control the experiment via a digital delay generator

(DDG). As shown in Figure 4·11, we connect one channel of the DDG (T0) to the
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SPAD

Laser 
driver

TCSPC
module

Delay
generatorLaserBPF Galvos

Figure 4·10: A photograph of the bistatic, subtractively-dithered
single-photon lidar implementation at Draper in Cambridge, MA. The
only difference from the conventional setup is the external timing con-
trol of a digital delay generator, which inserts 10-picosecond-resolution
delays between the laser and SPAD triggers to implement dither.

external trigger input of the laser driver, and another DDG channel (AB) connects

to the sync input of the HydraHarp. A third channel could be used to control the

SPAD gate and further reduce ambient light detection if some depth information is

known a priori. Normal lidar operation without dither can proceed by setting no

delay between T0 and AB. However, by changing the relative delay between T0 and

AB, the perceived time of flight of the illumination can be changed in a predictable

and repeatable manner. The DG645 is remotely controlled via a GPIB connection.

In order to keep track of the dither step for each detection, an independent DAQ

channel is connected to a second Marker input of the HydraHarp.

The experiment is controlled by a MATLAB script, with dithered acquisition



105

TCSPC
Module SPAD

BPF
Computer

Laser

Galvo
mirrors

\

Scene

Delay 
Generator

TSCPC
sync
input

Laser
trigger

Figure 4·11: A diagram showing the conventional SPL setup modi-
fied for a subtractively-dithered implementation. Varying delays di are
inserted by the digital delay generator between the laser and TCSPC
triggers to implement dither. The amount of delay is controlled by the
computer, which allows the delay to be subtracted from the photon
detection times after acquisition.

proceeding as follows. A grid of laser points is chosen to cover the desired portion of

the scene. A set of ndv dither delay values is chosen to evenly subdivide [0,∆). For

each point in the grid, MATLAB sets the galvo position and resets the channel delay

to zero, recording each change with a marker at the HydraHarp. The laser is pulsed,

a MATLAB command increases the delay in channel AB and sends a corresponding

marker to the HydraHarp. This process is repeated until all ndv dither delays have

been stepped through in sequence. Then the galvo position is moved, the delay is

reset, and the process starts again until all grid points have been addressed. When

acquisition is complete, the detection data is sorted into a 3D cell array, with the laser

grid position as the first two dimensions and the delay step as the third dimension.

Each cell in the array contains a random number of photon detection times.

Since the illumination source has a relatively large σZ = 300 ps, we demonstrate
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the effectiveness of dither by choosing a larger quantization bin size of ∆ = 2048 ps,

resulting in σZ/∆ ≈ 0.146 and p̂Ṽ ≈ 3.69. (The same σZ/∆ ratio could be a achieved

for a SPAD array with 350-ps resolution [122] by designing the overall system jitter

and laser pulse width to have σZ ≈ 51 ps.) The dither is implemented with a DG645

(Stanford Research Systems) digital delay generator with discrete delay steps di ∈
{0, . . . , 204}×10 ps to evenly subdivide the quantization bins. The delays are stepped

through in sequence at each pixel, and a Poisson number of photons is detected for

each delay.

4.7.2 Related Work

Similar ideas using shifted acquisition windows to acquire range information have

been used in the past. Busck and Heiselberg [32] implemented a “laser-gated viewing”

(LGV) system based off early concepts from Gillespie [69], using a high-speed charge-

coupled device (CCD) array with no inherent depth resolution to form depth images.

In their work, the scene was repeatedly illuminated by a pulsed laser, and a gate

exposed the camera to light for a short duration on the order of a few hundred

picoseconds. The light was integrated on the CCD over many illuminations, and once

the result was stored, a short delay was added to the gate activation time, and the

acquisition process was repeated with the new gate delay. By stepping through a

sequence of delays, slices of the transient light response were collected from the scene,

and a depth estimate was created by weighting the time of each slice by the grayscale

intensity value of the image acquired for that delay. Such an LGV system was used

by Christnacher et al. [41] to improve vision through scattering media such as smoke

or fog. The same principle was recently used with a Quantum Image Sensor (QIS) to

also take advantage of single-photon sensitivity [155]. Crucially, this LGV approach

uses detectors with no inherent time resolution. Since light is only detected within

the short gate time, all of the light arriving outside this window is discarded, which
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Figure 4·12: Photographs showing the 3D-printed mask, “egghead”
trophy, and 3D-printed depth resolution chart used for lidar experi-
ments. Note for the depth chart that the heights in millimeters are
displayed over each block but are not physically present in the scene.

is an inefficient use of the reflected light and makes the process slow to acquire a full

sequence of time slices.

Chen et al. [39] recently proposed a method of dithered SPL using two optical

paths with different lengths, such that the longer path length effectively delays laser

transmission by a half-bin duration. In simulations, they showed that a simple averag-

ing of signals from different bin shifts reduced the effect of quantization on the depth

estimation error. While we share the same basic idea of combining measurements

from different sub-bin delays, our electronic delay implementation is far more flexible

in terms of the bin sizes and numbers of delays that can be achieved in practice. After

the introduction of this work, Raghuram et al. [146] used a similar electronic delay

implementation, but their sampling theory approach to processing the measurements

does not necessarily assume a single depth per pixel, thus requiring longer acquisition

times to capture an entire histogram for each delay.

4.7.3 Experimental Results for Gaussian Pulse Modeling

Experimental acqusitions using the dithered SPL setup were performed for the test

objects shown in Figure 4·12. Results are shown in Fig. 4·13 for a 32×32-pixel scan of
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Figure 4·13: Depth estimates are presented for the 3D-printed mask
and egg-shaped trophy. The ground truth depth in (a) is poorly es-
timated with coarse quantization (b). Implementing subtractively-
dithered measurements significantly improves the depth estimate, al-
though the generalized Gaussian-based estimator (d) does not outper-
form the sample mean (c) for the experimental results.

the 3D-printed mask and a 40×30-pixel scan of the egg-shaped trophy. The ground

truth depth estimate in Fig. 4·13(a) is formed by averaging thousands of photon

detections per pixel measured with 4-ps resolution in order to form a baseline for

quantitatively evaluating the results. Coarsely-quantized detection times are acquired

for 8.5 ms per pixel for the mask and 10.2 ms per pixel for the egg, yielding averages of

267 and 362 photons per pixel, respectively. The resulting pixelwise depth estimates

in Fig. 4·13(b) are strongly biased by the quantization, and the RMS error is on the

order of the test objects’ large-scale features. Dithered data is acquired by detecting

a random number of photons in 41.5 µs (egghead: 49.8 µs) for each of the 205 dither

steps, also yielding 267 (egghead: 362) photons per pixel on average. The sample

mean result µ̂mean in Fig. 4·13(c) shows a dramatic improvement over the result



109

without dither, with the RMS error reduced by a factor of 9.03 for the mask and

4.17 for the egg. The dithering results visually confirm the quantitative improvement,

better capturing the shape of the nose and position of the background for the mask,

and the right angle of the pedestal and the curvature of the egg than the results

without dither. Unfortunately, the benefit of using the GG-based estimator that was

observed for simulated measurements does not extend to the experimental data. The

RMSE values from applying µ̂NL to both the mask and egg scenes are slightly worse

than those from applying the sample mean.

SPAD Response Function

The worse performance of the GG-based estimator on experimental data is likely due

to unmodeled effects, including ambient light as well as the non-Gaussian and asym-

metric detection time density shown in Fig. 4·14. In a SPAD, carriers generated as

intended in the junction depletion layer are accelerated by the bias voltage, and fluc-

tuations in the buildup of the resulting avalanche do cause a Gaussian response [48].

However, if a photon reaches the neutral region of the semiconductor before gener-

ating a carrier, diffusion of the carrier to the depletion layer causes an exponential

delay in the avalanche timing [15, 48]. Thus, while other single-photon detectors

such as superconducting nanowire single-photon detectors (SNSPDs) tend to have

instrument response functions (IRFs) well described by a Gaussian distribution [178],

SPADs additionally have a long exponential tail [88].

4.7.4 Exponentially-Modified Gaussian Pulse Modeling

Since the experimental results suggest the GG-based estimator is not robust to this

model mismatch, we here propose a modification to the pulse model that accounts for

the exponential decay. The sum of Gaussian and exponential random variables, sug-

gested by Hernandez et al. [88] as a good approximation to the SPAD detection time
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Figure 4·14: Whereas the Gaussian distribution is a poor approxi-
mation to the true pulse shape, the exponentially-modified Gaussian
(EMG) distribution captures the exponential tail behavior much more
accurately.

distribution, has been long been used to describe the asymmetric timing responses in

chromatography [72], for which the distribution became known as the exponentially-

modified Gaussian (EMG) [76]. The same distribution was also found to be a good

fit for reaction times in psychological studies, for which it was called the ex-Gaussian

distribution [53].

Let H be a random variable representing the exponential component of the SPAD

response, with PDF

fH(h) =
1

τH
exp(−h/τH) = ηH exp(−ηHh), (4.45)

where ηH = 1/τH with expected value E[H] = τH and variance σ2
H = τ 2

H . Then

the PDF of the total SPAD response time R = Z + H is the exponentially-modified

Gaussian, with PDF given by

fR(r) = fZ(z) ∗ fH(h) =

∞∫

−∞

fZ(r − z)fH(z)dz (4.46)

=
ηH

σZ
√

2π

∞∫

0

exp

[
−(r − z)2

2σ2
Z

]
exp(−ηHz)dz. (4.47)
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Through expansion of the integrand and a change of variables, we have

fR(r;µ, σZ , ηH) =
ηH
2

exp

{
−ηH

(
(r − µ)− σ2

ZηH
2

)}
erfc

(
−((r − µ)− σ2

ZηH)√
2σZ

)

=
ηH
2

exp

{
ηH

(
µ+

σ2
ZηH
2
− r
)}

erfc

(
µ+ σ2

ZηH − r√
2σZ

)
, (4.48)

where erfc(z) = 2√
π

∫∞
z

exp(−t2) dt is the complementary error function. The CDF

of the EMG is not derived here but can be found from the PDF using integration by

parts and is given as [134]

FR(r) =
1

2
erfc

(
− r − µ√

2σZ

)

− 1

2
exp
{
−ηH

[
(r − µ)− σ2

ZηH
]}

erfc

[
−(r − µ)− σ2

ZηH√
2σZ

]

=
1

2
erfc

(
µ− r√

2σZ

)
− 1

2
exp
{
ηH
(
µ+ σ2

ZηH − r
)}

erfc

[
µ+ σ2

ZηH − r√
2σZ

]
. (4.49)

Figure 4·14 shows that the EMG is a much better fit to the SPL pulse profile than the

Gaussian assumption. The maximum likelihood EMG parameters were found using

a bounded simplex implementation [218] of the algorithm described in [111]. The

parameters were determined to be σZ = 58.4 ps and τH = 191.4 ps.

4.7.5 Subtractively-Dithered EMG

Now that we have a more accurate model for the photon detection time PDF based on

the EMG, we can derive the distribution of photon times in a subtractively-dithered

SPL system. We first recall the effect of dither on a generic distribution. Let X be

some random variable with PDF fX(x) and CDF FX(x). Let W be a uniform random

variable as defined in (4.16). Then for X and W independent, the sum defined as
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Y = X +W is a random variable with PDF

fY (y) = fX(x) ∗ fW (w) =

∞∫

−∞

fX(x)fW (y − x)dx

=
1

∆

y+ ∆
2∫

y−∆
2

fX(x)dx

=
1

∆

[
FX

(
y +

∆

2

)
− FX

(
y − ∆

2

)]
, (4.50)

and the CDF is given by

FY (y) =

y∫

−∞

1

∆

[
FX

(
u+

∆

2

)
− FX

(
u− ∆

2

)]
du. (4.51)

The distribution of detection times when applying subtractive dither to a pulse with

exponentially-modified Gaussian distribution then substitutes the EMG CDF FR(r)

from (4.49) for the generic CDF FX(x) in (4.50) and (4.51).

4.7.6 Dithered EMG Mean Estimation

One of the main challenges in transferring the approach used in the beginning of this

chapter to experimental single-photon lidar data is that the Gaussian model of the

pulse shape does not adequately capture the asymmetry of the actual SPAD response.

Symmetry has often been used to greatly simplify the form of estimators, as the mean,

median, midrange, and other symmetric linear combinations of order statistics are all

co-located [50]. However, it is still valuable to make estimates of location when that is

not the case, although the parameter being estimated must more clearly be identified

and the estimation done more carefully [22].

One approach to getting an unbiased estimator that is sensitive to the distribution

is to use the BLUE of the order statistics as suggested by Lloyd [120]. Unfortunately,
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this requires the ability to compute the expected values and covariance matrix of

order statistics, which changes for every change in the number of samples K and

can be complicated depending on the parent distribution. A simplification suggested

by Gupta [79] is to assume the covariance matrix is the identity. The location es-

timator then reweights the coefficients of the order statistics so that the estimate is

unbiased. However, this still requires computation of the expected value of each order

statistic, which for the dithered EMG requires repeated numerical integration using

the substitution of (4.49) into (4.51), which is so unwieldy that we have omitted writ-

ing out the full expression. While it would be possible to precompute and tabulate

reweighted coefficients for every reasonable number of detections and for fixed system

parameters, we find such computation prohibitively expensive for negligible change

in the estimator, so we continue without exactly-unbiased estimators here.

Rather than choosing order statistics and their coefficients to exactly match the

dithered detection distribution, we choose to ignore the effect of asymmetry and only

modify the GG-based approximation to account for the longer tails incurred from

the exponential component. First, we note that the dithered EMG model changes

the expected value of the measurements to E[Y ] = µX + 1/ηH and the variance to

Var[Y ] = σ2
Z + 1/η2

H + ∆2/12. Furthermore, the kurtosis of the true distribution

changes:

γ(Y ) =
σ4
Zγ(Z) + σ4

Hγ(H) + σ4
Wγ(W )

σ4
Y

(4.52)

=
6σ4

H − 6
5
σ4
W

(σ2
Z + σ2

H + σ2
W )2

, (4.53)

where γ(·) refers to the excess kurtosis. Thus, the process of matching the GG kurtosis

as described in Appendix 4.B can be updated to solving for pv where

Γ(1/pv)Γ(5/pv)

[Γ(3/pv)]2
= 3 +

6[1/η4
H − (∆2/12)2/5]

(σ2
Z + 1/η2

H + ∆2/12)2
. (4.54)
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Figure 4·15: A histogram of simulated dithered EMG data compared
to the true distribution and generalized Gaussian approximation. The
distribution parameters were chosen to be resemble experimental val-
ues, with σZ = 40 ps, τH = 200 ps, and ∆ = 2000 ps, which were then
standardized for the overall distribution to have zero mean and unit
variance. While the GG does not match the tail behavior exactly on
either side, the value of p̂ determined through kurtosis matching does
get the width and overall shape generally correct.

An example comparison between simulated samples of a dithered EMG random vari-

able, the true dithered EMG PDF, and the generalized Gaussian approximation de-

termined solely via kurtosis matching is shown in Fig. 4·15. While the generalized

Gaussian is not as close an approximation for the experimental dithered noise distri-

bution, it is still useful for roughly determining the tailed-ness of the noise and which

order statistics and weights to use for estimating the mean.

4.7.7 Experimental Results for EMG Pulse Modeling

Results are shown in Figure 4·16 for three additional experimental acquisitions: an

80×80-pixel scan of the depth resolution chart, an 80×80-pixel scan of the egghead

trophy, and a 45×45-pixel scan of the 3D-printed mask shown in Figure 4·12. The

numbers of detected photons per pixel are shown in Figure 4·17. Baseline depth

estimates in Figure 4·16(a) are formed by averaging thousands of photon detections

per pixel measured with 4-ps resolution. Coarsely-quantized detection times are ac-
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Figure 4·16: Point cloud estimates for the (first row) Depth Chart,
(second row) Egghead, and (third row) Mask datasets. Additional
quantitative results comparing each algorithm to the baseline can be
found in Table 4.1. The use of subtractive dither yields a large decrease
in the RMSE, and the trimmed-mean estimator produces a small ad-
ditional improvement.
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Mean = 757

(a) Depth Chart

Mean = 451

(b) Egghead

Mean = 410

(c) Mask

Figure 4·17: Detection counts per pixel for the point clouds in
Fig. 4·16. The Depth Chart is fairly uniform, whereas the Egghead
and Mask reveal differences in reflectivity and appear to show some
shadowing effects due to the bistatic lidar setup at short range.

quired for 6.15 ms per pixel for each of the datasets. Figure 4·17 shows the mean

number of photons per pixel in each acquisition. The resulting pixelwise depth es-

timates in Fig. 4·16(b) are strongly biased by the quantization. In particular, the

depth chart is estimated to be a planar surface with no fine structures, the egghead

trophy is flattened while its backplane is shifted to the wrong depth, and the fea-

tures of the mask are lost. Dithered data is acquired by acquiring photons for 30

µs at each of the 205 dither delay steps of 10-ps each. The sample mean result

µ̂mean in Fig. 4·16(c) shows a dramatic improvement over the result without dither,

recovering many of the fine features that had been lost with the coarse quantization.

Finally, Figure 4·16(d) shows the results of the trimmed-mean estimator µ̂α defined

in Equations (4.33)-(4.35), where with pv determined by kurtosis matching with the

dithered EMG distribution as in Equation 4.54. Judging from the depth chart, small

features on the order of 4 mm are now visible.

Quantitative comparisons to the baseline estimates in Table 4.1 show the µ̂α es-

timator using the EMG distribution always outperforming the sample mean applied

to the dithered data and producing the best results more consistently than µ̂NL (de-

fined in (4.36)). Quantitative improvement factors in RMSE over the estimates from
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Table 4.1: RMSE performance of the depth estimates in Fig. 4·16 com-
pared to several other methods. The generalized Gaussian-base meth-
ods are distinguished by whether the kurtosis matching is performed
using a Gaussian (G) or exponentially-modified Gaussian (EMG) pulse
shape approximation. The trimmed mean using the EMG-based kurto-
sis matching, denoted µ̂α (EMG), often has the best performance and
consistently has lower RMSE than the sample mean.

Method RMSE (mm)
Dataset No Dither µ̂mean µ̂NL (G) µ̂α (G) µ̂NL (EMG) µ̂α (EMG)

Depth Chart 26.22 4.98 3.21 4.19 3.63 4.04
Egghead 68.38 12.19 11.12 10.38 11.10 10.38
Mask 82.10 7.23 9.65 6.26 12.23 6.19

coarsely-quantized data range from 6.5× to 13×. Thus, we have demonstrated both

that subtractive dither can improve depth estimation for SPL with coarse quantiza-

tion and that modeling of the resulting detection time distribution leads to estimators

that yield additional performance improvements.

4.8 Conclusions

This chapter introduced the concept of subtractive dither for single-photon lidar,

which was studied by looking more generally at the task of estimating the mean of

a Gaussian signal from quantized measurements. By applying subtractive dither to

the measurement process, the noise becomes signal-independent but no longer has

a Gaussian distribution. We showed that the generalized Gaussian distribution is a

close and useful approximation for the Gaussian plus uniform total noise distribution.

Estimators using the generalized Gaussian approximation effectively match the per-

formance of the ML estimator for the total noise, which is a significant improvement

over the more conventional mean and midrange estimators in Regime II, where nei-

ther the Gaussian nor uniform noise components dominate. Due to its computational

simplicity and efficient performance, we recommend the trimmed mean µ̂α. From

further comparison against estimators for quantized measurements, we determined
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simple design rules for deciding whether and how to use quantized measurements. In

short, there is value in using dither in Regimes I and II, and a GG-based estimator

should be used in Regime II.

A subtractively-dithered single-photon lidar system was implemented by sweep-

ing through sub-bin resolution delays between the laser illumination trigger and the

TSCPC synchronization “start” signal. The sample mean of dithered detection times

yielded significant reductions in RMSE, and additional modeling of the non-Gaussian

lidar pulse shape led to further improvements using the generalized Gaussian-based

trimmed-mean estimator. The resulting RMS depth error was reduced by up to a

factor of 13, compared to the coarsely-quantized data without dither. The estimates

could be further improved by incorporating spatial priors such as low total variation

through regularization. Future developments can also take into account the discrete

nature of the dither as well as the occasional ambient light detections and the pulse

asymmetry not accounted for in the model. Finally, these methods would likely also

benefit other applications of TCSPC such as fluorescence lifetime imaging (FLIM),

especially for lifetimes that are short relative to the timing resolution.
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Appendices

4.A Cramér-Rao Bound

The Cramér-Rao Bound is a lower bound on the variance of an unbiased estima-

tor [195], given by

CRB(µX) = 1/I(µX),

where I(µX) is the Fisher information computed as

I(µX) = E

[(
∂ log fY (y;µX , σZ ,∆)

∂µX

)2
]

(a)
=

∫
(

∂
∂µX

fY (y;µX , σZ ,∆)
)2

fY (y;µX , σZ ,∆)
dy

(b)
=

1

σ2
Z∆

∫
[
φ
(
v−∆/2
σZ

)
− φ
(
v+∆/2
σZ

)]2

Φ
(
v+∆/2
σZ

)
− Φ

(
v−∆/2
σZ

) dv

(c)
=

1

σ2
Z

∫
[
φ
(
u−1/2
σZ/∆

)
− φ

(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du, (4.55)

where step (a) uses the definition of expectation and the chain rule, (b) differenti-

ates (4.17) with respect to µX for v = y− µX , and (c) changes variables to u = v/∆.

Normalizing by ∆2 removes the separate dependence on σZ or ∆, so we define the

normalized CRB as

NCRB(µX) = CRB(µX)/∆2

=
(σZ/∆)2

∫
[
φ
(
u−1/2
σZ/∆

)
− φ
(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du

. (4.56)



120

Finally, Fisher information is additive for independent observations, so for K indepen-

dent samples, the lower bound on the NCRB is 1/K times that for one observation.

4.B Kurtosis Matching

The kurtosis of a random variable B is the standardized fourth central moment [55],

defined as

κ(B) =
E[(B − µB)4]

{E[(B − µB)2]}2
=
µ4(B)

σ4
B

. (4.57)

The excess kurtosis γ(B) = κ(B)− 3 is often used to simplify computations. Define

A = B + C, where B and C are independent random variables. The kurtosis of the

sum can be computed by expanding (4.57) as follows:

κ(A) =
E[(A− µA)4]

{E[(A− µA)2]}2
=

E{[(B − µB) + (C − µC)]4}
{E[((B − µB) + (C − µC))2]}2

=
µ4(B) + µ4(C) + 6σ2

Bσ
2
C

(σ2
B + σ2

C)2
,

where independence eliminates the odd cross terms. Then the excess kurtosis is

γ(A) =
σ4
Bγ(B) + σ4

Cγ(C)

σ4
A

. (4.58)

The kurtosis of Gaussian and uniform random variables is well-known and straight-

forward to compute from the definition; the excess kurtosis is 0 for a Gaussian and

−6/5 for a uniform distribution. From [175], we have that the excess kurtosis2 of a

GGRV V with shape parameter pv is

γ(V ) =
Γ(1/pv)Γ(5/pv)

[Γ(3/pv)]2
− 3. (4.59)

2Note that the definition of kurtosis in [175] corresponds to the excess kurtosis in this work.
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To fit the GGD to the sum of uniform and Gaussian random variables, we set the

kurtosis of the approximation to match the kurtosis of the sum using (4.58)

Γ(1/pv)Γ(5/pv)

[Γ(3/pv)]2
= 3 +

σ4
Z · 0 + σ4

W (−6/5)

(σ2
W + σ2

Z)2

= 3− 6

5

1
[
1 + 12

(
σZ
∆

)2
]2 , (4.60)

where σ2
W = ∆2/12.

4.C Mean Squared Error of µ̂Q

We use iterated expectation to compute the MSE of µ̂Q as

E[(µ̂Q − µX)2] = E
[
E[(µ̂Q − µX)2|µX ]

]
, (4.61)

with no prior knowledge on the true value so that we assume µX ∼ U [−∆/2,∆/2]

within a bin. Define a function g : R→ R as g(x) := E[(µ̂Q − µX)2|µX = x], then

g(x) = E



(

1

K

K∑

i=1

q(x+ Zi)− x
)2



= x2 +
1

K2

(
K∑

i=i

E
[
(q(x+ Zi))

2]+
K∑

i=1

∑

j 6=i

E [q(x+ Zi)]E [q(x+ Zj)]

)

− 2x

K

K∑

i=1

E [q(x+ Zi)]

= x2 +
1

K
E
[
(q(x+ Z))2]+

K − 1

K
(E [q(x+ Z)])2 − 2xE [q(x+ Z)] . (4.62)

Using the definition

Ψ(m,x) = Φ

(
m+ 1/2− x

σZ/∆

)
− Φ

(
m− 1/2− x

σZ/∆

)
, (4.63)
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note that

E [q(x+ Z)] = lim
M→∞

M∑

m=−M

m∆

m∆+∆/2∫

m∆−∆/2

1

σZ
φ

(
z − x
σZ

)
dz

≈ ∆
M∑

m=−M

mΨ(m,x)

for some large number M . Similarly,

E
[
(q(x+ Z))2] ≈ ∆2

M∑

m=−M

m2Ψ(m,x).

The MSE normalized by ∆2 then follows as

E[(µ̂Q − µX)2]/∆2 =
1

12
+

1

K

1/2∫

−1/2

M∑

m=−M

m2Ψ(m,x)dx

+
K − 1

K

1/2∫

−1/2

(
M∑

m=−M

mΨ(m,x)

)2

dx

− 2

1/2∫

−1/2

x
M∑

m=−M

mΨ(m,x)dx. (4.64)
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Chapter 5

Dead Time Compensation

5.1 Overview

So far in this thesis, we have assumed that every photon detection time can be treated

as an independent sample from an identical detection time distribution, which is the

normalized Poisson photon arrival process intensity. For low-flux acquisition, this

model is accurate enough to be useful. However, the requirement that the photon

flux must be low is a limitation on the types of scenes that can be imaged and

the applications in which SPL can be deployed. For instance, AVs guided by SPL-

generated point clouds would require the depth measurements to be made quickly and

over a large range of depths and reflectivities. The conventional approach to imaging

bright objects, such as the retro-reflective street signs common to AV environments,

is to attenuate the photon flux to the low-flux regime. Otherwise, the dead times in

the single photon detectors and the timing electronics may cause distortions in the

detection counts acquired detection time histograms, yielding erroneous reflectivity

and depth estimates. It is undesirable to attenuate SPL systems in AVs, however,

both because potentially useful photons are discarded for bright objects, and because,

in combination with the short acquisition times, distant and dark objects such as car

tires would reflect too few photons and become essentially invisible.

Allowing for higher incident flux and compensating for the resulting distortions

This chapter includes research conducted jointly with Yanting Ma, Robin Dawson, and Vivek
Goyal [151, 152, 153].
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due to dead time would enable faster acquisition without a loss of accuracy and has

been the subject of several recent works [86, 144, 77, 78], although their models of

dead time assume a single detection can be recorded per illumination period, an

assumption which does not necessarily hold for modern timing electronics. Our aim

is to accurately model the effects of dead time on the photon detection process so

that photons can be detected at a much higher rate and distortions introduced due

to dead time can be predicted and corrected.

This chapter establishes a new way of modeling photon detection times that looks

at not only the relative times with respect to the most recent illumination, but also

the absolute sequence of times that accounts for time dependence between detec-

tions. We explore the empirical distribution of detection times in the presence of

dead time and demonstrate that an accurate statistical model can result in reduced

ranging error with shorter data acquisition time when operating in the high-flux

regime. Specifically, we show that the empirical distribution of detection times con-

verges to the stationary distribution of a Markov chain. Depth estimation can then

be performed by passing the empirical distribution through a filter matched to the

stationary distribution. Moreover, based on the Markov chain model, we formulate

the recovery of arrival distribution from detection distribution as a nonlinear inverse

problem and solve it via provably convergent mathematical optimization. By com-

paring per-detection Fisher information for depth estimation from high- and low-flux

detection time distributions, we provide an analytical basis for possible improvement

of ranging performance resulting from the presence of dead time. Finally, we demon-

strate the effectiveness of our formulation and algorithm via experiments and ranging

simulations. Eventually, this approach should lead to the deployment of SPL sys-

tems with higher laser powers, shorter acquisition times, and more accurate depth

estimation.
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5.2 Dead Time Characterization

The source of the dead time and resulting behavior of an SPL system may vary greatly

depending on the implementation. Specifically, this chapter studies dead time correc-

tion for modern TCSPC systems with asynchronous electronics (such as the Hydra-

Harp 400 [208] or TimeHarp 260 [209] from PicoQuant) and a nonparalyzable detector

(e.g., a PDM-series [70] or Fast-gated [33] Single Photon Avalanche Diode (SPAD)

from Micro Photon Devices, operated in free-running mode), for which the detector

dead time td is longer than the electronics dead time te. We refer to Section 2.2.2

for a discussion on how the SPAD design and the architecture of modern TCSPC

electronics give rise to dead times. In the following, we formally define paralyzability

and synchronization so as to clarify the dead time model we consider.

5.2.1 Paralyzability

The dead times of event-counting detectors have been studied since at least the

1940s [73, 107, 114, 109], with Feller [63] first classifying detectors in terms of their

paralyzability. Nonparalyzable (Type I) detectors are dead for a fixed time td after a

detection, regardless of whether additional photons arrive during the dead time. On

the other hand, when photons arrive during the dead time of a paralyzable (Type II)

detector, the dead time restarts and extends for at least another td. We consider only

nonparalyzable detectors in our work.

5.2.2 Synchronization

An important factor in analyzing the effect of dead times in a TCSPC system is

whether the dead times and illuminations are synchronized. We call systems syn-

chronous if they ensure that the end of a dead time is synchronized with the start of

an illumination period. Synchronous operation is often built into the hardware, such
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as in classical TCSPC systems employing TACs or in the gated mode of fast-gated

SPADs [33, 144]. In reversed start-stop mode, classical timing electronics may become

active in the middle of an illumination period, but that recovery time is consistent,

as the dead time is synchronized to the stop signal (either a delayed version of the

current pulse or the next pulse). By using digital timing circuitry, modern TCSPC

electronics enable asynchronous operation, in which there is no enforced synchro-

nization between the dead time and the timing electronics. If a photon is detected

towards the end of a cycle and the dead time continues after the next laser excitation,

there is no mechanism preventing the detector from becoming active in the middle of

that cycle. In other words, the end of the dead time is no longer dependent on the

cycle synchronization, but on the arrival time of the most recently detected photon.

The synchronous and asynchronous architectures correspond to the “clock-driven”

and “event-driven” SPAD recharge mechanisms, which were explored in [7, 8]. While

most existing work on the effect of dead time assumes synchronous operation, we

consider only asynchronous systems in this work.

5.2.3 Dead Time Compensation Approaches

Yu and Fessler [217] outline a number of general strategies for handling the effects of

dead time, with the simplest approach being to simply ignore the dead time. Most

commonly, the total photon flux at the detector is changed such that the dead time

effects are actually negligible and can be ignored. Since the effect of dead time is

that photon arrivals within td of a detection are missed, a straightforward approach

is to reduce the total photon flux, either by lowering the laser power and ambient

light if possible, or by attenuating with a filter at the detector. The conventional

wisdom expressed by O’Connor and Phillips [137] is to keep the fraction of excitations

causing a detection to be at most 5% to avoid dead time effects, a recommendation

that electronics manufacturers have adopted. Reducing the flux inevitably leads to
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longer time needed to acquire the same number of photons, which is one of the

motivations for recent works in photon-efficient imaging [104, 170, 3], including the

work presented in Chapter 3. Other approaches have tried to ignore dead time by

changing the hardware setup, such as using multiple detectors so that there is more

likely to be a detector not in the reset state when a photon arrives [15].

Rather than attenuate the flux at the detector to avoid dead time effects, another

strategy is to correct the distortions in the high-flux data after acquisition. Most

algorithm-based attempts at dead time compensation consider synchronous systems

due not only to the systems that have historically been available, but also for the

convenient property that detection times are statistically independent of each other

in different cycles [170]. One of the first methods for dealing with dead time in syn-

chronous systems is that of Coates [44]. Coates’s basic algorithm was designed for

lifetime measurement, with later work adapting the algorithm to include background

subtraction [52]. The basic principle of Coates’s algorithm is that for any bin n in a

histogram, the detections in the preceding bins spanning td represent excitation cycles

when no photon could have been detected in bin n because the detector was dead.

The number of cycles in which the detector thus must have been dead is used to adjust

computation of the photon arrival probability in each bin. Recent work has rederived

Coates’s expression, which is the ML estimator for the number of photon arrivals in

each bin of a histogram in a synchronous system, in order to include priors for maxi-

mum a posteriori (MAP) estimation [144]. A few models [215, 200] consider histogram

corrections for a hybrid of synchronous and asynchronous systems, which do allow

for multiple statistically dependent detections per illumination cycle but without the

dependency carrying over into different cycles. A handful of papers address special

cases of dead time effects in asynchronous systems: Antolovic et al. [7, 8] consider

detection rate estimation for homogeneous arrival processes, whereas Cominelli et al.
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[46] explore the special case when td equals an integer multiple of tr and no correc-

tion is needed. However, these approaches are insufficient to address the typical lidar

acquisition mode with inhomogenous arrivals and in which td and tr cannot neces-

sarily be arbitrarily adjusted. The only existing work that addresses asynchronous

systems generally is that of Isbaner et al. [94], which treats the detection process as

a time-dependent attenuation of the arrival process intensity, and uses an iterative

procedure to estimate the attenuation and thereby correct the detection histogram.

Although both te and td are included in the model for [94], a TCSPC system simplifies

to having only one source of dead time when te < td, the scenario considered in this

chapter.

The last strategy for dealing with dead time is to use the data as acquired but to

incorporate dead time into the detection model. In this vein, Heide et al. [86] adjust

their parameter estimation procedure to include dead time effects. However, the syn-

chronous system assumption they use is technically only valid for their asynchronous

timing electronics (PicoQuant PicoHarp 300, [207]) if zero ambient light is present,

which guarantees that the detector will be reset for the next signal pulse.

5.2.4 Other Related Work

In addition to missing photons that arrive during a dead time, events can fail to be

registered in the recording of point processes through other forms of “counting loss,”

which depends on the measurement system design [15]. A well-documented form of

counting loss is “pile-up,” referring to the problem of the rising edge of a pulse over-

lapping with the tail of a previous pulse, such that the later pulse is not registered

by a discriminator. Each piled-up pulse prolongs the duration in which new events

cannot be detected, making the discriminator a Type II detector. Pile-up is present

in some TCSPC system designs, such as those using passively-recharged SPADs [8]

or hybrid photodetectors with negligible dead time [141]. Several approaches correct-
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ing for pile-up have recently been proposed for nuclear spectrometry, in which both

the pulse times and energies are of interest [190, 167, 191]. Confusingly, the term

“pile-up” is also sometimes used to describe the effect of dead time in synchronous

TCSPC systems (e.g., [144, 86]) because the effect of earlier detections preventing

later detections is similar. Another form of counting loss, named Type III in [217],

may also occur in some systems (e.g., [145]) when two pulses occur close together and

neither one gets recorded.

In lidar applications, the dead time-affected acquisition results in closer apparent

distances, which has a similar effect to the intensity-dependent change in perceived

depth known as “range walk error” [139, 110, 40]. Range walk is the result of using a

discriminator to trigger in the leading edge of a signal pulse; a stronger signal with a

steeper rising edge will be detected earlier than a weaker signal with a smaller slope.

Due to the similarity with high-flux ranging, approaches correcting for range walk

error could be adapted to compensate for dead time. Several optics-based methods

aimed at range walk error correction attempt to experimentally measure and then

correct for the bias in depth estimation. He et al. [84] first calibrate the amount of

range walk incurred as a function of the detection rate. Then the conventional depth

estimation procedure is performed with the dead time-distorted data, and the range

walk bias is subtracted off to correct the depth estimate. Ye et al. [216] use a similar

method, except they first split the incident light with a 90:10 beamsplitter to two

SPADs, using the lower-flux channel for simultaneous bias estimation to subtract off

from the lower-variance high-flux estimate.

5.3 Empirical Distribution of Detection Times

The challenge of studying the detection time distribution for the asynchronous dead

time model is that the detection times are statistically dependent. In this section, we
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show that the dependency is Markovian and provide the explicit transition probability

density function. From the transition PDF, we can analyze the stationary condition

and obtain the stationary distribution, from which our high-flux ranging algorithms

are derived.

We established in Section 2.3 that the photon arrival times at a detector are

described by a Poisson process with intensity λ(t) given in (2.2). We continue with

that formulation for a single pixel, dropping any cumbersome pixel notation for the

moment. We especially recall that the photon flux, or the expected number of photon

arrivals per illumination period, is denoted as S and B for the signal and background

processes, respectively. The total flux is given by Λ := S + B, and the signal to

background ratio is defined as SBR := S/B. Note that for ranging results presented

later in this chapter, a single depth is assumed (Q = 1), but that is only a strict

requirement for some of our dead time compensation methods.

5.3.1 Markov Chain Model for Detection Times

If there were no dead time effects, the detection process would be equivalent to the

arrival process, which is Poisson with intensity λ(t). Conditioned on the total number

of detections, the absolute detection times (measured with respect to the start of

the experiment at time t = 0) would be order statistics of i.i.d. random variables

with common probability density function ∝ λ(t) [174, Section 2.3.3]. However, in

the presence of dead time effects, the detection process is no longer Poisson, since

the detection intensity, denoted by µ(t), is now a random process depending on the

history of the detection process; such a detection process is referred to as a self-

exciting process [174]. Specifically, let {K(t) : t ≥ 0} denote the detection process

with (random) intensity µ(t), where {K(t) : t ≥ 0} is characterized by the number

of detections K(t) at time t and a sequence of absolute detection times T1, . . . , TK(t).
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The conditional PDF of T`+1 given T1, . . . , T` is [174, (6.15) (6.16)]

fT`+1|T1,...,T`(t|t1, . . . , t`) = µ(t) exp


−

t∫

t`

µ(τ) dτ


 . (5.1)

For a general self-exciting process, µ(t) can depend on the entire history of the process

{K(τ) : 0 ≤ τ < t}. For the specific detection process considered in this chapter, we

have

µ(t) =





λ(t), if t > TK(t) + td;

0, if TK(t) < t ≤ TK(t) + td,

(5.2)

where we introduce the notation T0 := −∞. We can see that µ(t) only depends on

the latest detection time. Therefore, for the µ(t) defined in (5.2), the right-hand side

(RHS) of (5.1) depends on t` but not on t1, . . . , t`−1. That is, the absolute detection

times form a Markov chain with transition PDF

fT`+1|T`(t|t`) = λ(t) exp


−

t∫

t`+td

λ(τ) dτ


 I{t > t` + td}, (5.3)

where I is the indicator function. An illustration of a realization of the detection

process is shown in Fig. 5·1.

Define two sequences of random variables, {N`}`∈N and {X`}`∈N, such that N` :=

bT`/trc, where bac is the integer part of a ∈ R, and X` := T` mod tr, hence T` =

N`tr + X`. That is, N` is the number of illumination periods before T` and X` is

the relative location of absolute detection time T` within illumination period N` + 1,

which is referred to as simply the detection time in this chapter. Note that if there

were no dead time effects, the empirical distribution of X`’s would be identical to the

arrival time PDF, given by

fXA
(x) = λ(x)/Λ, for x ∈ [0, tr). (5.4)
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Figure 5·1: Illustration of the effect of dead times on the detection
process for tr = 100 ns, td = 75 ns, σp = 5 ns, S = 0.5, and B = 1.
Photon arrival times are generated according to the arrival intensity
λ(t). The detection intensity µ(t) is equal to the arrival intensity λ(t)
except immediately following a photon detection when µ(t) = 0, so the
detection times are a subset of the arrival times and detection is not a
Poisson process.

The following proposition provides statistical characterization of {X`}`∈N in the pres-

ence of dead time.

Proposition 1. Suppose that the photon arrival process is an inhomogeneous Poisson

process with periodic intensity function λ(t), whose period is tr, and the detector has

dead time td. Define xd := td mod tr. Let the random sequence {T`}`∈N denote absolute

detection times and define detection times as X` := T` mod tr, for all ` ∈ N. Then the

random sequence {X`}`∈N forms a Markov chain with state space [0, tr) and transition

PDF

fX`+1|X`
(x`+1|x`) =

λ(x`+1)

1− exp(−Λ)
exp

(
−

⌈x` + xd − x`+1

tr

⌉
tr + x`+1

∫

x`+xd

λ(τ) dτ

)
, (5.5)
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where dae := bac+ 1 and Λ :=
∫ tr

0
λ(τ) dτ .

Proof. See Appendix 5.A.

We can check that {X`}`∈N is ψ-irreducible, recurrent, and aperiodic, and hence

it has a unique stationary PDF [130, Proposition 10.4.2]. Denoting the stationary

PDF by fXD
, then for all x ∈ [0, tr), fXD

satisfies

fXD
(x) =

tr∫

0

fXD
(y)fX`+1|X`

(x|y) dy. (5.6)

That is, fXD
is the eigenfunction corresponding to eigenvalue 1 of the linear operator

P defined as

Pf(x) :=

tr∫

0

f(y)fX`+1|X`
(x|y) dy. (5.7)

For the special case where xd = 0, we show in the following that the arrival PDF fXA

defined in (5.4) satisfies the stationary condition, meaning that dead time does not

cause any distortion in detection time distribution; this result has also been noted

in [46] with a different derivation. With fXD
(x) = λ(x)/Λ and xd = 0, the RHS of

(5.6) is

tr∫

0

λ(y)

Λ
fX`+1|X`

(x|y)dy =

x∫

0

λ(y)

Λ

λ(x)

1− exp(−Λ)
exp


−

x∫

y

λ(τ)dτ




+

tr∫

x

λ(y)

Λ

λ(x)

1− exp(−Λ)
exp


−

tr+x∫

y

λ(τ)dτ




=
λ(x)

Λ

[∫ x
0
λ(y) exp

(
−
∫ x
y
λ(τ)dτ

)
dy

1− exp(−Λ)

+

∫ tr
x
λ(y) exp

(
−
∫ tr+x

y
λ(τ)dτ

)
dy

1− exp(−Λ)

]
.

Label the two terms in the square brackets as A1 and A2. Using the chain rule and
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the Leibniz rule for differentiation, for any constant a that does not depend on y, we

have that

d

dy
exp


−

a∫

y

λ(τ)dτ


 = λ(y) exp


−

a∫

y

λ(τ)dτ


 .

Letting a = x, we have

A1 =
exp

(
−
∫ x
y
λ(τ)dτ

) ∣∣∣
x

0

1− exp(−Λ)
=

1− exp
(
−
∫ x

0
λ(τ)dτ

)

1− exp(−Λ)
.

Similarly, let a = tr + x, then

A2 =
exp

(
−
∫ x

0
λ(τ)dτ

)
− exp(−Λ)

1− exp(−Λ)
.

It follows that A1+A2 = 1, and so λ(x)/Λ is the stationary distribution of the Markov

chain when xd = 0.

To numerically demonstrate the correctness of (5.5) for general xd, we partition

the state space [0, tr) into nb equally spaced time bins with bin centers {bm}nbm=1 and

approximate the linear operator P defined in (5.7) with an nb × nb matrix P, where

Pm,n := fX`+1|X`
(bn|bm) with fX`+1|X`

defined in (5.5). The matrix P is then normal-

ized to have row sum equal to 1 so that it becomes a probability transition matrix

P̃. A discrete approximation of fXD
, denoted by a length-nb row vector fXD

, is then

obtained as the leading left eigenvector of P̃, since fXD
should satisfy the Markov

chain stationary condition fXD
= fXD

P̃. Moreover, if the second largest (in terms

of magnitude) eigenvalue of P̃ is strictly less than one, in other words, P̃ admits a

spectral gap, then the corresponding Markov chain converges to its stationary distri-

bution geometrically fast. We have verified that in all parameter settings considered

in this paper, P̃ admits a spectral gap, thus confirming the convergence of the chain.

Finally, fXD
is compared with the histogram of a set of simulated detection times,

where we expect a close match between the simulated histogram and fXD
. Detection
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Figure 5·2: Comparisons between histograms of simulated detection
times, predicted detection time PDFs, and arrival time PDFs illustrate
how dead time affects the detection process. In addition to a shift in the
mode toward earlier detection times, the dead time may also cause a
ripple in the detection PDF relative to the arrival PDF. Plots are shown
for σp = 2 ns, ∆ = 50 ps, nr = 50000 illuminations, and td = 75 ns. The
vertical axis scale is constant for each row. An inset with a different
vertical scale is included for each plot in the third column to emphasize
the ripple that is not easily seen in the original scale.

times are simulated by first generating arrival times according to (2.2). Then starting

with detection of the first arrival time generated, subsequent arrivals are culled from

the sequence if they are within td of the previous absolute detection time, as in [88].

Note that unlike in [88], both background photons and dark counts are considered to

trigger dead times in the same manner as signal detections.

Comparisons between a histogram of detection times collected from simulation

and the corresponding fXD
are shown in Fig. 5·2. In each simulation, the number of

illuminations is nr = 50000 and the half pulse width is σp = 2 ns. The close matches

between predicted detection PDFs and the simulated histogram results validate the

effectiveness of the Markov chain model in deriving the limiting distribution. The

figure further illustrates the effect that dead time has on TCSPC. The first column

of Fig. 5·2 shows results with S = B = 0.1, so the total flux Λ is low enough

that few photons arrive during the detector dead time, and the arrival and detection
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densities are almost identical. If just the signal flux is increased, e.g., by increasing

the illumination laser power (second column), the photon detection density narrows

and shifts slightly toward earlier detection times (similar to the phenomenon of range

walk error), due to early arrivals from the pulse blocking later photons from being

detected. When the background flux increases, the distortions in the density due

to dead time become more apparent. However, these distortions also depend on the

particular values of tr and td. When tr is slightly larger than td (such as for tr = 80 in

the top row of Fig. 5·2), the dead time triggered after a signal detection will reset just

before signal photons from the next pulse arrive at the detector. The dead time thus

behaves as a signal-triggered gate, blocking detection of many background photons

while allowing detection of additional signal. On the other hand, increasing tr by just

20 ns (bottom row) causes a significant ripple in the detection PDF a duration td after

the main signal peak (modulo tr). The dead time is again often triggered by signal

photons when S is large, but the reset of the detector in the next cycle allows incident

background photons to be detected, amplifying the apparent background intensity at

that part of the cycle. Note that this pre-pulse ripple could easily be mistaken for

optical system inter-reflections or poor electronics thresholding if detector dead time

were not taken into account.

5.3.2 Comparison of Fisher Information

High-flux acquisition enables detection of more photons than low-flux acquisition for

a fixed number of illuminations. Although the detection time distribution is distorted

in the sense that it is different from the arrival time distribution, our Markov chain

model allows us to accurately predict the distortion. Therefore, it is expected that

for a fixed number of illuminations, high-flux acquisition with our probabilistic model

for detection times can improve ranging performance over the 5% low-flux acquisition

rule. Another interesting aspect is to compare estimates from low-flux and high-flux
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acquisitions for a fixed number of detections. By comparing the arrival PDF and

the detection PDF in Fig. 5·2, we notice that dead time results in a “narrowing” of

the pulse, especially for large S. Since the detection PDF at low flux is identical to

the arrival PDF fXA
, we hypothesize that allowing higher-flux acquisition by forgoing

attenuation can incur distortion that may in fact be favorable for depth estimation

in some cases.

To verify this somewhat counter-intuitive speculation, we compare the Fisher

information per detection for estimating the depth z from the low-flux PDF fXA
(5.4)

and high-flux PDF fXD
(the stationary distribution of the Markov chain defined in

Proposition 1), which are denoted by FIA and FID, respectively, and are derived in

in Appendix 5.B and computed as

FIA =

tr∫

0

(
∂

∂z
fXA

(x; z)

)2
1

fXA
(x; z)

dx,

FID =

tr∫

0

(
∂

∂z
fXD

(x; z)

)2
1

fXD
(x; z)

dx,

where the derivative of fXD
is computed numerically. Note that while realizations of

detection times are not i.i.d. samples of fXA
or fXD

, most ranging algorithms only

use the empirical distribution of detection times for depth estimation. Therefore, it

is reasonable to consider Fisher information of the limiting empirical distributions

fXA
and fXD

rather than that of the joint distributions. Fig. 5·3 presents the Fisher

information ratio FID/FIA for td = 75 ns and with tr varying from 50 to 500 ns. By

(5.5), we notice that only xd := td mod tr affects the detection time distribution.

Hence, for the case where tr = 50 ns, the effective dead time in terms of detection

time distribution is 25 ns. In the regions where the ratio is greater than one, fXD
is

more informative about the depth z than fXA
(i.e., the dead time effect is beneficial)

in the sense that the per-detection Fisher information is higher. We notice that such
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Figure 5·3: The Fisher information ratio FID/FIA indicates the per-
formance improvement that may be gained for the same number of
detections when high-flux data is used instead of low-flux data. The
plots show for various signal rate S and background rate B and for
σp = 0.2 ns, ∆ = 10 ps, and td = 75 ns that when SBR is sufficiently
high and B is not too large, the effect of dead time is beneficial for
range estimation.

a region usually appears when B is not too large and the SBR is sufficiently high. A

potential reduction in depth error variance was likewise noted by Heide et al. [86] for

a synchronous SPL system, which our analysis shows is not a necessary condition for

dead time to be beneficial. When tr is slightly larger than td (as for tr = 80 in Fig. 5·3),

the signal-triggered gating extends the region in which dead time is beneficial to larger

B compared to the cases where tr is much larger than td. Together with the plots

in Fig. 5·2, this suggests that the most photon-efficient benefit from dead time is

achieved when tr is slightly larger than td.
1 This condition may be difficult to achieve

in practice as the dead time is not tunable in many devices and adjustment of the

illumination period is limited by the required maximum unambiguous range.

5.4 Acquisition Parameter Estimation

In this section, we first derive a maximum likelihood (ML) estimator for estimating the

total flux Λ from the absolute detection times. We then describe how the background

1Note that more photons would be detected with shorter td, but each detection would likely be
less informative of the depth.
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flux B can similarly be estimated from a calibration measurement, and the signal flux

S can be determined from the difference of the total and background flux estimates.

5.4.1 Maximum Likelihood Estimator for Λ

Isbaner et al. [94] note the necessity of estimating Λ in order to correctly reconstruct

the histogram of photon arrival times. Define the interdetection period R` as the

number of completed periods after the detector reset at T`+ td before another photon

is detected at time T`+1:

R` :=

⌊
T`+1 − (T` + td)

tr

⌋
, (5.8)

where T`’s are absolute detection times. Isbaner et al. claim that P (R` = r) ∝
exp(−rΛ) and use weighted least squares to fit an exponential function. In the fol-

lowing proposition, we verify the claim using properties of Poisson processes and the

Markov nature of detections with dead time. Moreover, we show that R`’s are inde-

pendent, and so an ML estimator for Λ can be easily computed from a realization of

R`’s.

Proposition 2. The random variables R`’s defined in (5.8) are i.i.d. with the same

probability distribution as R, where

P (R = r) = (1− exp(−Λ)) exp(−rΛ), r ∈ {0} ∪ N. (5.9)

Proof. See Appendix 5.C.

By Proposition 2, given a realization of interdetection periods {r`}1≤`≤k, the log-

likelihood function is

L({r`}k`=1; Λ) = −Λ
k∑

`=1

r` + k ln (1− exp(−Λ)) .

Setting the derivative of L({r`}k`=1; Λ) with respect to Λ to zero, we obtain the ML
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estimator for Λ as

Λ̂ML = − ln

( ∑k
`=1 r`

k +
∑k

`=1 r`

)
. (5.10)

Note that the distribution of R can be understood as follows. The number of photon

arrivals per period is Poisson with parameter Λ, so p = 1−exp(−Λ) is the probability

of at least one photon arriving in a period. Then R has a geometric distribution

P (R = r) = (1− p)rp, which matches (5.9).

5.4.2 Maximum Likelihood Estimator for B

We begin by assuming that background calibration measurements can occasionally

be made within the ranging process, for which photons are detected while the laser

is turned off. For sequences of ranging measurements such as in raster-scanned 3D

imaging, such background-only acquisitions could be made for each laser position or

for sets of laser points (e.g., once per row or once per image). Since the background

process is homogeneous with λ(t) = λb, we can rewrite (5.3) as

fT`+1|T`(t|t`) = λb exp
(
− λb

(
t− (t` + td)

))
I{t > t` + td}.

Then the conditional distribution of T`’s given T1 = t1 is

fT2,...,Tk|T1(t2, . . . , tk|t1) =
k−1∏

`=1

fT`+1|T`(t`+1|t`)

= λk−1
b exp(−λb(tk − t1) + (k − 1)λbtd).

Given a set of absolute detection times {t`}k`=1, the (conditional) log-likelihood func-

tion ln
(
fT2,...,Tk|T1

)
is

L({t`}k`=1;λb) = (k − 1) ln(λb)− λb(tk − t1) + (k − 1)λbtd.
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Setting the derivative of L({t`}k`=1;λb) with respect to λb to zero, we obtain the

(conditional) ML estimator for λb as

λ̂ML
b =

k − 1

(tk − t1)− (k − 1)td
.

It follows that B̂ML = λ̂ML
b tr.

5.4.3 Estimating S

From Λ̂ML and B̂ML, we could also compute Ŝ = max(Λ̂ML − B̂ML, 0) to ensure non-

negativity. However, setting Ŝ = 0 whenever B̂ML > Λ̂ML is not informative for

depth estimation with the log-matched filter, since fXD
and fXA

would be uniform

PDFs. Instead, one can assume that there is always at least some small amount of

signal and background in the ranging process, so we choose to set minimum values

of Smin = Bmin = 0.01. Then B̂ = max(B̂ML, Bmin), Λ̂ = max(Λ̂ML, B̂ + Smin), and

Ŝ = Λ̂− B̂.

5.5 Experimental Verification

We next evaluate the correctness of our model with experimental data from the TC-

SPC system shown in Figure 5·4. The SPL system uses the HydraHarp 400 TCSPC

module (PicoQuant) with dead time te ≈ 80 ns, and a fast-gated SPAD detector

module (Micro Photon Devices), which has an adjustable hold-off time between 48 ns

and 1 µs. The illumination source, a pulsed diode laser (PicoQuant LDH-series) at

640 nm and with FWHM pulse duration around 100 ps, was aimed at a Lamber-

tian white target at a fixed distance of around 50 cm. A distortion-free pulse shape

calibration was acquired with an OD 3.0 neutral density (ND) filter, and high-flux

measurements were acquired with no attenuation (OD 0), while the hold-off time tho

was varied between 81 and 198 ns. In each case, we assumed that td ≈ tho + 2 ns and
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ND-filterWhite, Lambertian target

Figure 5·4: A photograph of the bistatic single-photon lidar imple-
mentation at MIT in Cambridge, MA. The fast-gated SPAD has a vari-
able hold-off time, which enables validation of the probabilistic model
for various dead times.

te = 80 ns, thus the dataset included only cases with td > te. A high-flux dataset was

acquired while the laser was turned off to serve as a background calibration.

The total Λ̂HF and calibrated background B̂HF flux values were estimated using the

method proposed in Section 5.4. We attempted to perform the same validation as with

simulated data using ŜHF = Λ̂HF − B̂HF. However, the background calibration B̂HF

does not lead to a good fit between the measured histogram and the predicted effects

of dead time for the calibrated low-flux pulse shape. There are several factors not

included in the acquisition model that likely contribute to errors in the experimental

results:

• Filter spectral response: The absorptive ND filters (ThorLabs NEK01) used

in the experimental measurements have a fairly limited neutral region of 400-650

nm, so background outside of this passband is attenuated by varying amounts,

and the relative attenuation of that background is not consistent for ND filters

with different OD values. It is possible that reflective ND filters sets (e.g.,
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ThorLabs NDK01) specified as spectrally flat for a greater range of wavelengths

would reduce this source of inconsistency.

• Dark counts: Our modeling assumes all photons not due to signal can be

grouped into a homogeneous “background” process, but attenuation of the in-

cident flux only affects background counts from ambient light, with no effect

on dark counts from thermally-generated carriers. While the dark count rate

is often quite low for SPADs (on the order of 100 counts per second), for large

attenuation factors applied to the ambient light, extrapolation of the high-flux

background intensity from a low-flux measurement is not accurately computed.

• Afterpulsing: Unlike dark counts, afterpulses are false detection events cor-

related with previous detection times [42]. SPADs are typically held off long

enough for the probability of an afterpulse detection to be sufficiently small and

uncorrelated in time, so they simply appear as an increase in the background as

the flux increases [93]. For shorter hold-off times, the afterpulse time correlation

with respect to the most recent avalanche time is non-negligible, especially at

high signal flux due to the periodicity of the signal component.

Instead of using poorly-calibrated background values, we choose an approximate

background value B̃ that minimizes the Kolmogorov-Smirnov statistic between the

empirical and predicted CDFs [133, Chapter X.2]. We define the empirical CDF from

k detections as

Fk(x) =
1

k

k∑

`=1

X`I{(−∞, x]} (5.11)

and the predicted CDF

FXD
(x;S,B) =

x∫

−∞

fXD
(y;S,B) dy, (5.12)

which uses the predicted detection time PDF given a calibrated signal pulse shape
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Figure 5·5: Results are shown from high-flux experiments with fixed
laser power while varying the SPAD hold-off time. Note that because of
inaccuracy in estimating the background flux, the values of B̃ were set
to minimize the Kolmogorov-Smirnov statistic between the predicted
and measured PDFs, with Ŝ = Λ̂HF − B̃. The insets show in detail
how the change in detection time histogram shape due to dead time is
accurately predicted.

with flux S and a uniform background with flux B. Then the approximate background

flux B̃ is chosen by performing the following minimization via grid search:

B̃ = arg min
B

sup
x
|Fk(x)− F (x; Λ̂HF −B,B)|. (5.13)

Fig. 5·5 shows the close match between the measured and predicted PDFs for a

variety of tho values. The insets in the plots highlight how the shape of even the

lower-probability regions of the measured PDFs is predicted using our Markov chain
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analysis, including the nearly distortion-free special case when td is an integer multiple

of tr as pointed out by [46]. The plots emphasize how the effect of dead times on the

detection time distribution is sensitive to many parameters: td, tr, S, and B.

5.6 Arrival Intensity Estimation Algorithm

Now that we have verified that the Markov chain model indeed represents the behavior

of TCSPC systems, we consider several ways of using this modeling to reduce the

effects of distortions due to dead time. In Section 5.2.3, we discussed that one common

approach to handling dead times is to attempt to correct a histogram so that it

represents the photon arrival intensity. In this section, we thus use the Markov chain

model to derive an algorithm for estimating the arrival intensity λ(x) for x ∈ [0, tr)

from a histogram of detection times assuming that Λ is known. The algorithm may be

implemented with a calibrated Λ when available or with a Λ estimated by, for example,

the ML estimator. In what follows, we consider estimating the arrival intensity λ

from a detection time histogram assuming that Λ is known. Note that while one

could include regularizers to reflect prior knowledge about λ, the goal here is to

demonstrate that the proposed method can reconstruct the arrival intensity without

any prior knowledge other than the intensity being non-negative. The histogram

correction method is thus applicable to a broad class of applications, including FLIM,

multi-depth lidar, or non-line-of-sight imaging, in which the arrival intensity is less

predictable than SPL with exactly one depth per pixel.

5.6.1 Relationship between Arrival and Detection Distributions

We begin by deriving the relationship between λ(x) and fXD
(x). Plugging the Markov

chain transition PDF fX`+1|X`
(x`+1|x`) (5.5) into the definition of the stationary PDF
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fXD
(x) (5.6), we have

fXD
(x) = λ(x)

[ x−xd∫

0

fXD
(y)

exp
(
−
∫ x
y+xd

λ(τ) dτ
)

1− exp(−Λ)
dy

+

tr∫

x−xd

fXD
(y)

exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)

1− exp(−Λ)
dy

]
(5.14)

for x > xd, and

fXD
(x) = λ(x)

[ tr+x−xd∫

0

fXD
(y)

exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)

1− exp(−Λ)
dy

+

tr∫

tr+x−xd

fXD
(y)

exp
(
−
∫ 2tr+x

y+xd
λ(τ) dτ

)

1− exp(−Λ)
dy

]
(5.15)

for x ≤ xd. In (5.14) and (5.15), denote the factors in the brackets as a(x) and we

can then write fXD
(x) = λ(x)a(x), where a(x) can be interpreted as the attenuation

effect on the arrival intensity due to dead time. It is worth mentioning that similar

factorization of fXD
was also used by Isbaner et al. [94] for the derivation of their

dead time correction algorithm. However, such a factorization is assumed at the

beginning of their derivation, whereas we arrive at this factorization naturally from

the stationary condition of a Markov chain.

Plugging fXD
(x) = λ(x)a(x) into (5.14), we have

a(x) =

x−xd∫

0

λ(y)a(y)
exp
(
−
∫ x
y+xd

λ(τ) dτ
)

1− exp(−Λ)
dy +

tr∫

x−xd

λ(y)a(y)
exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)

1− exp(−Λ)
dy.

(5.16)
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Differentiating both sides of the above equation with respect to x:

a′(x)
(a)
=

1

1− exp(−Λ)

[
λ(x− xd)a(x− xd) (1− exp(−Λ))

− λ(x)

( x−xd∫

0

λ(y)a(y) exp


−

x∫

y+xd

λ(τ) dτ


 dy

+

tr∫

x−xd

λ(y)a(y) exp


−

tr+x∫

y+xd

λ(τ) dτ


 dy

)]

(b)
=λ(x− xd)a(x− xd)− λ(x)a(x), (5.17)

where step (a) uses the Leibniz rule and the fact that λ(tr + x) = λ(x) and step

(b) follows by noticing from (5.16) that the sum of the two integrals equals (1 −
exp(−Λ))a(x). Similarly, we can obtain from (5.15) that

a′(x) = λ(tr + x− xd)a(tr + x− xd)− λ(x)a(x). (5.18)

Note that if we consider periodic extensions of a(x) and fXD
(x), then (5.17) and

(5.18) are identical. In the following, a(x) and fXD
(x) are considered as their periodic

extensions.

Integrating both sides of (5.17), we have that

a(x) = −
x∫

x−xd

λ(τ)a(τ) dτ + C, (5.19)

where C is a constant. Multiplying both sides of (5.19) by λ(x), we have that

fXD
(x) = −λ(x)

x∫

x−xd

fXD
(τ) dτ + Cλ(x). (5.20)



148

Define

g(x) :=

x∫

x−xd

fXD
(τ) dτ. (5.21)

Since fXD
(x) is a proper probability density function on the interval [0, tr), it satisfies

1 =

tr∫

0

fXD
(x) dx = −

tr∫

0

λ(x)g(x) dx+ C

tr∫

0

λ(x)dx.

It follows that

C =
1 +

∫ tr
0
λ(x)g(x) dx∫ tr

0
λ(x) dx

=
1 +

∫ tr
0
λ(x)g(x) dx

Λ
. (5.22)

Finally, by plugging (5.21) and (5.22) into (5.20), we can establish the following

relationship between the arrival intensity function λ(x) and the limiting distribution

of the detection times fXD
(x):

fXD
(x) = −λ(x)g(x) +

1 +
∫ tr

0
λ(x)g(x) dx

Λ
λ(x). (5.23)

5.6.2 Nonlinear Inverse Formulation and Algorithm

We next consider inversion of the relationship between λ(x) and fXD
(x). Since the

measured TCSPC data is in the form of a discrete-time histogram, we attempt only

the recovery of a discrete approximation of λ(t). Consider again that the time in-

terval [0, tr) is partitioned into nb equally spaced time bins with bin size ∆. De-

fine nd := xd/∆. Let the normalized histogram of detection times be denoted by

h = (h1, . . . , hnb), where
∑nb

m=1 hm = 1. A discrete model for (5.23) is then

h = −diag(g)λ+ Λ−1λ+ Λ−1(gTλ)λ+ ε,

where λ = (λ1, . . . , λnb) is a discretization of λ(t); Λ is the total flux and is assumed

to be known; gn =
∑n−1

m=n−nd hm for n > nd and gn =
∑nb

m=n−nd+nb
hm +

∑n−1
m=1 hm

for n ≤ nd, which follows from (5.21); diag(g) is a diagonal matrix with g on its
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diagonal; and ε represents the error due to discretization and the difference between

the finite-sample empirical distribution and the limiting distribution. For any fixed

h (hence fixed g), define an operator T ( · ; h) : Rnb → Rnb as

λ 7→ T (λ; h) := −diag(g)λ+ Λ−1λ+ Λ−1(gTλ)λ. (5.24)

The inverse problem that we need to solve is then to estimate λ from the nonlinear

system h = T (λ; h) + ε given a measurement vector h. Define the optimization

problem:

min
λ

{
F (λ) := D(λ) + δ[0,M ]nb (λ)

}
, (5.25)

where D(λ) := 1
2
‖h− T (λ; h)‖2 with ‖ · ‖ being the Euclidean norm and δ[0,M ]nb the

indicator function of the bounded hypercube [0,M ]nb for some constant M .

We use a monotone accelerated proximal gradient (APG) algorithm [115] to solve

(5.25). Note that the proximal operator for δ[0,M ]nb is the orthogonal projector onto

[0,M ]nb , denoted by Π[0,M ]nb (·), and the gradient of D(λ) is computed as follows:

∇D(λ) = JTT (T (λ; h)− h)

=

(
gλT

Λ
+

1 + gTλ

Λ
I− diag(g)

)
(T (λ; h)− h) , (5.26)

where JT is the Jacobian matrix of T and I is the identity matrix. We emphasize

that h, g, and Λ are fixed throughout the algorithm, thus they are treated as constant

instead of functions of λ when computing the gradient ∇D(λ) in (5.26). The conver-

gence of the monotone APG algorithm relies on an appropriate choice of the step size

γ, which should satisfy γ < 1/L, where L is the Lipschitz constant of ∇D(·) [115].

The following proposition provides an upper-bound Lu for L.

Proposition 3. The Lipschitz constant L of the function ∇D(·) defined in (5.26) is
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upper-bounded by Lu on [0,M ]nb, where Lu is defined as

Lu := 2Λ−2nbM
2 +

(
2Λ−2 + 2 + 6Λ−1

)√
nbM + 4Λ−1 + 2.

Proof. See Appendix 5.D.

Setting the step size γ = 1/Lu, starting with some initialization λ0 = λ1 = z1 ∈
[0,M ]nb and q0 = 0, q1 = 1, for k ≥ 1, the monotone APG algorithm for solving (5.25)

proceeds as follows:

yk =λk+
qk−1

qk

(
zk − λk

)
+
qk−1 − 1

qk

(
λk − λk−1

)
,

zk+1 = Π[0,M ]nb

(
yk − γ∇D(yk)

)
,

xk+1 = Π[0,M ]nb

(
λk − γ∇D(λk)

)
,

qk+1 =

√
4q2
k + 1 + 1

2
,

λk+1 =





zk+1, if F (zk+1) ≤ F (xk+1);

xk+1, otherwise.

(5.27)

Since (5.25) is a nonconvex optimization problem, a good initialization is im-

portant to avoid converging to local minima that are not global minima. We now

introduce an initialization scheme. Let Cλ be a scalar that depends on λ through Cλ =
∫ tr

0
λ(x)g(x) dx. Then (5.23) can be written as fXD

(x) = −λ(x)g(x)+(1 + Cλ)λ(x)/Λ,

which implies

λ(x) =
fXD

(x)

(1 + Cλ)/Λ− g(x)
. (5.28)

Plugging (5.28) back into the definition of Cλ, we obtain a fixed point equation for

Cλ:

Cλ =

tr∫

0

fXD
(x)g(x)

(1 + Cλ)/Λ− g(x)
dx. (5.29)

Notice that by (5.28) the feasible set for Cλ is C = {C ∈ R : (1 + C)/Λ − g(x) >
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0,∀x ∈ [0, tr)}. It follows that the RHS of (5.29) is positive on C and monotone

decreasing to zero as Cλ goes to infinity. Since the LHS of (5.29) is linearly increasing,

a graph will easily show that (5.29) has a unique fixed point on C. Therefore, if fXD

is known perfectly, then one can solve (5.29) for Cλ and plug Cλ into (5.28) to have

a perfect reconstruction of λ. However, in practice, we only have a histogram formed

by a limited number of measured detection times. Nevertheless, it is plausible to

estimate Cλ as the fixed point of

Ĉλ =

nb∑

m=1

hm gm

(1 + Ĉλ)/Λ− gm
. (5.30)

We can then use λ0 with the nth entry being defined as

λ0
m =

hm

(1 + Ĉλ)/Λ− gm
(5.31)

as the initialization of the nonconvex optimization problem. While we do not have a

theoretical guarantee for convergence to the global minimum, simulations with both

h plus random perturbation and the more principled initialization (5.31) lead to good

estimates. Because solving (5.30) is easy and the initial estimate (5.31) is usually close

to the solution, using the principled initialization allows the algorithm to converge

faster.

Fig. 5·6 presents simulated detection histograms and the corresponding arrival

intensity estimates using (5.27), where S = B = 3.16 and σp = 2 ns. We notice

that as nr increases, the detection histogram approaches fXD
. Our estimated arrival

intensity likewise approaches the true arrival intensity as nr increases. It is interesting

to note that while the error in the detection histogram resembles Poisson noise in that

the variance increases as the mean increases, the error in the arrival intensity estimate

is signal-dependent in a different way. We observe that the error variance is roughly

proportional to the pointwise ratio of fXD
and λ. Although we have no theoretical
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Figure 5·6: Estimation of arrival intensity (bottom) from detection
histogram (top) when S = B = 3.16, σp = 2 ns, ∆ = 50 ps, tr = 100 ns,
and td = 75 ns. From left to right: increased number of illuminations
(nr), where in the last column, theoretical detection histogram is used
as measurement.

results supporting this hypothesis, the observation suggests that the portions of the

arrival intensity easiest to reconstruct are those least attenuated by the dead time

effects, and vice versa.

5.7 Application to Ranging

We now explore how the theory and algorithm developed in Sections 5.3 and 5.6 can be

used for depth estimation. In Section 5.7.1, we assume that the acquisition parameters

S,B,Λ are known from accurate calibration and compare different methods using

the true parameter values. In Section 5.7.2, we use the estimators for Λ, B and S

introduced in Section 5.4 to test our proposed methods using estimated parameters.

5.7.1 Ranging with True Acquisition Parameters

The ML depth estimator for the Poisson arrival process passes the set of arrivals

through a log-matched filter (LMF) that is matched to the arrival intensity λ(t),

where the LMF is defined as v(t) := log(λ(t)) = log (fXA
(t)) + log(Λ) [11, Eqn. (33)].
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Since photon loss due to dead time is negligible for low-flux acquisitions, the filter

matched to the arrival PDF fXA
is thus the ML depth estimator given a set of low-flux

relative detection times {x`}k`=1. The LMF for estimating the depth z is thus defined

as

ẑ
(
{x`}k`=1; fXA

)
:= arg max

z

k∑

`=1

tr∫

0

δ(t− x`)v (t+ 2z/c) dt

= arg max
z

k∑

`=1

log (fXA
(x` + 2z/c)) .

In practical implementations, {x`}k`=1 is quantized into nb equally spaced time bins

over [0, tr) with bin centers {bm}nbm=1. A histogram h = (h1, . . . , hnb) for the low-flux

detection times can then be obtained from the quantized data {x̄`}k`=1. Moreover,

instead of estimating the depth z, we can estimate the time delay τ := 2z/c, since

the mapping from z to τ is one-to-one. The estimator for τ is then

τ̂ (h; fXA
) := arg max

τ∈Γ

{
nb∑

m=1

hm log (fXA
(bm + τ))

}
+ bnb/2,

where Γ := {−bnb/2, . . . ,−b1, 0, b1, . . . , bnb/2} is a set of on-grid relative time delays,

and fXA
is the arrival PDF assuming bnb/2 is the true delay.

In Section 5.3, we have derived the limit of the empirical distribution of high-flux

detection times fXD
. Hence, we can similarly define a log-matched filter matched to

fXD
and define an estimator as

τ̂ (h; fXD
) := arg max

τ∈Γ

{
nb∑

m=1

hm log (fXD
(bm + τ))

}
+ bnb/2,

which is preferable if h is obtained via high-flux acquisition with non-negligible photon

loss due to dead time. Note however that τ̂ (h; fXD
) is not the ML estimator with dead

time effects (even without quantization error), because in this case the joint PDF does
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not factorize as product of the marginals. While one can obtain the exact joint PDF

from the transition PDF (5.5) and the marginal PDF fXD
, the true ML estimator is

inconvenient to implement. Therefore, τ̂ (h; fXD
) is used in our simulations.

In Section 5.6, we have derived an algorithm for estimating the arrival time distri-

bution from the detection time distribution. Hence, given a detection histogram, our

algorithm can compute an estimate for the arrival histogram ĥA, and then τ(ĥA; fXA
)

can be used for depth estimation.

Based on the above discussion, letting hLF and hHF denote the detection time his-

tograms obtained via low-flux and high-flux acquisitions, respectively, we compare six

depth estimation methods applicable to asynchronous TCSPC systems. The methods

are as follows:

1. LF: The low-flux approach first attenuates the incident flux (in practice by

applying a neutral density filter) to limit the total flux arriving at the detector

to 5% so that dead time effects can be ignored. Since the low-flux detection

histogram hLF can then be considered to be the same as the arrival histogram,

it then uses τ̂(hLF; fXA
) as the estimator.

2. HF: The high-flux method näıvely assumes that dead time has no effect on the

acquisition and uses the estimator τ̂(hHF; fXA
), even when hHF is not a good

approximation to the arrival histogram.

3. SC: Shift correction assumes that the dead time only adds a bias to the estimate

and that the bias can be computed and subsequently subtracted away. In

practice, this is equivalent to the optical calibration procedure in [84]; for our

simulations, we compute the shift in the mode of fXD
compared to that of fXA

and subtract the shift correction from the HF estimate.

4. Isbaner: This method, based on the work of Isbaner et al., first estimates the
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arrival histogram ĥA from hHF using the algorithm in [94], which has publicly

available code,2 and then applies the estimator τ̂(ĥA; fXA
). While [94] can esti-

mate Λ from data, we provide the algorithm with the true Λ for fair comparison.

5. Proposed method 1 – MCPDF: Our first method computes the Markov

chain-based PDF fXD
to directly apply τ̂(hHF; fXD

).

6. Proposed method 2 – MCHC: Our second method is similar to that of Is-

baner et al., except it first estimates the arrival histogram ĥA from hHF using the

Markov chain-based histogram correction algorithm introduced in Section 5.6

and then uses τ̂(ĥA; fXA
) as the estimator.

We perform Monte Carlo simulations with tr = 100 ns, td = 75 ns, σp = 0.2 ns,

and bin duration ∆ = 5 ps, which are reasonable experimental parameters for some

laboratory settings. For each combination of S and B, we generate 600 realizations

of the arrival process with nr = 104 illuminations. Starting with the first arrival,

the high-flux detection sequence is generated by removing subsequent arrivals if they

occur within td of the previous detection. Generation of the corresponding low-

flux detection sequence proceeds in the same manner, but the arrival process is first

attenuated via Bernoulli thinning, so photons arrive in only 5% of illumination periods

on average. For each method, the log-matched filtering is performed via circular cross-

correlation (circular convolution of the histogram with the time-reversed PDF). This

is due to the asynchronous dead time preserving the shift invariance of the arrival

process.

Fig. 5·7 compares the MSE for time delay estimation achieved by the six compared

methods as a function of the number of illuminations.

We observe that MCPDF usually achieves the lowest MSE, since it directly per-

forms parameter estimation with the updated detection model. Equivalently, MCPDF

2http://projects.gwdg.de/projects/deadtimecorrectiontcspc
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Figure 5·7: Plots of the MSE for ranging as a function of nr for
tr = 100 ns, td = 75 ns, σ = 0.2 ns, ∆ = 5 ps and various S and B
values. Our proposed methods (MCPDF and MCHC) take advantage
of the increased detection rate to perform more accurate ranging than
with the low-flux acquisition for all values of S, B, and nr.

needs the fewest illuminations to achieve a given MSE, hence enabling the fastest ac-

quisition. The MSE of MCHC is comparable to that of MCPDF, limited only in

that it must first invert the histogram before estimating the depth. Compared to

the LF approach, both MCPDF and MCHC require fewer illuminations to achieve

the same MSE, and that time efficiency increases as S and B increase and dead time

has a more significant impact. Regarding the other approaches, HF is more effective

only for low numbers of illuminations but the estimate quickly becomes biased and is

therefore not suited to precise depth measurement. Correcting for this bias with SC

is quite effective for extending to somewhat higher nr, although eventually more ac-

curate modeling is necessary for more precise estimates. The state-of-the-art method

for dealing with asynchronous dead-time models by Isbaner et al. [94] achieves low

MSE when the total flux is low or moderate, while the accuracy degrades in high-flux
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Figure 5·8: Plots of the MSE for ranging as a function of the number
of detections for tr = 100 ns, td = 75 ns, σ = 0.2 ns, ∆ = 5 ps and
various S and B values. For high S and B not too large, the presence
of dead time actually improves ranging accuracy with our MCPDF
method relative to the low flux measurements due to the narrowing of
the signal pulse.

scenarios. The performance degradation is due to their approximation of the detec-

tion time distribution being less accurate in high-flux settings (S. Isbaner, personal

communication, May 14, 2018).

In addition to enabling faster acquisition, we explored whether dead time could

lead to more accurate ranging for an equal number of detected photons. The Fisher

information analysis in Section 5.3.2 has provided a theoretical prediction that for

sufficiently high SBR, estimating depth from the dead time-distorted detection time

distribution can yield lower MSE than that from the arrival time distribution. Al-

though the estimators in our Monte Carlo simulation are not guaranteed to achieve

the Cramér-Rao lower bound (i.e., the reciprocal of Fisher information), we would

like to see whether the reduction of ranging error due to dead time also exists with
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(a) (b)

Figure 5·9: Results of ranging simulations performed with acquisition
parameters estimated from the detection data, where the true values
were S = B = 0.562, tr = 100 ns, td = 75 ns, σp = 0.2 ns, and ∆ =

10 ps. In (a), the estimates B̂, Λ̂, and Ŝ improve as nr increases. The
ranging results in (b) using estimated parameters show no degradation
in performance compared to the methods with parameters known a
priori.

simple and commonly used estimators. Fig. 5·8 compares the MSE for time delay

estimation by the six methods as a function of the number of detections. We notice

that for the high SBR cases where S = 3.16, B = 0.1 and S = 3.16, B = 0.562,

MCPDF outperforms LF, which provides numerical evidence that dead time can be

beneficial when properly modeled.

5.7.2 Ranging with Estimated Acquisition Parameters

The results in Section 5.7.1 use methods that compute fXD
, fXA

, and ĥA assuming

the true values of B, S, and Λ are known. However, in most practical scenarios, this

information will not be available a priori. We show here results using the parameter

estimation strategies outline in 5.4.

Fig. 5·9 shows one example of estimates using this strategy for 500 Monte Carlo

trials with S = B = 0.562, tr = 100 ns, td = 75 ns, σp = 0.2 ns, and ∆ = 10 ps. In

Fig. 5·9(a), the B̂, Λ̂, and Ŝ estimates consistently improve as nr increases beyond a
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very small number of detections. The resulting depth estimates shown in Fig. 5·9(b)

are virtually indistinguishable from the methods using the known parameter values. It

is worth noting that, while B̂ML applies for any value of B, Λ̂ML becomes less reliable

for large Λ since P (R = 0) in (5.9) approaches unity. If the number of illuminations

was not fixed in advance, one could pursue an adaptive acquisition strategy as in [129].

Alternatively, for 3D imaging, one could take advantage of spatial correlations to

estimate Λ, for example, to borrow measurements from neighboring pixels.

5.7.3 Signal Quantization for High-Flux Depth Imaging

Regardless of whether S and B are considered to be known a priori or estimated from

the data, scaling up from a single depth measurement to an entire depth map would

require recomputing fXD
for each pixel. Since recomputation of fXD

with each pixel’s

reflectivity αi,j would be a slow and inefficient process, this section instead considers

the effect of precomputing f̃XD
for a small set of evenly spaced values of α over [0, 1].

Then for each (i, j) the f̃XD
for the closest value to αi,j is used in the log-matched filter

to estimate depth. Here we assume a conventional camera coaxially aligned with the

lidar and spectrally filtered to accept the same wavelength can acquire a grayscale

image that is a sufficient approximation of α. Then the camera image α̃ acquired

simultaneously with the lidar data can be used in the depth image reconstruction.

To validate our depth estimation algorithm, we simulate detection data using

ground truth depth and reflectivity images from the Middlebury stereo dataset [164].

The color images are first converted to grayscale and then normalized so that αi,j ∈
[0.1, 1.0]. The disparity image is converted to a depth map using intrinsic camera

properties, and the scene is arbitrarily shifted by 10 m (66.7 ns). Both images are

downsampled to 93 × 105 pixels to reduce processing time. For all simulations, we

use parameter values of β = 6, B = 3, σp = 0.2 ns, ∆ = 0.02 ns, tr = 100 ns, and

td = 75 ns.
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Figure 5·10: Results for simulated detections from a true 3D scene
illustrate the effectiveness of using the Markov chain modeling for high-
flux acquisition. Using a 3-bit grayscale reflectivity approximation, our
MCPDF method outperforms both low-and high-flux depth estimate
for the number of illuminations nr = 100 and 2000. Our MCPDF
method approximately matches the LF performance with 20× fewer
illuminations, greatly speeding up acquisition.

Fig. 5·10 shows the results of simulated acquisitions and depth estimation for the

Bowling scene with the number of illuminations nr = 100 and 2000. Reflectivity

measurement by a 3-bit grayscale camera is emulated. Low-flux acquisition results

in 4.80 and 96.3 detected photons per pixel over the scene for the short and long

acquisitions, respectively. Without first attenuating the photon flux, the high-flux

acquisition detects photons much faster, with an average rate of just more than one

photon detection per illumination, emphasizing the multi-stop ability of modern TC-

SPC systems. The depth estimation results for the short acquisition demonstrate

why the LF approach is insufficient for real-time applications—there are simply too
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Figure 5·11: Comparison of log10(|ẑ−z|) for HF and MCPDF for the
high-flux acquisition with nr = 100 illuminations. The error for HF in
(a) is lower for darker scene patches with detection PDFs less distorted
by dead time, whereas the error for MCPDF in (b) is lower for lighter
scene patches which reflect back more signal photons.

few signal detections to reliably estimate the depth. Increasing nr enables an im-

provement in root mean squared error (RMSE) of several orders of magnitude for

the LF method, with RMSE computed as in (2.12). On the other hand, the results

from the HF estimator barely improve as nr increases since it does not take dead

time into account, so the error is dominated by a bias. The RMSE of our proposed

Markov chain-based MCPDF method continues to decrease as more data is acquired.

Furthermore, MCPDF achieves nearly the same RMSE for the short acquisition as

LF does for the long acquisition, enabling accurate depth imaging to be performed

20 times faster.

A comparison for the high-flux acquisition in Fig. 5·11 further illustrates the ad-

vantage of MCPDF. The absolute error for HF and MCPDF is shown on a logarithmic

scale. The figure reveals that when the overall arrival rate is high enough, the small-

est errors for HF somewhat counterintuitively occur for the darkest pixels, since their

detection PDFs are least distorted by the dead time. On the other hand, by correctly

anticipating the dead time distortion, errors for MCPDF occur roughly proportionally

with the number of detected photons.

We also explore the effect of the quantization of α̃ on the reconstruction error.
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Figure 5·12: The performance of MCPDF improves as more quan-
tization levels are used for the reflectivity estimate. The plot shows
the median RMSE values for 100 realizations of detection data for the
Bowling scene with nr = 2000 illuminations.

For the same experimental parameters as previously used, 100 realizations of photon

detection data were generated for different numbers of bits for the Bowling scene

reflectivity. Fig. 5·12 shows the median RMSE results over the 100 trials. The median

is plotted since significant outliers occasionally occurred when the RMSE for the LF

method was dominated by a small number of pixels with large depth errors. It is clear

from the plot that the performance of MCPDF greatly improves with the number of

quantization levels, whereas the RMSE of the LF and HF methods does not depend on

information about the reflectivity. Fig. 5·2 helps illustrate why the methods depend

differently on the quantization of α̃. For the LF and HF methods, which use fA, a

change in the estimated value of αi,j only changes the strength of the signal relative

to the background, but the position of the peak is unaffected, so the log-matched

filter depth estimates are mostly unchanged. On the other hand, the shape of fXD
,

including the position of its peak, depends strongly on the exact αi,j value, so a closer

approximation of αi,j from finer quantization yields a more accurate approximation of

fXD
and thus a better log-matched filter depth estimate. Moreover, Fig. 5·12 implies

that for the Bowling scene used in our experiment, 3 bits are sufficient to achieve
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small performance degradation due to reflectivity quantization, though the number

of bits needed is likely affected by the range of αi,j values.

5.8 Conclusion

This chapter studied dead time compensation for a modern, asynchronous, nonpara-

lyzable detector. By using a Markov chain model for detection times, we obtained the

limit of the empirical distribution of detection times as the stationary distribution of

the Markov chain. We found that the Fisher information per detection can be higher

for this limiting distribution than for the arrival distribution, which suggests that the

distortion due to dead time can be beneficial for depth estimation if used properly.

Indeed, simulation results showed that our first proposed method MCPDF, which is a

log-matched filter matched to the limiting distribution, achieved lower error than the

low-flux method for a fixed number of detections when the SBR is sufficiently high.

By exploiting the stationary condition for the Markov chain, we derived our second

proposed method MCHC, which estimates the arrival distribution from the detection

distribution by solving a nonlinear inverse problem with a provably convergent opti-

mization algorithm, and then the corrected histogram is used in a log-matched filter

estimator. Depth imaging results show our method can achieve accurate depth images

20 times faster than the conventional method. The use of spatial regularization could

allow for accurate imaging with even lower photon counts, further reducing acquisi-

tion times. Although we only tested MCHC in the context of ranging, it makes no

assumptions about the arrival intensity and should thus be applicable to other dead-

time-limited TCSPC applications, including FLIM and NLOS imaging; we leave such

extensions as future work.
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Appendices

5.A Proof of Proposition 1

First, we show that {Xi}i∈N is a Markov chain. Define Bi := {Xi ≤ xi},∀i ∈ N. We

need to establish that

P (Bi+1|Xn = xn,∀n ≤ i) = P (Bi+1|Xi = xi) . (5.32)

The following equivalence of events will be useful in the proof, as it relates the sets

defined by elements of {Xi}i∈N to those of {Ti}i∈N, which has a known transition

density (5.3):

{Xi+1 ≤ xi+1} = ∪∞n=0{ntr < Ti+1 ≤ ntr + xi+1},

{Ti = nitr + xi} = {Ni = ni} ∩ {Xi = xi}.
(5.33)

Let td = kdtr + xd, where kd = btd/trc and xd = td mod tr. Moreover, define An :=

{ntr < Ti+1 ≤ ntr + xi+1},∀n ∈ N ∪ {0}. Then we have

P (Bi+1|Xj = xj,∀j ≤ i)

=
∑

n1,...,ni

P (Bi+1|Xj = xj, Nj = nj,∀j ≤ i)P (Nj = nj, ∀j ≤ i|Xj = xj,∀j ≤ i)

=
∑

n1,...,ni

P (∪∞n=0An|Tj = njtr + xj, ∀j ≤ i)P (Nj = nj,∀j ≤ i|Xj = xj,∀j ≤ i)

(5.34)

where the summation is over all 0 ≤ n1 ≤ · · · ≤ ni <∞ and the last equality follows

by (5.33). In the following, we show that the first probability in (5.34) only depends
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on xi and xd.

P (∪∞n=0An|Tj = njtr + xj,∀j ≤ i)

(a)
=

∞∑

n=0

P (An|Ti = nitr + xi)

(b)
=

(ni+kd)tr+xi+1∫

(ni+kd)tr+xi+xd

λ(t) exp


−

t∫

(ni+kd)tr+xi+xd

λ(τ)dτ


 dt

+
∞∑

n=ni+kd+1

ntr+xi+1∫

ntr

λ(t) exp


−

t∫

(ni+kd)tr+xi+xd

λ(τ)dτ


 dt, (5.35)

where step (a) follows by the Markov property of {Ti}∞i=1 and {An} being disjoint and

in step (b), we have plugged in (5.3) and assumed that xi + xd ≤ xi+1 ≤ tr. Note that

other relationships between xi, xi+1, xd, tr may lead to slightly different expression,

but the derivation follows similarly. (We will see that the expression does not depend

on kd.) Label the two terms in (5.35) as S1 and S2. First, consider S1:

S1 =

xi+1∫

xi+xd

λ(t) exp


−

nitr+t∫

nitr+xi+xd

λ(τ)dτ


 dt

=

xi+1∫

xi+xd

λ(t) exp


−

t∫

xi+xd

λ(τ)dτ


 dt,



166

which follows by change of variable and λ(t+ nitr) = λ(t). Next consider S2:

S2 =
∞∑

n=ni+kd+1

xi+1∫

0

λ(t) exp


−

ntr+t∫

(ni+kd)tr+xi+xd

λ(τ)dτ


 dt

=
∞∑

n=0

xi+1∫

0

λ(t) exp


−

(n+ni+kd+1)tr+t∫

(ni+kd)tr+xi+xd

λ(τ) dτ


 dt

=
∞∑

n=0

(exp(−Λ))n
xi+1∫

0

λ(t) exp


−

tr+t∫

xi+xd

λ(τ) dτ


 dt

=

∫ xi+1

0
λ(t) exp

(
−
∫ tr+t

xi+xd
λ(τ) dτ

)
dt

1− exp(−Λ)
.

Notice that neither S1 nor S2 depends on kd, {Nj}j≤i, or {Xj}j<i. Plugging S1 and

S2 back into (5.34), we have that

P (Bi+1|Xj = xj,∀j ≤ i) =
∑

n1,...,ni

(S1 + S2)P (Nj = nj,∀j ≤ i|Xj = xj, ∀j ≤ i)

= S1 + S2,

where the last equality holds since P (·|Xj = xj,∀j ≤ i) is a probability measure and

that the summation
∑

n1,...,ni
is over all 0 ≤ n1 ≤ . . . ≤ ni < ∞. Hence, we have

established (5.32), and therefore proved that {Xi}i∈N is a Markov chain.

Next, we compute the transition PDF to justify (5.5):

fXi+1|Xi
(xi+1|xi) =

d

dxi+1

P (Xi+1 ≤ xi+1|Xi = xi)

=
d

dxi+1

S1 +
d

dxi+1

S2 =
λ(xi+1) exp

(
−
∫ xi+1

xi+xd
λ(τ) dτ

)

1− exp(−Λ)
.

Recall that we have assumed xi + xd ≤ xi+1 ≤ tr in the derivation above, and we can

check that it matches (5.5) for this case. Other cases can be derived similarly.
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5.B Derivation of Fisher Information

We present the derivation for FID; the derivation for FIA follows similarly. By defini-

tion of Fisher information:

FID =

tr∫

0

(
− ∂2

∂z2
log (fXD

(x; z))

)
fXD

(x; z) dx

=

tr∫

0

(
∂
∂z
fXD

(x; z)
)2

fXD
(x; z)

dx−
tr∫

0

∂2

∂z2
fXD

(x; z) dx

(a)
=

tr∫

0

(
∂
∂z
fXD

(x; z)
)2

fXD
(x; z)

dx− ∂2

∂z2




tr∫

0

fXD
(x; z) dx




=

tr∫

0

(
∂
∂z
fXD

(x; z)
)2

fXD
(x; z)

dx,

where the interchange of derivative and integral in step (a) holds trivially, since the

range of the integral is finite.

5.C Proof of Proposition 2

In the following, we will show that

P
(
Ri = ri, Ri−1 = ri−1

)
=
(

1− exp(−Λ)
)2

i∏

j=i−1

exp(−rjΛ),

which would imply that Proposition 2 is valid for Ri and Ri−1; the proof for more

than two Ri’s follows similarly.

Define event Ej for j = i− 1, i as

Ej :=
{
rjtr + Tj + td ≤ Tj+1 < (rj + 1)tr + Tj + td

}
.
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By definition of Ri in (5.8),

P
(
Ri = ri, Ri−1 = ri−1

)
= P

(
Ei ∩ Ei−1

)

= E
[
P
(
Ei ∩ Ei−1

∣∣∣Ti−1

)]
.

Note that by the Markov property of absolute detection times as discussed in Sec-

tion 5.3.1, the joint PDF of Ti+1, Ti given Ti−1 = ti−1 is

fTi+1,Ti|Ti−1
(ti+1, ti|ti−1) = fTi+1|Ti(ti+1|ti)fTi|Ti−1

(tt|ti−1).

Let aj := rjtr + tj + td for j = i− 1, i. Then

P
(
E1, E2

∣∣∣Ti−1 = ti−1

)
=

tr+ai−1∫

ai−1

tr+ai∫

ai

fTi+1|Ti(ti+1|ti)fTi|Ti−1
(ti|ti−1) dti+1 dti.

First consider the inner integral:

tr+ai∫

ai

fTi+1|Ti(ti+1|ti) dti+1 =

tr+ai∫

ai

λ(ti+1) exp
(
−

ti+1∫

ti+td

λ(τ) dτ
)
dti+1

= − exp
(
−

ti+1∫

ti+td

λ(τ) dτ
) ∣∣∣

ti+1=tr+ai

ti+1=ai

= (1− exp(−Λ)) exp(−riΛ).

Note that the inner integral does not depend on ti. Using similar calculation, we have

that the outer integral does not depend on ti−1. Hence,

P
(
E1 ∩ E2

∣∣∣Ti−1 = ti−1

)
= P

(
E1 ∩ E2

)

=
(

1− exp(−Λ)
)2

i∏

j=i−1

exp(−rjΛ),

which is the desired result.
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5.D Proof of Proposition 3

In the following, we will find an upper bound for the Lipschitz constant L of ∇D(·)
defined in (5.26). For brevity, we omit the dependence on h in the notation for T .

By (5.26), we have

Λ∇D(λ) = gλTT (λ) + T (λ) + gTλT (λ)− Λ diag(g)T (λ)

− gλTh− h− gTλh + Λ diag(g)h.

It follows that for any u,v ∈ [0,M ]nb , we have by triangle inequality that

Λ‖∇D(u)−∇D(v)‖

≤ ‖guTT (u)− gvTT (v)‖+ ‖T (u)− T (v)‖

+ ‖gTuT (u)− gTvT (v)‖

+ Λ‖diag(g)T (u)− diag(g)T (v)‖

+ ‖guTh− gvTh‖+ ‖gTuh− gTvh‖.

Label the six terms on the right hand side as T1, . . . , T6. We will show that there

exist constants L1, . . . , L6 < ∞ such that Ti ≤ Li‖u − v‖,∀i = 1, . . . , 6. Then the

Lipschitz constant L of the gradient ∇D is upper bounded by Λ−1
∑6

i=1 Li.

First consider T2. Let ĝ := maxi∈[nb] gi. Then

T2

(a)

≤ ‖gTuu− gTvv‖+ ‖u− v‖+ ‖diag(g)(u− v)‖
(b)

≤ ‖gTuu− gTuv‖+ ‖gTuv − gTvv‖+ (1 + ĝ)‖u− v‖
(c)

≤ ‖g‖‖u‖‖u− v‖+ ‖g‖‖v‖‖u− v‖+ (1 + ĝ)‖u− v‖
(d)

≤ 2
√
nbM‖u− v‖+ 2‖u− v‖ = 2(

√
nbM + 1)‖u− v‖,

where step (a) follows by triangle inequality, step (b) follows by triangle inequality
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and the fact that the largest eigenvalue of a diagonal matrix equals to the largest

entry on its diagonal, and step (c) follows by Cauchy–Schwarz. To see step (d),

notice that ‖u‖, ‖v‖ ≤ √nbM , since u,v ∈ [0,M ]nb and maxi∈[nb] gi ≤ ‖g‖ ≤ ‖g‖1 ≤
‖h‖1 = 1 (the second inequality follows by the fact that g is non-negative and so

‖g‖ =
√∑nd

i=1 g
2
i ≤

√
(
∑nd

i=1 gi)
2 = ‖g‖1, the third inequality assumed td ≤ tr and

the last equality follows by h being a proper probability density function). Similarly,

we can show that T4 ≤ 2Λ(
√
nbM + 1)‖u− v‖, T5 ≤ ‖u− v‖, and T6 ≤ ‖u− v‖.

Next consider T1:

T1

(a)

≤
∣∣uTT (u)− vTT (v)

∣∣
(b)

≤
∣∣uTT (u)− vTT (u)

∣∣+
∣∣vTT (u)− vTT (v)

∣∣
(c)

≤ ‖T (u)‖‖u− v‖+ ‖v‖‖T (u)− T (v)‖
(d)

≤
(
Λ−1nB2 +

(
Λ−1 + 2

)√
ndM

)
‖u− v‖,

where step (a) follows by ‖g‖ ≤ 1 as established before, step (b) follows by triangle

inequality, step (c) follows by Cauchy–Schwarz, and step (d) follows by

‖T (u)‖ = ‖Λ−1gTuu + Λ−1u− diag(g)u‖

≤ Λ−1‖g‖‖u‖2 + Λ−1‖u‖+ ĝ‖u‖

≤ Λ−1nbM
2 + Λ−1√nbM +

√
nbM.

Similarly, we can show that

T3 ≤
(
Λ−1nbM

2 +
(
Λ−1 + 2

)√
nbM

)
‖u− v‖.

Proposition 3 is then obtained by combining the upper bounds for T1 through T6.
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Chapter 6

Conclusions

Given its sensitivity to the smallest quantities of light and its ability to tag detected

photons with high temporal precision, single-photon lidar holds promise for depth

mapping under challenging requirements of low-power illumination, long-range mea-

surements, or real time acquisition. However, sifting through the streams of detection

times to form useful depth and reflectivity images is a non-trivial task. Applying in-

sufficiently rigorous models of detection time distributions yields output images that

range from misleading to entirely erroneous.

After carefully outlining the various components and basic modeling approaches

for SPL systems, this thesis focused on three conditions that caused previous estima-

tion approaches to fail. In Chapter 3, we considered the problem of tolerating strong

ambient light, which is important for the use of SPL systems in real-world environ-

ments. Key to solving this problem was deriving rules for deciding when an estimate

was likely due to background light and should thus be improved or ignored. The

resulting algorithm succeeded in reconstructing scenes for which each pixel detected

only 2 signal photons and 50 background photons on average. Chapter 4 discussed the

challenge of recovering precise depth estimates, even if the time stamps were captured

with much coarser resolution. Mathematical modeling and simulation demonstrated

that subtractive dither could be used to estimate Gaussian-distributed signals more

efficiently and with greater precision than measurements with coarse quantization

or nonsubtractive dither. Implementing an SPL system incorporating subtractive
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dither and modifying estimators to account for non-Gaussian pulse shapes enabled

up to 13-fold improvements in estimation accuracy. Finally, Chapter 5 addressed the

dead time following each detection in an SPL system, which limits acquisition speeds

or leads to erroneous depth estimates. The temporal dependence of one detection on

the previous detection time led to identification of the detection time sequence as a

Markov chain. The stationary distribution of the Markov chain matches the empirical

distribution captured experimentally as a histogram and can thus be used to estimate

depth directly or correct the histogram of dead time distortions.

The push for faster, safer, and cheaper lidar systems that can image the world

with enough fidelity for autonomous navigation means there are countless problems

to address that could not be contained in a single thesis. In terms of probabilistic

modeling, there are more elaborate optical interactions with the scene—including

multiple bounces, fog and other scattering or attenuating media, laser broadening as

a function of distance and surface orientation, and unknown or varying background

levels—that defy previous modeling assumptions but could extend functionality if

included. Additionally, there are modifications to the acquisition procedure—e.g.,

temporally- or spatially-coded illumination, gating, the use of multiple or different

types of detectors—that interact with existing considerations such as dead time in

complex ways. Finally, there is the question of the next step in the processing pipeline:

how those probabilistic models are integrated into scene reconstruction algorithms

that use structural priors. Modern image processing and optimization approaches

integrating Bayesian inference, plug-and-play priors, or deep neural networks may

achieve significantly better results than initial methods using TV regularization. Ul-

timately, single-photon lidar implementations will be successful when their proba-

bilistic models account for a wide variety of environmental conditions, are tailored

to the specific hardware and acquisition method, and are still tractable enough for
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useful computation within algorithmic procedures.
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of afterpulsing behavior and models in single photon counting avalanche photo
diode detectors. Scientific Reports, 8(1):5076, Dec. 2018. 18

[222] C. L. Zitnick and S. B. Kang. Stereo for image-based rendering using image
over-segmentation. International Journal of Computer Vision, 75(1):49–65,
2007. 48, 49

[223] A. Zymnis, S. Boyd, and E. Candès. Compressed sensing with quantized
measurements. IEEE Signal Processing Letters, 17(2):149–152, Feb. 2010. 87

https://figshare.com/articles/exgauss/971318


CURRICULUM VITAE



195



196



197



198


	1 Introduction
	1.1 Time-Correlated Single Photon Counting
	1.1.1 Fluorescence Lifetime Imaging
	1.1.2 Single-Photon Lidar

	1.2 Preview of Main Contributions

	2 Background on Single-Photon Lidar
	2.1 Overview
	2.2 Acquisition System
	2.2.1 Optical Factors
	2.2.2 Detection Electronics
	2.2.3 Acquisition Variations
	2.2.4 Basic Experimental Setup

	2.3 Basic Probabilistic Measurement Model
	2.3.1 Optical Effects
	2.3.2 Non-ideal Electronics Effects

	2.4 Reconstruction Basics
	2.4.1 Depth Map vs. Point Cloud
	2.4.2 Parameter Estimation


	3 Unmixing Signal and Background Light
	3.1 Overview
	3.2 Unmixing Signal and Background Processes
	3.2.1 Pixelwise Unmixing
	3.2.2 Spatially-Adaptive Unmixing

	3.3 Unmixing Algorithm
	3.3.1 Windowing
	3.3.2 Reflectivity Estimation
	3.3.3 Superpixel Formation
	3.3.4 Depth Estimation

	3.4 Results
	3.4.1 Simulated Results
	3.4.2 Performance Analysis
	3.4.3 Experimental Results

	3.5 Further Performance Evaluation
	3.6 Conclusions

	4 Subtractively-Dithered Ranging
	4.1 Overview
	4.2 Formulation, Background, and Motivation
	4.2.1 Measurement Model
	4.2.2 Subtractively-Dithered Quantization

	4.3 Generalized Gaussian Approximation and Estimation
	4.3.1 Approximation
	4.3.2 Estimation

	4.4 Estimator Implementations
	4.4.1 ML Estimators
	4.4.2 Order Statistics-Based Estimators

	4.5 Dither Noise Regimes
	4.5.1 Defining 1
	4.5.2 Defining 2

	4.6 Numerical Results
	4.6.1 Normalized MSE vs. Z/
	4.6.2 Order Statistics-Based Estimator Coefficients
	4.6.3 Normalized MSE vs. K

	4.7 Subtractively-Dithered Single-Photon Lidar
	4.7.1 Architecture and Dither Implementation
	4.7.2 Related Work
	4.7.3 Experimental Results for Gaussian Pulse Modeling
	4.7.4 Exponentially-Modified Gaussian Pulse Modeling
	4.7.5 Subtractively-Dithered EMG
	4.7.6 Dithered EMG Mean Estimation
	4.7.7 Experimental Results for EMG Pulse Modeling

	4.8 Conclusions
	4.A Cramér-Rao Bound
	4.B Kurtosis Matching
	4.C Mean Squared Error of "0362Q

	5 Dead Time Compensation
	5.1 Overview
	5.2 Dead Time Characterization
	5.2.1 Paralyzability
	5.2.2 Synchronization
	5.2.3 Dead Time Compensation Approaches
	5.2.4 Other Related Work

	5.3 Empirical Distribution of Detection Times
	5.3.1 Markov Chain Model for Detection Times
	5.3.2 Comparison of Fisher Information

	5.4 Acquisition Parameter Estimation
	5.4.1 Maximum Likelihood Estimator for 
	5.4.2 Maximum Likelihood Estimator for B
	5.4.3 Estimating S

	5.5 Experimental Verification
	5.6 Arrival Intensity Estimation Algorithm
	5.6.1 Relationship between Arrival and Detection Distributions
	5.6.2 Nonlinear Inverse Formulation and Algorithm

	5.7 Application to Ranging
	5.7.1 Ranging with True Acquisition Parameters
	5.7.2 Ranging with Estimated Acquisition Parameters
	5.7.3 Signal Quantization for High-Flux Depth Imaging

	5.8 Conclusion
	5.A Proof of Proposition 1
	5.B Derivation of Fisher Information
	5.C Proof of Proposition 2
	5.D Proof of Proposition 3

	6 Conclusions
	References
	Curriculum Vitae



