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Abstract

Bayesian hypothesis testing inevitably requires prior probabilities of hypotheses. Mo-
tivated by human decision makers, this thesis studies how binary decision making is
performed when the decision-making agents use imperfect prior probabilities. Three
detection models with multiple agents are investigated: distributed detection with
symmetric fusion, sequential detection with social learning, and distributed detection
with symmetric fusion and social learning.

In the distributed detection with symmetric fusion, we consider the agents to be
a team aiming to minimize the Bayes risk of the team’s decision. In this model,
incorrect beliefs reduce the chance of the agents from being right so always lead to
an increase in the Bayes risk of the decision-making team.

In contrast, the role of beliefs is more complicated in the sequential detection
model with social learning, where agents observe public signals, which are decisions
made by other agents. Since each agent affects the minimum possible Bayes risk
for subsequent agents, she may have a mixed objective including her own Bayes
risk and the Bayes risks of subsequent agents. For an earlier-acting agent, it is
shown that being informative to later-acting agents is different from being right.
When private signals are described by Gaussian likelihoods, informative earlier-acting
agents should be open-minded toward the unlikely hypothesis. Social learning helps
imperfect agents who have favorable incorrect beliefs outperform perfect agents who
have correct beliefs.

Compared to in the sequential detection model, social learning is less influential in
the distributed detection model with symmetric fusion. This is because social learning
induces the evolution of the fusion rule in the distributed detection model, which
countervails the other effect of social learning—belief update. In particular, social
learning is futile when the agents observe conditionally independent and identically
distributed private signals or when the agents require unanimity to make a decision.
Since social learning is ineffective, imperfect agents cannot outperform perfect agents,
unlike in the sequential detection model.

Experiments about human behavior were performed in team decision-making sit-
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uations when people should optimally ignore public signals. The experiments suggest
that when people vote with equal qualities of information, the ballots should be se-
cret.

Thesis Supervisor: Vivek K Goyal
Title: Visiting Scientist, Research Laboratory of Electronics
Assistant Professor of Electrical and Computer Engineering, Boston University
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Chapter 1

Introduction

A perfect decision-making system processes information with full knowledge of its

statistical properties to make the best possible decisions. The processing includes ob-

serving signals, computing sufficient statistics, comparing the outcomes of decisions,

and maximizing the payoffs. However, some systems are not perfect because of limi-

tations on information, memory size, computing power, or energy. This thesis deals

with decision systems that have cognitive limitations and consequently incorrectly

perceive the prior probabilities of the given alternatives. The best performances of

these imperfect decision systems are found and compared to those of perfect deci-

sion systems. The thesis focuses on decision-making problems performed by multiple

agents rather than by a single agent because a group of multiple agents has more

flexibility to cope with the incorrect knowledge of prior probabilities. The effect

of incorrect prior probabilities is discussed in three fundamental forms of decision

fusion—parallel decision making with a symmetric fusion rule, sequential decision

making, and sequential decision making with a symmetric fusion rule.

Detection theory has been developed to improve techniques that distinguish in-

formation from noisy signals. The primary objective of a detection rule is to decrease

the possibility or the expected cost of incorrect detection of target states. The detec-

tion rule consists of a set of thresholds to classify the noisy signals into one of several

states. It is important for a decision system to determine the thresholds that meet a

desired criterion.

The design of thresholds requires some statistics about the states and signals.

It requires the likelihood function of the signals conditioned on each state for the
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maximum likelihood criterion. It requires the likelihood functions of the signals and

the prior probabilities of states for the minimum error probability criterion. Both

statistics are also required for the minimum Bayes risk criterion.

The minimum Bayes risk criterion evaluates detection performance with respect to

the expected decision-making cost, which is called Bayes risk. Each type of error may

induce a different cost in different situations. For example, in a medical diagnosis

problem where the hypothesis is that a patient has a particular disease, a missed

detection of the disease will cause much more damage than a false alarm. Conversely,

in a criminal trial where the hypothesis is that the defendant is guilty, a false alarm is

considered more seriously than a missed detection. A Bayesian decision-making agent

knows proper costs of errors for each decision-making task and behaves to minimize

the expected cost. Rational human agents are known to approximately follow the

minimum Bayes risk criterion [1–4].

However, the prior probabilities are not easily known in practice, especially when

it comes to human decision-making tasks. What would be the prior probability that

a certain person commits a crime? What would be the prior probability that a job

applicant will make a huge contribution to our company? People do not know and

cannot even calculate these prior probabilities but still need them in order to reach a

more accurate verdict or to hire the best applicant.

Psychological studies argue that people use the information that they can observe

to perceive the prior probabilities. For example, a juror measures from a criminal

defendant’s appearance the degree to which the defendant looks intelligent, friendly,

attractive, and violent [5, 6]. These measures are correlated with the verdicts—guilt

or innocence. We believe that the measures are mapped to a value that represent

the juror’s estimation of the prior probability. Even though the value is not equal

to the true prior probability, it is what the juror uses in his or her decision making.

Since, strictly speaking, the estimation is not the same as the prior probability, it is

referred to as perceived belief or simply belief throughout the thesis. In the language

of economics, humans know their payoff functions, which is negative Bayes risk, and

rational human beings behave to maximize their payoffs. However, from our per-
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spective, what they know is different from what the functions really are. There is a

mismatch between people’s perceptions and the reality.

The mismatch will prevent humans from performing optimal decision making.

While the prior probability is one of the basic elements of detection, the effect of

accuracy of the prior probability has not received a great deal of attention. It is

not a solution to encourage people to more accurately estimate the prior probability.

This problem should be dealt from a decision-making system level. In other words,

we admit that people are imperfect decision makers and try to design a decision-

making system that relieves or supplements the imperfectness. As a first step, this

thesis pursues to understand the effect of the limitation on the perception of prior

probability, to analyze decision-making performance of multiple imperfect agents in

various topologies, and to optimize their decision strategies under the limitation from

a perspective of costly rationality [7].

Section 1.1 explains the motivation to have an interest in a group of decision-

makers and the diversity in it. Section 1.2 summarizes the main contributions of the

thesis.

∎ 1.1 Interactions among Multiple Agents

Most of this thesis is focused on decision-making agents, with beliefs that are not nec-

essarily correct, forming a team and interacting. The natural effect of the interaction

is to influence each others beliefs, and the ramifications for the team’s performance

are intricate.

Previously, we have considered categorically-thinking agents. Under this model,

initially proposed in [8], the agents can only memorize and process at most K different

prior probability values. This limitation was motivated by a scenario where an agent

needs to make decisions for a lot of objects with different prior probabilities. It is

impractical and inefficient for the agent to perform accurate likelihood ratio tests for

each decision making task because computational resources are required proportional

to the number of decision-making subjects. Thus, the agent first classifies similar
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objects to the same category and design only one decision rule for the category. The

agent, who can deal with at most K categories, can process infinitely many subjects

with the corresponding K decision rules. In fact, this is a natural method that human

decision makers use [9].

The classification degrades each agent’s decision making whereas it reduces com-

putational complexity. For each subject of the hypothesis testing, the applied decision

rule is not optimally designed for the prior probability of the individual subject; it

is designed for the category that the subject belongs to. Therefore, category-wise

optimal decision rules were found instead of subject-wise optimal decision rules in [8].

They model the prior probability as a random variable with a given distribution and

investigate conditions of the optimal quantizers for the prior probability when the

optimality criterion is the Bayes risk averaged over the prior probability. Then the

average performance of decision making can be maximized.

One result for multiple categorically-thinking agents is especially inspiring for this

thesis. Suppose the agents have conditionally independent and identically distributed

(iid) observations, conditioned on the true state. While their team will get a benefit

over any single agent alone from the multiplicity of agents even if they use the same

categorization (quantization of prior probabilities), the benefit can be larger when

the categorizations are different [10–12]. In effect, the particular cognitive limitation

of categorical thinking is reduced through teamwork. Furthermore, the benefit from

diversity is present even under limited coordination [13].

Inspired by this observation, our main concern is the effect of diverse recognition

of prior probabilities on the decision making and the optimal form of diversity for the

best decision making. This thesis discusses three topologies of the team of agents:

a distributed detection and data fusion model, a sequential detection model, and a

model combining these two. Agents behave differently in each model. For example,

agents in the sequential network perform social learning while those in the parallel

network perform decision fusion. This thesis finds the optimal decision strategies and

the optimal form of decision aggregation in each model.
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∎ 1.2 Outline and Contributions

The central goal of the thesis is to provide theoretical results on the optimal binary

decision-making strategies with incorrect prior probabilities. Instead of considering a

trivial case with a single imperfect agent, the thesis focuses on multiple-agent cases

under the following three topologies:

� Distributed detection: Agents individually observe signals and perform hy-

pothesis testing but share their decision-making cost. Their detection results

are sent to a fusion center and converted to a global decision according to a

symmetric L-out-of-N fusion rule. The concern is to minimize the Bayes risk

of the global decision.

� Sequential detection: Agents individually observe signals and sequentially

perform hypothesis testing. Their decisions are available to other agents so

any agent before making a decision can do social learning. The concern is to

minimize the Bayes risk of the last-acting agent.

� Distributed detection with social learning: The model is similar to the

distributed detection model except that the local decisions are available to all

agents who make decisions sequentially. Thus the agents can do social learning

like in the sequential detection model. The concern is to minimize the Bayes

risk of the global decision.

Below is the outline of the thesis.

Chapter 2: Background

The background chapter reviews relevant results in detection theory and social learn-

ing. In particular, hypothesis testing problems are described and Bayes risk criterion

is defined. Properties of the operating characteristic of likelihood ratio test are ex-

plained. The optimal fusion rule and local decision rules are obtained in a distributed

detection problem. Finally, social learning is interpreted in terms of belief update

and incorrect herding behavior is explained.
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Chapter 3: Human Perception of Prior Probability

The chapter delivers our motivation of questioning human ability to perceive prior

probability. Reviewing through a flow of several psychological studies from general

behaviors of human decision makers to specific observations related to their perceiv-

ing prior probability, we develop a model of human perception. The Bayes-optimal

estimation of prior probability is obtained, which justifies our imperfect agent model.

Chapter 4: Distributed Detection with Symmetric Fusion

The binary distributed detection problem is discussed with imperfect agents. Specif-

ically, the fusion rule is restricted to be symmetric in a form of L-out-of-N rule that

chooses 1 if L or more agents choose 1 and 0 otherwise. The symmetric rules are not

always optimal but they are widely used in human decision-making scenarios.

The distributed detection of imperfect agents is outperformed by that of perfect

agents when the agents observe conditionally iid signals. It is not possible to make

a team of imperfect agents outperform a team of perfect agents, but it is possible

to make the imperfect team more robust to the change of their beliefs by achieving

diversity.

On the other hand, if the signals are not identically distributed, decision making

of the perfect agents is always suboptimal. They cannot properly optimize their

decision rules because they do not know the likelihood functions of other agents’

private signals. However, since decision rules of imperfect agents depend on their

beliefs as well, they can have either better or worse decision rules. It can happen that

their wrong beliefs accidentally lead to the optimal decision rules.

Chapter 5: Sequential Detection with Social Learning

Agents can observe others’ decisions as public signals in this sequential detection

model. The public signals give different information so the agents can learn from

them to improve their decision rules. This behavior, which is called social learning

or observational learning, is the main interest of Chapter 5.

When the agents have different incorrect beliefs, their social learning becomes in-
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complete. Unlike the intuition that the incomplete social learning and incorrect belief

should cause increase of Bayes risk, however, some incorrect beliefs reduced the Bayes

risk even below that of perfect agents. It is proven that such incorrect beliefs have

a systematic pattern. The results are summarized in the statement, “Earlier-acting

agents should be open-minded,” which implies that they should overweight small

probabilities and underweight high probabilities. The open-mindedness is related to

being informative to later-acting agents.

Chapter 6: Distributed Detection with Social Learning and Symmetric Fusion

Social learning generally helps individual decision makers reduce their Bayes risks. It

is examined whether social learning also reduces Bayes risk of a team in a distributed

detection model that allows agents to observe others’ decisions and do social learning.

It turns out that social learning does not lead to the improvement of team performance

in some cases especially when the agents observe conditionally iid private signals.

It is proven that it is the optimal behavior to ignore public signals and not to do

social learning in that case. In other cases when the agents observe private signals

not identically distributed, social learning generally improves team decision-making

performance and the order of decision making matters to the team performance.

Human behaviors are tested in the case when they are given conditionally iid

private signals and some public signals in team decision-making tasks by experiments

conducted on Amazon Mechanical Turk. The experiments reveal that humans use

public signals even when the rational behavior is to ignore them.

Chapter 7: Conclusion

The last chapter concludes the thesis with recapitulation of the main results and

their practical impacts. Besides, future directions of the study of imperfect agents

and social learning are proposed.
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Chapter 2

Background

The rational decision-making strategy is to exploit available information and max-

imize payoffs. This background chapter reviews basic concepts in detection theory

that have been developed to describe such rational behavior. First, Bayesian hypoth-

esis testing problems of a single agent and several performance criteria are presented.

Then distributed detection problems with multiple agents are reviewed. Finally, so-

cial learning among agents is discussed, including an explanation of the possibility of

incorrect herding.

Throughout this thesis, f(⋅) denotes distributions of continuous random variables

and p(⋅) distributions of discrete random variables.

∎ 2.1 Bayesian Hypothesis Testing

There are many applications of decision making with a set of observations. Customers

purchase one of several products, juries reach verdicts, physicians make diagnoses, and

receivers recover signals. The decision-making agents generally observe noisy signals.

They are trying to use appropriate decision process to make correct or best decisions

as much as possible from the noisy observations.

Decision making is mathematically abstracted as hypothesis testing. There are M

hypotheses or states H = {0,1, . . . ,M − 1} from which an agent can choose. Only one

hypothesis is true and the model of the observed signal Y ∈ Y, which is represented

as a random variable or random vector, is determined by the true hypothesis.

In the Bayesian approach, a complete characterization of knowledge about H

upon observing Y = y is described by posterior distributions pH ∣Y (h ∣ y), for h =
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0,1, . . . ,M − 1. Bayes rule is used to compute the posterior distributions. The com-

putation requires a prior distribution of H

pH(h), h = 0,1, . . . ,M − 1,

and characterizations of the observed data under each hypothesis

fy ∣H(y ∣h), h = 0,1, . . . ,M − 1.

∎ 2.1.1 Binary Hypothesis Testing

Choosing between two alternatives is the simplest form of hypothesis testing but is

very common. In the binary case, two hypotheses H = 0 and H = 1 are considered

and their prior probabilities are denoted by p0 = pH(0) and p1 = pH(1) = 1 − p0.
The information Y is described by one of two likelihood functions fY ∣H(y ∣0) and

fY ∣H(y ∣1). The solution to a hypothesis testing is given by a decision rule Ĥ ∶ Y ↦
{0,1}.

In the Bayesian approach, the expected value of decision-making cost is the cri-

terion for a good decision rule. Specifically, we use a cost function C(j, i) = cji to

denote the cost of deciding Ĥ = j when the correct hypothesis is H = i. The expected

cost is

R = E[C(j, i)] =
1

∑
i=0

1

∑
j=0
cjiP{Ĥ = j,H = i},

which is called Bayes risk. The optimal decision rule takes the form

Ĥ(⋅) = arg minR

= arg min
1

∑
i=0

1

∑
j=0
cji∫

Yj
fY,H(y, i)dy,

where Yj = {y ∣ Ĥ(y) = j} denotes the region of the signal space Y that corresponds

to decision Ĥ = j; Y0 and Y1 form a partition of Y.

Consider an arbitrary but fixed decision rule Ĥ(⋅). The Bayes risk can be expanded
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to the form

R =∫
Y0

(c00p0fY ∣H(y ∣0) + c01(1 − p0)fY ∣1(y ∣1)) dy

+ ∫
Y1

(c10p0fY ∣H(y ∣0) + c11(1 − p0)fY ∣1(y ∣1)) dy.

For Ĥ(⋅) to minimize the Bayes risk, the expression for R can be minimized pointwise

over y by comparing the possible contributions and choosing whichever has a smaller

value:

c00p0fY ∣H(y ∣0) + c01(1 − p0)fY ∣1(y ∣1)
Ĥ(y)=1
⋛

Ĥ(y)=0
c10p0fY ∣H(y ∣0) + c11p1fY ∣1(y ∣1).

Collecting terms and rewriting as a ratio gives a form of the likelihood ratio test

(LRT)

fY ∣H(y ∣1)
fY ∣H(y ∣0)

Ĥ(y)=1
⋛

Ĥ(y)=0

(c10 − c00)p0
(c01 − c11)(1 − p0)

≜ η. (2.1)

The optimal strategy is a deterministic decision rule. Bayesian agents perform the

LRT to make optimal decisions.

The thesis constrains the likelihood functions so that their ratio fY ∣H(y ∣1)/fY ∣H(y ∣0)
is monotonically increasing in y. It simplifies the LRT (2.1) to the comparison of the

signal to a threshold:

y
Ĥ(y)=1
⋛

Ĥ(y)=0
λ. (2.2)

In other words, Y0 = (−∞, λ) and Y1 = [λ,∞). For example, if Y = H +W , where W

is a Gaussian random variable with zero mean and variance σ2, the LRT (2.1) can be

expressed as

y
Ĥ(y)=1
⋛

Ĥ(y)=0

1

2
+ σ2 ln

(c10 − c00)p0
(c01 − c11)(1 − p0)

.

The threshold λ is called decision threshold throughout the thesis.
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∎ 2.1.2 Maximum a Posteriori and Maximum Likelihood Decision Rules

The likelihood ratio test (2.1) is the optimal decision rule for any cost function C(⋅, ⋅).
In a special case when

cji =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, i = j,
1, i ≠ j,

(2.3)

the Bayes cost is equal to the probability of errors P{Ĥ = 1,H = 0}+P{Ĥ = 0,H = 1}.

The decision rule (2.1) is expressed in terms of the a posteriori probabilities:

pH ∣Y (1 ∣ y)
Ĥ(y)=1
⋛

Ĥ(y)=0
pH ∣Y (0 ∣ y).

This rule, which chooses the hypothesis whose a posterior probability is larger, is

called the maximum a posteriori (MAP) decision rule.

Furthermore, the decision rule gets simpler if the hypotheses are equally likely:

fY ∣H(y ∣1)
Ĥ(y)=1
⋛

Ĥ(y)=0
fY ∣H(y ∣0).

This rule chooses the hypothesis for which the corresponding likelihood function is

larger. It is called the maximum likelihood (ML) decision rule.

For simplicity, it is assumed that c00 = c11 = 0 throughout the thesis. However, the

costs of errors c10 and c01 are not restricted to be 1; the LRT (2.1) will be used.

∎ 2.1.3 The Operating Characteristic of the Likelihood Ratio Test

The performance of any decision rule Ĥ(⋅) is specified in terms of two quantities

P I
e = P{Ĥ(Y ) = 1 ∣H = 0} = ∫

Y1
fY ∣H(y ∣0)dy,

P II
e = P{Ĥ(Y ) = 0 ∣H = 1} = ∫

Y0
fY ∣H(y ∣1)dy, (2.4)

where P I
e is called false alarm (or Type I error) probability and P II

e missed detection (or

Type II error) probability. Another set of notations PD = P{Ĥ(Y ) = 1 ∣H = 1} = 1−P II
e
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Figure 2-1. Receiver operating characteristic curve of the likelihood ratio test for a detection
problem with additive Gaussian noise. The noise has zero mean and unit variance.

and PF = P{Ĥ(Y ) = 1 ∣H = 0} = P I
e are also widely used but P I

e and P II
e will be

dominantly used throughout the thesis.

A good decision rule is one with small P I
e and P II

e . However, these are competing

objectives. Increasing the threshold η in (2.1), or equivalently λ in (2.2), causes

increase of the length of Y0 and decrease of the length of Y1. Accordingly, P II
e is

increased and P I
e is decreased. Thus, choosing a threshold λ involves making an

acceptable tradeoff between P I
e and P II

e .

As λ is varied from −∞ to ∞, a curve for (PD, PF) is traced out in the space

between [0,0] and [1,1] as depicted in Figure 2-1. This curve, which is referred to as

the receiver operating characteristic (ROC) curve, characterizes the likelihood ratio

test.

The ROC curve of a likelihood ratio test has the following properties:

(a) It always contains the two points (0,0) and (1,1).

(b) It is monotonic.

(c) PD ≥ PF.

(d) It is concave.
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(PF(λ1), PD(λ1))

(PF(λ2), PD(λ2))

Figure 2-2. A non-concave ROC curve can be turned into a concave curve by using a randomized
test. Take the two end points (PF(λ1), PD(λ1)) and (PF(λ2), PD(λ2)) of the interval where the
ROC curve is not concave. A randomized test that uses the threshold λ1 with probability p and λ2
with probability 1 − p, for p ∈ [0,1], will achieve the dashed line.

Property (a) is obvious; (PF, PD) → (0,0) as λ → −∞ and (PF, PD) → (1,1)
as λ → ∞. Property (b) comes immediately from the structure of the likelihood

ratio test. Let PF(λ) and PD(λ) respectively denote the false alarm and detection

probability of the test (2.1) associated with a threshold λ. For any λ1 and λ2 such

that λ2 > λ1, PF(λ1) ≥ PF(λ2) and PD(λ1) ≥ PD(λ2). Therefore, the slope of the ROC

curve is nonnegative:
PD(λ2) − PD(λ1)
PF(λ2) − PF(λ1)

≥ 0.

Property (c) is achieved by flipping decisions if PD < PF. Then the new false alarm

probability becomes 1 − PF and detection probability becomes 1 − PD. The reversed

test will have better performance because its operating characteristic is above the line

PF = PD.

Property (d) is true if the likelihood ratio is monotonically increasing. The slope

of the ROC curve at a point (PF(λ), PD(λ)) is

dPD(λ)
dPF(λ)

= −dP
II
e (λ)

dP I
e(λ)

= −dP
II
e /dλ

dP I
e/dλ

=
fY ∣H(λ ∣1)
fY ∣H(λ ∣0) ,

which is nonnegative and monotonically increasing in λ by the given condition. Since

PF(λ) is a decreasing function of λ, the slope dPD/dPF is monotonically decreasing in

PF. Therefore, the ROC curve is concave. If the likelihood ratio is not monotonically
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increasing, the LRT may be replaced with a randomized test to replace a non-concave

ROC curve with its convex hull (see Figure 2-2).

∎ 2.2 Distributed Detection and Data Fusion

Decision making in large-scale systems may consist of multiple decision makers to

improve system performance. A distributed detection system consists of multiple

agents that observe signals and make decisions in parallel. The decisions are sent to

a fusion center that makes a global decision [14,15].

∎ 2.2.1 Optimal Fusion Rule and Local Decision Rule

The data fusion is also a binary hypothesis testing problem in which observations are

the local decisions. The optimal fusion rule for N agents, Ĥ ∶ {0,1}N ↦ {0,1}, is

given by the following likelihood ratio test

pĤ1,...,ĤN ∣H(ĥ1, . . . , ĥN ∣1)
pĤ1,...,ĤN ∣H(ĥ1, . . . , ĥN ∣0)

Ĥ=1
⋛
Ĥ=0

(c10 − c00)p0
(c01 − c11)(1 − p0)

.

If the agents observe conditionally independent signals, their local decisions are

conditionally independent as well. The corresponding log-likelihood ratio test is

N

∑
n=1

log
pĤn ∣H(ĥn ∣1)
pĤn ∣H(ĥn ∣0)

Ĥ=1
⋛
Ĥ=0

log
(c10 − c00)p0

(c01 − c11)(1 − p0)
.

Since
pĤn ∣H(0 ∣1)
pĤn ∣H(0 ∣0) =

P II
e,n

1 − P I
e,n

and
pĤn ∣H(1 ∣1)
pĤn ∣H(1 ∣0) =

1 − P II
e,n

P I
e,n

,

the data fusion rule is expressed as1

N

∑
n=1

wn(2ĥn − 1)
Ĥ=1
⋛
Ĥ=0

η, (2.5)

1This expression is different from the fusion rule in [14] because H ∈ {−1,+1} in the paper but
H ∈ {0,1} in this thesis.
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where

wn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log
1 − P I

e,n

P II
e,n

, if ĥn = 0,

log
1 − P II

e,n

P I
e,n

, if ĥn = 1,

and η = log
(c10 − c00)p0

(c01 − c11)(1 − p0)
.

The optimal fusion rule is comparison of weighted sum of local decisions to the thresh-

old η.

Deriving the optimal local decision rule of Agent n, Ĥn ∶ Y ↦ {0,1}, assumes that

the fusion rule and all the other local decision rules have been already designed and

are remaining fixed. The Bayes risk is expressed in terms of decisions of Agent n as

R = (c10 − c00)p0pĤ ∣H(1 ∣0) + (c11 − c01)(1 − p0)pĤ ∣H(1 ∣1) + (c00p0 + c01(1 − p0))

= ∑
ĥ−n

CF (pĤ,Ĥ−n,Ĥn ∣H(1, ĥ−n,0 ∣0) + pĤ,Ĥ−n,Ĥn ∣H(1, ĥ−n,1 ∣0))

−∑
ĥ−n

CD (pĤ,Ĥ−n ,̂hn ∣H(1, ĥ−n,0 ∣1) + pĤ,Ĥ−n ,̂hn ∣H(1, ĥ−n,1 ∣1)) +C,

where CF ≜ (c10 − c00)p0, CD ≜ (c01 − c11)(1 − p0), C ≜ c00p0 + c01(1 − p0), and

Ĥ−n ≜ {Ĥ1, . . . , Ĥn−1, Ĥn+1, . . . , ĤN}.

Since pĤ ∣ Ĥ−n,Ĥn,H(ĥ ∣ ĥ−n, ĥn, h) = pĤ ∣ Ĥ−n,Ĥn(ĥ ∣ ĥ−n, ĥn),

R = ∑
ĥ−n

{[pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,1) − pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,0)]

× [CFpĤ−n,Ĥn ∣H(ĥ−n,1 ∣0) −CDpĤ−n,Ĥn ∣H(ĥ−n,1 ∣1)]}

+∑
ĥ−n

pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,0) [CFpĤ−n ∣H(ĥ−n ∣0) −CDpĤ−n ∣H(ĥ−n ∣1)] +C

The terms corresponding to all agents other than Agent n are constant. Minimizing

the Bayes risk is equivalent to minimizing

∑
ĥ−n

A(ĥ−n) [CF ∏
m≠n

pĤm ∣H(ĥm ∣0)pĤn ∣H(1 ∣0) −CD ∏
m≠n

pĤm ∣H(ĥm ∣1)pĤn ∣H(1 ∣1)] ,
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where

A(ĥ−n) ≜ pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,1) − pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,0). (2.6)

The Bayes risk is minimized by the local decision rule that decides 1 if

∑
ĥ−n

A(ĥ−n)CF∏
k≠n

pĤk ∣H(ĥm ∣0)fYn ∣H(yn ∣0) ≤

∑
ĥ−n

A(ĥ−n)CD ∏
m≠n

pĤm ∣H(ĥm ∣1)fYn ∣H(yn ∣1)

and decides 0 otherwise. Thus the optimal local decision rule is

fYn ∣H(yn ∣1)
fYn ∣H(yn ∣0)

Ĥn(yn)=1
⋛

Ĥn(yn)=0

CF ∑ĥ−n A(ĥ−n)∏k≠n pĤk ∣H(ĥm ∣0)
CD∑ĥ−n A(ĥ−n)∏m≠n pĤm ∣H(ĥm ∣1)

. (2.7)

The optimal local decision rules and fusion rule are the solution to (2.5) and (2.7), a

total N + 1 equations.

∎ 2.2.2 Symmetric Fusion Rule

Local decisions are often fused by a symmetric L-out-of-N rule. The global decision

is 1 if L or more agents decide 1 and is 0 otherwise, i.e.,

N

∑
n=1

Ĥn

Ĥ=1
⋛
Ĥ=0

L.

Examples are the majority rule (L = ⌈N+12 ⌉) and the or rule (L = 1).

The optimal local decision rule is derived from (2.7). The L-out-of-N fusion rule

yields

pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∑m≠n ĥm ≥ L − 1,

0, if ∑m≠n ĥm < L − 1,

pĤ ∣ Ĥ−n,Ĥn(1 ∣ ĥ−n,0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∑m≠n ĥm ≥ L,
0, if ∑m≠n ĥm < L.
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From (2.6),

A(ĥ−n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∑m≠n ĥm = L − 1,

0, otherwise.
(2.8)

Substituting (2.8) into (2.7) gives the optimal local decision rule of Agent n:

fYn ∣H(yn ∣1)
fYn ∣H(yn ∣0)

Ĥn(yn)=1
⋛

Ĥn(yn)=0

(c10 − c00)p0 ∑
I⊆[N]∖{n}
∣I∣=L−1

∏
i∈I
pĤi ∣H(1 ∣0) ∏

j∈[N]∖(I∪{n})
pĤj ∣H(0 ∣0)

(c01 − c11)(1 − p0) ∑
I⊆[N]∖{n}
∣I∣=L−1

∏
i∈I
pĤi ∣H(1 ∣1) ∏

j∈[N]∖(I∪{n})
pĤj ∣H(0 ∣1)

,

(2.9)

where [N] denotes the set {1,2, . . . ,N}.

In a special case when the signals Yi are identically distributed conditioned on

H, the agents are under identical conditions with respect to the quality of their

information and the importance of their decisions. In this case, the constraint that

the agents use identical decision rules causes little or no loss of performance [15, 16].

This constraint simplifies the problem of optimizing local decision rules because it

significantly reduces the number of parameters.

The local decision rule of Agent n yields error probabilities like (2.4):

P I
e,n = P{Ĥn = 1 ∣H = 0},

P II
e,n = P{Ĥn = 0 ∣H = 1}.

It is easy to obtain closed forms of global error probabilities due to the symmetry of

the fusion rule:

P I
E = P{Ĥ = 1 ∣H = 0} = P{∑Nm=1 Ĥm ≥ L ∣H = 0}

=
N

∑
m=L

∑
I⊆[N]
∣I∣=m

∏
i∈I
P I
e,i ∏

j∈[N]∖I
(1 − P I

e,j) ,

P II
E = P{Ĥ = 0 ∣H = 1} = P{∑Nm=1 Ĥm ≤ L − 1 ∣H = 1}

=
N

∑
m=N−L+1

∑
I⊆[N]
∣I∣=m

∏
i∈I
P II
e,i ∏

j∈[N]∖I
(1 − P II

e,j) .
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For convenience, let us use the following notations to denote global error proba-

bility functions:

GI
L,N(P I

e,1, P
I
e,2, . . . , P

I
e,N) ≜ P I

E =
N

∑
m=L

∑
I⊆[N]
∣I∣=m

∏
i∈I
P I
e,i ∏

j∈[N]∖I
(1 − P I

e,j) , (2.10)

GII
L,N(P II

e,1, P
II
e,2, . . . , P

II
e,N) ≜ P II

E =
N

∑
m=N−L+1

∑
I⊆[N]
∣I∣=m

∏
i∈I
P II
e,i ∏

j∈[N]∖I
(1 − P II

e,j) . (2.11)

The global error probabilities are divided into two cases when Agent n is pivotal and

when she is not:

GI
L,N(P I

e,1, P
I
e,2, . . . , P

I
e,N) = ∑

I⊆[N]∖{n}
∣I∣=L−1

∏
i∈I
P I
e,i ∏

j∈[N]∖(I∪{n})
(1 − P I

e,j)P I
e,n

+
N−1
∑
m=L

∑
I⊆[N]∖{n}

∣I∣=m

∏
i∈I
P I
e,i ∏

j∈[N]∖(I∪{n})
(1 − P I

e,j) ,

where the first term is the probability that exactly L−1 agents among the N−1 agents

other than Agent n cause false alarms and Agent n also causes a false alarm. The

second term is the probability that L or more agents among the N − 1 agents other

than Agent n causes false alarms and the decision of Agent n is irrelevant. Likewise,

GII
L,N(P II

e,1, P
II
e,2, . . . , P

II
e,N) = ∑

I⊆[N]∖{n}
∣I∣=N−L

∏
i∈I
P II
e,i ∏

j∈[N]∖(I∪{n})
(1 − P II

e,j)P II
e,n

+
N−1
∑

m=N−L+1
∑

I⊆[N]∖{n}
∣I∣=m

∏
i∈I
P II
e,i ∏

j∈[N]∖(I∪{n})
(1 − P II

e,j) .

We use the notations gIL,N and gIIL,N with the following definitions:

gIL,N(P I
e,1, . . . , P

I
e,n−1, P

I
e,n+1, . . . , P

I
e,N) = ∑

I⊆[N]∖{n}
∣I∣=L−1

∏
i∈I
P I
e,i ∏

j∈[N]∖(I∪{n})
(1 − P I

e,j) , (2.12)

gIIL,N(P II
e,1, . . . , P

II
e,n−1, P

II
e,n+1, . . . , P

II
e,N) = ∑

I⊆[N]∖{n}
∣I∣=N−L

∏
i∈I
P II
e,i ∏

j∈[N]∖(I∪{n})
(1 − P II

e,j) . (2.13)
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Then the optimal local decision rule (2.9) is rewritten to

fYn ∣H(yn ∣1)
fYn ∣H(yn ∣0)

Ĥn(yn)=1
⋛

Ĥn(yn)=0

(c10 − c00) p0 gIL,N(P I
e,1, . . . , P

I
e,n−1, P

I
e,n+1, . . . , P

I
e,N)

(c01 − c11) (1 − p0) gIIL,N(P II
e,1, . . . , P

II
e,n−1, P

II
e,n+1, . . . , P

II
e,N)

.

(2.14)

While the optimal decision rule in the single-agent case is determined by the prior

probabilities and the likelihood functions of observations, that in the distributed

detection model with N agents is determined by the fusion rule as well. For fixed N ,

decrease of L leads to increase of the optimal decision threshold. On the other hand,

for fixed L, decrease of N leads to decrease of the optimal decision threshold. If fewer

decisions for 1 are required to make the global decision 1, agents are less likely to

decide 1.

An extreme example can be found in psychological phenomena, the bystander

effect. It refers to phenomenon that people do not help a victim, such as calling

the police or an ambulance, when other people are nearby. The likelihood of help

is inversely related to the number of bystanders. From the perspective of signal

processing, calling the police is like the or (1-out-of-N) fusion rule in the sense that

just one call is sufficient to bring police officers to the scene. As N gets larger, people

think that somebody will call the police even if they do not. The threshold in terms

of emergency level is increased and the people get unlikely to call the police.

∎ 2.3 Social Learning

Agents are not allowed to communicate with each other in the previous models. They

can only send their local decisions to the fusion center, which takes responsibility of

turning the local decisions into a global decision. However, if the agents can observe

decisions made by other agents, then these observations will also give information

about the right choice.

Consider multiple decision makers who do not perform distributed detection. In-

stead, they are detecting a hypothesis individualistically: Each agent takes the cost

of her own decision and minimizes her own Bayes risk. If she can observe the choices
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of some earlier-acting agents before making a decision, then she will try to learn from

them and make a better decision. This learning behavior is called social learning or

observational learning. The decisions observed by later-acting agents are called public

signals and distinguished from private signals, which are observed only by individual

agents like Yn in Section 2.2.

The framework of sequential decision making with social learning was indepen-

dently introduced in [17] and [18]. These works consider a sequence of agents who

make decisions in a predetermined order. The agents also know the whole decision-

making order and observe all decisions of previous agents. The papers observed that

herding—all later-acting agents follow and never deviate from the public signals re-

gardless of their private signals—can occur even if the public signals are incorrect.

Smith and Sørensen [19] showed that incorrect herding occurs with nonzero prob-

ability if private signals are boundedly informative.2 However, agents will asymptot-

ically settle on the optimal choice otherwise.

∎ 2.3.1 Social Learning and Belief Update

There are N agents indexed as 1,2, . . . ,N corresponding to their decision-making

orders. Agents observe iid private signals conditioned on H and all decisions of

earlier-acting agents to perform binary hypothesis testing.

Consider decision making of Agent n. When she observes Yn and Ĥ1, Ĥ2, . . . , Ĥn−1,

her Bayes risk is

Rn =
1

∑
i=0

1

∑
j=0
cjiP{Ĥ = j,H = i ∣ Ĥ1 = ĥ1, Ĥ2 = ĥ2, . . . , Ĥn−1 = ĥn−1}

=
1

∑
i=0

1

∑
j=0
cjipĤn ∣H(j ∣ i)pH ∣ Ĥ1,...,Ĥn−1(i ∣ ĥ1, . . . , ĥn−1),

where pĤn ∣H,Ĥ1,...,Ĥn−1(⋅ ∣ ⋅) = pĤn ∣H(⋅ ∣ ⋅) is used. This is true because the private signals

are independent conditioned on H and so are the public signals. Hence, social learning

2A signal Y generated under H is called boundedly informative if there exists κ > 0 such that
κ < fY ∣H(y ∣h) < 1/κ for all y and h.
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is equivalent to updating belief from pH(⋅) to

pH ∣ Ĥ1,...,Ĥn−1(⋅ ∣ ĥ1, . . . , ĥn−1)

and performing the following likelihood ratio test:

fYn ∣H(yn ∣1)
fYn ∣H(yn ∣0)

Ĥn(yn)=1
⋛

Ĥn(yn)=0

(c10 − c00)pH ∣ Ĥ1,...,Ĥn−1(0 ∣ ĥ1, . . . , ĥn−1)
(c01 − c11)pH ∣ Ĥ1,...,Ĥn−1(1 ∣ ĥ1, . . . , ĥn−1)

. (2.15)

The likelihood ratio test (2.15) can also be obtained from (2.1) by treating all private

and public signals as noisy observations:

fYn,Ĥ1,...,Ĥn−1 ∣H(yn, ĥ1, . . . , ĥn−1 ∣1)
fYn,Ĥ1,...,Ĥn−1 ∣H(yn, ĥ1, . . . , ĥn−1 ∣0)

Ĥn(yn)=1
⋛

Ĥn(yn)=0

(c10 − c00)p0
(c01 − c11)(1 − p0)

.

∎ 2.3.2 Herding Behavior

Suppose that the private signals are symmetric and binary-valued: For 0 < ε < 0.5,

P{Yn =H} = 1 − ε and P{Yn ≠H} = ε,

,H ∈ {0,1}, Yn ∈ {0,1} and n = 1,2, . . . ,N . The private signal Yn indicates the true

hypothesis H with high probability but also may indicate the wrong one with low

probability.

The first agent performs the likelihood ratio test only with her private signal Y1,

pY1 ∣H(y1 ∣1)
pY1 ∣H(y1 ∣0)

Ĥ1=1
⋛

Ĥ1=0

c10p0
c01(1 − p0)

.

For meaningful discussion, it should be avoided that her decision is made regardless

of her private signal. Thus, ε is assumed to satisfy

ε

1 − ε <
c10p0

c01(1 − p0)
< 1 − ε

ε
, (2.16)
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which is an identical condition to

ε < min{ c10p0
c10p0 + c01(1 − p0)

,
c01(1 − p0)

c10p0 + c01(1 − p0)
} .

Agent n updates her belief from p0 to µn based on the public signals Ĥ1, Ĥ2, . . . , Ĥn−1:

µn = P{H = 0 ∣ Ĥ1 = ĥ1, Ĥ2 = ĥ2, . . . , Ĥn−1 = ĥn−1}

= P{Ĥn−1 = ĥn−1 ∣H = 0}P{H = 0 ∣ Ĥ1 = ĥ1, . . . , Ĥn−2 = ĥn−2}
∑1
h=0 P{Ĥn−1 = ĥn−1 ∣H = h}P{H = h ∣ Ĥ1 = ĥ1, . . . , Ĥn−2 = ĥn−2}

= P{Ĥn−1 = ĥn−1 ∣H = 0}µn−1
P{Ĥn−1 = ĥn−1 ∣H = 0}µn−1 + P{Ĥn−1 = ĥn−1 ∣H = 1}(1 − µn−1)

, (2.17)

with the boundary condition µ1 = p0. The equation (2.17) implies that the updated

belief is public information because all agents who observe the public signals would

update their belief identically. In addition, µn ≥ µn−1 if Ĥn−1 = 0, and µn ≤ µn−1 if

Ĥn−1 = 1.

Without loss of generality, let us assume that the first agent chooses 0. The second

agent observes it and can infer that the private signal of the first agent is Y1 = 0. The

belief is updated to

µ2 =
p0(1 − ε)

p0(1 − ε) + (1 − p0)ε
.

The assumption (2.16) leads to the following inequality

c10µ2

c01(1 − µ2)
> c10p0
c01(1 − p0)

> ε

1 − ε,

and there are two possibilities for µ2:

� When
c10µ2

c01(1 − µ2)
≥ 1 − ε

ε
: The second agent will always choose 0 regardless of

her private signal. Even if her private signal is Y2 = 1, the likelihood ratio of Y2

is
pY2 ∣H(1 ∣1)
pY2 ∣H(1 ∣0) = 1 − ε

ε
< c10µ2

c01(1 − µ2)
.

Furthermore, all later-acting agents will always choose 0 because µn will not be

smaller than µ2 for n > 2.
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� When
ε

1 − ε <
c10µ2

c01(1 − µ2)
< 1 − ε

ε
: The second agent will choose according to her

private signal Y2. If she has Y2 = 1 then she will choose 1 and µ3 will be smaller

than µ2. Thus, the third agent will also choose according to her private signal.

If the second agent observes Y2 = 0, however, then she chooses 0. The third

agent can infer from the public signals Ĥ1 = Ĥ2 = 0 that the first two agents

have observed Y1 = 0 and Y2 = 0, respectively. The belief is updated to

µ3 =
p0(1 − ε)2

p0(1 − ε)2 + (1 − p0)ε2
.

When she observes Y3 = 1,

pY3 ∣H(1 ∣1)
pY3 ∣H(1 ∣0) = 1 − ε

ε

< 1 − ε
ε

× ( c10p0
c01(1 − p0)

1 − ε
ε

) = c10p0(1 − ε)
2

c01(1 − p0)ε2
= c10µ3

c01(1 − µ3)
,

where the inequality comes from (2.16). In other words, the belief becomes too

strong for the third agent to reject the public signals. Thus, she will adopt the

decisions of the first two agents and so will later-acting agents.

In conclusion, the belief is updated based on each public signal. Once it goes

above a boundary, herding occurs. In the binary-symmetric-private-signal case, the

boundary is given as follows:

� Agents herd on 0 if µn ≥
p0(1 − ε)2

p0(1 − ε)2 + (1 − p0)ε2
.

� Agents herd on 1 if µn ≤
p0ε2

p0ε2 + (1 − p0)(1 − ε)2
from the symmetry.

The herding occurs when at least the first two agents coincide with their decisions. If

both of them are wrong, whose probability is ε2 > 0, all the later-acting agents happen

to adopt wrong decisions. Incorrect herding occurs with probability higher than ε2

because it also occurs, for example, when Ĥ1 = 0, Ĥ2 = 1, Ĥ3 = 0, and Ĥ4 = 0.

When the private signal is boundedly informative, herding occurs when the belief

becomes too strong. On the other hand, when the private signal is unbounded, it
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can be strong enough to reject the public signals with positive probability. The later-

acting agents can asymptotically converge to the true hypothesis [19]. This thesis

does not restrict the private signals to be boundedly informative.
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Chapter 3

Human Perception of Prior

Probability

Economic theory understands human behavior with the fundamental assumption that

humans act rationally through the optimization of their expected payoff. The payoff

is expressed in terms of the amounts of money gained or lost in many cases but can

include terms of other quantities, such as time [20]. Furthermore, the payoff does not

have to be quantifiable. It includes regret [21, 22], disappointment [23], ambiguity

aversion [24], and fairness [25].

However, a human’s cognitive process is different from the calculation process of

a machine. The optimization of the payoff should involve not only the computational

power but also the ability to anticipate and quantify exact outcomes and their like-

lihoods. The complex decision-making process is hardly observed in human choice

situations, and Simon [26] suggested modification of procedures: simple payoff func-

tions, costly information gathering, and lack of a complete order of priority when

the outcome of the payoff function is a vector. With observing that human decision

making is to satisfice rather to optimize, he thought that “a great deal can be learned

about rational decision making by taking into account, at the outset, the limitations

upon the capacities and complexity of the organism, and by taking account of the fact

that the environments to which it must adapt possess properties that permit further

simplification of its choice mechanisms” [27].

The notion of bounded rationality contains this idea. The models of bounded

rationality describe more than the outcome of a decision. They also describe how hu-
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mans heuristically develop approximate mechanisms and how human decision-making

processes reach a judgment or decision.

This thesis considers human cognitive limitations but still allows optimization.

It follows Marschak’s approach, which is termed costly rationality [7, 28]. Under

costly rationality, a rational agent optimizes the payoff with taking into account

costs of activities of decision making, such as observation, computation, memory, and

communication.

The constraint that is taken into account in the thesis is imperfect perception

of prior probability. Section 3.1 reviews psychological literature about the effect of

attractiveness on human decision making and the perception of prior probability. Sec-

tion 3.2 describes a mathematical abstraction of the perception process and estimates

the prior probability.

∎ 3.1 Studies on Human Decision Making

Rational human decision making is known to resemble Bayesian reasoning [1–4]. How-

ever, not all human decision making seems rational. One of the irrational behaviors

is the human tendency to discriminate against unattractive people. Even though

a person’s appearance is unrelated to the person’s emotions, intelligence, or behav-

iors, many psychological studies have reported evidence of biases based on physical

attractiveness.

Stewart [29] studied the effect of attractiveness of a defendant on the severity of

punishment. He had 10 observers who visited 74 criminal trials and rated the de-

fendants’ attractiveness on 7-point bipolar scale. The observers attempted to visit

whenever possible; they watched the defendant for 30 minutes and rated the attrac-

tiveness on given standard rating forms. The forms have 9 items, such as richness

and education as well as attractiveness, so that the observers could not know that

the experiment would only care about attractiveness of the defendants.

He analyzed all data observed from 73 trials and found the relation of the attrac-

tiveness rates, race, seriousness of the crime, and conviction/acquittal. The minimum
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and maximum sentences were strongly inversely related to the attractiveness. The

seriousness of crime1 was also negatively correlated to the attractiveness. When the

seriousness was controlled in order to figure out the causality of severity of sentence,

the correlation between the attractiveness and the severity of sentence was reduced

but existed.

Similarly, Efran [30] tested a hypothesis that physically attractive defendants

would be more positively evaluated than unattractive ones. The results of a simulated

jury task supported that attractive defendants were evaluated with less probability of

guilty verdict and less severe recommended punishment than unattractive defendants

were even though appearance should be irrelevant to judicial decisions. Also, similar

results were observed in [31].

These results may imply that jurors just make a more favorable verdict to a more

attractive defendant. Stephan and Tully [32] studied attractiveness of plaintiffs and

designed a survey with eight personal injury suits each brought by an individual

against another as a result of an automobile accident. The result supported their

hypothesis that a physically attractive plaintiff is favored over an unattractive plain-

tiff in assessing liability or in the amount of money awarded. Considering that the

attractiveness of plaintiff is truly irrelevant to assessing damage from the accident,

these studies seem to indicate that “what is beautiful is good.”

In fact, the advantages of attractiveness were studied from many other aspects

as well. Dion et al. revealed that a physical attractiveness stereotype exists [33].

Their experiment showed that attractive men and women were expected to attain

more reputable occupations than less-attractive people were. Furthermore, attractive

people were expected to experience happier marriages, be better spouses and parents,

and have happier social and professional lives.

Furthermore, a child’s attractiveness is also significantly associated with a teacher’

expectations about the child’s intelligence, parents’ interest, educational potential,

1The crimes were categorized into three groups with respect to their seriousness: The most
serious crimes include murder, voluntary manslaughter, and rape. The second group consists of
armed robbery, robbery, burglary, aggravated assault, and involuntary manslaughter. The least
serious crimes were theft by taking, deception, victimless crimes, and minor drug offenses.
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and social potential [34]. A physically attractive person is expected to be more

socially skillful and likable [35]. An attractive person is evaluated to be more suitable

for employment and more likely to advance [36]. Even experienced managers have the

attractiveness biases even though the biases tend to decrease as managerial experience

increases.

The biased punishment based on physical attractiveness may also result from the

jurors’ recognition that a more attractive defendant seems less likely to commit a

crime. Sigall and Ostrove [37] looked for a cognitive explanation of the biases. They

studied whether the physical attractiveness of a criminal defendant has a different

effect on a crime unrelated to attractiveness (i.e., burglary) and on an attractiveness-

related one (i.e., swindle). Their experiment revealed that an unattractive defendant

was more severely punished when the crime was attractiveness-unrelated, but an

attractive defendant was treated more harshly when the crime was attractiveness-

related. However, since the difference in sentences assigned to an attractive and

an unattractive defendant was not statistically significant, the authors conserva-

tively concluded that the advantages of attractiveness are lost when the crime is

attractiveness-related.

Smith and Hed [38] reviewed the correlation between attractiveness and the sever-

ity of sentence studied in [37]. They formed a group of three jurors to figure out the

difference between a group and an individual decision maker—whether the jurors un-

favorably judge an attractive defendant in a swindle case even after a discussion as

individual jurors do without a discussion. They found that, even though in burglary

cases attractive defendants were sentenced significantly less harshly than unattrac-

tive defendants were, in swindle cases attractive defendants were sentenced slightly

but not significantly more harshly than unattractive defendants were. These results

coincide with the results in [37] in which judgments were made by individuals.

Darby and Jeffers [5] also observed that more attractive defendants are less fre-

quently convicted and less severely punished. Besides, they asked their experiment

subjects to evaluate defendants’ likability, trustworthiness, and responsibility for

charges. Attractive defendants were rated as more likable, more trustworthy, and
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less responsible for the offense. The results imply that the biased verdict may be

related to jurors’ perception that the attractive defendant is less likely to commit the

charged crime.

The relation is more obvious in [6]. Brown et al. studied the effect of eyeglasses on

juror decisions in violent crimes. They not only looked at the verdicts with and with-

out eyeglasses but also asked subjects to rate defendants’ intelligence, attractiveness,

friendliness, and physical threateningness on a scale of 1 to 7.

People turned out to feel a defendant more intelligent and less threatening sta-

tistically significantly when the defendant was wearing eyeglasses. It was found that

this effect of eyeglasses led to fewer guilty verdict for the defendant with eyeglasses

than for one without eyeglasses.

To summarize, the psychological studies have verified that the attractiveness

stereotype does exist: People are favorable to a physically attractive person. However,

it is not the only reason that attractive defendants are less severely punished than

unattractive defendants are. It is also because people think that attractive people

would be less likely to commit a crime. Otherwise, attractive defendants would have

been also less harshly punished in the cases of attractiveness-related crimes. This

observation is a motivation of the thesis.

∎ 3.2 Estimation of Prior Probabilities

Again, it turned out that defendants wearing eyeglasses received fewer guilty verdicts

than ones without eyeglasses did [6]. From a logical standpoint, there should not

be such a correlation. Eyeglasses can neither help nor prevent committing a crime.

Furthermore, jurors must be doing their best to make fair and reasonable decisions

based on evidence.

The correlation can be found from Bayesian reasoning, which requires prior prob-

ability to be performed. If a trial is likened to a hypothesis testing problem, the

hypotheses are whether a defendant is guilty or innocent. Observed signals are the

evidence presented by a prosecutor or defense counsel. Jurors are decision-making
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Figure 3-1. An extensive hypothesis testing model proposed in the thesis.

agents that make a verdict upon observing the signals. One element of hypothesis

testing missing here is the prior probability that the defendant commits the charged

crime.

The prior probability matters to the verdict and is critical especially when the

evidence is ambiguous. The problem is that the jurors cannot know the defendant’s

prior probability. Hence, they judge the probability based on the defendant’s appear-

ance. They evaluate the defendant’s personality, such as intelligence, attractiveness,

friendliness, and dangerousness, and infer the prior probability.

In order to capture practical decision-making agents like human beings, this thesis

proposes a modification: treat the prior probability p0 as a hyperparameter with a

distribution fP0(p0), Figure 3-1. A state H, the subject of detection, is drawn from a

Bernoulli distribution with parameter p0 but the agent does not know the value of p0,

unlike in general hypothesis testing models. The prior probability p0 as well as the

state H are hidden (unknown) variables. Instead of p0, the agent can observe a signal

T = t, which is correlated with p0 by fT ∣P0
(t ∣p0). The agent performs hypothesis

testing with two observations T = t and Y = y. Note that the problem becomes the

same as the classical binary hypothesis testing if T is always equal to p0.

The objective of this problem is not to estimate p0 accurately but to detect H

accurately. The criterion is the following Bayes risk:

R = c10P{Ĥ = 1,H = 0} + c01P{Ĥ = 0,H = 1}

= c10∫
Y1
fT,Y ∣H(t, y ∣0)PH(0)dt dy + c01∫

Y0
fT,Y ∣H(t, y ∣1)PH(1)dt dy,

where Y0 and Y1 here are defined over two-dimensional space of Y and T . The regions
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Y0 and Y1 that minimize the Bayes risk are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(t, y) ∈ Y1, if c10fT,Y ∣H(t, y ∣0)PH(0) ≤ c01fT,Y ∣H(t, y ∣1)PH(1),
(t, y) ∈ Y0, otherwise.

The corresponding optimal decision rule Ĥ(t, y) is the likelihood ratio test with two

observations T = t and Y = y,

fT,Y ∣H(t, y ∣1)
fT,Y ∣H(t, y ∣0)

Ĥ(t,y)=1
⋛

Ĥ(t,y)=0

c10pH(0)
c01pH(1) . (3.1)

The signals T and Y are correlated but they are independent conditioned on H,

fT,Y ∣H(t, y ∣h) = fT ∣H(t ∣h)fY ∣H(y ∣h).

The conditional independence changes (3.1) to

fY ∣H(y ∣1)
fY ∣H(y ∣0)

ĥ(t,y)=1
⋛

ĥ(t,y)=0

c10pH(0)fT ∣H(y ∣0)
c01pH(1)}fT ∣H(y ∣1) . (3.2)

At the right-hand side of (3.2),

pH(0)fT ∣H(t ∣0) = fH,T (0, T ) = ∫
1

0
fH,T,P0(0, t, p0)dp0

(a)= ∫
1

0
pH ∣P0

(0 ∣p0)fT,p0(t, p0)dp0
(b)= ∫

1

0
p0fP0 ∣T (p0 ∣ t)fT (t)dp

= E[P0 ∣T = t]fT (t), (3.3)

where the equality (a) holds because H and T are independent conditioned on P0; the

equality (b) holds because pH ∣P0
(0 ∣p0) = p0 by definition. Likewise, pH(1)fT ∣H(t ∣1) =

(1 −E[P ∣T = t]) fT (t). The decision rule (3.2) becomes

fY ∣H(y ∣1)
fY ∣H(y ∣0)

ĥ(t,y)=1
⋛

ĥ(t,y)=0
= c10E[P0 ∣T = t]
c01 (1 −E[P0 ∣T = t]) , (3.4)
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which looks similar to (2.1). It turns out that the optimal decision rule is the likelihood

ratio test with the observation Y = y when the agent estimates the prior probability

at E[P0 ∣T = t].
Therefore, the decision-making process can be split into two steps: estimating the

prior probability upon observing T and detecting the true state upon observing Y .

This result is useful because T and Y can be dealt with separately. It restores our

problem to the classical hypothesis testing problem except that the prior probability

used by the Bayesian agent is the conditional mean of prior probability E[P0 ∣T = t].
In reality, people would know the likelihood fP0 ∣T differently. Furthermore, they

may use other kinds of estimators. Therefore human decision makers are more likely

to differently perceive the prior probability even if they observe the same signal T .

In the jury example [6], every juror can watch the defendant wearing eyeglasses.

However, each juror would have a different feeling of how violent the defendant looks

and different guesses of the defendant’s prior probability of guilt.

It is too complex to assume the likelihood functions fP0 ∣T differently for each

agent and consider their estimation processes. Instead of the whole process of esti-

mating prior probability, let us assume that agents have already estimated the prior

probability and are ready to perform hypothesis testing. Through most of the thesis,

agents are assumed to make decisions with individually perceived prior probabilities

(or perceived belief ).
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Chapter 4

Distributed Detection with

Symmetric Fusion

One of the simplest ways to decrease the Bayes risk is to form a decision-making

team. A team considered in the thesis consists of N decision-making agents who

individually observe conditionally independent signals. Even though it leads to the

best result to directly integrate the signals, it causes high communication costs.

The advantage of the multiplicity is still effective even when agents locally make

decisions, i.e., quantize their observations to binary values, then fuse the decisions.

Suppose that the private signals are corrupted by iid additive Gaussian noises. When

all agents are correctly aware of the prior probability, the team decision making with

a symmetric L-out-of-N fusion rule is equivalent to a single decision making with the

Lth largest signal Y(L) [12]. The pdf of the Lth largest noise is computed as follows

according to the order statistics [39]:

fW(L)(w) = N !

(N −L)!(L − 1)![FW (w)](N−L)[1 − FW (w)](L−1)fW (w). (4.1)

For odd number N and the majority fusion rule (L = (N + 1)/2), for instance, the

effective variance of W(L) is listed in Table 4.1 [40].

The advantage described in Table 4.1 is fully achieved only by the perfect agents

who know the prior probability. The imperfect agents under our assumption, who

do not know the prior probability, would be outperformed by them. This chapter

discusses the limited performance of teams of imperfect agents.
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N L Variance N L Variance
1 1 1 11 6 0.1372
3 2 0.4487 13 7 0.1168
5 3 0.2868 15 8 0.1017
7 4 0.2104 17 9 0.0900
9 5 0.1661 19 10 0.0808

Table 4.1. Variance of the median of N iid Gaussian random variables

Alexis Britta Norah
H1ˆ H1, H2ˆ ˆ H1, ..., HN-1ˆ ˆ

H

···

···fY  |H1 fY  |H2 fY  |HN

Y1 Y2 YN

Fusion

Ĥ

H2ˆH1ˆ HNˆ

Alexis

H

···fY  |H1 fY  |H2 fY  |HN

Y1
Y2 YN

Ĥ

Figure 4-1. An agent observes N conditionally independent signals Y1, Y2, . . . , YN .

Section 4.1 evaluates an imperfect agent. Section 4.2 investigates the performance

of a team of imperfect agents focusing on the comparison between teams of identical

agents and diverse ones. Section 4.3 shows that imperfect agents can outperform per-

fect agents if they do observe non-identically distributed signals. Section 4.4 concludes

the chapter.

∎ 4.1 An Imperfect Agent

Consider a hypothesis testing problem of a single agent. The agent detects a state

H, whose prior probability is p0 = P{H = 0} and p1 = P{H = 1} = 1 − p0. However

she is imperfect and does not know p0. Instead, she perceives the prior probability

P{H = 0} as q ≠ p0. Let’s compare her performance to a perfect agent’s.

∎ 4.1.1 The Number of Observations

Suppose that the imperfect agent can observe N conditionally independent signals

Y1, . . . , YN , Figure 4-1. The likelihoods of her observations are expressed as the mul-
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tiplication of the likelihoods of individual observations:

PY1,...,YN ∣H(y1, . . . , yn ∣0) =
N

∏
n=1

PYn ∣H(yn ∣0),

PY1,...,YN ∣H(y1, . . . , yn ∣1) =
N

∏
n=1

PYn ∣H(yn ∣1).

With these likelihoods and her perceived prior belief, she would perform the following

LRT:
N

∏
n=1

PYn ∣H(yn ∣1)

N

∏
n=1

PYn ∣H(yn ∣0)

Ĥq(y1,...,yN )=1
⋛

Ĥq(y1,...,yN )=0

c10q

c01(1 − q)
, (4.2)

where Ĥq(⋅) denotes the decision rule optimized for prior probability q. This LRT

determines her false alarm probability P{Ĥq(y1, . . . , yN) = 1 ∣H = 0} and missed de-

tection probability P{Ĥq(y1, . . . , yN) = 0 ∣H = 1}.

If the observed signals are Yn =H +Wn, where Wn are iid Gaussian random vari-

ables with zero mean and unit variance, then observing the N signals is equivalent to

observing a signal corrupted by additive Gaussian noise with zero mean and variance

1/N . Let Nob denote the minimum number of observations for her to perform no

worse than a perfect agent observing one signal:

Nob = min N

s.t. c10p0P{Ĥq(y1, . . . , yN) = 0 ∣H = 1} + c10p1P{Ĥq(y1, . . . , yN) = 1 ∣H = 0}

≤ c10p0P{Ĥp0(y1) = 0 ∣H = 1} + c01p1P{Ĥp0(y1) = 1 ∣H = 0}. (4.3)

The value of Nob depends on the true prior probability p0, the perceived prior

belief q, and the Bayes costs c10 and c01. For instance, when the prior probability

of a decision-making subject is p0 = p1 = 0.5, Nob for perceived belief q ∈ [0.01,0.99]
is depicted in Figure 4-2. The worst perceived belief (q = 0 or q = 1) cannot be

overcome even by infinite observations. However, if she reasonably perceives the

prior probability, e.g., within an error of 0.3, then only 3 or less observations are

sufficient. Figure 4-2 implies that having a wrong belief 0.25 when the true prior
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Figure 4-2. The minimum number of observations for an agent, who perceives prior probability
as q ∈ [0.01,0.99], to reduce the expected cost below that of a perfect agent who knows p0. All
observations are Yi =H +Wi, where Wi ∼ iid N (0,1). p0 = 0.5 and c10 = c01 = 1.

probability is 0.5 is similar to observing a signal with half of the power of the perfect

agent’s signal.

∎ 4.1.2 The Number of Agents

Now suppose that there are N imperfect agents who perceive the prior probability as

q, Figure 4-3. Agent n observes a conditionally iid signal Yn = yn and makes a local

decision. The local decisions are fused by a known L-out-of-N fusion rule.

When the agents use decision thresholds λ1, λ2, . . . , λN , respectively, their global

Bayes risk is

R = c10p0P I
E + c01p1P II

E

= c10p0GI
L,N (P I

e(λ1), . . . , P I
e(λN)) + c01p1GII

L,N (P II
e (λ1), . . . , P II

e (λN)) ,

where the functions GI
L,N and GII

L,N are defined in (2.10) and (2.11). Let us restrict

the agents to use the same decision thresholds, i.e., λ1 = λ2 = ⋯ = λN = λ because the

restriction causes little or no loss of performance [16]. Then their decision threshold
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Figure 4-3. Multiple agents individually perform hypothesis testing then a fusion center fuses their
decisions.

λ is the solution to (2.14):

PYn ∣H(λ ∣1)
PYn ∣H(λ ∣0) =

c10qg
I
L,N (P I

e(λ), . . . , P I
e(λ))

c01(1 − q)gIIL,N (P II
e (λ), . . . , P II

e (λ)) .

Each agent performs the following comparison to make her local decision:

yn

Ĥq(yn)=1
⋛

Ĥq(yn)=0
λ.

Individual imperfect agents are outperformed by the perfect agent but, as a team,

the imperfect agents can outperform her. Let Nag denote the minimum number of

imperfect agents who can together outperform the perfect agent:

Nag = min N

s.t. min
L

{c10p0GI
L,N (P I

e(λ), . . . , P I
e(λ)) + c01p1GII

L,N (P II
e (λ), . . . , P II

e (λ))}

≤ c10p0P{Ĥp0(y1) = 0 ∣H = 1} + c01p1P{Ĥp0(y1) = 1 ∣H = 0}.

Figure 4-4 depicts the minimum number of imperfect agents who can outperform

a single perfect agent. Compared to Figure 4-2, Figure 4-4 shows that the number of

required agents is larger than the number of observations required. It is because the

53



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

INCORRECT BELIEF (q)

M
IN

IM
U

M
 N

U
M

BE
R 

O
F 

AG
EN

TS

Figure 4-4. The minimum number of imperfect agents, who perceive prior probability as q ∈
[0.01,0.99], to reduce the expected cost below that of a perfect agent who knows p0. All agents
observe Yi =H +Wi, where Wi ∼ iid N (0,1). p0 = 0.5 and c10 = c01 = 1.

agents lose information when they make local decisions and the L-out-of-N rule may

not be the optimal fusion rule.

∎ 4.2 Team of Imperfect Agents

As discussed in Section 4.1, one way to improve decision making is to observe N

signals; another way is to group N agents so that they make a decision as a team.

The latter case is identical to the former if all agents send their observations to

their fusion center. However, it requires communication channels of infinite capacity

between agents and the fusion center.

Thus, the agents are constrained in the thesis to be able to send a 1-bit signal

to the fusion center. With exchange of low communication costs, performance will

be degraded due to loss of information and ignorance of prior probability. This

section discusses their team performance focusing on the comparison between teams

of identical agents and diverse ones.
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∎ 4.2.1 A Team of Agents Who Observe Conditionally IID Signals

First, let us compare a team of N diverse agents and a team of N identical agents.

A team of identical agents is already discussed in Section 4.1.2. Diverse agents are

defined as agents who differently perceive the prior probability as q1, q2 . . . , qN , re-

spectively. The model of diverse team is the same as that of an identical team except

that the agents have different beliefs.

To recapitulate decision making by identical agents, their decision threshold is the

solution to the equation

PYn ∣H(λ ∣1)
PYn ∣H(λ ∣0) =

c10qg
I
L,N (P I

e(λ), . . . , P I
e(λ))

c01(1 − q)gIIL,N (P II
e (λ), . . . , P II

e (λ)) . (4.4)

Let rL,N ∶ [0,1] ↦ (−∞,∞) denote the mapping from the belief q to the decision

threshold λ. In the process of determining the decision-making rule, it is implied that

the agent and other colleague agents agree that the prior probability is q. All agents

use the same equation (4.4) to determine their decision thresholds and their decision

thresholds are identical.

The agents in the diverse team also know the number of decision makers and the

fusion rule. Thus, they determine their decision thresholds from an equation of the

same form as (4.4). However, contrary to the identical agents who know others’ beliefs

even if they do not communicate them (because they all have the same beliefs), these

agents do not know others’ beliefs if they do not communicate them.

Since Agent n does not know what beliefs other agents have, she just assumes

that the other agents would have the same belief as hers. Accordingly, she assumes

that the other agents also use the same decision threshold λn and will determine her

decision threshold from the equation

PYn ∣H(λn ∣1)
PYn ∣H(λn ∣0)

=
c10qng

I
L,N (P I

e(λn), . . . , P I
e(λn))

c01(1 − qn)gIIL,N (P II
e (λn), . . . , P II

e (λn))
, (4.5)

i.e., λn = rL,N(qn). This rule only holds for Agent n. Agent i will use the threshold

λi = rL,N(qi), which is different from λn if qi ≠ qn. Note that λn does not depend
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Figure 4-5. The Bayes risks of a team of individual agents (q1 = q2) and a team of diverse agents
(q1 ≠ q2) for 1-out-of-2 fusion rule. c10 = c01 = 1. (a) q = 0.4, q1 = 0.4, q2 = 0.6. (b) q = 0.5, q1 = 0.5,
q2 = 0.6.

on other agents’ perceived beliefs. No matter whom she composes a team with, her

decision rule is the same as long as her perceived belief, L, and N remain the same.

For the identical team, the performance is measured by the team Bayes risk,

RI = c10p0P I
E + c01p1P II

E

= c10p0GI
L,N (P I

e(λ), . . . , P I
e(λ)) + c01p1GII

L,N (P II
e (λ), . . . , P II

e (λ)) . (4.6)

The performance of the diverse team is also measured by the same formula except

that the agents have different decision-making rules:

RD = c10p0P I
E + c01p1P II

E

= c10p0GI
L,N (P I

e(λ1), . . . , P I
e(λN)) + c01p1GII

L,N (P II
e (λ1), . . . , P II

e (λN)) . (4.7)

Comparison of the performances (4.6) and (4.7) are highly dependent on the agents

beliefs q, q1, q2, . . . , qN as well as the prior probability p0. For example, Figure 4-5a

depicts the Bayes risks of a team of two identical agents who perceive the prior

probability as 0.4 and a team of two diverse agents who respectively perceive it as 0.4

and 0.6. Their Bayes risks are linear in p0 because the agents’ decision thresholds are
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constant for p0. The identical team performs better for small p0 because Agent 2 in

the diverse team has a belief with a larger error (∣0.6−p0∣ > ∣0.4−p0∣). On the contrary,

the diverse team performs better for large p0 because all agents in the identical team

have beliefs with larger errors (∣0.4 − p0∣ > ∣0.6 − p0∣).

An interesting comparison can be made with regard to stability of the team.

Suppose that the agents who perceived prior probability as 0.4 have a new belief 0.5

as in Figure 4-5b. The slopes of Bayes risk change because of the change of their

beliefs. The slope of the identical team changes from 0.2406 to 0.03124 while that of

the diverse team changes from 0.05633 to -0.07159. The difference is larger for the

identical team than for the diverse team. Since the slope is equal to c10P I
E − c01P II

E ,

the identical team experiences more radical changes of error probabilities.

The following theorems give a rough comparison of the stability.

Theorem 4.1. When a team of N agents who respectively have beliefs q1, q2, . . . , qN

make a decision with the L-out-of-N fusion rule, their global false alarm probability

is given by P I
E = GI

L,N (P I
e(rL,N(q1)), P I

e(rL,N(q2)), . . . , P I
e(rL,N(qN))). Let us use a

simple notation P I
E = EI

L,N(q1, q2, . . . , qN) for the global false alarm probability. Then

for any n ≤ N and any beliefs q0, q1, . . . , qN−n,

d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

n − 1

d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n−1

, q0, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

.

(4.8)

In other words, the change of false alarm probability is proportional to the number of

agents who change their beliefs.

Proof. The proof is in Appendix 4.A.

Theorem 4.2. When a team of N agents who respectively have beliefs q1, q2, . . . , qN

make a decision with the L-out-of-N fusion rule, their global missed detection probabil-

ity is given by P II
E = GII

L,N (P I
e(rL,N(q1)), P I

e(rL,N(q2)), . . . , P I
e(rL,N(qN))). Let us use

a simple notation P II
E = EII

L,N(q1, q2, . . . , qN) for the global missed detection probability.
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Then for any n ≤ N and any beliefs q0, q1, . . . , qN−n,

d

dq
EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

n − 1

d

dq
EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n−1

, q0, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

.

(4.9)

Proof. Due to the symmetry, this theorem is proven by the proof of Theorem 4.1 in

Appendix 4.A with change of superscripts I to II and L to N −L + 1.

Corollary 4.3. For any m < n ≤ N and any beliefs q0, q1, . . . , qN−m,

d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

m

d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−m

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

,

d

dq
EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

m

d

dq
EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−m

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

.

Proof. For the false alarm probability,

d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

n − 1
× d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n−1

, q0, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= n

n − 1
× n − 1

n − 2
× d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n−2

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

= ⋯ = n

n − 1
× n − 1

n − 2
×⋯ × m + 1

m
× d

dq
EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−m

, q1, . . . , qN−n)
RRRRRRRRRRRRRRq=q0

.

The proof for the missed detection probability is the same.
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Figure 4-6. A contour plot of the Bayes risk for two agents with the or fusion rule varying q1 and
q2 for c10 = c01 = 1, p = 0.5, and additive Gaussian noise with zero mean and unit variance. Arrow
D1 indicates the change of belief in the team of identical agents and arrow D2 indicates that in the
team of diverse agents. If there are errors in the perception, it is almost the worst case when the
agents have identical errors.

Theorem 4.4. For any m < n ≤ N and any Beliefs q0, q1, . . . , qN−m,

d

dq

⎛
⎜
⎝
c10p0E

I
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n) + c01p1EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)
⎞
⎟
⎠

RRRRRRRRRRRRRRq=q0

= n

m

d

dq

⎛
⎜
⎝
c10p0E

I
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−m

, q1, . . . , qN−n)

+c01p1EII
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
m

, q0, . . . , q0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−m

, q1, . . . , qN−n)
⎞
⎟
⎠

RRRRRRRRRRRRRRq=q0
.

Proof. This theorem is directly obtained from Corollary 4.3.

Theorem 4.4 implies that if a team consists of n identical and N −n diverse agents

then the change of identical agents’ belief has an impact on the change of the team

Bayes risk proportional to n. Thus, as the team gets more diverse, the impact of

change is decreased in a reciprocal fashion.

Figure 4-6 depicts the global Bayes risk for a team of two agents having various
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Figure 4-7. Suppose that Alexis has the smallest threshold (λ(1)) and Britta has the second
smallest threshold (λ(2)), etc. (a) If Y < λ(1), all agents will declare 0. (b) If λ(1) < Y < λ(2), all
agents except Alexis declare 0.

beliefs. A change of belief in the identical team is marked as the arrow D1. The

increase of the Bayes risk is higher than the increase due to a change of belief in the

diverse team, which is marked as the arrows D2. Even though Theorem 4.4 deals

with the infinitesimal change of belief, Figure 4-6 also supports the similar trend for

larger changes.

∎ 4.2.2 A Team of Agents Who Observe the Same Signal

Now let us change the setting so that there is only one observation. This assumption

is applicable to some scenarios, such as criminal trials in which all jurors observe the

same evidence, such as the evidence presented by prosecutors or counsel.

In this case, it is meaningless to consider multiple identical agents. Since they

have the same observation, their decisions will always coincide. On the other hand,

for a diverse team, local decisions can be varied depending on the perceived belief

of individual agents. For the same observation, it can happen that an agent whose

belief is biased toward H = 1 chooses 1 while another agent whose belief is biased

H = 0 chooses 0.

Even though the diverse agents have different beliefs, their decision making is not

independent of each other. For example, if the common observation Y = y is smaller

than the minimum of the agents’ decision thresholds as depicted in Figure 4-7a, then

all agents will declare 0. If y is between the first and the second smallest decision

thresholds as in Figure 4-7b, then the agent with the minimum decision threshold

will declare 1 and everyone else will declare 0. It will not happen that the agent with

the minimum decision threshold declares 0 and some others declare 1.
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Theorem 4.5. Under the L-out-of-N fusion rule, the final decision is solely deter-

mined by the agent who has the Lth smallest belief on H = 0 among the N agents.

Proof. Since decision threshold is monotonically increasing in the belief, this theorem

can be rephrased as follows:

“Under the L-out-of-N fusion rule, the final decision is solely determined by the

agent who has the Lth smallest decision threshold among the N agents.”

Let λ(L) denote the Lth smallest decision threshold. If Y < λ(L), at least N −L+1

agents, whose decision thresholds are not less than λ(L), choose 0 and the global

decision will also be 0. Otherwise, at least L agents, whose decision thresholds are

not greater than λ(L), choose 1 and the global decision will be 1. Therefore, the global

decision is always the same as the local decision made by the agent who has the Lth

smallest decision threshold.

The Bayes risk of the diverse team is simply given by

RD = c10p0P I
e(λ(L)) + c01p1P II

e (λ(L)). (4.10)

Please note that λ(L) should be determined by q(L) but not equal to rL,N(q(L)), where

q(L) is the Lth smallest numbers among q1, . . . , qn. The global Bayes risk (4.10) is

computed not with global error probabilities P I
E and P II

E but with local error proba-

bilities P I
e and P II

e . Thus the agents just need to perform decision making as if they

are the only decision maker, i.e., λ(L) = r(q(L)), where r(⋅) = r1,1(⋅).
There is an analogy between this theorem and the median voter theorem. The

median voter theorem states that the median voter determines the outcome of ma-

jority voting. In Theorem 4.5, the agent who has the median belief is pivotal for the

majority fusion rule. The agent can be referred to as the median voter.

When diverse agents observe conditionally iid signals, they have an advantage of

effectively higher signal-to-noise ratio than that of individual signals. It is why they

can reduce their global Bayes risk even though they have different beliefs. However,

when they observe the same signal, they do not have such an advantage. Their team
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Bayes risk is lower bounded by c10p0P I
e(r(p0)) + c01p1P II

e (r(p0)) even though N goes

to infinity. Instead, if their beliefs are distributed around the true prior probability

p0, such as uniformly distributed within [p0 − δ, p0 + δ] for some δ > 0, then their

median belief converges almost surely to p0 and their Bayes risk will be almost the

same as that of a single perfect agent.

∎ 4.3 Experts and Novices in a Team

So far, teams of agents who observe conditionally iid signals have been considered.

Then the perfect agents, who know p0, always outperform imperfect agents of the

same number, who perceive p0 as qi.

In this section, agents observe conditionally independent but not identically dis-

tributed signals. Some agents have better signals with smaller noise and some others

observe worse signals. These agents perform a decision making as a team but do not

know how good others’ observations are.

The sets of perfect agents and imperfect agents are identical with respect to the

likelihoods of their observations, e.g., both perfect Agent n and imperfect Agent n

observe signals Yn whose likelihoods are equally fYn ∣H(yn ∣h). They are different only

in that perfect Agent n knows what p0 is but imperfect Agent n does not.

Even though perfect agents know the likelihoods of the hypotheses and their own

observations, they do not know likelihoods of others’ observations. This ignorance

about other agents is the cause of their suboptimality. Intuitively, their decision-

making rules can be optimized only if they have all information, including the like-

lihoods of others’ observations. They do not, however, and cannot figure out the

optimal rule. On the other hand, some imperfect agents can have the optimal rules if

their wrong perceived beliefs luckily lead to the optimal rules. Ironically, two errors

may cancel out each other but one error cannot cancel out itself.

Before discussing the performance of perfect and imperfect agents, let us think

about the optimal decision-making rule. Bayes risk has the same form as (4.7).

For example, for N = 2 and the 1-out-of-2 fusion rule, the agents’ optimal decision
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thresholds λ∗1 and λ∗2 are the solution to the following two equations:

fY1 ∣H(λ1 ∣1)
fY1 ∣H(λ1 ∣0)

=
c10p0 (1 − P I

e,2(λ2))
c01p1P II

e,2(λ2)
=
c10p0 ∫

∞
λ2
fY2 ∣H(y2 ∣0)dy2

c01p1 ∫
∞
λ2
fY2 ∣H(y2 ∣1)dy2

,

fY2 ∣H(λ2 ∣1)
fY2 ∣H(λ2 ∣0)

=
c10p0 ∫

∞
λ1
fY1 ∣H(y1 ∣0)dy1

c01p1 ∫
∞
λ1
fY1 ∣H(y1 ∣1)dy1

. (4.11)

These equations look identical to (4.5) but λ1 ≠ rL,N(p0) because fY1 ∣H(y ∣h) ≠
fY2 ∣H(y ∣h) for any y and h. Each agent requires both fY1 ∣H and fY2 ∣H to solve

them.

However, they only know the likelihood functions of their own observations. In

the perfect-agent case, when agents know the prior probability p0, the following pair

of equations are the modified version of (4.11) from Agent 1’s perspective:

fY1 ∣H(λ1 ∣1)
fY1 ∣H(λ1 ∣0)

=
c10p0 ∫

∞
λ2
fY1 ∣H(y2 ∣0)dy2

c01p1 ∫
∞
λ2
fY1 ∣H(y2 ∣1)dy2

,

fY1 ∣H(λ2 ∣1)
fY1 ∣H(λ2 ∣0)

=
c10p0 ∫

∞
λ1
fY1 ∣H(y1 ∣0)dy1

c01p1 ∫
∞
λ1
fY1 ∣H(y1 ∣1)dy1

. (4.12)

Agent 1 will compute the solution λ
(1)
1 and λ

(1)
2 of (4.12); she takes λ

(1)
1 as her decision

threshold and assumes λ
(1)
2 as Agent 2’s threshold.

Likewise, perfect Agent 2 develops the following equations and finds their solution

λ
(2)
1 and λ

(2)
2 :

fY2 ∣H(λ1 ∣1)
fY2 ∣H(λ1 ∣0)

=
c10p0 ∫

∞
λ2
fY2 ∣H(y2 ∣0)dy2

c01p1 ∫
∞
λ2
fY2 ∣H(y2 ∣1)dy2

,

fY2 ∣H(λ2 ∣1)
fY2 ∣H(λ2 ∣0)

=
c10p0 ∫

∞
λ1
fY2 ∣H(y1 ∣0)dy1

c01p1 ∫
∞
λ1
fY2 ∣H(y1 ∣1)dy1

. (4.13)

She chooses her decision threshold as λ
(2)
2 . The decision rules λ

(1)
1 determined by

(4.12) and λ
(2)
2 by (4.13) can be said to be rational but not optimal because they are

different from the optimal ones λ∗1 and λ∗2 determined by (4.11).

In the imperfect-agent case, agents use their perceived beliefs in the decision

making. Imperfect Agents 1 and 2 respectively design their decision rules from the
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following equations, which are differentiated from (4.12) and (4.13).

(Imperfect Agent 1)
fY1 ∣H(λ1 ∣1)
fY1 ∣H(λ1 ∣0)

=
c10q1 ∫

∞
λ2
fY1 ∣H(y2 ∣0)dy2

c01(1 − q1) ∫
∞
λ2
fY1 ∣H(y2 ∣1)dy2

,

fY1 ∣H(λ2 ∣1)
fY1 ∣H(λ2 ∣0)

=
c10q1 ∫

∞
λ1
fY1 ∣H(y1 ∣0)dy1

c01(1 − q1) ∫
∞
λ1
fY1 ∣H(y1 ∣1)dy1

. (4.14)

(Imperfect Agent 2)
fY2 ∣H(λ1 ∣1)
fY2 ∣H(λ1 ∣0)

=
c10q2 ∫

∞
λ2
fY2 ∣H(y2 ∣0)dy2

c01(1 − q2) ∫
∞
λ2
fY2 ∣H(y2 ∣1)dy2

,

fY2 ∣H(λ2 ∣1)
fY2 ∣H(λ2 ∣0)

=
c10q2 ∫

∞
λ1
fY2 ∣H(y1 ∣0)dy1

c01(1 − q2) ∫
∞
λ1
fY2 ∣H(y1 ∣1)dy1

. (4.15)

Note that these equations imply that each agent acts as if the other agent’s perceived

belief is the same as hers.

The performance of the imperfect agents depends on their perceived beliefs: it can

be better or worse than that of the perfect agents. For given likelihood functions fY1 ∣H

and fY2 ∣H , the rational decision rules of the imperfect agents are arbitrary according

to q1 and q2 while the rational decision rules of the perfect agents are fixed. Ideally,

it will be the optimal situation for the imperfect agents if their beliefs accidentally

lead to the optimal decision thresholds λ∗1 and λ∗2. In other words, if Agent 1 has q1

and Agent 2 has q2 such that the solution of (4.14) is equal to λ∗1 and the solution

of (4.15) is equal to λ∗2, then their Bayes risk will be minimal and lower than that of

the perfect agents. However, it is also possible that the imperfect agents have beliefs

such that their decision rules are worse than λ
(1)
1 and λ

(2)
2 .

For example, suppose that the agents observe signals Yn =H +Wn, where Wn are

zero-mean Gaussian random variables. Agent 1 observes a better signal with W1 ∼
N (0,0.5) and Agent 2 observes a worse signal with W2 ∼ N (0,1). For convenience,

let’s call Agent 1 an expert and Agent 2 a novice.

Figure 4-8 shows Bayes risk for various perceived beliefs for a case when the

agents make decision with the 1-out-of-2 fusion rule and p0 = 0.3. The region within

the dashed boundary is the set of beliefs that lead to better performance than per-
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Figure 4-8. Team Bayes risk for various beliefs. Agent 1 (expert) observes Y1 = H +W1, where
W1 ∼ N (0,0.5), and Agent 2 (novice) observes Y2 =H +W2, where W2 ∼ N (0,1). The fusion rule is
the or rule; p0 = 0.3 and c10 = c01 = 1.

fect agents. In the optimal point, the expert slightly underestimates and the novice

overestimates the likelihood of H = 0. This pattern holds for any prior probability;

the optimality is achieved by a team of underestimating expert and overestimating

novice, Figure 4-9a.

There is not an all-round pattern that always holds. For the 2-out-of-2 fusion

rule, a team of overestimating expert and underestimating novice performs better, as

depicted in Figure 4-9b.

Even though there is not a strict pattern for optimal beliefs, it is always true that

the decision making by a team of perfect agents is suboptimal if the agents do not

observe equally noisy signals. For imperfect agents, their performance depends on

their perceived beliefs. They can outperform perfect agents and moreover achieve the

optimal decision making if their team consists of properly imperfect agents.

∎ 4.4 Conclusion

When agents do not know the prior probability, they can form a team of agents who

make a decision together to improve their decision making. This chapter models
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Figure 4-9. Beliefs q1 and q2 that minimize the team Bayes risk for various p0. The expert observes
Y1 = H +W1, where W1 ∼ N (0,0.5), and the novice observes Y2 = H +W2, where W2 ∼ N (0,1).
Having these wrong beliefs yield better performance than knowing the correct prior probability. (a)
The or fusion rule. (b) The and fusion rule.

the team as a distributed detection system with a fixed symmetric fusion rule. The

performance of a team of identical agents, who equally perceive the probability, is

compared to that of diverse agents, who differently perceive it. Which team is better

depends on their beliefs and the prior probability. However, the team of diverse agents

is more desirable from a stability perspective; their team Bayes risk does not change

as much as that of the team of identical agents when the agents change their beliefs.

A team of imperfect agents cannot outperform perfect agents of the same number

if the agents observe conditionally iid signals. However, the former can perform even

better than the latter otherwise. Since the perfect agents know the prior probability

but not the likelihood functions of other agents’ signals, their rational decision rules

are always suboptimal. The imperfect agents, on the other hand, do not know both

the prior probability and the likelihood functions of other agents. Therefore, it can

happen that their wrong beliefs accidentally compensate their misunderstanding of

the likelihood functions of other agents. Then they will have the optimal decision

rules.
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∎ 4.A Proof of Theorem 4.1

The beliefs q0, . . . , qN−n are constant while q can be varied. The function

EI
L,N(q, . . . , q, q1, . . . , qN−n) can be split into variable and constant terms:

EI
L,N(q, . . . , q

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n

, q1, . . . , qN−n)

=
n

∑
`=max{0,L−N+n}

[P{` among the first n agents raise false alarms}

×P{L − ` or more among the next N − n agents raise false alarms}]

=
n

∑
`=max{0,L−N+n}

⎡⎢⎢⎢⎢⎣
(n
`
)(eI(q))`(1 − eI(q))n−`

N−n
∑

m=max{0,L−`}
FAm

N−n

⎤⎥⎥⎥⎥⎦
,

where eI(q) = P I
e(rL,N(q)) denotes the local false alarm probability when the agent

has a belief q and FAm
N−n denotes the probability that exactly m agents among the

last N −n agents who respectively have a fixed belief q1, q2, . . . , qN−n raise false alarm.

The terms FAm
N−n are constant.

The first derivative of the variable terms is

d

dq
((n
`
)(eI(q))`(1 − eI(q))n−`)∣

q=q0

= (`(n
`
)(eI(q0))`−1(1 − eI(q0))n−` − (n − `)(n

`
)(eI(q0))`(1 − eI(q0))n−`−1) ėI(q0)

(a)= n((n − 1

` − 1
)(eI(q0))`−1(1 − eI(q0))n−` − (n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1) ėI(q0),

where ėI(q0) ≜ deI(q)
dq ∣

q=q0
. The equality (a) holds because

`(n
`
) = n(n − 1

` − 1
) and (n − `)(n

`
) = n(n − 1

`
).
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Thus, the first derivative of EI
L,N(q, . . . , q, q1, . . . , qN−n) at q = q0 is

d

dq
EI
L,N(q, . . . , q, q1, . . . , qN−n)∣

q=q0

= n
n

∑
`=max{1,L−N+n}

⎡⎢⎢⎢⎢⎣
(n − 1

` − 1
)(eI(q0))`−1(1 − eI(q0))n−`ėI(q0)

N−n
∑

m=max{0,L−`}
FAm

N−n

⎤⎥⎥⎥⎥⎦

− n
n−1
∑

`=max{0,L−N+n}

⎡⎢⎢⎢⎢⎣
(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1ėI(q0)

N−n
∑

m=max{0,L−`}
FAm

N−n

⎤⎥⎥⎥⎥⎦

= n
n−1
∑

`=max{0,L−N+n−1}

⎡⎢⎢⎢⎢⎣
(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1ėI(q0)

N−n
∑

m=max{0,L−`−1}
FAm

N−n

⎤⎥⎥⎥⎥⎦

− n
n−1
∑

`=max{0,L−N+n}

⎡⎢⎢⎢⎢⎣
(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1ėI(q0)

N−n
∑

m=max{0,L−`}
FAm

N−n

⎤⎥⎥⎥⎥⎦
,

where some of the terms in the first summation and the second summation are can-

celed out. The leftover terms are

d

dq
EI
L,N(q, . . . , q, q1, . . . , qN−n)∣

q=q0

= n
n−1
∑

`=max{0,L−N+n}
[(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1ėI(q0)FAL−`−1

N−n ]

+ n( n − 1

L −N + n − 1
)(eI(q0))L−N+n−1(1 − eI(q0))N−LėI(q0)

N−n
∑

m=max{0,N−n}
FAm

N−n.

The last term can be combined into the summation because

N−n
∑

m=max{0,N−n}
FAm

N−n = FAN−n
N−n.

Therefore,

d

dq
EI
L,N(q, . . . , q, q1, . . . , qN−n)∣

q=q0

= n
n−1
∑

`=max{0,L−N+n−1}
[(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1ėI(q0)FAL−`−1

N−n ]

= nėI(q0)Xn, (4.16)
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where

Xn ≜
n−1
∑

`=max{0,L−N+n−1}
[(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1FAL−`−1

N−n ] .

Next, let us consider the global false alarm probability EI
L,N(q, . . . , q, q0, . . . , qN−n)

when the first n − 1 agents change their belief while the other agents have beliefs

q0, q1, . . . , qN . Its first derivative at q = q0 can be computed similarly:

d

dq
EI
L,N(q, . . . , q, q0, q1, . . . , qN−n)∣

q=q0

= (n − 1)
n−2
∑

`=max{0,L−N+n−2}
[(n − 2

`
)(eI(q0))`(1 − eI(q0))n−`−2ėI(q0)FAL−`−1

N−n+1]

= (n − 1)ėI(q0)Xn−1, (4.17)

where FAm
N−n+1 denotes the probability that m agents among the last N −n+1 agents

who respectively have a fixed belief q0, q1, . . . , qN−n raise false alarm, and

Xn−1 ≜
n−2
∑

`=max{0,L−N+n−2}
[(n − 2

`
)(eI(q0))`(1 − eI(q0))n−`−2FAL−`−1

N−n+1] .

The physical meaning of Xn and Xn−1 implies that they are the same. First,

Xn =
n−1
∑

`=max{0,L−N+n−1}
[(n − 1

`
)(eI(q0))`(1 − eI(q0))n−`−1FAL−`−1

N−n ]

=
n−1
∑

`=max{0,L−N+n−1}
[P{` among the first n − 1 agents raise false alarms}

×P{L − ` − 1 among the remaining N − n agents raise false alarms}]

= P{L − 1 among the N − 1 agents raise false alarms}.

Note that, among the N − 1 agents, the first n − 1 agents identically have beliefs q0

and the next N − n agents respectively have beliefs q1, . . . , qN−n.
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Second,

Xn−1 =
n−2
∑

`=max{0,L−N+n−2}
[(n − 2

`
)(eI(q0))`(1 − eI(q0))n−`−2FAL−`−1

N−n+1]

=
n−2
∑

`=max{0,L−N+n−2}
[P{` among the first n − 2 agents raise false alarms}

×P{L − ` − 1 among the remaining N − n + 1 agents raise false alarms}]

= P{L − 1 among the N − 1 agents raise false alarms}.

Again, among the N − 1 agents, the first n − 2 agents identically have beliefs q0 and

the next N −n+ 1 agents respectively have beliefs q0, q1, . . . , qN−n. Therefore, Xn and

Xn−1 are the probabilities of identical events and are essentially equal.

The theorem is proven from (4.16) and (4.17) with Xn =Xn−1.
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Chapter 5

Sequential Detection with Social

Learning

Another simple decision-making structure for multiple agents is a sequential decision-

making. Consider multiple agents performing the same binary hypothesis testing.

Unlike the agents within a decision-making team in Chapter 4, these agents are in-

dividually responsible for their own decisions. These agents, who only care about

maximizing their own payoffs, i.e., minimizing their own Bayes risks, are often called

selfish agents.

Each agent observes a signal, which is not visible to other agents, to make a

decision. This signal is called a private signal. Suppose that the agents make decisions

sequentially in a predetermined order and the decisions are visible to other agents,

Figure 5-1. The decisions that are publicly observed are called public signals to be

distinguished from private signals.

The public signals make earlier-acting agents and later-acting agents different.

Later-acting agents can learn some information about the right (or better) choice

from earlier-acting agents’ decisions and reflect it in their own choices. The learning

behavior is called social learning.

The agents are named Alexis, Britta, Carol, etc., according to their decision-

making order. As each agent makes a decision, her decision is shown to the other

agents. Our interest is the decision-making of the last agent, Norah. As she observes

precedent decisions, she updates her belief to elaborate her likelihood ratio test. The

update process depends on her initial belief and the history of decisions. However,
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Alexis Britta Norah
H1, H2 H1, ..., HN-1

H

HN = H···

fY |H fY |H fY  |H

Y1 Y2 YN

1 2 N
···

H1ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

λ(1) λ(2) λ(3)

Y Y

··· ···λ(1) λ(2) λ(3)

Figure 5-1. A sequential decision making model with N agents (Alexis, Britta, . . . , Norah). Agent
n can observe n − 1 decisions made by all precedent agents.

it will be different from what was explained in Section 2.3 because the agents have

incorrect individual beliefs.

It turns out that the incorrect beliefs can result in smaller Bayes risk for Norah

than correct beliefs do. In addition, when the private signals are generated from iid

Gaussian likelihood functions, the optimal beliefs follow a systematic pattern: the

earlier-acting agents should act as if the prior probability of the unlikely hypothesis

is larger than it is in reality, and vice versa. This is interpreted as being open minded

toward the unlikely hypothesis.

Section 5.1 explains agents’ belief updates and decision-making rule, position-by-

position. Section 5.2 discusses the beliefs that minimize the Bayes risk of the last

agent. It provides the proof that the correct belief is not the minimizer and shows

that there is a systematic pattern of the minimizer. Section 5.3 concludes the chapter.

∎ 5.1 Social Learning of Imperfect Agents

Throughout this chapter, the agents in Figure 5-1 are assumed to have different

beliefs q1, q2, . . . , qN , respectively. Agent n observes a conditionally iid private signal

Yn =H +Wn, where Wn ∼ N (0, σ2):

fYn ∣H(yn ∣0) =
1√

2πσ2
exp [− y2n

2σ2
] , (5.1a)

fYn ∣H(yn ∣1) =
1√

2πσ2
exp [−(yn − 1)2

2σ2
] . (5.1b)
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Each agent has the costs of errors c10 and c01 that are the same as other agents’ costs

of errors but only the outcome of her own decisions matters to her. In other words,

the Bayes risk of Agent n is determined by her own false alarm and missed detection

probabilities:

Rn = c10p0P{Ĥn = 1 ∣H = 0} + c01(1 − p0)P{Ĥn = 0 ∣H = 1}.

Later-acting agents utilize public signals as well as their private signals for Bayesian

hypothesis testing. They can do perfect social learning if all agents know the prior

probability p0. If they do not, then at least they need to know other agents’ beliefs so

that they can understand on what belief the decisions are made. However, agents in

this model know neither p0 nor other agents’ beliefs qi. Therefore their social learn-

ing is inevitably incomplete. Their social learning is explained with a position-wise

decision-making strategy.

In this chapter and Chapter 6, in which social learning is considered, the following

notations are used. Superscript characters, such as A, B, etc., mean “upon observing

Alexis’s decision, Britta’s decision, etc.”; to specify their decision values, 0 or 1 is

used instead of the Roman alphabet. For example, qAB
3 denotes the (updated) belief

of Agent 3, Carol, upon observing Alexis’s and Britta’s decisions Ĥ1 and Ĥ2, and q013

denotes Carol’s updated belief upon observing Ĥ1 = 0 and Ĥ2 = 1. Subscript letters,

such as A, B, etc., mean “that Alexis thinks,” “that Britta thinks,” etc. For example,

Britta thinks that the probability of Alexis choosing 0 when the true state is 0 is

pĤ1 ∣H(0 ∣0)
B
. We need to clarify it because the agents are not aware of others’ prior

beliefs so they will misunderstand public signals. The meaning of the subscript will

be explained in detail in Section 5.1.2.
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∎ 5.1.1 Alexis, the First Agent

Alexis only observes a private signal Y1. She uses the following likelihood ratio test

with Y1 and her belief q1:

fY1 ∣H(y1 ∣1)
fY1 ∣H(y1 ∣0)

Ĥ1(y1)=1
⋛

Ĥ1(y1)=0

c10q1
c01(1 − q1)

. (5.2)

Since the likelihood ratio is increasing in y1, the likelihood ratio test can be simplified

to comparison with an appropriate decision threshold:

y1

Ĥ1(y1)=1
⋛

Ĥ1(y1)=0
r(q1), (5.3)

where r(q) denotes the decision threshold λ that satisfies

fY ∣H(λ ∣1)
fY ∣H(λ ∣0) = c10q

c01(1 − q)
. (5.4)

∎ 5.1.2 Britta, the Second Agent

Britta observes Alexis’s decision Ĥ1 as well as a private signal Y2. She updates her

belief from q2 to qA2 :

qA2 = pH ∣ Ĥ1
(0 ∣ ĥ1)B

=
q2pĤ1 ∣H(ĥ1 ∣0)B

q2pĤ1 ∣H(ĥ1 ∣0)B
+ (1 − q2)pĤ1 ∣H(ĥ1 ∣1)B

. (5.5)

Note that Britta needs q1 to compute the conditional probabilities

pĤ1 ∣H(0 ∣h) = P({Y1 < r(q1) ∣H = h}) = ∫
r(q1)

−∞
fY ∣H(y ∣h)dy,

pĤ1 ∣H(1 ∣h) = P({Y1 ≥ r(q1) ∣H = h}) = ∫
∞

r(q1)
fY ∣H(y ∣h)dy.
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Since she does not know q1, however, she treats Ĥ1 as if Alexis has belief q2, the same

as hers:

pĤ1 ∣H(0 ∣h)
B
= P({Y1 < r(q2) ∣H = h}) = ∫

r(q2)

−∞
fY ∣H(y ∣h)dy, (5.6a)

pĤ1 ∣H(1 ∣h)
B
= P({Y1 ≥ r(q2) ∣H = h}) = ∫

∞

r(q2)
fY ∣H(y ∣h)dy. (5.6b)

The subscripts “B” in (5.5) and (5.6) indicate that the probabilities are computed

based on Britta’s belief q2. Thus, these probabilities are not computed correctly.

An interesting observation is that Alexis’s biased belief q1 does not affect Britta’s

belief update. There is no trace of q1 in (5.5) and (5.6). Suppose that Alexis knows

true prior probability p0 and uses the decision threshold r(p0). Still Britta, who does

not know what belief Alexis has, thinks that the conditional probability of Alexis

choosing Ĥ1 = 0 is given by (5.6) and updates her belief as in (5.5). It is clear in (5.5)

that the updated belief depends only on Britta’s belief and Alexis’s decision.

However, Alexis’s prior belief still affects Britta’s performance with respect to her

error probabilities. Alexis’s biased belief changes the probability of her decision. The

changed probability is embedded in the probability of Britta’s decision:1

pĤ2 ∣H(ĥ2 ∣0) =∑
ĥ1

pĤ2,Ĥ1 ∣H(ĥ2, ĥ1 ∣0)

= pĤ2 ∣ Ĥ1,H
(ĥ2 ∣0,0)B

pĤ1 ∣H(0 ∣0)
A
+ pĤ2 ∣ Ĥ1,H

(ĥ2 ∣1,0)B
pĤ1 ∣H(1 ∣0)

A
,

(5.7a)

pĤ2 ∣H(ĥ2 ∣1) =∑
ĥ1

pĤ2,Ĥ1 ∣H(ĥ2, ĥ1 ∣1)

= pĤ2 ∣ Ĥ1,H
(ĥ2 ∣0,1)B

pĤ1 ∣H(0 ∣1)
A
+ pĤ2 ∣ Ĥ1,H

(ĥ2 ∣1,1)B
pĤ1 ∣H(1 ∣1)

A
.

(5.7b)

In conclusion, Alexis’s belief changes Britta’s error probabilities but not her decision

rule.

1The subscripts “A” are written in (5.7) for clarification that pĤ1 ∣H
(⋅ ∣ ⋅) computed based on

Alexis’s belief q1 should be used unlike in (5.5).
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∎ 5.1.3 Carol, the Third Agent

Carol updates her belief upon observing public signals Ĥ1 and Ĥ2:

qAB
3 = pH ∣ Ĥ1,Ĥ2

(0 ∣ ĥ1, ĥ2)C

=
q3pĤ1,Ĥ2 ∣H(ĥ1, ĥ2 ∣0)C

q3pĤ1,Ĥ2 ∣H(ĥ1, ĥ2 ∣0)C
+ (1 − q3)pĤ1,Ĥ2 ∣H(ĥ1, ĥ2 ∣1)C

.

Note that Carol uses her belief q3 to compute the conditional probabilities as sub-

scripts “C” indicate.

The belief update process can also be expressed in a cascade form:

qAB
3

1 − qAB
3

= q3
1 − q3

pĤ2,Ĥ1 ∣H(ĥ2, ĥ1 ∣0)C

pĤ2,Ĥ1 ∣H(ĥ2, ĥ1 ∣1)C

=
⎛
⎝

q3
1 − q3

pĤ1 ∣H(ĥ1 ∣0)C

pĤ1 ∣H(ĥ1 ∣1)C

⎞
⎠
pĤ2 ∣ Ĥ1,H

(ĥ2 ∣ ĥ1,0)C

pĤ2 ∣ Ĥ1,H
(ĥ2 ∣ ĥ1,1)C

. (5.8)

This update process can be split into two steps. The first step is to update her initial

belief based on Alexis’s decision:

qA3
1 − qA3

= q3
1 − q3

pĤ1 ∣H(ĥ1 ∣0)C

pĤ1 ∣H(ĥ1 ∣1)C

. (5.9)

The second step is to update her belief from qA3 based on Britta’s decision:

qAB
3

1 − qAB
3

= qA3
1 − qA3

pĤ2 ∣ Ĥ1,H
(ĥ2 ∣ ĥ1,0)C

pĤ2 ∣ Ĥ1,H
(ĥ2 ∣ ĥ1,1)C

. (5.10)

Details of computations of (5.9) and (5.10) are as follows:

pĤ1 ∣H(0 ∣h)
C
= ∫

r(q3)

−∞
fY1 ∣H(y ∣h)dy, (5.11a)

pĤ1 ∣H(1 ∣h)
C
= ∫

∞

r(q3)
fY1 ∣H(y ∣h)dy. (5.11b)

Substituting (5.11) in (5.9), Carol can compute qA3 for Ĥ1 = 0 and Ĥ1 = 1 respectively:
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q03 =
q3

q3 + (1 − q3) ∫
r(q3)−∞ fY1 ∣H(y ∣1)dy

∫ r(q3)−∞ fY1 ∣H(y ∣0)dy

, (5.12a)

q13 =
q3

q3 + (1 − q3) ∫
∞
r(q3) fY1 ∣H(y ∣1)dy
∫ ∞r(q3) fY1 ∣H(y ∣0)dy

. (5.12b)

Then,

pĤ2 ∣ Ĥ1,H
(0 ∣ ĥ1, h)3 = P({Y2 < r(qA3 ) ∣H = h}) = ∫

r(qA3 )

−∞
fY2 ∣H(y ∣h)dy, (5.13a)

pĤ2 ∣ Ĥ1,H
(1 ∣ ĥ1, h)3 = P({Y2 ≥ r(qA3 ) ∣H = h}) = ∫

∞

r(qA3 )
fY2 ∣H(y ∣h)dy. (5.13b)

Even though the value of ĥ1 may not seem to be used in (5.13), it is inherent in

qA3 and affects the computation results. Carol’s updated belief qAB
3 is obtained by

substituting (5.12) and (5.13) in (5.10).

The cascade form (5.8) suggests a recurrence relation of belief update. It will be

discussed in Section 5.1.4

∎ 5.1.4 Norah, the N th Agent

Norah, the Nth agent, observes YN and Ĥ1, . . . , ĤN−1. Her belief update process

mimics (5.8):

qAB⋯M

N

1 − qAB⋯M

N

= qN
1 − qN

pĤ1 ∣H(ĥ1 ∣0)N

pĤ1 ∣H(ĥ1 ∣1)N

×⋯ ×
pĤN−1 ∣ Ĥ1,...,ĤN−2,H(ĥN−1 ∣ ĥ1, . . . , ĥN−2,0)N

pĤN−1 ∣ Ĥ1,...,ĤN−2H(ĥN−1 ∣ ĥ1, . . . , ĥn−2,1)N

.

As in Carol’s case, she can update her belief step by step for each public signal. Let

Un ∶ [0,1] × {0,1}n−1 ↦ [0,1] denote a general prior belief update function upon ob-

serving decisions of the first n−1 agents. The function Un has the following recurrence

relation:

� For n = 1, U1(q) = q.
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Figure 5-2. The function U4(q4, ĥ1, ĥ2, ĥ3)—updated belief of Diana, the fourth agent (qABC

4 )—for

each possible combination of Alexis’s, Britta’s, and Carol’s decisions [ĥ1 ĥ2 ĥ3] when c10 = c01 = 1
and σ2 = 1. Her updated belief is mostly dependent on Carol’s decision; the top four curves are for
ĥ3 = 0 and the bottom four curves are for ĥ3 = 1.

� For n > 1,

Un(q, ĥ1, . . . , ĥn−2,0) =
q̃

q̃ + (1 − q̃) ∫
r(q̃)
−∞ fYn−1 ∣H(y ∣1)dy

∫ r(q̃)−∞ fYn−1 ∣H(y ∣0)dy

,

Un(q, ĥ1, . . . , ĥn−2,1) =
q̃

q̃ + (1 − q̃) ∫
∞
λ(q̃) fYn−1 ∣H(y ∣1)dy
∫ ∞λ(q̃) fYn−1 ∣H(y ∣0)dy

,

where q̃ = Un−1(q, ĥ1, . . . , ĥn−2).

Norah’s final updated belief is

qAB⋯M

N = UN(qN , ĥ1, ĥ2, . . . , ĥN−1).

Figure 5-2 depicts the function U4(q4, ĥ1, ĥ2, ĥ3) for N = 4 for eight possible com-

binations of Alexis’s, Britta’s, and Carol’s decisions [ĥ1 ĥ2 ĥ3]. It shows a property

of Un that the updated belief is most dependent on the last public signal ĥn−1 and

least on the first public signal ĥ1.
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An extreme case is when Agent N −1 has not followed precedent. Let us compare

two sets of public signals [1 1 0] and [0 0 1]: The former leads to a higher belief on

H = 0 than the latter does even though the latter has more 0. This is because Diana

rationally concludes that Carol observed a strong private signal to justify a deviation

from precedent.

A reversal of an arbitrarily long precedent sequence may occur because private

signals are unbounded; if private signals are bounded like in [17,18], then the influence

of precedent can reach a point where agents cannot receive a signal strong enough to

justify a decision running counter to precedent (see Section 2.3.2).

∎ 5.2 Optimal Initial Belief

The belief update of Agent n discussed in Section 5.1 is the behavior of minimizing the

Bayes risk for a given belief qn. This section discusses what is the effect of incorrect

beliefs. In a two-agent case for simplicity, let us find Alexis’s and Britta’s beliefs

that minimize Britta’s Bayes risk. For clarification, “Alexis’s optimal belief” does

not mean the belief optimal for her own sake; it means her belief optimal for Britta.

Britta’s Bayes risk R2 is determined by Alexis’s and Britta’s error probabilities:

R2 = c10pĤ2,H
(1,0) + c01pĤ2,H

(0,1)

= c10pH(0) [pĤ2 ∣ Ĥ1,H
(1 ∣0,0)pĤ1 ∣H(0 ∣0) + pĤ2 ∣ Ĥ1,H

(1 ∣1,0)pĤ1 ∣H(1 ∣0)]

+ c01pH(1) [pĤ2 ∣ Ĥ1,H
(0 ∣0,1)pĤ1 ∣H(0 ∣1) + pĤ2 ∣ Ĥ1,H

(0 ∣1,1)pĤ1 ∣H(1 ∣1)]

= c10p0 [P I0
e,2 (1 − P I

e,1) + P I1
e,2 P

I
e,1] + c01(1 − p0) [P II0

e,2 P
II
e,1 + P II1

e,2 (1 − P II
e,1)] , (5.14)

where P I
e,1 and P II

e,1 denote Alexis’s false alarm and missed detection probabilities and

are functions of her belief q1. In addition, P Ih
e,2 and P IIh

e,2 denote Britta’s false alarm

and missed detection probabilities when Ĥ1 = h and are functions of her belief q2.

Britta’s error probabilities conditioned on Ĥ1 are not functions of Alexis’s belief q1

even though Britta does social learning with her decision Ĥ1.

It seems natural that R2 would be minimum at q1 = q2 = p0 because, in this case,
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Alexis will make the best decision she can and Britta will not misunderstand her

decision. Surprisingly, however, this point is not the minimizer.

Theorem 5.1. Britta’s Bayes risk is not minimum at q1 = q2 = p0 in general.

Proof. Let us find q∗1 where the first derivative of (5.14) with respect to q1 is zero:

dR2

dq1
∣
q1=q∗1

=
⎡⎢⎢⎢⎢⎣
c10p0(P I1

e,2 − P I0
e,2)

dP I
e,1

dq1
+ c01(1 − p0)(P II0

e,2 − P II1
e,2 )

dP II
e,1

dq1

⎤⎥⎥⎥⎥⎦q1=q∗1
= 0.

Let λ1 = r(q1) denote Alexis’s decision threshold. Using

dP I
e,1

dq1
=
dP I

e,1

dλ1

dλ1
dq1

= −fY1 ∣H(λ1 ∣0)
dλ1
dq1

,

dP II
e,1

dq1
=
dP II

e,1

dλ1

dλ1
dq1

= fY1 ∣H(λ1 ∣1)
dλ1
dq1

,

the first derivative equals zero when

fY1 ∣H(λ1 ∣1)
fY1 ∣H(λ1 ∣0)

=
c10p0(P I1

e,2 − P I0
e,2)

c01(1 − p0)(P II0
e,2 − P II1

e,2 )
. (5.15)

Since λ1 is a solution to (5.4), q∗1 satisfies

q∗1
1 − q∗1

=
p0(P I1

e,2 − P I0
e,2)

(1 − p0)(P II0
e,2 − P II1

e,2 )
. (5.16)

Alexis’s optimal belief q∗1 is equal to p0 only when (P I1
e,2 − P I0

e,2)/(P II0
e,2 − P II1

e,2 ) = 1.

However, the ratio does not have to be 1. Specifically, in additive Gaussian noise

cases, it is not equal to 1 except when p0 = c01/(c10 + c01). Therefore, generally

speaking,

q∗1 ≠ p0.
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Figure 5-3. Visualization of Britta’s Bayes risk for various q1 and q2 for N = 2, c10 = c01 = 1,
p0 = 0.3, and additive Gaussian noise with zero mean and unit variance. Alexis’s and Britta’s
optimal initial beliefs (▲) are different from the true prior probability (●).
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Figure 5-4. The trend of the optimal initial beliefs for varying p0 for N = 2 (Alexis and Britta).
(a) c10 = c01 = 1. (b) c10 = 1, c01 = 3.

∎ 5.2.1 An Open-Minded Advisor

Figure 5-3 depicts Britta’s Bayes risk with respect to Alexis’s and Britta’s beliefs

q1 and q2 for σ2 = 1. Even though the prior probability is 0.3, their optimal beliefs

are different from 0.3. Alexis’s optimal belief is larger than 0.3 and Britta’s belief is

smaller than that.

These optimal beliefs follow systematic patterns as shown in Figure 5-4. First,
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Alexis should have beliefs larger than p0 when p0 is small and beliefs smaller than p0

when p0 is large. We call this open-mindedness because it is to assign a higher belief

to outcomes that are very unlikely. Second, Britta should have a belief smaller than

p0 when p0 is small and a belief larger than p0 when p0 is large. This is necessary to

compensate for Alexis’s biases. Last, there is a unique fixed point, except for p0 = 0 or

p0 = 1, where their optimal beliefs are the same as p0. It occurs at p0 = c01/(c10 + c01).
The following theorems are about the first and the last patterns for N = 2.

Theorem 5.2. Alexis’s and Britta’s optimal prior beliefs are equal to the true prior

probability p0 if p0 = c01/(c10 + c01).

Proof. The proof is in Appendix 5.A.

Theorem 5.3. Let p0 ∈ (0,1) denote the true prior probability and q∗1 Alexis’s (i.e.,

the first agent’s) optimal prior belief.

� If p0 < c01/(c10 + c01), then p0 < q∗1 < c01/(c10 + c01).

� If p0 = c01/(c10 + c01), then q∗1 = p0.

� If p0 > c01/(c10 + c01), then c01/(c10 + c01) < q∗1 < p0.

Proof. The proof is in Appendix 5.B.

The patterns also appear in a three-agent case. Figure 5-5 shows agents’ beliefs

that minimize Carol’s Bayes risk. The non-terminal agents (Alexis and Britta) should

be open-minded and the last agent (Carol) should be closed-minded. Furthermore,

there is a fixed point at the same position as in the two-agent case: p0 = c01/(c10+c01).

∎ 5.2.2 An Informative Public Signal

One good thing of having an open-minded advisor is that her decision is more in-

formative than the decision made by a perfect agent. Let us discuss the meaning of

being informative. The more private signals an agent has, the better decision she

makes. Other than one private signal, however, the agent can only observe others’
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Figure 5-5. The trend of the optimal initial beliefs for varying p0 for N = 3 (Alexis, Britta, and
Carol). (a) c10 = c01 = 1. (b) c10 = 1, c01 = 3.

decisions, which are 1-bit quantized signals. Hence, being informative means for an

agent to make a decision that contains more information about H.

Alexis’s open-minded belief increases the mutual information I(H; Ĥ1). Figure 5-

6 compares the mutual information in the cases when her belief is equal to q∗1 in

Figure 5-4a and when it is equal to p0. For comparison, the maximum mutual infor-

mation maxq1∈[0,1] I(H; Ĥ1) is depicted as well. Her optimal belief for Britta yields

not maximum but higher mutual information than the true prior p0 does.

Selfless Agents

All agents considered so far are selfish; it was lucky for a later-acting agent to observe

decisions made by incidentally open-minded agents. Let us change the perspective

here and think of perfect agents who know p0 but are selfless. They would want to

balance between being right for themselves and being informative for the later-acting

agents. A feasible utility function of selfless Agent n is a linear combination of the

Bayes risk and the mutual information. It is defined as a function of her decision rule

Ĥn(⋅):
un(Ĥn(⋅)) = −Rn + αnI(H; Ĥn), (5.17)
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where Rn denotes Agent n’s Bayes risk and αn is a nonnegative parameter that

represents the extent of her selflessness. She is selfish when αn = 0 and becomes more

selfless as αn gets bigger.

If Agent n adopts the decision rule that maximizes her utility (5.17), then her

behavior will be open-minded. For example, when Alexis has α1 = 1 and uses the

decision rule maximizing (5.17), she acts as if she has an open-minded belief that is

almost optimal for Britta or Carol. These are depicted in Figure 5-7.

Other-Regarding Preferences

Economic theories has been developed to capture human behaviors that concern oth-

ers’ utilities as well as their own. Such behaviors are called other-regarding behaviors.

Rabin [25] first proposed a framework of fairness : People are willing to sacrifice their

own utilities to help those who are being kind and to punish those who are being

unkind. He defined two kindness functions in a game of two players i and j:

� A function fi(ai, bj) denotes the kindness of Player i when he chooses ai and

believes that Player j chooses bj. If Player i gives Player j less than her equitable

payoff, fi < 0. Otherwise, fi > 0. If Player i gives Player j her equitable payoff,
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Figure 5-7. Comparison of Alexis’s belief that maximizes her utility (5.17) and her belief that
minimizes Britta’s or Carol’s Bayes risk for c10 = c01 = 1.

fi = 0, which indicates that there is no issue of kindness.

� A function f̃i(bj, ci) denotes Player i’s belief about how kind Player j is being

to him when he believes that Player j believes that his choice is ci. If Player i

believes that Player j is treating him badly, then f̃i < 0. Otherwise, f̃i > 0.

The players’ preferences are specified by their utility functions ui(ai, bj, ci) that

include the kindness functions,

ui(ai, bj, ci) = πi(ai, bj) + f̃i(bj, ci) [1 + fi(ai, bj)] , (5.18)

where the first term πi(ai, bj) denotes Player i’s material utility when he chooses

ai and Player j chooses bj and the second term is the notion of fairness. If Player

i believes that Player j is treating him badly then he will also treat her badly by

choosing ai that makes fi negative, and vice versa.

Another aspect of other-regarding preferences is inequity-aversion [41]. It means

that people resist inequitable outcomes; people are willing to give up some utility

when they have more utility than others do and, in addition, want to reduce the

difference when they have less.
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The utility function has the following form:

ui(π1, π2, . . . , πN) = πi−αi
1

N − 1
∑
j≠i

max{πj−πi,0}−βi
1

N − 1
∑
j≠i

max{πi−πj,0}, (5.19)

where π1, π2, . . . , πN denote utilities of Players 1,2, . . . ,N , respectively, and αi and βi

denote Player i’s weights on her advantageous inequality (πi > πj) and disadvanta-

geous inequality (πi < πj), respectively. In the two-player case, the utility function is

simplified to

ui(πi, πj) = πi − αi max{πj − πi,0} − βi max{πi − πj,0}.

The utility function (5.18) can capture reciprocal fairness while (5.19) captures

distribution of utilities. The combined utility function was proposed in [42]:

ui(πi, πj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − (ρ − sθ))πi + (ρ − sθ)πj, if πi > πj,
(1 − (σ − sθ))πi + (σ − sθ)πj, if πi < πj,

(5.20)

where s = 1 if Player j has misbehaved and s = 0 otherwise. The parameters ρ, σ,

and θ capture various aspects of other-regarding preferences. For example, σ ≤ ρ ≤ 0

if Player i always prefers to get as much as possible in comparison to Player j, which

is called competitive preference. The inequity-aversion corresponds to σ < 0 < ρ < 1.

Furthermore, reciprocity is described by θ > 0. When Player j misbehaves, Player i

punishes Player j by reducing both ρ and σ by amount θ.

The selflessness of earlier-acting agents in the sequential detection model is also a

kind of other-regarding preferences but different from the reciprocity or distribution

preference. First, the detection model does not have the concept of misbehavior. Sec-

ond, later-acting agents generally achieve lower Bayes risk (i.e., better performance)

than earlier-acting agents do because of more affluent public signals. A selfless agent

ends up with her own increased Bayes risk to reduce Bayes risk of later-acting agents,

which were already smaller than hers. Her behavior increases the inequity between

them.
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Figure 5-8. Increase of Alexis’s Bayes risk and decrease of Britta’s Bayes risk compared to their
Bayes risks when they are perfect agents. (a) Alexis is halfway open-minded, i.e., q1 = (p0+q∗1). Her
loss of performance is smaller than Britta’s gain. (b) Alexis is fully open-minded, i.e., q1 = q∗1 . Her
loss of performance is much larger than Britta’s gain. She does not have a reason to be this much
open-minded.

Therefore, the selfless utility function (5.17) corresponds to 0 < σ < 1 and θ = 0

in (5.20). In the two-agent case, if Alexis cares both for her own Bayes risk and

Britta’s then she will be slightly open-minded for decrease of Britta’s Bayes risk with

exchange of small increase of her Bayes risk. However, she would not want to be

as open-minded as being optimal for Britta because she has to sacrifice more than

Britta’s gain, Figure 5-8

∎ 5.3 Conclusion

We have discussed sequential detection performed by a group of agents that make

decisions based on individually biased beliefs. Instead of investigating herding on a

wrong action, we have assumed unbounded private signals and focused on the agents’

belief update.

The wrong beliefs held by previous agents change the probability with which fol-

lowing agents choose each hypothesis. Contrary to intuition, however, wrong beliefs

are not always bad. In fact, the accurate belief—the true prior probability—does

not minimize the Bayes risk of the last agent. Specifically, in the case when observa-

tions are corrupted by iid additive Gaussian noises, an imperfect agent biased toward
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c01/(c10 + c01) can be more beneficial to subsequent agents than is a perfect agent. In

terms of human decision making, where precedent agents are advisors or counselors

to the last agent who has the final decisive power, we can say that the best advisors

are necessarily open-minded people.

The idea of an open-minded advisor is related to being informative. A public

signal is a quantized version of a private signal while also simultaneously reflecting an

agent’s belief. Alexis’s decision will reflect her belief more than her private signal when

her belief is very small (close to 0) or very large (close to 1). However, Britta would

want a public signal that is most informative of Alexis’s private signal. Therefore,

she wants her to make her decision with a less extreme belief or an open mind.

While some conclusions of our study depend on having Gaussian likelihoods and

may not hold for different types of additive noise, it is more generally true that the

optimal beliefs are different from the true prior probability.

∎ 5.A Proof of Theorem 5.2

We will show that ∂R2/∂q1 = 0 and ∂R2/∂q2 = 0 for q1 = q2 = p0 = c01/(c10 + c01). Then

they are Alexis’s and Britta’s optimal prior beliefs q∗1 and q∗2 .

First, consider ∂R2/∂q2 using (5.14):

∂R2

∂q2
= −c10p0 [(1 − P I

e,1)fY2 ∣H(λ0
2 ∣0)

dλ0
2

dq2
+ P I

e,1fY2 ∣H(λ1
2 ∣0)

dλ1
2

dq2
]

+ c01(1 − p0) [P II
e,1fY2 ∣H(λ0

2 ∣1)
dλ0

2

dq2
+ (1 − P II

e,1)fY2 ∣H(λ1
2 ∣1)

dλ1
2

dq2
] . (5.21)

From (5.5),

q02
1 − q02

= q2
1 − q2

1 − P I
e,1B

P II
e,1B

.
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Then, for Gaussian likelihoods

λ0
2 = r(q02) =

h1
2
+ σ

2

h1
log

c10q02
c01(1 − q02)

= (h1
2
+ σ

2

h1
log

c10q2
c01(1 − q2)

) + log
1 − P I

e,1B

P II
e,1B

= r(q2) + log
1 − P I

e,1B

P II
e,1B

= λ1B + log
1 − P I

e,1B

P II
e,1B

,

and its derivative is given by

dλ0
2

dq2
=
dλ1B
dq2

−
dP I

e,1B

dq2

1

1 − P I
e,1B

−
dP II

e,1B

dq2

1

P II
e,1B

=
⎡⎢⎢⎢⎢⎣
1 +

fY1 ∣H(λ1B ∣0)
1 − P I

e,1B

−
fY1 ∣H(λ1B ∣1)

P II
e,1B

⎤⎥⎥⎥⎥⎦

dλ1B
dq2

. (5.22)

Likewise,

λ1
2 = λ1B + log

P I
e,1B

1 − P II
e,1B

,

and its derivative is

dλ1
2

dq2
=
⎡⎢⎢⎢⎢⎣
1 −

fY1 ∣H(λ1B ∣0)
P I
e,1B

+
fY1 ∣H(λ1B ∣1)

1 − P II
e,1B

⎤⎥⎥⎥⎥⎦

dλ1B
dq2

. (5.23)

In addition, q1 = q2 implies that P I
e,1B

= P I
e,1 and P II

e,1B
= P II

e,1 , and we can derive

the following relations for q1 = q2 = p0:

fY2 ∣H(λ0
2 ∣1)

fY2 ∣H(λ0
2 ∣0)

=
c10q2(1 − P I

e,1B
)

c01(1 − q2)P II
e,1B

=
c10p0(1 − P I

e,1)
c01(1 − p0)P II

e,1

,

fY2 ∣H(λ1
2 ∣1)

fY2 ∣H(λ1
2 ∣0)

=
c10q2P

I
e,1B

c01(1 − q2)(1 − P II
e,1B

)
=

c10p0P
I
e,1

c01(1 − p0)(1 − P II
e,1)

. (5.24)

By substituting (5.22) and (5.23) in (5.21) and using the relations (5.24), we

obtain that ∂R2/∂q2 = 0 at q1 = q2 = p0.

Next, we consider ∂R2/∂q1, which is zero at q1 and q2 that satisfy (5.16),

q1
(1 − q1)

=
p0(P I1

e,2 − P I0
e,2)

(1 − p0)(P II0
e,2 − P II1

e,2 )
.
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The condition q2 = c01/(c10 + c01) leads to λ1B = h1/2 and P I
e,1B

= P II
e,1B

. Hence,

λ0
2 − λ1B = λ1B − λ1

2 , which is equivalent to λ0
2 = h1 − λ1

2 . The error probabilities are

computed as follows: For Ĥ1 = 0,

P I0
e,2 = pĤ2 ∣ Ĥ1,H

(1 ∣0,0) = ∫
∞

λ02

fY2 ∣H(y ∣0)dy,

P II0
e,2 = pĤ2 ∣ Ĥ1,H

(0 ∣0,1) = ∫
λ02

−∞
fY2 ∣H(y ∣1)dy,

and, for Ĥ1 = 1,

P I1
e,2 = pĤ2 ∣ Ĥ1,H

(1 ∣1,0) = ∫
∞

λ12

fY2 ∣H(y ∣0)dy,

P II1
e,2 = pĤ2 ∣ Ĥ1,H

(0 ∣1,1) = ∫
λ12

−∞
fY2 ∣H(y ∣1)dy.

From the relationship λ0
2 = h1−λ1

2 , P I0
e,2 = P II1

e,2 and P I1
e,2 = P II0

e,2 are obtained. Therefore,

only q2 = p0 completes (5.16) and makes ∂R2/∂q1 zero.

∎ 5.B Proof of Theorem 5.3

The private signals are drawn from the likelihood functions (5.1), but, for the proof of

a more general case, let us consider an arbitrary positive number h1 instead of H = 1:

fY ∣H(y ∣0) = 1√
2πσ2

exp(− y2

2σ2
) , (5.25a)

fY ∣H(y ∣1) = 1√
2πσ2

exp(−(y − h1)2
2σ2

) . (5.25b)

Conjecture 5.4. If λ < h1/2, then

∫
λ

−∞
exp(−y

2

2
+ λh1) dy∫

∞

λ
exp(−y

2

2
+ λh1) dy

< ∫
λ

−∞
exp(−y

2

2
+ yh1) dy∫

∞

λ
exp(−y

2

2
+ yh1) dy. (5.26)
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Figure 5-9. The difference between the left-hand side and the right-hand side of (5.26). (a) h1 = 1.
(b) h1 = 0.5.

Figure 5-9 depicts the difference between the left-hand side and the right-hand

side of (5.26) for two values of h1 and supports the conjecture. In the following we

assume the conjecture to be true.

Lemma 5.5. If λ < h1/2, then

∫
λ

−∞
exp(− y2

2σ2
+ λh1
σ2

) dy∫
∞

λ
exp(− y2

2σ2
+ λh1
σ2

) dy

< ∫
λ

−∞
exp(− y2

2σ2
+ yh1
σ2

) dy∫
∞

λ
exp(−y

2

2
+ yh1
σ2

) dy. (5.27)

Proof. Substituting y′ = y/σ, λ′ = λ/σ, and h′1 = h′1/σ, we obtain

∫
λ

−∞
exp(− y2

2σ2
+ λh1
σ2

) dy∫
∞

λ
exp(− y2

2σ2
+ λh1
σ2

) dy

= σ2∫
λ′

−∞
exp(−y

′2

2
+ λ′h′1) dy′∫

∞

λ′
exp(−y

′2

2
+ λ′h′1) dy′

and

∫
λ

−∞
exp(− y2

2σ2
+ yh1
σ2

) dy∫
∞

λ
exp(−y

2

2
+ yh1
σ2

) dy

= σ2∫
λ′

−∞
exp(−y

′2

2
+ y′h′1) dy′∫

∞

λ′
exp(−y

′2

2
+ y′h′1) dy′.
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Since λ < h1/2 implies λ′ < h′1/2, (5.27) follows from Conjecture 5.4.

Here the proof of Theorem 5.3 begins: First, the case when p0 = c01/(c10 + c01) is

proven in Appendix 5.A.

Next, suppose that p0 < c01/(c10 + c01). Let λ in (5.27) denote a decision thresh-

old according to q∗2 . Obviously, optimal prior beliefs q∗1 and q∗2 should be strictly

decreasing as p0 decreases like in Figure 5-2. Hence, Theorem 5.2, which states that

q∗1 = q∗2 = c01/(c10 + c01) if p0 = c01/(c10 + c01), implies that

q∗1 <
c01

c10 + c01
and q∗2 <

c01
c10 + c01

(5.28)

if p0 < c01/(c10 + c01). Then we get λ < h1/2 and can use (5.27).

Multiplying each integrand in (5.27) by the constant 1
2πσ2 exp(− λ2

2σ2 − h21
2σ2 ), we get

∫
λ

−∞

1

2πσ2
exp(−(λ − h1)2

2σ2
) exp(− y2

2σ2
) dy

× ∫
∞

λ

1

2πσ2
exp(−(λ − h1)2

2σ2
) exp(− y2

2σ2
) dy

< ∫
λ

−∞

1

2πσ2
exp(− λ

2

2σ2
) exp(−(y − h1)2

2σ2
) dy

× ∫
∞

λ

1

2πσ2
exp(− λ

2

2σ2
) exp(−(y − h1)2

2σ2
) dy. (5.29)

According to (5.25), the exponential functions in (5.29) are likelihood functions of Y1,

so we have

f 2
Y1 ∣H(λ ∣1)∫

λ

−∞
fY1 ∣H(y ∣0)dy∫

∞

λ
fY1 ∣H(y ∣0)dy

< f 2
Y1 ∣H(λ ∣0)∫

λ

−∞
fY1 ∣H(y ∣1)dy∫

∞

λ
fY1 ∣H(y ∣1)dy. (5.30)

Since λ = r(q∗2), we obtain

P I
e,1B

(1 − P I
e,1B

)
f 2
Y1 ∣H(λ ∣0) <

P II
e,1B

(1 − P II
e,1B

)
f 2
Y1 ∣H(λ ∣1) , (5.31)
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and (5.4) transforms (5.31) to

c210q
∗2
2 P

I
e,1B

(1 − P I
e,1B

) < c201(1 − q∗2)2P II
e,1B

(1 − P II
e,1B

).

Rearranging terms gives us

⎛
⎝

c10q∗2
c01(1 − q∗2)

1 − P I
e,1B

P II
e,1B

⎞
⎠

−1

> c10q∗2
c01(1 − q∗2)

P I
e,1B

1 − P II
e,1B

. (5.32)

The terms in the left-hand and the right-hand sides are the same as the updated

beliefs q02/(1 − q02) and q12/(1 − q12), respectively, so this simplifies to

( c10q02
c01(1 − q02)

)
−1

> c10q12
c01(1 − q12)

. (5.33)

Let us discuss the meaning of the inequality (5.33). In Figure 5-10, the convex

curve depicts a flipped version of the ROC curve. When the prior belief is q, the

error probabilities (P I
e,2 , P

II
e,2) are determined as the point of tangency, where the

curve meets a line with slope −c10q/c01(1 − q). Two solid lines in Figure 5-10 depict

the lines for Britta’s updated beliefs after observing Ĥ1 = 0 and Ĥ1 = 1, respectively

denoted by q02 and q12.

The inequality (5.33) restricts the range of error probabilities in which (P I0
e,2 , P

II0
e,2 )

can exist on the basis of (P I1
e,2 , P

II1
e,2 ); the point B0 (P I0

e,2 , P
II0
e,2 ), a black dot, always

exists on the right side of the point B̄1 (P II1
e,2 , P

I1
e,2), a gray diamond. Furthermore, the

point B0 cannot exist on the right side of the point B1 (P I1
e,2 , P

II1
e,2 ), a black diamond,

because obviously q02 > q12. Therefore, the point B0 always exists on the curve between

the points B̄1 and B1 .

Now we draw a black dotted line that connects the points B0 and B1 and a gray

dashed line that connects the points B̄1 and B1 . From the restriction for the point

B0 , the slope of the former is always greater than that of the latter:

P II1
e,2 − P II0

e,2

P I1
e,2 − P I0

e,2

> −1. (5.34)

93



Pe
I

Pe
II

(Pe,2, Pe,2)I1 II1

(Pe,2, Pe,2)I0 II0

c10 q2

c01 (1 − q2)

0

0 −
c10 q2

c01 (1 − q2)

1

1

(Pe,2, Pe,2)II1 I1

Pe,2 − Pe,2

Pe,2 − Pe,2
I I1 0

II II1 0

> −1

−1 

−

1 

1 0

B :1

B :0

B :1ˉ

Figure 5-10. The point B0 (P I0
e,2 , P

II0
e,2 ) always exists between the points B̄

1 (P II1
e,2 , P

I1
e,2) and B1

(P I1
e,2 , P

II1
e,2 ).

We have obtained the optimality condition (5.16) for Alexis’s prior belief in Sec-

tion 5.2. We can rewrite it as

q∗1 =
p0

p0 + (1 − p0)
P

II0
e,2 −P

II1
e,2

P
I1
e,2−P

I0
e,2

. (5.35)

Finally, we can conclude that q∗1 > p0 because of (5.34).

In addition, Alexis’s optimal belief q∗1 is upper-bounded by c01/(c10 + c01) because

q∗1 is strictly decreasing in p0 and q∗1 = c01/(c10 + c01) when p0 = c01/(c10 + c01) by

Theorem 5.2. Combining these two bounds, we have the inequality

p0 < q∗1 <
c01

c10 + c01
, (5.36)

as desired.

The statement that c01/(c10 + c01) < q∗1 < p0 if p0 > c01/(c10 + c01) can be proven

similarly.
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Chapter 6

Distributed Detection with Social

Learning and Symmetric Fusion

Social learning among individualistically decision-making agents is a rational behavior

to decrease Bayes risk. Some imperfect agents having incorrect beliefs can decrease

Bayes risk even below the Bayes risk of perfect agents by doing social learning as

discussed in Chapter 5.

On the other hand, social learning may be futile within a team of agents who make

a decision together. This chapter investigates the effect of social learning within a

distributed detection model discussed in Chapter 4. The agents make local deci-

sions in a predetermined order and later-acting agents can observe decisions made

by earlier-acting agents. Once all agents make local decisions, the global decision is

determined according to an L-out-of-N fusion rule.

Social learning turns out not to be beneficial when the agents observe conditionally

iid private signals. In contrast, when they observe private signals not conditionally

iid, social learning can be beneficial. Furthermore, the order in which they make

local decisions can affect the performance of the team similarly to the work [43],

which showed that the order in which heterogeneous agents speak matters to their

individual performances. The importance of ordering is also pointed out in [44].

Although, for convenience, private signals are assumed to be corrupted by additive

Gaussian noises, most discussions in this chapter do not require the assumption. The

only condition required in the discussions is that the likelihood ratios of the private

signal under H = 0 and H = 1 are strictly monotonic, which is a rather natural
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Alexis Britta Norah
H1
ˆ H1, H2

ˆ ˆ H1, ..., HN‐1
ˆ ˆ
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···
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fY  |H fY  |H
Y1 Y2

1 2

Fusion

H2
ˆ

Ĥ

H1
ˆ

H1
ˆ

fY  |H2 fY  |HN

Y1 Y2 YN

Fusion

Ĥ

H2
ˆH1

ˆ HN
ˆ

Figure 6-1. The distributed detection and decision fusion model considered in this chapter. Local
decisions are sent not only to the fusion center but also to following agents as public signals.

requirement.

Section 6.1 provides results for agents observing conditionally iid private signals

and all public signals. Section 6.2 adds a constraint that each agent can only observe

a subset of the public signals. However, the results will be the same as in Section 6.1.

Section 6.3 generalizes the model to agents with differing private signal likelihoods and

provides examples of helpful social learning. Section 6.4 explains our experiments to

test whether people rationally ignore public signals in distributed detection scenarios

discussed in Section 6.1. Section 6.5 summarizes our results and discusses limitations

and extensions of our model.

∎ 6.1 Conditionally IID Private Signals and Complete Public Signals

The agents, Alexis, Britta, Carol, . . . , Norah, make a decision together in the alpha-

betical order by voting and a symmetric fusion rule, Figure 6-1. Suppose that they

know the prior probability p0. Agent n observes a conditionally iid private signal

Yn =H +Wn, where Wn ∼ N (0, σ2) and Wn is independent of Wm for any m ≠ n. She

makes a local decision Ĥn ∈ {0,1}, which is sent to a fusion center and also observed

by the other agents. The global decision is determined by the fusion center according

96



to an L-out-of-N fusion rule:

Ĥ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∑Nn=1 Ĥn ≥ L;

0, otherwise,
(6.1)

Since we are assuming monotonically increasing likelihood ratios, we can express

the LRT in a compact form with a decision threshold λn:

yn

Ĥn(yn)=1
⋛

Ĥn(yn)=0
λn. (6.2)

The global decision is of our interest. The goodness criterion for the decision

making is the Bayes risk according to the global decision:

R = c10p0P{Ĥ = 1 ∣H = 0} + c01(1 − p0)P{Ĥ = 0 ∣H = 1}. (6.3)

The agents are a team in the sense of Radner [45]: they share the decision-making

cost and the same goal, which is to minimize (6.3).

In this chapter, the optimal performance in the case when agents can observe

public signals—called public voting—is compared to the case when they cannot—

called secret voting. It will be proven that the optimal decision thresholds are the

same in both cases. The same optimal thresholds imply the same performances

because the criterion functions are the same in the public and the secret voting.

∎ 6.1.1 Two-Agent Case

Suppose that Alexis and Britta make a decision together and their fusion rule is the

1-out-of-2 (or) rule.

In secret voting, Alexis and Britta simultaneously make local decisions. They use

one decision threshold each. In public voting, Alexis first makes a decision and then

Britta makes a decision upon observing Alexis’s decision. Alexis uses one decision

threshold because she does not observe a public signal anyway.

Britta can have two decision thresholds in public voting according to Alexis’s

97



decision Ĥ1. However, her decision rule for Ĥ1 = 1 is irrelevant to the global decision

because of the fusion rule: the global decision is 1 whenever Ĥ1 = 1. She makes a

pivotal vote only when Ĥ1 = 0.

Likewise, if the fusion rule is the 2-out-of-2 (and) rule, Britta’s decision is relevant

only when Ĥ1 = 0. The social learning degenerates Britta’s decision making; she has

one relevant decision threshold as in secret voting. Therefore, social learning has no

merit in the two-agent case.

This is an intuition of the statement that public voting and secret voting yield

the same performance for N = 2. Theorem 6.1 provides a more technical proof.

Throughout this chapter, discriminable notations are used to denote agents’ decision

thresholds in public voting and in secret voting: λ in secret voting and ρ in public

voting.

Theorem 6.1. The existence of public signals does not affect the optimal local deci-

sion rules for N = 2 under either of the two L-out-of-N fusion rules.

Proof. Let us compare team Bayes risks of secret voting and public voting under the

or rule.

In the secret voting scenario, the Bayes risk is given by

Rs = c10p0 (P I
e,1 + (1 − P I

e,1)P I
e,2) + c01(1 − p0)P II

e,1P
II
e,2, (6.4)

where Alexis’s decision threshold λ1 determines local error probabilities P I
e,1 and P II

e,1,

and Britta’s decision threshold λ2 determines local error probabilities P I
e,2 and P II

e,2.

Their optimal decision thresholds λ∗1 and λ∗2 minimize (6.4).

In the public voting scenario, the Bayes risk has the same form

Rp = c10p0 (P I
e,1 + (1 − P I

e,1)P I0
e,2) + c01(1 − p0)P II

e,1P
II0
e,2 , (6.5)

except that Britta’s error probabilities, P I0
e,2 and P II0

e,2 , are controlled by her decision

threshold ρ0
2 for Ĥ1 = 0. Britta’s decision threshold when Ĥ1 = 1, ρ1

2, is irrelevant;

thus, we can assume that ρ1
2 = ρ0

2 without loss of optimality.
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Expressions (6.4) and (6.5) are very similar; the only difference is the replacement

of (P I
e,2, P

II
e,2) in (6.4) by (P I0

e,2 , P
II0
e,2 ) in (6.5). Now note that the set of achievable values

for (P I
e,2, P

II
e,2) and (P I0

e,2 , P
II0
e,2 ) are identical; they are achieved by varying Britta’s

decision threshold (λ2 or ρ0
2) in precisely the same local decision-making problem.

Therefore, minimizing Rs and Rp results in equal Bayes risks, and these are achieved

with decision thresholds satisfying the following:

ρ∗1 = λ∗1, ρ0∗
2 = λ∗2. (6.6)

Since λ∗1 = λ∗2, we also have ρ∗1 = ρ0∗
2 . Therefore, Alexis and Britta should not change

their decision thresholds depending on whether or not the voting is public.

The proof for the and fusion rule is similar. The Bayes risks of secret voting and

public voting have identical forms

Rs = c10p0P I
e,1P

I
e,2 + c01(1 − p0) (P I

e,1 + (1 − P II
e,1)P II

e,2) ,

Rp = c10p0P I
e,1P

I1
e,2 + c01(1 − p0) (P II

e,1 + (1 − P II
e,1)P II1

e,2 ) .

Again we find that the achievable set of local Type I and Type II error probabilities

are identical under secret and public voting, so the minima and optimum decision

thresholds are unaffected by the public signal.

Theorem 6.1 states that the agents need to use the same decision thresholds

whether Britta can or cannot observe Alexis’s decision. Therefore, Britta does not

need to do social learning when N = 2.

∎ 6.1.2 N -Agent Case

The comparison is obvious in the two-agent case because the Bayes risk formula is

identical in both secret and public voting. However, the Bayes risk formula of secret

voting is not the same as that of public voting for N ≥ 3. For N = 3 and the majority

fusion rule, for example, Britta’s decision is relevant whether Ĥ1 = 0 or Ĥ1 = 1. Thus,

she has two concrete degrees of freedom with respect to choosing decision thresholds
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in public voting while she has only one degree of freedom in secret voting.

Theorem 6.2. Suppose that sharing local decisions does not change Alexis’s decision

threshold (i.e., ρ∗1 = λ∗1). If the optimal decision-making rules are the same in public

voting and in secret voting for a specific N and any K-out-of-N fusion rule, then it

is also true for a team of N + 1 agents and any L-out-of-(N+1) fusion rule.

Proof. First, we consider the secret voting scenario with N + 1 agents. Since Agent

n’s decision is critical only if the other N local decisions are L− 1 ones and N −L+ 1

zeros, the optimal decision threshold λ∗n is the solution to1

fYn∣H(λn ∣1)
fYn∣H(λn ∣0)

=
c10p0( N

L−1) (P I
e)
L−1 (1 − P I

e)
N−L+1

c01(1 − p0)( N
N−L+1) (P II

e )N−L+1 (1 − P II
e )L−1

= c10p0 (P I
e)
L−1 (1 − P I

e)
N−L+1

c01(1 − p0) (P II
e )N−L+1 (1 − P II

e )L−1
, (6.7)

where we use that P I
e,1 = P I

e,2 = ⋯ = P I
e and P II

e,1 = P II
e,2 = ⋯ = P II

e because the optimal

decision thresholds of all agents are identical in secret voting.

Next, in the public voting scenario, we can classify error cases depending on

Alexis’s detection result, e.g., when the true state is 0 and Alexis’s decision is correct

(Ĥ1 = 0), a false alarm occurs if at least L out of the remaining N agents vote for 1.

The Bayes risk is given by

Rp = c10p0 (1 − P I
e,1)P{∑N+1n=2 Ĥn ≥ L ∣ Ĥ1 =H = 0}

+ c10p0P I
e,1P{∑N+1n=2 Ĥn ≥ L − 1 ∣ Ĥ1 = 1,H = 0}

+ c01(1 − p0)P II
e,1P{∑N+1n=2 Ĥn ≤ L − 1 ∣ Ĥ1 = 0,H = 1}

+ c01(1 − p0) (1 − P II
e,1)P{

N+1
∑
n=2

Ĥn ≤ L − 2 ∣ Ĥ1 =H = 1}

≜ R0 (p0(1 − P I
e,1) + (1 − p0)P II

e,1) +R1 (p0P I
e,1 + (1 − p0)(1 − P II

e,1)) , (6.8)

1Please see Section 2.2.2 for a description of how (6.7) is derived.
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where R0 and R1 are specified in (6.10) and (6.11) and we define

q0 ≜
p0 (1 − P I

e,1)
p0 (1 − P I

e,1) + (1 − p0)P II
e,1

= P{H = 0 ∣ Ĥ1 = 0},

q1 ≜
p0P

I
e,1

p0P
I
e,1 + (1 − p0) (1 − P II

e,1)
= P{H = 0 ∣ Ĥ1 = 1}. (6.9)

When Agents 2,3, . . . ,N + 1 observe Ĥ1 = 0, their optimal decision strategy is to

minimize the term R0 from (6.8):

R0 = c10q0P{∑N+1n=2 Ĥ
0
n ≥ L ∣H = 0}

+ c01(1 − q0)P{∑N+1n=2 Ĥ
0
n ≤ L − 1 ∣H = 1} , (6.10)

where the condition Ĥ1 = 0 is embedded in the superscript of Ĥ0
n. Please note that

R0 is the same as the Bayes risk of N agents when the prior probability is q0 and the

fusion is done by the L-out-of-N rule. It implies that the optimal decision thresholds

of Agents 2,3, . . . ,N + 1 are the same as those of N agents with prior probability q0

and the L-out-of-N fusion rule.

Likewise, when Agents 2,3, . . . ,N + 1 observe Ĥ1 = 1, their optimal decision strat-

egy is to minimize the term R1 from (6.8):

R1 = c10q1P{∑N+1n=2 Ĥ
1
n ≥ L − 1 ∣H = 0}

+ c01(1 − q1)P{∑N+1n=2 Ĥ
1
n ≤ L − 2 ∣H = 1} . (6.11)

Their optimal decision thresholds are the same as those of N agents with prior prob-

ability q1 and the (L−1)-out-of-N fusion rule. Figure 6-2 depicts the evolution of the

problem corresponding to Alexis’s decision Ĥ1.

Let us find the optimal thresholds ρ0∗
2 , ρ

0∗
3 , . . . , ρ

0∗
N+1 in Problem B0 in Figure 6-2.

In fact, Problem B0 is also a public voting scenario; agents observe Ĥ2, Ĥ3, and so on.

However, because of the assumption that the existence of the public signals does not

affect optimal decision thresholds of a team of N agents for any K-out-of-N fusion
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Figure 6-2. An (N+1)-agent problem is divided into two N -agent problems depending on Alexis’s
decision Ĥ1.

rule, we can find the optimal thresholds as if the agents do secret voting. Since an

agent’s decision is critical only if the other N − 1 local decisions consist of L − 1 ones

and N −L zeros, the optimal decision threshold ρ0∗ is the solution to

fY ∣H(ρ0 ∣1)
fY ∣H(ρ0 ∣0) =

c10q0(N−1L−1) (P
I0
e )L−1 (1−P I0

e )N−L

c01(1−q0)(N−1N−L) (P
II0
e )N−L (1−P II0

e )L−1

=
c10p0 (1−P I

e) (P I0
e )L−1 (1−P I0

e )N−L

c01(1 − p0)P II
e (P II0

e )N−L (1−P II0
e )L−1

, (6.12)

where q0 is replaced by (6.9). Due to the assumption that ρ∗1 = λ∗1, P I
e and P II

e in

(6.12) are the same as P I
e and P II

e in (6.7).

Comparing (6.12) to (6.7), we can find that they have the same solutions, i.e.,

ρ0∗
i = λ∗i . Therefore, the agents should not change their decision thresholds after

observing Ĥ1 = 0.

We can also find the optimal thresholds ρ1∗
2 , . . . , ρ

1∗
N+1 in Problem B1 in Figure 6-2

by looking at the N -agent problem without public signals:

fY ∣H(ρ1 ∣1)
fY ∣H(ρ1 ∣0) =

c10q1(N−1L−2) (P
I1
e )L−2 (1−P I1

e )N−L+1

c01(1−q1)( N−1
N−L+1) (P

II1
e )N−L+1 (1−P II1

e )L−2

=
c10p0P

I
e (P I1

e )L−2 (1−P I1
e )N−L+1

c01(1 − p0) (1−P II
e ) (P II1

e )N−L+1 (1−P II1
e )L−2

. (6.13)

Again, due to the assumption that ρ∗1 = λ∗1, P I
e and P II

e in (6.13) are the same as P I
e
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and P II
e in (6.7). We reach the same conclusion that the two equations have the same

solutions, i.e., ρ1∗
i = λ∗i , by comparing (6.13) to (6.7). Thus, the agents should not

change their decision thresholds after observing Ĥ1 = 1.

Consequently, for a team of N + 1 agents and any L-out-of-(N+1) rule, their

optimal decision thresholds are the same whether they observe previous decisions or

not.

Corollary 6.3. Suppose that sharing local decisions does not change Alexis’s decision

rule (i.e., ρ∗1 = λ∗1). For any N and L-out-of-N fusion rule, the existence of the public

signals does not affect optimal decision thresholds of a team of N agents.

Proof. Use mathematical induction with Theorems 6.1 and 6.2.

This result requires the assumption that Alexis uses the same decision rule in both

secret and public voting. This assumption is trivially true for N = 1. It is also true

for N = 2 by the proof of Theorem 6.1. In addition, our numerical experiments for

N ≤ 9 confirmed that it is true. Thus, this assumption seems heuristically true. In

particular, we fail to see how Alexis would choose between increasing or decreasing

her decision threshold based on the existence of public signals.

Note that the updated belief (6.9) upon observing Alexis’s decision Ĥ1 in dis-

tributed detection model is the same as that (5.5) in the individualistic sequential

detection model in Chapter 5. It implies that the social learning within a team biases

later-acting agents in favor of the dominant choice of earlier-acting agents as much

as social learning between individual agents does.

The difference is that fusion rule evolution arises from social learning within the

team along with the belief update. While the belief update is common in the social

learning literature—in fact, central to it—the evolution of the fusion rule hardly

appears in the literature.

The fusion rule evolution matters because the change of the fusion rule affects

computation of the optimal decision threshold. Since all agents can observe all public

signals in a public voting scenario, each agent can keep a running tally of the numbers

of 0 and 1 votes throughout the voting. If most of earlier-acting agents chose 1, it
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Figure 6-3. Illustration of the separate effects of the belief update and the fusion rule evolution.
The diagram depicts decision thresholds for the first three agents in an example with p0 = 0.25 and
the 4-out-of-7 fusion rule. Agents observe H ∈ {0,1} corrupted by iid Gaussian additive noises with
zero mean and unit variance, and c10 = c01 = 1. The (p,L/N) label on a marker (● or ○) indicates
that its height represents the optimal decision threshold for prior probability p and the L-out-of-N
fusion rule. Alexis has an initial decision threshold depending only on the prior probability p0 and
the 4-out-of-7 fusion rule (leftmost ○). If Britta considers belief updates only, the optimal decision
threshold is changed from Alexis’s decision threshold to a new value that depends on Ĥ1 (two
leftmost ●’s). However, after adopting the fusion rule evolution as well, Britta’s optimal decision
threshold returns to equal Alexis’s decision threshold (center ○). Similarly, if Carol considers belief
updates only, the four values for (Ĥ1, Ĥ2) lead to three distinct decision thresholds (three rightmost
●’s). After accounting for the fusion rule evolution, Carol’s optimal decision threshold returns to
equal Alexis’s decision threshold (rightmost ○).

would imply that only a few more 1 votes are sufficient to close the voting with the

global decision as 1. Hence, in order to vote 1, an agent should need a strong private

signal in support of 1 enough to take the risk of making later-acting agents’ votes

irrelevant. Unlike the belief update, the fusion rule evolution discourages later-acting

agents to follow the dominant choice of earlier-acting agents.

By Corollary 6.3, the effects of the belief update and fusion rule evolution exactly

cancel out. A numerical example is detailed in Figure 6-3. Reading that figure from

left to right, for each agent after Alexis, the belief update is done first and then the

fusion rule evolution brings the optimal decision threshold back exactly to the optimal

decision threshold of Alexis.

In conclusion, social learning within a team of agents causes two effects: Belief
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update plays a role of a positive feedback while fusion rule evolution does a negative

feedback. By proving that the optimal thresholds of the last N agents are the same

in the (N+1)-agent cases when Ĥ1 = 0, when Ĥ1 = 1, and when they do not know Ĥ1,

it is proved that the effects of the former and the latter are exactly canceled out.

∎ 6.1.3 N -Imperfect-Agent Case

Corollary 6.3 is the result in the case when all agents are perfect in the sense that

they know the prior probability p0. However, it also implies that the Bayes risk of a

team of imperfect agents must be higher than that of the team of perfect agent.

It is derived in Section 2.2 that the optimal local decision rule is given by (2.9)

for the distributed detection problem with a symmetric fusion rule and without social

learning. This is the optimal rule whether the agents know p0 or not.

Corollary 6.3 asserts that the optimal local decision rule is the same as (2.9) even

when the agents are allowed to do social learning. Again, whether the agents know

p0 or not is irrelevant to the optimal threshold. If the agents are imperfect, their

rational decision rule will be different from the optimal decision rule. Therefore, the

imperfect agents will be always outperformed by perfect agents of the same number

if the agents observe conditionally iid private signals.

∎ 6.2 Conditionally IID Private Signals and Incomplete Public Signals

The previous section assumes that each and every agent observes decisions of all the

other agents. This section considers more restricted agents who can only observe

an arbitrary subset of the previously made decisions. For example, each agent may

observe the public signal only from its neighbors in a sequence [46] (see Figure 6-4a)

or the communication topology may be more arbitrary [47] (see Figure 6-4b). Let us

say that agents perform partial public voting when agents observe proper subsets of

precedent local decisions.

Corollary 6.4. Observing a subset of public signals does not affect optimal decision

rules and performance of a team.
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Figure 6-4. Examples of partial public voting. (a) Each agent sequentially observes the decision
made by the agent right before her. (b) Each agent observes the decisions made by her neighbors.

Proof. First, we will show that a team of agents observing only a subset of public

signals (Team A) cannot outperform a team of the same size that consists of those who

observe full public signals (Team B). The proof is by contradiction. Let us assume that

Team A can outperform Team B using their optimal decision strategy. Then, since

what each agent in Team A observes is also observed by the corresponding agents in

Team B, Team B can mimic the optimal strategy of Team A. For Agent n in Team B,

all she has to do is ignore the public signals that Agent n in Team A cannot observe.

After mimicking the strategy of Team A, the performance of Team B becomes the

same as that of Team A. This contradicts our assumption. Hence Team A cannot

outperform Team B.

Next, let us consider Team A and a team of agents not observing any public signals

(Team C). We can prove that Team C cannot outperform Team A through similar

logic.

Corollary 6.3 implies that Team C in fact performs as well as Team B. Therefore

Team A is also as good as Teams B and C with respect to their optimal performances.

The convenience of secret voting emerges especially when agents cannot observe

all public signals. Even though partial public voting cannot outperform public voting,

the former requires more computations for Bayesian social learning. When the agents

observe a subset of public signals, they need to consider all possible realizations of the

public signals that they cannot observe in order to perform Bayesian learning. For

example, in Figure 6-4a, Carol observes Britta’s decision but not Alexis’s decision.
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Her updated belief when Ĥ2 = 0 will be computed as follows:

qA0
3 = P{H = 0 ∣ Ĥ2 = 0}

=∑
ĥ1

P{H = 0 ∣ Ĥ2 = 0, Ĥ1 = ĥ1}P{Ĥ1 = ĥ1 ∣ Ĥ2 = 0}

=∑
ĥ1

P{H = 0 ∣ Ĥ2 = 0, Ĥ1 = ĥ1}P{Ĥ1 = ĥ1, Ĥ2 = 0}
P{Ĥ1 = 0, Ĥ2 = 0} + P{Ĥ1 = 1, Ĥ2 = 0}

. (6.14)

This process is more complicated than belief update with the knowledge of both

Ĥ1 = 0 and Ĥ2 = 0, which is just to compute P{H = 0 ∣ Ĥ2 = 0, Ĥ1 = 0}.

Instead of accepting this complexity, the agents should ignore the public signals.

Since the optimal secret voting strategy performs equally to the optimal public voting

strategy, it is economical for them to not share any public signals at all.

∎ 6.3 Agents with Different Likelihoods

Agents may have private signals that relate differently to the hypothesis. For example,

Agent n observes Yn = H +Wn, where Wn ∼ N (0, σ2
n) is independent of but not

identically distributed to the noise of Agent m, Wm ∼ N (0, σ2
m) for any m ≠ n.2

Signal-to-noise ratio (SNR) of the private signal Yn is

(SNR)n =
E[H2]
E[W 2

n]
= 1 − p0

σ2
n

.

Agent n observes a signal with relatively high signal-to-noise ratio (SNR) than Agent

m does if σ2
n < σ2

m. Like in Section 4.3, Agent n can be considered as an expert

and Agent m as a novice. Their decisions are not equally informative, unlike in the

identical-agent case of Section 6.1. It will be shown that the public signals are futile

in cases where the fusion rule requires unanimity but useful in other cases.

Now that the agents’ private signals do not have the same distributions, the order

in which the agents act matters to their team performance. To distinguish the agents,

we name them in descending order of SNRs: Amy has the highest SNR, Beth has the

2Even though additive Gaussian noises are considered in the discussion for convenience, the
results hold for other kinds of private-signal model.
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second-highest SNR, and so on. However, we keep the notation that the numbering

of agents (and hence the subscript indices) indicate the order of decision making, i.e.,

Agent 1 acts first, but may or may not be Amy.

∎ 6.3.1 And and or Fusion Rules

The and (N -out-of-N) and or (1-out-of-N) rules have a common feature. The

team decision requires unanimity of the agents of one type or the other: for a team

decision of 1 under the and rule, the agents must unanimously decide 1; and for a

team decision of 0 under the or rule, they must unanimously decide 0. We thus call

these unanimity fusion rules. This characteristic gives a special result for these fusion

rules.

Let us consider a team of two agents with the or rule: Amy with a higher SNR

and Beth with a lower SNR. From the discussion of the two-agent case in Section 6.1,

Amy and Beth each has one degree of freedom regardless of their order of decision

making. Since the decision of the second-acting agent is irrelevant when the first-

acting agent chooses 1, the second-acting agent only needs one decision threshold

just in case when the first-acting agent chooses 0. Suppose Amy makes her decision

first with decision threshold λA , and Beth then makes her decision with decision

threshold λ0

B , regardless of Amy’s decision. Their minimum Bayes risk is

min
λA ,λ

0
B

c10p0 (P I
e,A + (1 − P I

e,A)P I0
e,B) + c01(1 − p0)P II

e,AP
II0
e,B . (6.15)

Now suppose that they switch their positions: Beth first makes her decision with

decision threshold ρB, and Amy then makes her decision with decision threshold ρ0

A,

regardless of Beth’s decision. Their minimum Bayes risk is now given by

min
ρB,ρ

0
A

c10p0 (P I
e,B + (1 − P I

e,B)P
I0
e,A) + c01(1 − p0)P II

e,BP
II0
e,A

= min
ρB,ρ

0
A

c10p0 (P I0
e,A + (1 − P I0

e,A)P I
e,B) + c01(1 − p0)P

II0
e,AP

II
e,B , (6.16)

where the terms are rearranged to have the same form as (6.15). Note that P I
e,A , a
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function of λA , and P I0
e,A , a function of ρA0, are the same error functions. Likewise,

each pair of P II
e,A and P II0

e,A , P I0
e,B and P I

e,B , and P II0
e,B and P II

e,B is the same error function.

Therefore, the optimal decision thresholds are also the same:

λ∗A = ρ0∗
A and λ0∗

B = ρ∗B.

In conclusion, not only is the public signal useless but also the agents’ decision-

making order does not affect the optimal team decision. Their optimal strategy is

just to adopt the decision thresholds λ∗1 and λ∗2 that minimize the Bayes risk:

(λ∗1, λ∗2) = arg min
(λ1 ,λ2)

{c10p0 (1 − (1 − P I
e,1) (1 − P I

e,2))

+c01(1 − p0)P II
e,1P

II
e,2} . (6.17)

We can extend this result to N agents as long as the fusion is performed by the

or rule or the and rule.

Theorem 6.5. For a unanimity fusion rule, secret voting is the optimal strategy even

when agents observe private signals with different SNRs. Specifically, public signals

are useless and the ordering of agents does not affect their optimal decision rules nor

the resulting performance.

Proof. For the or rule, where the Bayes risk is given by

c10p0 (1 −
N

∏
n=1

(1 − P I
e,n)) + c01(1 − p0)

N

∏
n=1

P II
e,n, (6.18)

each agent has a meaningful decision threshold only if all previous agents declare 0.

Otherwise, decisions of the remaining agents are irrelevant. Thus, without loss of

optimality, we can constrain that the agents optimize their decision thresholds λn

for the case when Ĥ1 = Ĥ2 = ⋯ = Ĥn−1 = 0 and use the same decision threshold for

any public signals. In fact, they need not know the public signals; they just need to

perform decision making as if all public signals are 0. If this assumption is not true,

i.e., any earlier-acting agent chooses 1, then their decisions will be irrelevant anyway.
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Furthermore, the symmetry in (6.18) implies that indices of Agents m and n are

interchangeable. Therefore, the ordering of agents does not affect the optimal values

of decision thresholds and, consequently, the minimum Bayes risk.

For the and rule, the Bayes risk is given by

c10p0
N

∏
n=1

P I
e,n + c01(1 − p0)(1 −

N

∏
n=1

(1 − P II
e,n)) , (6.19)

and we can prove the statement in a similar way.

In general, the solution to minimizing (6.18) or (6.19) does not satisfy λ∗1 = λ∗2 =
⋯ = λ∗N , unlike in Section 6.1. Agents will use different optimal decision thresholds

corresponding to their SNRs. As discussed in Section 4.3, they need to solve equa-

tions like (4.11) to get the optimal decision thresholds. However, they do not know

other agents’ SNRs, specifically, other agents’ noise variances σ2
n. Therefore, their

rational decision thresholds, which are obtained from equations like (4.12) or (4.13),

are suboptimal. As in Section 4.3, a team of lucky imperfect agents can outperform

the team of perfect agents in the case when the agents observe private signals that

are not identically distributed.

∎ 6.3.2 Other Fusion Rules

Optimal decision making is more complex for other fusion rules due to the increase of

degrees of freedom. Even in the simplest case when three agents make a decision with

the majority (2-out-of-3) rule, the last two agents have two meaningful degrees of

freedom each. The second agent has different decision thresholds λ0
2 and λ1

2 for Ĥ1 = 0

and for Ĥ1 = 1, respectively, and the third agent has different ones λ01
3 and λ10

3 for

(Ĥ1, Ĥ2) = (0,1) and for (Ĥ1, Ĥ2) = (1,0), respectively. The third agent is irrelevant

for (Ĥ1, Ĥ2) = (0,0) or (Ĥ1, Ĥ2) = (1,1) because the team decision has been made

without her decision. Learning from public signals can be helpful in decision making

due to these extra degrees of freedom, unlike in Section 6.3.1

Our symmetric fusion rule always treats all local decisions with equal weights even

though they are made by agents that experience different SNRs. Thus, the team
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Figure 6-5. Lower bounds of operating regions for different orderings of three agents, Amy (σ2
A =

0.25), Beth (σ2
B = 1), and Cindy (σ2

C = 2.25), and the majority fusion rule.

decision can be improved by social learning, which inevitably unbalances weights of

local decisions.

As evidence of helpful social learning, Figures 6-5 and 6-6 are presented. In the

case of Figure 6-5, there are three agents using the majority fusion rule. Amy has

the highest SNR (σ2
A = 0.25), Beth has the median SNR (σ2

B = 1), and Cindy has the

lowest SNR (σ2
C = 2.25). Figure 6-5 depicts the optimal reversed ROC curves for all

possible orderings of the actions of the three agents.3

Note that the three orderings presented are sufficient because the order of the last

two agents does not matter. Once the first agent chooses 0, the fusion rule is changed

to 2-out-of-2 (AND) rule for the other two agents. If the first agent chooses 1, the

fusion rule is changed to 1-out-of-2 (OR) rule. As discussed in Section 6.3.1, the

order of agents is irrelevant if the fusion rule is a unanimity rule.

There are two notable things in Figure 6-5. First, the reversed ROC curve of secret

voting is above that of public voting for any ordering. This implies that public voting

strictly outperforms secret voting, regardless of the order in which the agents make

3As decision threshold parameters are varied with the order of agent actions fixed, some set of
(P I

E , P
II
E ) pairs is achievable. We call the lower boundary of this set the reversed ROC curve.
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Figure 6-6. Lower bounds of operating regions for different orderings of four agents, Amy (σ2 =
0.25), Beth (σ2 = 0.5), Cindy (σ2 = 1), and Daphne (σ2 = 2.25), and the 2-out-of-4 fusion rule.

decisions. Second, among the public voting scenarios, the best is when Beth makes

her decision first. Further numerical experiments for N = 3 with several different

noise variances also show that the team performance is the best when the agent with

the median SNR acts first.

Figure 6-6 shows the optimal reversed ROC curves for four agents and the 2-

out-of-4 fusion rule. Again, there is no need to compare all 16 orderings to find the

best-performing one. After the first agent makes a decision, the updated fusion rule

will be the 1-out-of-3 rule if the decision is 1, or 2-out-of-3 rule if the decision is

0. Since the ordering of the next three agents is irrelevant under 1-out-of-3 (or)

rule, their optimal order under 2-out-of-3 rule should be considered. In Figure 6-6,

considered are four orderings with different first agent and optimally arranged three

other agents. It is shown that public voting always outperforms secret voting. In

addition, the agent with the second-highest SNR should act first but the difference

between the case when the agent with the third-highest SNR acts first is very small.

In this section, we have provided evidence that agents can exploit social learning

to improve their team decision when the qualities of the private signals vary. The

sequence of the agents also needs to be carefully chosen to achieve the best team
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performance.

∎ 6.4 Experimental Investigation of Human Social Learning in Team Decision

Making

Corollary 6.3 is a notable result because individually making the best possible deci-

sions with all available information may seem to be also the best policy for the team,

but it is not actually fully rational. To test whether people react to public signals,

we conducted experiments considering conditionally iid private signals and complete

public signals as in Section 6.1.

The objective of these experiments is verification of the two following hypotheses:

Hypothesis 6.6. Human decision makers are affected by public signals in team de-

cision making.

Hypothesis 6.7. Human decision makers are less affected by public signals in team

decision making than they are in individualistic decision making.

Our first hypothesis argues that humans are not rational in their use of public

signals; thus, to improve team performance, the public signals should be eliminated,

i.e., votes should be kept private. Our second hypothesis argues that human behav-

iors are not completely irrational; having less dependence on public signals at least

matches the trend of fully rational behavior.

∎ 6.4.1 Experiment A: Setup

The experiment asks subjects to perform decision-making tasks in the scenario de-

scribed below.4

1. Each subject is told they are one of seven contestants in a game show. The

contestant is assigned a number from 1 to 7. This will be their decision-making

order.
4Before starting the experiment, the author and the PI had passed a training course on human

subjects research, which is required according to MIT regulation. They applied for exempt status
for this experiment and got approved by the Committee on the Use of Humans as Experimental
Subjects (COUHES): COUHES Protocol No. 1310005949.
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Figure 6-7. The likelihoods of a private signal.

2. A basket is presented on the stage. The contestants are asked to guess whether

it is Basket A, which has 70 red balls and 30 blue balls, or Basket B, which has

30 red balls and 70 blue balls.

3. Each contestant can draw 9 balls from the basket (as a private signal) and put

them back so that other contestants cannot see what he/she draws. Of course,

exchange of the information is not allowed.

4. From contestant 1 through 7, they speak out what they think the basket is.

They can also hear other contestants’ answers (as public signals).

This game corresponds to the following hypothesis testing problem. The hypoth-

esis is H = 1 if the basket is Basket A and H = 0 if Basket B. The prior probability

of each hypothesis is 0.5. The private signal Yn is the number of red balls among the

9 balls. Its likelihood functions are given by

pYn ∣H(y ∣0) =
(30

y
)( 70

9 − y)

(100

9
)

and pYn ∣H(y ∣1) =
(70

y
)( 30

9 − y)

(100

9
)

, (6.20)
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which are depicted in Figure 6-7. Seven agents observe conditionally iid private signals

and public signals. Without public signals, the rational behavior is to choose Basket

A if the agent draws 5 or more red balls and to choose Basket B otherwise.

The experiment consists of two versions of questionnaires: one for a sequential

detection task as in Chapter 5 and the other for a distributed detection task as in

Chapter 6. In the former questionnaire, each contestant gets a reward if his/her guess

is correct and gets nothing otherwise, which is an individualistic goal. In the latter

questionnaire, all contestants get equal reward if the majority guesses the correct

basket and get nothing otherwise, which is a team goal. Hypothesis 6.7 can be

verified by comparing results of these two versions.

The subjects are 200 Amazon Mechanical Turk workers living in the United States.

Each subject is randomly assigned one of the two versions so that each version is

assigned 100 workers. The subjects are asked to answer their thresholds to choose

Basket A for each of 29 combinations of public signals. They are not informed that

there are two versions of questionnaires because awareness of the other version may

force them to think that they should behave differently.

In addition, we offer each subject a bonus reward up to $1.50 in order to encourage

the subject to think deeply and answer sincerely, while the base reward for completing

the experiment is $0.50. After reviewing each subject’s answers, we gave a bonus

proportional to the expectation of the individual’s (Version I) or the team’s (Version

II) correctness.

∎ 6.4.2 Experiment A: Results

The subjects provide their answers with a slider bar with effective range of -0.5

to 9.5 and resolution 0.1. The answers are quantized with resolution 1.0 because

the thresholds represent the minimum number of red balls to choose Basket A. For

example, decision thresholds 4.1 and 4.9 yield the same decision rules because the

private signals are integer-valued. Hence, for any integer n ∈ {0,1, . . . ,10}, answers

within (n − 1, n] are quantized to n − 0.5. Then we take the average of the quantized

answers.
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Figure 6-8. Optimal decision-making thresholds and empirical thresholds for various public signals.
Each set of public signals shown to the subjects is written vertically, from top to bottom in the
chronological order of the public signals. (a) Sequential detection—individualistic decision making
(Version I). (b) Distributed detection—team decision making (Version II).

Figure 6-8a shows the results in the sequential detection task (Version I). This is

individualistic decision making; contestants should do social learning to increase the

probability of choosing the correct basket. The optimal threshold varies from 2.5 to

6.5 depending on public signals. The results reveal that human subjects do social

learning but do not rely on public signal as much as they should do.

Figure 6-8b shows the results in the distributed detection task (Version II). This is

team decision making so contestants should ignore public signals. Thus, the optimal

decision threshold is 4.5 regardless of the public signals. However, Figure 6-8b clearly

shows that humans are affected by public signals. Among 100 subjects who were

assigned this version, only 3 subjects made their decisions independently of the public

signals. We conclude that Hypothesis 6.6 is verified.

Figure 6-9 compares human behaviors in individualistic and in team decision-

making task. The lengths and directions of arrows show how behavior is and should

be changed from Version I to Version II.

Compared to the results of Version I, human decision makers do not seem to

change their behaviors for individualistic or team goals. There are slight changes of

the thresholds but they are too small for us to argue that the agents are behaving dif-

ferently in the two cases. We ran a two-sample Kolmogorov-Smirnov test to compare
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Figure 6-9. Comparison of decision thresholds in Version I and Version II. The directions of
arrows indicate behavior changes from the individualistic case (Version I) to the team-objective
case (Version II). Black arrows start from empirical thresholds for individualistic decision making
to empirical thresholds for team decision making. For comparison, white arrows start from optimal
thresholds for individualistic decision making to optimal thresholds for team decision making. The
latter are all at 4.5 since the public signals are optimally ignored.

the distributions of empirical thresholds for each situation. In 25 out of 29 situations,

they are the same distributions with probability higher than 50%. The probability

is even higher than 90% in 14 situations. We conclude that Hypothesis 6.7 is not

supported. More details are provided in Section 6.A.

Besides, an interesting behavior is observed when the public signals are [A A A B]

in Figure 6-8a in Version I. Humans tend to use 3.5 as their thresholds even though

the optimal threshold is 4.5. A rational interpretation of the public signals is that

Agent 4 chooses Basket B because the agent has very strong signal for Basket B,

i.e., the agent must have picked 7 or more blue balls. The likelihood of the event

is negligibly small if the basket is Basket A according to Figure 6-7. Thus, subjects

should take the decision of Agent 4 much more seriously than the decisions of the

first three agents. That is why the optimal threshold is 4.5 even though 3 out of 4

public signals are Basket A.

However, 3.5 is the average threshold that human decision makers used. We

interpret this behavior in two ways. First, humans may not believe that other people
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are rational. They may think that Agent 4 is just wrong. Second, humans may process

the public signals altogether regardless of the order of decisions made. Compared to

other scenarios when they observe public signals such as [B A A A], [A B A A], [A A

B A], their average decision thresholds are close to each other.

In conclusion, humans perform social learning even when they ought not to; they

tend to use all available information. Furthermore, they do not seem to depend less

on public signals for a team goal than they do for an individualistic goal.

∎ 6.4.3 Experiment B: Setting and Results

The first experiment, Experiment A, considers the situation when each contestant

draws nine balls from the basket. Letting them draw that many balls helps us survey

subjects’ decision-making thresholds at a fine scale. However, the downside is that

the likelihood functions (6.20) are complicated. The subjects might use very similar

thresholds in Versions I and II because the likelihood functions are too complicated

for them to understand correctly.

We conducted another experiment5 with the same setting except simple private

signals—each contestant draws only one ball from the basket. Contestants have only

two cases: The ball they draw is red or blue. The likelihoods of their private signals

Yn are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pYn ∣H(“red” ∣0) = 0.3,

pYn ∣H(“blue” ∣0) = 0.7,
and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pYn ∣H(“red” ∣1) = 0.7,

pYn ∣H(“blue” ∣1) = 0.3,

where, again, H = 1 means that the basket is Basket A and H = 0 means Basket B.

In Experiment B, we discarded unreasonable combinations of public signals in

the sense that herding occurs after one choice outnumbers the other by two votes

in the public signals. For example, [A B A A B] would not occur because if the

fifth contestant, who observe the public signals [A B A A], were rational, she would

choose A regardless of her private signal as discussed in Section 2.3.2. A total of

5The second experiment has also been approved by the COUHES: COUHES Protocol No.
1403006285.
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18 combinations of public signals were selected and asked. Each subject is asked

to choose one basket when they draw a red ball and when they draw a blue ball.

They are 100 Amazon Mechanical Turk workers who live in the United States and

did not participate in Experiment A. Like in Experiment A, a half of the subjects

was assigned to Version I and the other half to Version II.

Their decision making was categorized into four groups:

� Not herding (NH): to choose Basket A if the drawn ball is red and Basket B if

it is blue.

� Herding toward A (HA): to choose Basket A regardless of the color of the drawn

ball.

� Herding toward B (HB): to choose Basket B regardless of the color of the drawn

ball.

� Unreasonable choice (UC): to choose Basket A if the drawn ball is blue and

Basket B if it is red.

Since we considered the public signals that could only lead to NH or HA ideally, HB

or UC should not appear if all subjects think rationally. However, a few subjects

chose HB or UC as shown in Section 6.B. Especially, UC literally does not make

sense because it is to choose the basket in which the drawn color is minority. We still

respect such answers because the subjects were tested if they understood the given

experiment setting and the rules of the game show; only those who answered correctly

to all the questions were qualified to take the experiment.

Figure 6-10 shows decision making rules adopted by most subjects. Only two

categories are displayed because most subjects adopted NH or HA. Figure 6-10a

shows the results in the sequential detection task for individual correctness (Version

I). It turns out that what most subjects did is optimal decision-making. Compared to

Figure 6-8a, subjects were capable of thinking rationally with simple private signals

like binary-valued ones.
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Figure 6-10. The behaviors shown by most subjects and their optimal behaviors. Each set of
public signals shown to the subjects is written vertically, from top to bottom in the chronological
order of the public signals. (a) Sequential detection—individualistic decision making (Version I).
(b) Distributed detection—team decision making (Version II).

Figure 6-10b shows the results in the distributed detection task for team’s correct-

ness (Version II). The subjects still did social learning. In fact, they made decisions

which would have been rational if they had pursued individual correctness. The

comparison of their decision rules in Versions I and II in Section 6.B supports the

argument.

What can be learned from these two experiments is that many people have the

ability to process public signal and perform social learning to make better individual

decisions. Their cognitive power is limited to process complex private signals but

still close to optimum when the private signals are simple. However, they lack un-

derstanding of how to make decisions to optimize the team’s correctness. They make

decisions in a very similar way for themselves or for their teams irrespective of the

simplicity of the private signals. Thus, if possible, it is better to not show irrelevant

information that may confuse a person’s decision making.

∎ 6.5 Conclusion

A combined model of a distributed detection and social learning has been discussed.

Chapters 4 and 5 have separately discussed a distributed detection with symmetric
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fusion and a sequential detection with social learning. Both techniques were used to

decrease the Bayes risk. However, when they are combined, it is not a trivial question

whether they are synergic.

The fundamental role of social learning is belief update, as discussed in Chapters 2

and 5. When Agent n chooses a hypothesis Ĥn, the choice is not independent of H.

When other agents watch the choice as a public signal, it is a rational and natural

phenomenon that the public signal changes their beliefs about H. This is the only

effect of social learning in a sequential detection scenario.

When social learning is performed within a decision-making team that aggregates

opinions by voting, however, another effect of social learning arises. Because the

public signals are the votes themselves cast by agents, the agents know the exact

numbers of votes 0 or 1 required to reach the global decision 0 or 1 at every moment.

They know the changing impact of a vote of 0 or 1 according to the evolution of the

fusion rule. This fusion rule update is a less frequently explored topic.

When the agents observe conditionally iid private signals, the effects of the belief

update and the fusion rule evolution cancel exactly. Consequently, the optimal per-

formance with or without public signals is the same; internally flowing information

does not improve the team performance.

When the agents observe signals that are conditionally independent but not iden-

tically distributed, social learning may improve team performance, and when it does,

the degree of improvement depends on the order in which the agents act. Among

the symmetric fusion rules, the 1-out-of-N and N -out-of-N fusion rules are peculiar

in that they essentially require unanimity among agents. Social learning becomes

meaningless because the unanimity rules prevent the agents from specializing their

decision thresholds for various public signals.

Social learning can play a role to improve team decisions as long as the fusion

rule is not one of these unanimity rules. In examples with Gaussian likelihoods, we

showed that team performance improves when agents with differing observation SNRs

do social learning. With three agents making a team decision by the majority fusion

rule, it is best for the agent with median SNR to act first. With four agents using
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the 2-out-of-4 fusion rule, it is best for the agent with second-best SNR to act first.

These results do not argue that public signals make team performance worse.

Even if the team of agents do social learning, they achieve the best team performance

as long as they do it properly. Social learning causes a trouble in our experiments

because humans overlook the evolution of fusion rule and act as if they are making

decisions for individualistic goals. This emphasizes the importance of design of rules

so that they can supplement humans’ suboptimal behaviors.

∎ 6.A Results of Experiment A

Table 6.1: Subjects’ Decision Thresholds When They Draw Nine Balls

Public

Signal

Distribution of

Threshold for the

Individualistic Goal

(Version I)

Distribution of

Threshold for the

Team Goal

(Version II)

Two-Sample

Kolmogorov-

Smirnov
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6The null hypothesis H0 is that the two set of samples are drawn from the same distribution.
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∎ 6.B Results of xperiment B

Table 6.2 shows how subjects made decisions when they drew a red or a blue ball.

There are four possible choices. Among them, two kinds of herding occur: Always

choosing Basket A or always choosing Basket B. Even though this experiment does not

consider any public signal that optimally leads to herding to Basket B, some subjects

chose Basket B regardless of their drawing. In addition, subjects who respect their

private signals choose Basket A when they draw a red ball and Basket B otherwise.

The opposite behavior—choosing Basket B when they draw a red ball and Basket
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A otherwise—was also observed. This behavior does not make sense but we do

not exclude such answers because they are not significant and we already have a

qualification step to check whether the subjects fully understood the given experiment

setting.

The two-sample Kolmogorov-Smirnov test accepts the null hypothesis for all public

signal cases. It implies that subjects could not determine the optimal strategy for

team decision-making goals even when their private signals are so simple that they

only need to consider two cases—what to choose when they draw a red ball and what

to choose when they draw a blue ball.
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Chapter 7

Conclusion

Perfect Bayesian decision making is computationally challenging. It requires complete

understanding of likelihoods of hypotheses and observations and processing of them

to get a posteriori probabilities. Some systems like humans have limited resources to

perform a decision-making task. Among many difficulties of human decision makers in

practical decision-making situations, the thesis focuses on their cognitive limitations

toward the prior probability.

This thesis introduces an imperfect decision-making agent, which models human

cognitive processes. Psychological experiments have revealed that human decision

making relies on the appearance of the subjects, such as criminal defendants, students,

and job applicants. Humans not only are more generous to attractive people but also

use the attractiveness as a clue to perceive the prior probability. Inspired by the latter,

the imperfect agent is assumed to estimate the prior probability upon observing an

extra signal correlated to the prior probability. The Bayes-optimal estimation is the

expectation of the prior probability conditioned on the signal, but this is relaxed so

that the agent estimates the prior probability in an arbitrary way to an arbitrary

value. In the discussions of Chapters 4, 5, and 6, imperfect agents who have arbitrary

beliefs and perfect agents who have the correct prior probability are considered.

The main objective of this thesis is to investigate the performance of imperfect

agents in terms of Bayes risk from the perspective of costly rationality—the agents

optimize their behaviors with their limited abilities and resources. The relation of

incorrect belief to the Bayes risk in a single-agent case is trivial. The agent will

perform a suboptimal likelihood ratio test that is designed based on her incorrect
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belief so she will have a higher Bayes risk. The relation is nontrivial in multiple-agent

cases because of interactions between imperfect agents who have different beliefs. The

thesis contributes to understanding fundamental principles of group decision making

by looking at simple decision-making models containing multiple agents.

Incorrect beliefs are detrimental in distributed detection with voting and sym-

metric fusion when all agents observe conditionally iid private signals. On the other

hand, they can be beneficial when the agents observe conditionally independent but

not identically distributed signals. Perfect agents would use suboptimal decision rules

in that case but imperfect agents have a chance to have better decision rules according

to their beliefs.

Notable results discussed in the thesis include that some incorrect beliefs are

beneficial to boost the efficiency of social learning in a sequential detection model.

In addition, social learning can be futile in the distributed detection scenario if all

agents observe conditionally iid private signals or the fusion rule is unanimous.

The main results of the thesis are further detailed in Section 7.1. Some possible

future works inspired by the thesis are mentioned in Section 7.2.

∎ 7.1 Recapitulation

The results can be classified with respect to the decision-making goal: a team goal

as in the distributed detection model and an individual goal as in the sequential

detection model. For these two different goals, the effects of incorrect beliefs and

social learning are separately summarized below.

Having Incorrect Beliefs in Distributed Detection and in Sequential Detection

When agents are in a team that shares the cost of decision making, incorrect beliefs

increase the team Bayes risk if the agents observe conditionally iid private signals.

They can decrease the Bayes risk by gathering more agents to the team but cannnot

outperform a perfect team with the same number of agents whether the imperfect

team consists of identical agents or diverse agents. Forming a diverse team has only

an advantage with respect to stability.
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The imperfect team can outperform the team of perfect agents only when the

agents observe conditionally independent but not identically distributed private sig-

nals. The perfect agents cannot have optimal decision thresholds because they do not

know the likelihood functions of other agents’ private signals. Compared to them,

the imperfect agents can have either better or worse decision rules according to their

beliefs.

On the other hand, when the agents make decisions sequentially and individually,

having correct beliefs causes suboptimal decision making even if the agents observe

conditionally iid private signals. Correct belief helps an agent make a right decision

but the decision is not as informative as a decision based on a slightly open-mined

belief. Therefore, from the perspective of the last agent, who treats all earlier-acting

agents as her advisors, it is better for the earlier-acting agents to be open-minded.

Social learning in Distributed Detection and in Sequential Detection

When agents make decisions individually, social learning plays a role of belief update.

An agent who observes other agents’ decisions as public signals can update her belief

to make a better choice. In addition, it can lead to a better result if the public signals

are generated by open-minded agents.

Social learning also plays the same role of belief update when agents make a

decision as a team. However, it has another role in the case when the team decision

is aggregated by voting with symmetric fusion: Social learning enables the agents to

catch up with the evolution of the fusion rule. The fusion rule evolution countervails

the belief update; they exactly cancel when the agents observe conditionally iid private

signal.

Even though social learning does not increase Bayes risk, it may distract agents

from optimal decision making. The experiment on human decision making showed

that people do update their beliefs but do not properly incorporate the change of

fusion rule. Therefore, it is economical and more efficient not to show them any

public signals when they are useless.

Finally, it is shown that social learning can improve team decisions when the agents
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observe conditionally independent but not identically distributed private signals. The

degree of improvement depends on the order in which the agents make their decisions.

For example, with three agents making a team decision by the majority fusion rule,

it is best for the agent with median SNR to act first. With four agents using the

2-out-of-4 fusion rule, it is best for the agent with second-best SNR to act first.

∎ 7.2 Future Directions

Theoretical Research on Decision Making

One of the most interesting observations is that the order in which agents make their

decisions matters when the agents perform distributed detection with social learning

and observe not identically distributed private signals. The order is not trivial and

it has not been revealed yet why it is the best for the agent with median SNR to act

first. Study of the optimal ordering will help us understand dynamics of agents in

the team and especially the roles of the first agent beyond that being open-minded is

related to being informative.

Practical Research on Decision Making

The experiment in Section 6.4 revealed an interesting irrational human behavior when

humans absorb a public signal overturning overwhelming decisions. Social learning

from the public signals [A A A B] yielded almost the same results as social learning

from [B A A A] even though their implications are completely different. The former

means that Agent 4 has a very strong private signal supporting B while the latter

can occur when the private signal of Agent 1 only weakly supports B. Therefore, a

rational decision maker should take the public signal B much more seriously in the

former case. We do not know yet exactly why people do not take the signal rationally.

It may be because they do not trust other people or because they do not consider the

chronological order of public signals.

More generally, it needs to be studied how people process public signals and

update their beliefs. Combined with the theoretical research, such research could be
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influential widely on practical applications of social learning like political campaigns,

marketing, and the advertisement business.
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