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Abstract

In Bayesian hypothesis testing, a decision is made based on a prior probability dis-
tribution over the hypotheses, an observation with a known conditional distribution
given the true hypothesis, and an assignment of costs to different types of errors. In a
setting with multiple agents and the principle of “one person, one vote”, the decisions
of agents are typically combined by the majority rule. This thesis considers collections
of group hypothesis testing problems over which the prior itself varies. Motivated by
constraints on memory or computational resources of the agents, quantization of the
prior probabilities is introduced, leading to novel analysis and design problems.

Two hypotheses and three agents are sufficient to reveal various intricacies of
the setting. This could arise with a team of three referees deciding by majority
rule on whether a foul was committed. The referees face a collection of problems
with different prior probabilities, varying by player. This scenario illustrates that
even as all referees share the goal of making correct foul calls, opinions on the relative
importance of missed detections and false alarms can vary. Whether cost functions are
identical and whether referees use identical quantizers create variants of the problem.

When referees are identical in both their cost functions and their quantizers for
the prior probabilities, it is optimal for the referees to use the same decision rules.
The homogeneity of the referees simplifies the problem to an equivalent single-referee
problem with a lower-variance effective noise. Then the quantizer optimization prob-
lem is reduced to a problem previously solved by Varshney and Varshney (2008).
Centroid and nearest-neighbor conditions that are necessary for quantizer optimality
are provided.

On the contrary, the problem becomes complicated when variations in cost func-
tions or quantizers are allowed. In this case, decision-making and quantization prob-
lems create strategic form games; the decision-making game does always have a Nash
equilibrium. The analysis shows that conflict between referees, in the form of varia-
tion in cost functions, makes overall team performance worse. Two ways to optimize
quantizers are introduced and compared to each other.

In the setting that referees purely collaborate, in the form of having equal cost
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functions, the effect of variations between their quantizers is analyzed. It is shown that
the referees have incentive to use different quantizers rather than identical quantizers
even though their cost functions are identical. In conclusion, a diverse team with a
common goal performs best.

Thesis Supervisor: Vivek K Goyal
Title: Esther and Harold Edgerton Career Development
Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Decision theory has been developed in various ways because there are numerous dif-

ferent situations of decision-making in practice. One of the simplest situations is that

a single decision-maker chooses between two alternatives, such as an alarm detecting

fire by monitoring heat and smoke or a referee judging a player’s tackle to be fair

or foul. They are called binary hypothesis testing problems, which have been widely

studied in wireless communications.

The simplicity of binary hypothesis testing problems helps us understand funda-

mentals of decision-making: there is a beautifully simple decision rule and a useful

operating characteristic that the probability of false alarm is convex in that of missed

detection [1].

Another situation of decision-making is a distributed hypothesis testing problem.

The interest in the problem originated with the requirements of military surveillance

systems with distributed sensors [2, 3]. One type of distributed detection system is

what consists of several decision-makers who vote for one candidate hypothesis and a

fusion center that uses the majority rule. We are interested in this type of distributed

detection system because it is widely used in real life as democratic decision-making.

In such a system, a decision-maker may compete or cooperate with others in order

to induce the global decision to be what he wants when all decision-makers have

different preferences. In traditional distributed detection systems, however, detectors

or decision-makers are supposed to share the same cost function and cooperate with

others [4,5]. We are not aware of any previous work that has looked at the distributed

detection system in which each detector has its own cost function and one vote.
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We discuss the criterion of optimality of decision rules in this system, and compute

equilibria of decision rules by defining a proper strategic form game.

In addition, practical decision-makers may have physical limitations. Let us con-

sider decision-makers that perform a series of hypothesis testing on a population

of objects. The decision-makers need to know exact prior probability of each ob-

ject for each Bayesian hypothesis testing. However, they may have limited memory

or computational capability. We assume that they use quantized versions of prior

probabilities because of the limitation, which is a feasible assumption. Then each

decision-maker needs an optimal quantizer of prior probabilities to minimize the er-

ror due to the quantization. Designing an optimal quantizer for prior probabilities

for a single decision-maker using the Lloyd-Max algorithm has been studied in [6].

In group decision-making, the Lloyd-Max algorithm cannot be applied because of

dependency among decision makers’ quantization rules. We discuss difficulty in op-

timizing quantization rules and how the decision-makers’ preferences affect optimal

quantization rules.

When a distributed detection system consists of decision-makers that have the

same preference, they can cooperate to make the best decision. In this case, game-

theoretic issues do not occur in optimizing decision and quantization rules. Therefore,

the analysis of quantization is similar to that in [6] except a diversity issue. Espe-

cially, decision-makers may be able to perform more accurate hypothesis testing by

using different quantizers for prior probabilities than using the same quantizers. It is

because the diverse quantizers can categorize the objects into more detailed groups

than the same quantizers can. We investigate the extent of the benefit of diversity in

quantizers and how to design the optimal diverse quantization rules.

� 1.1 Thesis Outline

This thesis explores the group decision-making by imperfect referees. The term referee

is motivated by applications in sports. We consider a group of three referees, which is

the smallest number of referees without controversy in majority vote. They observe
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the same object that has two possible states, but their observations are distorted

by independent and identically distributed additive Gaussian noises. Each referee

makes a local binary decision and all local decisions are sent to a fusion center, where

a global decision is determined as the majority of the local decisions. The referees

follow Bayesian hypothesis testing rule, i.e., each referee attempts to make decisions

that minimize his Bayes risk. Since the referees are supposed to detect an object

with arbitrary prior probability, they need to know the prior probability of what they

observe in order to make such decisions.

Due to their limited processing capability, however, they can distinguish an object

as one of K categories. In other words, an object belongs to one of K categories

according to its prior probability and a referee’s classification rule, and the referee

recognizes the object has the prior probability that represents the category it belongs

to. Consequently, due to his limitation, the referee uses the quantized prior probability

in Bayesian hypothesis testing.

This work deals with two main issues: decision rules and quantization rules. Each

referee wants the final decision to minimize his Bayes risk. According to others’ deci-

sions, however, the final decision may become different from what he wants, especially

when the referees have different local cost functions. The discord is the reason that

each referee encounters conflicts of interest and has to consider others’ cost functions

as well as his own cost function in order to determine an optimal decision rule. In

addition, we assume that each referee has a proper quantization rule for prior proba-

bilities according to his cost function. Even though it is assumed that all referees know

the same prior probabilities in traditional distributed detection problems [5], the ref-

erees in our problem no longer have the same prior probabilities if they have different

quantization schemes. Since different quantization schemes come from the referees’

different cost functions, they face conflicts of interest not only because of different

cost functions but also due to differently quantized prior probabilities. Therefore,

we investigate methods for referees to develop optimal decision rules and quantiza-

tion rules so that each referee can minimize his Bayes risk while he considers others’

decision and quantization rules.
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Cost function

Same Different

Same Identical referees

Chapter 3 Conflicting referees

Quantizer Collaborating referees Chapter 4

Different Chapter 4 (Section 4.2)

(Section 4.3)

Table 1.1. Classification of teams of referees.

In this thesis, we discuss behaviors of each referee in a group Bayesian decision-

making system. We propose several strategies by which a referee can conflict or

cooperate with others in order to minimize his Bayes risk. In addition, we analyze

how behaviors of other referees affect the design of an individual’s quantization rule

as well as his decision rule.

The rest of the thesis is organized as follows. Chapter 2 covers some relevant

background on decision theory, quantization theory, and game theory.

Chapter 3 looks at the group decision-making when referees are identical. The

term identical means that the referees have the same preference (same Bayes costs)

and the same quantizers, Table 1.1. Since each referee’s Bayes risk coincides with

every other referee’s Bayes risk, there are no conflicts of interest or game-theoretic

issues. We derive optimal decision rules and quantization rules for the referees. Their

performance is compared to a single referee’s performance and it is discussed how

they have an advantage over the single referee.

Chapter 4 discusses a more general case when referees are not identical. Conflicts

of interest among the referees occur in this case because each referee’s Bayes risk has

a different formulation from the others’. Thus, they should compete with one another

in order to achieve a preferable global decision. We analyze how the competition has

an effect on optimal decision and quantization rules from game-theoretic point of

view. In addition, we look at the referees who may have different quantization rules

but collaborate for a common goal. This case is similar to the identical-referee case

except that the referees can take advantage of diverse quantizers. We analyze how

16



they benefit by diversity of quantization rules and present an algorithm to design

optimal quantization schemes.

Finally, Chapter 5 summarizes the contributions of this thesis.
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Chapter 2

Background

This thesis lies in the intersection of decision theory, quantization theory, and game

theory. This chapter gives an overview of relevant concepts and terminology from

these fields. Also, the results of a related previous work [6] are summarized.

� 2.1 Bayesian Hypothesis Testing

Hypothesis testing is making a decision among a set of discrete possibilities. Hypothe-

sis testing is used to a variety of fields including radar detection, speech recognition [7],

and clinical trial investigation [8] as well as digital communication. Hypothesis testing

is based on observations, which are distorted or incomplete due to noise, obstacles, or

limitation of equipments. The goal in hypothesis testing is to make the best decision

with imperfect observed data.

� 2.1.1 Description of Model

The basic model in hypothesis testing problems is shown in Figure 2-1, where H

denotes a hypothesis and Y denotes observed data. A hypothesis is a discrete random

variable drawn from a set of M states, H = {h0, . . . , hM−1}, which is called an

alphabet. We observe a set of data Y which is jointly distributed with the hypothesis

H. In general, we are given two kinds of information. First, the hypothesis has prior

probability PH(hm) with which the hypothesis is in state hm, where
∑M−1

m=0 PH(hm) =

1 and PH(hm) ≥ 0, for m = 0, 1, . . . ,M−1. Second, the observation Y is characterized
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{PY|H(·|·)}H Y

Figure 2-1. The observation model in Bayesian hypothesis testing problems.

by conditional probability distributions

PY |H(·|hm), m = 0, 1, . . . ,M − 1

under each hypothesis hm. The system between H and Y in Figure 2-1 can be fully de-

scribed by the set of transition probabilities {PY |H(·|h0), PY |H(·|h1), . . . , PY |H(·|hM−1)},

and the system has the special name “channel” in communication.

The two kinds of information – the prior probabilities and transition probabilities

– are sufficient to characterize the observed data Y . The observed data have the

density function

PY (y) =
M−1∑
m=0

PH,Y (hm, y) =
M−1∑
m=0

PY |H(y|hm)PH(hm).

Then it is possible to update our belief (or distribution) of the hypothesis based on

the observed data by using Bayes’ theorem. The likelihood of each hypothesis hm

when we observe Y = y is given by

PH|Y (hm|y) =
PY |H(y|hm)PH(hm)

PY (y)
=

PY |H(y|hm)PH(hm)∑M−1
m=0 PY |H(y|hm)PH(hm)

.

This probability is called posterior probability, which means that it is computed

after Y = y is observed. Hypothesis testing using Bayes’ theorem is called Bayesian

hypothesis testing.

� 2.1.2 Criterion of Decision Rule

In general, it is impossible to recover the correct hypothesis every time because of

incompleteness of observed data. Hence, the goal in Bayesian hypothesis testing
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problems is to make the best decision (and find the best decision rule) about the

hypothesis which incurs minimum cost. We use C(hi, hj) to denote the cost of deciding

that the hypothesis is hi when the correct hypothesis is H = hj, and we call C(·, ·) :

H2 7→ R+ a cost function.

The solution of a hypothesis testing problem is given by a decision rule, which is

a function Ĥ : R 7→ H that maps each possible observation to one of the hypotheses.

The criterion for performance of a decision rule Ĥ is the expected cost, which is

referred to as Bayes risk and is computed by

ρ = E[C(H, Ĥ(Y ))] =
M−1∑
m=0

M−1∑
n=0

C(hn, hm)P[Ĥ = hn|H = hm]PH(hm).

In other words, the best decision rule in a Bayesian hypothesis testing problem is the

decision rule that minimizes Bayes risk.

� 2.1.3 Binary Hypothesis

In a binary hypothesis testing problem, the hypothesis is in one of two values {h0, h1},

whose prior probabilities are p0 = P[H = h0] and p1 = P[H = h1] = 1 − p0. Our

observation Y is a random variable whose distribution conditioned on H = h0 or

H = h1 is respectively given by PY |H(y|h0) or PY |H(y|h1). Then a decision rule Ĥ(·)

leads to Bayes risk

ρ = c00p0P[Ĥ = h0|H = h0] + c10p0P[Ĥ = h1|H = h0]

+c11p1P[Ĥ = h1|H = h1] + c01p1P[Ĥ = h0|H = h1]

=

∫
Y1

p0(c10 − c00)PY |H(y|h0) dy +

∫
Y0

p1(c01 − c11)PY |H(y|h1) dy + c00p0 + c11p1,

where cij , C(hi, hj) and Yi , {y : Ĥ(y) = hi}. Valid cost functions have to satisfy

cij > cjj, ∀i 6= j, ∀j = 1, . . . , |H|,
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because it is reasonable that incorrect decisions are more costly than correct decisions.

The decision rule Ĥ(·) that minimizes ρ has a form of a likelihood ratio test:

PY |H(y|h1)

PY |H(y|h0)

Ĥ(y)=h1

R
Ĥ(y)=h0

p0(c10 − c00)

p1(c01 − c11)
. (2.1)

In the remainder of this paper, we assume that c00 = c11 = 0, which simplifies the

likelihood ratio test to

PY |H(y|h1)

PY |H(y|h0)

Ĥ(y)=h1

R
Ĥ(y)=h0

p0c10

p1c01

. (2.2)

There are two kinds of errors in a binary hypothesis testing:

Pe1 = P[Ĥ = h1|H = h0] =

∫
Y1

PY |H(y|h0) dy, (2.3)

Pe2 = P[Ĥ = h0|H = h1] =

∫
Y0

PY |H(y|h1) dy. (2.4)

Pe1 is called the probability of error of the first kind or probability of a false alarm,

and Pe2 is called the probability of error of the second kind or probability of a missed

detection. One characteristic of the probabilities of errors is that Pe2 is convex in Pe1

if decision rule (2.2) that minimizes Bayes risk is used [1].
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� 2.2 Quantization

Quantization is the process of mapping from a continuous range of values to a set of

discrete values. A quantizer consists of a set of regions R = {Rk; k ∈ K} and a set of

representation points C = {yk; k ∈ K}, where K is a countable index set [9], so that

the quantizer is defined by

q(x) = yk for x ∈ Rk.

The function q(x) is called the quantization rule. A simple example of quantization

is rounding off, which is defined by Rk = [k − 0.5, k + 0.5) and yk = k with K = Z,

or q(x) = bx+ 0.5c.

The quality of a quantizer can be measured by comparing the resulting repro-

duction to its original value. Having a distortion measure d(x, x̂) that specifies the

cost or distortion of recovering x as x̂, we can measure the quality of a quantization

scheme by the average distortion. When the data is considered as a random variable

whose probability density function is fX(x), the average distortion becomes

D(q) = E[d(X, q(X))] =
∑
k

∫
Rk

d(x, yk)fX(x) dx. (2.5)

Having smaller average distortion means higher quality. One of the most common

distortion measures is squared error d(x, x̂) = |x − x̂|2 and D(q) is then called the

mean squared error (MSE).

Quantization is coding an input x to one of K binary codewords, where K =

|K|. Then since it requires log2K bits to describe each codeword, the rate of this

quantization scheme is defined as log2K bits per sample. A quantizer with fixed-

length codewords is said to have fixed rate. The goal of quantization is to encode

data with as few bits as possible and to recover them with as small average distortion

as possible. Thus, there is a trade-off between average distortion and rate.

A quantizer is called a vector quantizer if the dimension of its input is more than

one, and it is called a scalar quantizer if the dimension is equal to one. In addition,

a memoryless quantizer does not change sets of regions and representation points
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depending on the past. Fixed-rate memoryless scalar quantization is used in this

work.

� 2.2.1 Optimality Conditions

A fixed-rate memoryless scalar quantizer consists of two components: a lossy encoder

α : A 7→ K, where A is an alphabet of input symbols, and a reproduction decoder

β : K 7→ C. Lloyd’s conditions on (α, β) in order for the quantizer to be optimal are

as follows: if any component of the code (α, β) is fixed, then the other component

must have a specific form, which is described below.

• For a fixed lossy encoder α, the optimal decoder β is given by

β(k) = arg min
y

E[d(X, y)|α(X) = k].

In other words, β(k) is given by the value minimizing the expectation of the

distortion between the value and the input x conditioned on that the encoder

generates k for x. The values {β(k); k ∈ K} are called centroids.

• For a fixed reproduction decoder β, the optimal lossy encoder is a minimum-

distortion (or nearest neighbor) encoder

α(x) = arg min
k∈K

d(x, β(k)).

The partition that satisfies both conditions is called a Voronoi partition.

� 2.2.2 Functional Quantization

In general, limitation of storage space requires quantization of data. The quantization

may occur in the middle of a whole process and the quantized data can be used in

remaining process. In this work, for example, a prior probability is quantized and the

quantized value is used in Bayesian hypothesis testing. Then it is reasonable that we

are concerned about the values we will get after the whole process rather than those
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x z

q(·)x ˆ g(·)

g(·)

x ẑ

Figure 2-2. Fixed-rate scalar functional quantization.

right after quantization. Figure 2-2 depicts two systems: one without a quantizer and

one with a quantizer in front of it. Since the latter system uses quantized value x̂,

the result becomes ẑ instead of the desired value z.

Even if we use the optimal quantizer that minimizes the average of distortion

d(x, x̂), it does not guarantee that we can achieve the minimum distortion between z

and ẑ. Therefore, the quantization rule q(·) should be determined so that it minimizes

the average distortion

D(q) = EX [d(z, ẑ)] =
∑
k

∫
Rk

d(g(x), g(yk))fX(x) dx,

which is different from (2.5).

Quantization of prior probabilities

Quantization of prior probabilities for Bayesian hypothesis testing is introduced in [6].

There is a population of objects, and each object has its own prior probability drawn

from a density function fP0(p0). However, a referee has finite memory or limited

information processing resources so that he can only work with at most K different

prior probabilities. Thus, when he makes a decision about an arbitrary object, he

maps its true prior probability to one of the K available values and then performs the

Bayesian hypothesis test. In other words, he quantizes the prior probability before

performs hypothesis test.

The objective of the paper is to find an optimal K-point quantizer vK(·) for prior

probabilities. Since a Bayesian referee pursues the minimum Bayes risk, vK(·) is a

functional quantizer that should minimize Bayes risk error d(p0, vK(p0)) due to the
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quantization. Mean Bayes risk error

∫ 1

0

d(p0, vK(p0))fP0(p0) dp0

is defined as the criterion for optimality of the quantizer, and the nearest neighbor

condition and the centroid condition for optimal quantizers are derived. It is shown

that if fP0(p0) is positive and continuous in (0, 1) and
∫ 1

0
d(p0, a)fP0(p0) dp0 is finite

for all a ∈ [0, 1], then the Lloyd-Max algorithm alternating the centroid and near-

est neighbor conditions iteratively will converge to an optimal quantizer. High-rate

approximation of distortion-rate function is also obtained in the paper.

The paper applies its results to human decision-making and derives an interest-

ing conclusion about discrimination against minority. Consider two populations – a

majority and a minority populations – and extend the definition of mean Bayes risk

error to

D(2) =
M

M +m
E[d(P0, vKM

(P0))] +
m

M +m
E[d(P0, vKm(P0))],

where M is the number of the majority population, m is the number of the minority

population, KM is the number of points in the quantizer for the majority, and Km

is the number of points in the quantizer for the minority. If a referee has the total

quota of representation points Kt = KM + Km, then his optimal allocation of the

points will result in KM > Km in order to minimize D(2). Therefore, even though

the referee does not intend to, he will make more accurate decisions on the majority

population than on the minority population.

However, the accuracy of the decisions is not enough to explain the discrimination

that the referee calls more fouls on minority than on majority. The paper defines

discrimination quantity

∆ = E
[
P[ĤKm = h1]− P[ĤKM

= h1]
]
,

where P[ĤK = h1] is the probability of calling a foul when the referee uses a quantizer
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vK :

P[ĤK = h1] = p0Pe1(vK(p0)) + (1− p0)(1− Pe2(vK(p0))).

The discrimination quantity may be written as

∆ = E [p0Pe1(vKm(p0))− (1− p0)Pe2(vKm(p0))]−E [p0Pe1(vKM
(p0))− (1− p0)Pe2(vKM

(p0))] .

If this discrimination quantity ∆ is greater than zero, then the referee calls more fouls

on minority; otherwise, he calls more fouls on majority. It is found out that ∆ depends

on Bayes costs c10 and c01 and the distribution fP0(p0) as well as the quantizers.

For example, the discrimination against minority occurs if c01 > c10 for a uniform

prior probability. Analyzing various data about decisions by police, human resource

professionals, and National Basketball Association referees, the paper concludes that

all of them follow what is called the precautionary principle.
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� 2.3 Game Theory

Game theory provides useful mathematical methods to analyze a system that consists

of multiple agents whose actions have effect on the entire system. Game theory has

developed methodologies that understand how an individual makes a decision when

the individual’s outcome depends on others’ decisions. Game theory was introduced

by von Neumann and Morgenstern in 1944 [10]. Initial studies considered two players’

competitions in zero-sum games in which a player’s gain or loss is exactly balanced

by the loss or gain of the other player. Game theory has been expanded since 1950s

so that it has been applied to political science [11], biology [12], computer science as

well as economics [13].

The basic assumption in game theory is that all agents are rational in the sense

that each agent attempts to maximize his payoff. Technically speaking, each agent

is supposed to know his set of strategies and be capable of thinking through all

possible outcomes. He chooses the option that gives him higher utility or payoff by

computing expected payoff over unknown parameters and solving an optimization

problem. Game theory explains many equilibrium concepts of players’ strategies

based on the rational decision-making process.

� 2.3.1 Strategic Form Game

A strategic or normal form game is a model of interactive decision-making in which

all agents simultaneously make their decisions while they do not have any information

about others’ decisions. The game is defined by (I, (Si)i∈I , (ui)i∈I): the finite set of

players i ∈ I = {1, . . . , I}, the set of available pure strategies (or actions) si ∈ Si for

each player i, and the payoff (or utility) function ui :
∏

i∈I Si 7→ R for each player i.

In addition, S−i =
∏

j∈I,j 6=i Si denotes the set of strategy profiles of all players other

than player i, which are referred to as player i’s opponents. The vector of strategies

of player i’s opponents is denoted by s−i ∈ S−i, and (si, s−i) ∈ S =
∏

i∈I Si is called

strategy profile or outcome. The payoff of player i depends on (si, s−i), and payoff

functions describe the influence among players.
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A mixed strategy is a probability distribution over pure strategies, which represents

a player’s probability of playing each pure strategy. The payoffs to a profile of mixed

strategies are the expected values of the corresponding pure strategy payoffs. A game

is said to be a finite game if the cardinality of S is finite; otherwise, it is an infinite

game.

It is assumed in a strategic form game that all players are rational and have full

knowledge about the structure of the game, i.e., (I, (Si)i∈I , (ui)i∈I). Player i cares

not only about his strategy but also strategies taken by his opponents. The word

opponents does not mean they attempt to beat player i. Rather, player i tries to

maximizes his payoff, which may help or hurt his opponents. The central objective

of game theory is to find equilibria of strategy profiles.

� 2.3.2 Dominant or Dominated Strategy

An easy way of anticipating which strategy a player would or would not choose is to

find a strategy that always leads him to the largest or smallest payoff. A strategy

si ∈ Si is dominant if for ∀s′i ∈ Si and ∀s−i ∈ S−i,

ui(si, s−i) ≥ ui(s
′
i, s−i).

On the contrary, a strategy si ∈ Si is strictly dominated (by strategy s′i) if there exists

some s′i ∈ Si such that

ui(s
′
i, s−i) > ui(si, s−i),∀s−i ∈ S−i.

A dominant or dominated strategy is a strong concept of decision-making because

choosing or discarding the strategy does not depend on other players’ choices.

If player i has a dominant strategy si, then it is reasonable to think that the player

will choose si no matter how other players play. A dominant strategy equilibrium is

a strategy profile s∗ = (s∗1, . . . , s
∗
I) such that s∗i is a dominant strategy for each player

i, ∀I ∈ I.
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On the other hand, if player i has a strictly dominated strategy si, the player will

never choose si. Thus, si can be discarded from strategy space Si of player i and

payoff function be redefined. Iterated elimination of strictly dominated strategies

denotes the algorithm to remove strictly dominated strategy repeatedly and to save

feasible strategy profiles.

Algorithm I: Iterative elimination of strictly dominated strategies

1) Define S0
i = Si,∀i ∈ I.

2) Iterative the following process: at n-th iteration, for i ∈ I,

(i) S̄ni = {si ∈ Sn−1
i : ∃s′i ∈ Sn−1

i s.t.ui(s
′
i, s−i) > ui(si, s−i),∀s−i ∈

Sn−1
−i }.

(ii) Sni = Sn−1
i /S̄ni .

(iii) Sn−i =
∏

j 6=i S
n
j .

3) Define S∞i =
⋂∞
n=0 S

n
i .

A problem is said to be solvable by iterative (strict) dominance if, for each player

i ∈ I, S∞i is a singleton. S∞i is nonempty and contains at least one pure strategy for

each player i [14, 15].

� 2.3.3 Nash Equilibrium

Even though iterated elimination of strictly dominated strategy is a very intuitive way

to find an equilibrium, many games are not solvable by iterative strict dominance.

Thus, we need a more robust equilibrium notion than dominant or dominated strategy.

A strategy profile s∗ = (s∗1, . . . , s
∗
I) is a Nash equilibrium of a strategic game

(I, {Si}Ii=1, {ui}Ii=1) if, for every player i,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i),∀si ∈ Si.
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In addition, a Nash equilibrium s∗i is strict if, for every player i,

ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i), ∀si 6= s∗i .

Nash equilibrium is a reasonable equilibrium notion because no player has incentive

to change his strategy in a Nash equilibrium.

There are several theorems about the existence of Nash equilibria:

Theorem 2.1 ( [16]). Every finite strategic-form game has a mixed strategy Nash

equilibrium.

Theorem 2.2 ( [17]). An infinite game has a mixed strategy Nash equilibrium if

• its strategy spaces Si are nonempty compact sets and

• its payoff functions ui(si, s−i) are continuous in s.

Theorem 2.3 ( [17–19]). An infinite game has a pure strategy Nash equilibrium if

• its strategy spaces Si are nonempty compact convex sets,

• its payoff functions ui(si, s−i) are continuous in s−i, and

• ui(si, s−i) are quasi-concave in si.

A Nash equilibrium is a meaningful prediction of how the game will be played

in the sense that if all players predict that a Nash equilibrium will occur, then it is

the best choice for them to play it. Therefore, a Nash equilibrium has the property

that players can predict it and predict that their opponents can predict it. This is

why many applications of game theory, including this thesis, pay attention to Nash

equilibria.
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Chapter 3

Identical Referees

In general distributed detection and data fusion problems, one cost function is defined

and shared by detectors. These problems do not contain game-theoretic issues such

as conflicts among detectors. In the language of this thesis, the three referees share

one cost function. This means that they have identical preferences in terms of how

important it is to avoid missed detections and false alarms. We analyze how they

make local decisions and quantize prior probabilities optimally in terms of Bayes risk.

In this chapter, we additionally assume that if prior probabilities are quantized, the

referees quantize in the same way; the referees are thus called identical.

The operating characteristic of the team of identical referees shows that using the

same decision rules is optimal for them. A single-referee model equivalent to a three-

referee model is introduced in order for us to compare the performance of a three-

referee team to that of a single referee. The equivalent single-referee model is also

useful to easily derive nearest neighbor and centroid conditions for optimal quantizers.

Using the Lloyd-Max algorithm, we optimize quantization rules for several cases and

show the results.

� 3.1 Problem Model

Figure 3-1 depicts the distributed detection and data fusion model under considera-

tion. The object that referees want to detect is denoted by H. It has two possible

states h0 and h1, whose prior probabilities are p0 = P[H = h0] and p1 = P[H = h1] =

1 − p0. It is assumed that h0, h1 ∈ R and h0 < h1. Referees observe Yi, which are

versions of H distorted by independent and identically distributed additive noises Wi
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Figure 3-1. The distributed detection and fusion model explored in this work.

drawn from the Gaussian distribution with zero mean and variance σ2. They make

local decisions Ĥi(Yi) according to their own decision rules Ĥi : R 7→ {h0, h1}. Local

decisions Ĥi are sent to a fusion center, where fusion of the decision obeys the ma-

jority rule. All referees have the same cost function C(Ĥ,H), which depends on a

global decision rather than local decisions. Thus, global decisions matter to referees

no matter what local decisions are. We assume that C(hi, hi) = 0 and C(hi, hj) > 0

for all i = 0, 1 and all j 6= i.

� 3.2 Decision Rule

We investigate the identical referees’ Bayesian optimal decision rules. All referees

determine decision rules that lead to the minimum Bayes risk. Because all referees

have the same cost function, they have the same Bayes risk:

R = c10p0P[Ĥ = h1|H = h0] + c01(1− p0)P[Ĥ = h0|H = h1], (3.1)

where cij , C(hi, hj). Let P
(i)
e1 , P[Ĥi = h1|H = h0] and PE1 , P[Ĥ = h1|H = h0].

According to the majority fusion rule, Ĥ = h1 if at least two referees declare h1,

which means a false alarm occurs at the fusion center if at least two referees give
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false alarms. Thus, we can compute the probability of a global false alarm from the

probabilities of local false alarms in an inclusion-exclusion manner:

PE1 = P
(1)
e1 P

(2)
e1 + P

(2)
e1 P

(3)
e1 + P

(3)
e1 P

(1)
e1 − 2P

(1)
e1 P

(2)
e1 P

(3)
e1 . (3.2)

Likewise,

PE2 = P
(1)
e2 P

(2)
e2 + P

(2)
e2 P

(3)
e2 + P

(3)
e2 P

(1)
e2 − 2P

(1)
e2 P

(2)
e2 P

(3)
e2 , (3.3)

where P
(i)
e2 , P[Ĥi = h0|H = h1] and PE2 , P[Ĥ = h0|H = h1].

We can rewrite Bayes risk of referee 1 as follows:

R = c10p0PE1 + c01(1− p0)PE2

= c10p0(P
(2)
e1 + P

(3)
e1 − 2P

(2)
e1 P

(3)
e1 )P

(1)
e1 + c10p0P

(2)
e1 P

(3)
e1

+c01(1− p0)(P
(2)
e2 + P

(3)
e2 − 2P

(2)
e2 P

(3)
e2 )P

(1)
e2 + c01(1− p0)P

(2)
e2 P

(3)
e2

= c10p0(P
(2)
e1 + P

(3)
e1 − 2P

(2)
e1 P

(3)
e1 )

∫
Y(1)

1

fY1|H(y1|h0) dy1 + c10p0P
(2)
e1 P

(3)
e1

+c01(1− p0)(P
(2)
e2 + P

(3)
e2 − 2P

(2)
e2 P

(3)
e2 )

∫
Y(1)

0

fY1|H(y1|h1) dy1 + c01(1− p0)P
(2)
e2 P

(3)
e2 ,

where Y(i)
k , {yi : Ĥi(yi) = hk}. In order to minimize Bayes risk, referee 1 should

assign Y(1)
0 and Y(1)

1 such that y1 ∈ Y(1)
1 if c10p0(P

(2)
e1 +P

(3)
e1 −2P

(2)
e1 P

(3)
e1 )fY1|H(y1|h0) <

c01(1 − p0)(P
(2)
e2 + P

(3)
e2 − 2P

(2)
e2 P

(3)
e2 )fY1|H(y1|h1), and y1 ∈ Y(1)

0 otherwise. Thus, his

decision rule should be

fY1|H(y1|h1)

fY1|H(y1|h0)

Ĥ1(y1)=h1

R
Ĥ1(y1)=h0

c10p0(P
(2)
e1 + P

(3)
e1 − 2P

(2)
e1 P

(3)
e1 )

c01(1− p0)(P
(2)
e2 + P

(3)
e2 − 2P

(2)
e2 P

(3)
e2 )
, η1.

Using the fact that noise W1 is drawn from N (0, σ2), we obtain

exp[− (y1−h1)2

2σ2 ]

exp[− (y1−h0)2

2σ2 ]

Ĥ1(y1)=h1

R
Ĥ1(y1)=h0

η1,
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or

y1

Ĥ1(y1)=h1

R
Ĥ1(y1)=h0

h1 − h0

2
+

σ2

h1 − h0

ln η1 , λ1.

Due to the symmetry among referees, the other referees have decision rules of similar

form:

y2

Ĥ2(y2)=h1

R
Ĥ2(y2)=h0

h1 − h0

2
+

σ2

h1 − h0

ln

(
c10p0(P

(3)
e1 + P

(1)
e1 − 2P

(3)
e1 P

(1)
e1 )

c01(1− p0)(P
(3)
e2 + P

(1)
e2 − 2P

(3)
e2 P

(1)
e2 )

)
, λ2,

y3

Ĥ3(y3)=h1

R
Ĥ3(y3)=h0

h1 − h0

2
+

σ2

h1 − h0

ln

(
c10p0(P

(1)
e1 + P

(2)
e1 − 2P

(1)
e1 P

(2)
e1 )

c01(1− p0)(P
(1)
e2 + P

(2)
e2 − 2P

(1)
e2 P

(2)
e2 )

)
, λ3.

Thus, determining the referees’ optimal decision rules is equivalent to finding the

optimal values of decision thresholds λ1, λ2, and λ3.

Probabilities of local errors can be determined from the decision thresholds:

P
(i)
e1 = P[Yi ≥ λi|H = h0] = Q

(
λi − h0

σ

)
, (3.4)

P
(i)
e2 = P[Yi < λi|H = h1] = Q

(
h1 − λi
σ

)
, (3.5)

where Q(x) =
∫∞
x

1√
2π

exp[− t2

2
] dt is the Q-function. Bayes risk is described in terms

of decision thresholds by substituting (3.4) and (3.5) into (3.2) and (3.3), and substi-

tuting them into (3.1):

R = c10p0

{
Q

(
λ1 − h0

σ

)
Q

(
λ2 − h0

σ

)
+Q

(
λ2 − h0

σ

)
Q

(
λ3 − h0

σ

)
+Q

(
λ3 − h0

σ

)
Q

(
λ1 − h0

σ

)
− 2Q

(
λ1 − h0

σ

)
Q

(
λ2 − h0

σ

)
Q

(
λ3 − h0

σ

)}
+c01(1− p0)

{
Q

(
h1 − λ1

σ

)
Q

(
h1 − λ2

σ

)
+Q

(
h1 − λ2

σ

)
Q

(
h1 − λ3

σ

)
+Q

(
h1 − λ3

σ

)
Q

(
h1 − λ1

σ

)
− 2Q

(
h1 − λ1

σ

)
Q

(
h1 − λ2

σ

)
Q

(
h1 − λ3

σ

)}
, r(λ1, λ2, λ3) (3.6)

Conjecture 3.1. Identical referees have a triplet of optimal decision thresholds (λ∗1, λ
∗
2, λ
∗
3)
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such that (λ∗1, λ
∗
2, λ
∗
3) is a global minimum of r(x, y, z) and λ∗1 = λ∗2 = λ∗3. The triplet

leads to the minimum Bayes risk. In other words, it is optimal for identical referees

to use the identical decision rules.

In Figure 3-2, the gray region depicts the achievable region of (PE1, PE2) in the

three-referee system. The region is lower bounded by the performance of referees

who use the same decision rules (the red solid curve), and upper bounded by the

performance of referees of whom the first two referees use the fixed decision thresholds

∞ and −∞ and the last referee uses an arbitrary decision threshold (the blue dashed

curve). Note that the performance of the latter referees is equal to that of a single

referee. By rewriting (3.1), we obtain

PE2 = − c10p0

c01(1− p0)
PE1 +

1

c01(1− p0)
R. (3.7)

In order for the team of referees to achieve the smallest Bayes risk R, the line (3.7)

should be tangent to the lower bound of the operating region. Thus, for any c10, c01,

and p0, the optimal PE1 and PE2 are always on the operating characteristic of referees

who use the same decision rules, which means using the same optimal decision rules

leads to the minimum Bayes risk.

From Conjecture 3.1, we can assume that all referees use λ as their decision

thresholds and simplify (3.6) to

R = r(λ, λ, λ)

= c10p0

{
3Q2

(
λ− h0

σ

)
− 2Q3

(
λ− h0

σ

)}
+c01(1− p0)

{
3Q2

(
h1 − λ
σ

)
− 2Q3

(
h1 − λ
σ

)}
.

Since PE2 is strictly convex in PE1 when all referees use the same decision thresholds,

r(λ, λ, λ) has exactly one stationary point, which is the global minimum. Thus, we

can determine the optimal decision threshold λ∗ by computing the solution of

dr(λ, λ, λ)

dλ

∣∣∣∣
λ=λ∗

= 0.
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Figure 3-2. The operating region of the three-referee model for h0 = 0, h1 = 1, and σ = 1. The
green dotted line depicts (3.7) for c10 = 1, c01 = 4, and p0 = 0.7.

Figure 3-3a depicts change of the optimal decision threshold as a function of prior

probability p0 for a single referee and a team of three referees. In both cases, the

optimal thresholds tend to be smaller than (h1 − h0)/2. Since c10 > c01, referees

think that not missing h1 is more important than detecting h0. The two curves

meet at the p0 such that p0/(1− p0) = c01/c10, where the optimal threshold is (h1 −

h0)/2. Compared to the optimal decision rule of the single referee, however, the

team of referees uses decision thresholds that vary less as a function of p0. The more

observations referees have, the better decisions they can make. As referees have more

observations, the referees’ dependency on observations increases and their dependency

on prior probability decreases. Thus, the optimal decision rule of the team depends

on p0 less than that of the single referee does.

Flipped versions of the operating characteristic curves in Figure 3-3b show that

the team of referees can achieve smaller probabilities of errors than the single referee

does, which means that the team’s Bayes risk is smaller than the Bayes risk of a

single referee for any p0. This is pretty obvious because the team of referees have

more information than the single referee. In order to prove this precisely and analyze
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Figure 3-3. Differences between a single referee and a team of three identical referees for h0 = 0,
h1 = 1, and σ = 1. All referees have Bayes costs c10 = 1 and c01 = 4. (a) Optimal decision threshold
for prior probability p0. (b) Flipped versions of the operating characteristic curves (redrawn from
Figure 3-2). For comparison, the flipped operating characteristic curve of soft decision-making
referees is also drawn in red dotted curve.

how much improvement in performance the team of referees can make, we introduce

an equivalent single-referee model.
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Corollary 3.2. There exists a single-referee model that is equivalent to an identical-

three-referee model. Let fv(v) and fW (w) denote the probability density functions of

additive noises in the single-referee model and three-referee model, respectively. Then,

they satisfy that

fV (v) = 6(FW (v)− F 2
W (v))fW (v),

where FW (v) =
∫ v
−∞ fW (w) dw.

Proof. From Conjecture 3.1, we know that the best decision rule is the same for all

referees. From this, we can think about an equivalent single-referee model, in which,

for given p0 and cost function, the referee uses the same decision rule and has the

same Bayes risk as the referees in the three-referee model. Consider a single-referee

model where the referee has the same cost function as the referees in the original

model but he experiences different additive random noise V . Let P̃e1 and P̃e2 denote

the probabilities of each error in the single-referee model. They are determined by

the single referee’s decision threshold λ̃:

P̃e1 =

∫ ∞
λ̃

fV (v) dv,

P̃e2 =

∫ λ̃

−∞
fV (v) dv,

where fV (v) denotes the density function of noise V . When the prior probability of

the object is p0, the single referee has the Bayes risk R̃ = c10p0P̃e1 + c01(1 − p0)P̃e2.

If P̃e1 = PE1 and P̃e2 = PE2 for any λ̃ = λ1 = λ2 = λ3, then the single referee uses

the same decision rule as the best decision rule of the team of referees in the three-

referee model. We want to find the distribution of V such that it leads to the same

probabilities of errors.

− fV (λ− h0) =
dP̃e1
dλ

=
dPE1

dλ
=

d

dλ
(3P 2

e1 − 2P 3
e1)

= 6(Pe1 − P 2
e1)
dPe1
dλ

= −6(FW (λ− h0)− F 2
W (λ− h0))fW (λ− h0),
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where FW (w) denotes the cumulative distribution function of noise W in the three-

referee model and we use that Pe1 = 1− FW (λ− h0). In a similar way,

fV (λ− h1) =
dP̃e2
dλ

=
dPE2

dλ

= 6(FW (λ− h1)− F 2
W (λ− h1))fW (λ− h1).

Thus, both the referees in the single-referee model and the team of referees in the

original model use the same decision rules and have the same Bayes risks for any p0

if the density functions of the noises in the two models satisfy

fV (v) = 6(FW (v)− F 2
W (v))fW (v). (3.8)

Note that fV (v) is a valid probability density function: fV (v) ≥ 0 for all v since

FW (v)− F 2
W (v) ≥ 0 and fW (v) ≥ 0. Also, from that

∫ ∞
−∞

FW (v)fW (v) dv = FW (v)FW (v)|∞−∞ −
∫ ∞
−∞

fW (v)FW (v) dv

=
1

2
F 2
W (v)

∣∣∣∣∞
−∞

=
1

2
, (3.9)

and that

∫ ∞
−∞

F 2
W (v)fW (v) dv = F 2

W (v)FW (v)
∣∣∞
−∞ −

∫ ∞
−∞

2FW (v)fW (v)FW (v) dv

=
1

3
F 3
W (v)

∣∣∣∣∞
−∞

=
1

3
, (3.10)

it is derived that

∫ ∞
−∞

fV (v) dv =

∫ ∞
−∞

6(FW (v)− F 2
W (v))fW (v) dv = 1.

We refer to the model as the equivalent single-referee model of the three-referee model.

Consider the right-hand side of (3.8) and define a function t(w) , 6(FW (w) −
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Figure 3-4. Weighting function t(w) for the realization of noise W , which has the Gaussian density
of N (0, 1).

F 2
W (w)). The noise V in the equivalent single-referee model can be interpreted as a

weighted version of noise W in the original model, where weighting function is t(w).

t(w) reflects the effect of having three referees instead one referee. Figure 3-4 shows

t(w) for the realization of noise W . Since the cumulative distribution function FW (w)

is a monotonically increasing function from 0 to 1 and x − x2 is a concave function

that has a global maximum at x = 0.5, t(w) is greatest at the median of W and much

smaller than 1 at both tails of W . Thus, t(w) makes the tails of V thinner than those

of W , and the variance of V is smaller than that of W . Figure 3-5 compares the

density functions of noises in the three-referee model and its equivalent single-referee

model.

The following lemma also shows that V has smaller variance than W does in a

Gaussian-noise case:

Lemma 3.3. The variance of V is proportional to the variance of W if W is normally

distributed.

Proof. Let V (1) denote the noise of the equivalent single-referee model when the noise

of the three-referee model is W (1), whose distribution is N (0, 1). The variance of V
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Figure 3-5. The density of noise V in a single-referee model that is equivalent to the three-referee
model with noise W , which has the Gaussian density of N (0, 1). For comparison, the density of
1
3W , the effective noise of soft decision-making referees, is drawn in red dotted curve.

is

V ar(V ) =
∫ ∞
−∞

v2fV (v) dv

=
∫ ∞
−∞

v26(FW (v)− FW (v))fW (v) dv

=
∫ ∞
−∞

v26

(∫ v

−∞

1√
2πσ2

exp
[
− w2

2σ2

]
dw −

(∫ v

−∞

1√
2πσ2

exp
[
− w2

2σ2

]
dw

)2
)

1√
2πσ2

exp
[
− v2

2σ2

]
dv

=
∫ ∞
−∞

v26

∫ v/σ

−∞

1√
2π

exp
[
−w

′2

2

]
dw′ −

(∫ v/σ

−∞

1√
2π

exp
[
−w

′2

2

]
dw′

)2
 1√

2πσ2
exp

[
− v2

2σ2

]
dv

=
∫ ∞
−∞

σ2v′26

∫ v′

−∞

1√
2π

exp
[
−w

′2

2

]
dw′ −

(∫ v′

−∞

1√
2π

exp
[
−w

′2

2

]
dw′

)2
 1√

2π
exp

[
−v
′2

2

]
dv′

= σ2V ar(V (1)), (3.11)

where w′ = w/σ and v′ = v/σ. Therefore, the variance of V is proportional to σ2,

which is equal to the variance of W . Numerical calculation yields that V ar(V (1)) ≈

0.449. Thus, V ar(V ) ≈ 0.449σ2 < V ar(W ) = σ2.

Now compare the three-referee model to a single-referee model with noise W ,

which has the same distribution as the noises in the three-referee model. Since the
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Figure 3-6. Bayes risks of a single referee and a team of three identical referees for h0 = 0, h1 = 1,
and σ = 1. All referees have Bayes costs c10 = 1 and c01 = 4. For comparison, the Bayes risk of soft
decision-making referees is also drawn in red dotted curve.

effective variance of noises in three-referee model, which is equal to the variance of

V , is smaller than the variance of noise W in the single-referee model, the team

of referees can achieve the probabilities of errors PE1 = P̃e1 and PE2 = P̃e2, which

are respectively smaller than the single referee’s probabilities of errors Pe1 and Pe2.

Therefore, the flipped operating characteristic curve of the team of three referees is

always lower than that of the single referee as in Figure 3-3b, and consequently, the

team of referees can achieve smaller Bayes risk than a single referee can, Figure 3-6.

Lemma 3.3 is also used to compare the performances of hard decision-making and

soft decision-making. Consider a team of three referees under soft decision-making

who transfer their exact observations Yi to a fusion center so that it can make a soft

decision. In this case, the fusion center can make the best decision based on the

information 1
3
(Y1 +Y2 +Y3) = H+ 1

3
(W1 +W2 +W3) because it is a sufficient statistic

of H. The effective variance of the noises of the referees is 1
3
σ2, which is smaller

than the variance of V , 0.449σ2. This explains the gap between the flipped operating

characteristic curves of soft decision-making and hard decision-making in Figure 3-3b.

The performance loss results from allowing each referee only one bit to represent his

observation, which may be considered as quantization of the observation.
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� 3.3 Quantization of Prior Probabilities

We aim to optimize the quantization rules for prior probabilities. Consider the situa-

tion when there is a population of objects. Each object has its own prior probability

p0 of being h0, which is drawn from a probability density function fP0(p0). Referees in

our model are supposed to observe any of the objects and make decisions. However,

they have a constraint: they can distinguish objects only into K different categories

with respect to their prior probabilities. The categorization is equivalent to quan-

tization of prior probabilities. For example, for a given quantization rule q(·), two

objects H1 and H2 belong to the same category if and only if their prior probabilities

satisfy

q(P[H1 = h0]) = q(P[H2 = h0]).

We investigate which categorization scheme lets referees pay the minimum cost.

Each referee has his own quantizer qi(·) as in Figure 3-7. When he observes an

object H, he knows the quantized version of its prior probability qi(p0). Thus, he

makes an optimal decision Ĥi based on qi(p0) along with his observation Yi. In this

section, we restrict referees so that they use the same quantizers for prior probabilities,

i.e., q1(·) = q2(·) = q3(·). Without the restriction, they may use differently quantized

prior probabilities for hypothesis testing. Then they have different Bayes risks to

minimize, but we did not deal with this case in Section 3.2. We will consider this

case in Section 4.3.

The prior probability of an object p0 has a value between [0, 1]. Since we consider

a population of objects and each object has own prior probability, we regard p0 as

a realization of a random variable P0 whose density function fP0(p0) is defined for

p0 ∈ [0, 1]. We consider a K-point quantizer, which partitions the whole interval into

K regions R1, . . . ,RK and has K points a1, . . . , aK that represent the regions. It

is reasonable to consider the quantizer as a regular quantizer so that each region is

contiguous (i.e., R1 = [0, b1],R2 = (b1, b2], . . . ,RK = (bK−1, 1], where 0 < b1 < b2 <

· · · < bK < 1) and the representation point ak belongs to the region Rk.

Let PE1(p) and PE2(p) denote probabilities of errors when all referees make de-
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Ĥi(·)

qi(·)p0

Yi Ĥi

p0
(i)

DMi

Figure 3-7. The model for referee i with a decision rule Ĥi(·) and a quantization rule qi(·).

cisions by using p, the quantized version of prior probability. If the referees use a

quantizer q(·) and q(p0) = ak, then the probabilities of a global false alarm and a

global missed detection are PE1(ak) and PE2(ak), respectively. Note that PE1(ak) and

PE2(ak) are determined by the decision rule which minimizes

R̄ = c10akPE1(ak) + c01(1− ak)PE2(ak),

but R̄ is not the actual Bayes risk that referees should take. Their actual Bayes risk1

R̃ is computed by

R̃ = c10P[H = h0]PE1(ak) + c01P[H = h1]PE2(ak)

= c10p0PE1(ak) + c01(1− p0)PE2(ak).

The Bayes risk averaged over P0 is

E[R̃] =

∫ 1

0

(c10p0PE1(q(p0)) + c01(1− p0)PE2(q(p0)))fP0(p0) dp0

=
K∑
k=1

∫
Rk

(c10p0PE1(ak) + c01(1− p0)PE2(ak))fP0(p0) dp0

=
K∑
k=1

∫ bk

bk−1

(c10p0PE1(ak) + c01(1− p0)PE2(ak))fP0(p0) dp0. (3.12)

It is mean Bayes risk (MBR) that is the criterion for performance of a quantizer.

There is a useful property in (3.12): MBR for each region is able to be computed

1We call R̃ mismatched Bayes risk because it is different from R = c10p0PE1(p0) + c01(1 −
p0)PE2(p0), the Bayes risk when the referees know the true value of the prior probability.
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independently of MBR for the other regions. Thus, representation points of the

optimal quantizer should satisfy

ak = arg min
a∈(bk−1,bk]

∫ bk

bk−1

(c10p0PE1(a) + c01(1− p0)PE2(a))fP0(p0) dp0, (3.13)

which is called centroid condition.

In addition, there is another type of condition for boundaries of regions in the

sense that p0 should be mapped to ak such that

k = arg min
k′
{c10p0PE1(ak′) + c01(1− p0)PE2(ak′)}.

Then for p0 ∈ [ak, ak+1],

c10p0PE1(ak)+c01(1−p0)PE2(ak)
p0∈Rk+1

R
p0∈Rk

c10p0PE1(ak+1)+c01(1−p0)PE2(ak+1), (3.14)

which is called nearest neighbor condition.

Since any identical-three-referee model has the equivalent single-referee model, we

are able to take advantage of the results in [6]. Because

(∫ bk

bk−1

c10p0fP0(p0) dp0

)
PE1(a) +

(∫ bk

bk−1

c01(1− p0)fP0(p0) dp0

)
PE2(a)

has only one stationary point that is a minimum extremum [6, Theorem 2], ak is the

unique solution to(∫ bk

bk−1

c10p0fP0(p0) dp0

)
PE1(a)

da

∣∣∣∣
ak

+

(∫ bk

bk−1

c01(1− p0)fP0(p0) dp0

)
PE2(a)

da

∣∣∣∣
ak

= 0.

(3.15)

In addition, the left-hand side of (3.14) is the line tangent to Bayes risk c10p0PE1(p0)+

c01(1 − p0)PE2(p0) at p0 = ak, and so is the right-hand side of (3.14) at p0 = ak+1.

Thus, by [6, Theorem 1], the boundary between Rk and Rk+1 is bk such that the two
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expressions are equal at p0 = bk:

bk =
c01 (PE2(ak+1)− PE2(ak))

c01 (PE2(ak+1)− PE2(ak))− c10 (PE1(ak+1)− PE1(ak))
. (3.16)

The strict convexity of R̃ in ak shown in [6, Theorem 1] also implies that the quantizers

that satisfy the centoid and nearest neighbor conditions are regular [20, Lemma 6.2.1].

The Lloyd-Max algorithm is an algorithm to find a quantizer that meets the

centroid condition and the nearest neighbor condition. The algorithm alternates

between optimizing representation points for a given set of endpoints through (3.15)

and optimizing endpoints for the new representation points through (3.16). As given

in [6, 21], if fP0(p0) is positive and continuous in (0, 1) and

∫ 1

0

(c10p0PE1(a) + c01(1− p0)PE2(a)) fP0(p0) dp0

is finite for all a, then the algorithm converges to an optimal quantizer.

The plots in Figure 3-8 depict Bayes risks due to the minimum-MBR quantizers as

blue solid lines; the circle markers are representation points. The green solid curves

are Bayes risk without quantization of prior probabilities, which is the same as in

Figure 3-6. It is obvious that the mean error between the mismatched Bayes risk and

the true Bayes risk decreases as K increases.

For comparison, Figure 3-8 also shows Bayes risks of a single-referee model with

the same Bayes costs as dashed lines: the green dashed curves are unquantized Bayes

risk and the blue dashed lines are mismatched Bayes risk. The results show that, for

some p0 which is closer to 0 or 1, the mismatched Bayes risk of the team of referees

is greater than that of the single referee. Mean mismatched Bayes risk of the team of

referees, however, is always smaller than that of the single referee.

Consider a single-referee model and a three-referee model where all referees have

the same Bayes costs and use the same quantizer, which is optimized for the single

referee. Let a1, . . . aK denote the quantizer’s representation points and b1, . . . , bK−1
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Figure 3-8. Quantizers for uniformly distributed P0, h0 = 0, h1 = 1, σ = 1, and Bayes costs
c10 = 1 and c01 = 4. Mismatched Bayes risk and unquantized Bayes risk are plotted for (a) K = 1,
(b) K = 2, (c) K = 3, and (d) K = 4 in three-referee model (as solid line) and single-referee model
(as dashed line).

denote its endpoints. In Section 3.2, we get

Pe1(p0) ≥ PE1(p0),

Pe2(p0) ≥ PE2(p0),
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where both inequalities hold with equality only for p0 = 0 or p0 = 1. Thus,

∫ bk

bk−1

(c10p0fP0(p0) dp0)Pe1(ak) +
∫ bk

bk−1

(c01(1− p0)fP0(p0) dp0)Pe2(ak)

>

∫ bk

bk−1

(c10p0fP0(p0) dp0)PE1(ak) +
∫ bk

bk−1

(c01(1− p0)fP0(p0) dp0)PE2(ak) (3.17)

for any ak ∈ (0, 1). The left-hand side of (3.17) is the MBR of the single referee

in region Rk and the right-hand side is that of the team of referees in the same

region. Hence, the MBR of the single referee is greater than that of the team of

referees. Even though the quantizer is optimal for the single referee, however, it

may not be for the team of referees; they can achieve an even smaller MBR by

optimizing their quantizers. Therefore, a team of three identical referees always makes

better performance on average than a single referee can do even if they quantize prior

probabilities.
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Chapter 4

Non-Identical Referees

We considered the case when a team of referees share one cost function and collaborate

in order to make the best global decision with regard to Bayes risk in the previous

chapter. In general human group decision-making situations, however, each referee

may have a cost function that is different from the other referees’ cost functions. For

example, each voter has his or her own political inclination; the individual’s vote in a

presidential election depends on his or her political inclination as well as evaluation

of each candidate. Also in a business decision-making, an executive who pursues high

profit has a different cost function from that of his partner who wants safe investment.

In this chapter, we analyze how referees make decisions and categorize objects

when they are allowed to have their own cost functions. We define the decision-making

and quantization problems in strategic form and apply a game-theoretic approach to

analyze optimal decision and quantization rules. We discuss how a referee’s decision

rule is affected by the others’ decision rules. It is shown that a Nash equilibrium of

decision thresholds always exists. Designing an optimal set of quantization rules is

difficult in this case because of dependency among the referees. Under the restriction

of using the same endpoints, two ways to optimize quantization rules are introduced

and compared to each other.

Furthermore, within this chapter, we consider referees who share a common cost

function but may categorize differently. The referees behave like identical referees

except that collaborating referees can take advantage of diverse quantization rules.

It is shown that the collaborating referees have incentive to use diverse quantization

rules rather than identical quantization rules. We investigate to what extent the
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diversity in quantizers makes the performance better and how to design the optimal

diverse quantization rules.

� 4.1 Problem Model

The model of the decision-making problem in this chapter (Figure 4-1) is the same

as the model used in Chapter 3 except that referees have their own cost functions.

Referee i has a cost function Ci(Ĥ,H), or Bayes costs c
(i)
10 = Ci(h1, h0) and c

(i)
01 =

Ci(h0, h1). His Bayes risk is

Ri = c
(i)
10p0PE1 + c

(i)
01 (1− p0)PE2

for an object whose prior probability is p0. Note that his cost still depends on the

global decision rather than his own decision. We assume c
(i)
10 6= c

(j)
10 and c

(i)
01 6= c

(j)
01 for

i 6= j. Even though the referees have different Bayes risks, each referee still attempts

to minimize his own Bayes risk, which is the reason that the referees face conflicts of

interest. For example, suppose that referees 1 and 2 pay much bigger cost for missed

detections than for false alarms and referee 3 pays much bigger cost for false alarms

than for missed detections. Then, referees 1 and 2 tend to declare h1 so that they can

decrease the probability of a missed detection, and consequently, the global decision is

highly likely to be h1 regardless of referee 3’s decision by the majority rule. However,

they would make referee 3 unhappy because their decisions increase the probability

of a false alarm.

Referees need to consider each others’ decision-making due to the conflict of in-

terests. Game theory provides useful methods to analyze the referees’ strategies to

pursue their goals under competition. Thus, we use a game-theoretic approach, es-

pecially investigating Nash equilibria, to analyze how referees make decisions and

categorize objects so that each can achieve as small a Bayes risk as possible.
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Figure 4-1. The model is the same as that in Chapter 3 except that referees may have different
inclinations.

� 4.1.1 Problem Description in the Game-Theoretic Point of View

We define the decision-making and quantization problems in strategic form to apply

game-theoretic approach to them. Each referee is assumed to know the other referees’

cost functions but not to know their decisions when he makes his decision. First of

all, we need to rewrite our model in strategic form (I, (Si)i∈I , (ui)i∈I), which consists

of the finite set of players i ∈ I = {1, . . . , I}, the set of available strategies (or

actions) si ∈ Si for each player i, and the payoff (or utility) function ui :
∏

i∈I Si 7→ R

for each player i. In the situation where three referees make decisions based on

differently quantized prior probabilities p
(1)
0 , p

(2)
0 , and p

(3)
0 , respectively, the game can

be described as follows:

Game I: Determination of decision rules

• I = 3 and I = {1, 2, 3} represent three referees,

• Si = R,∀i ∈ I is a set of possible decision thresholds si for referee i,

• ui = −Ri = −c(i)
10p

(i)
0 PE1 − c(i)

01 (1 − p(i)
0 )PE2,∀i ∈ I is the payoff function

for referee i.
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We define each referee’s payoff function as the negative Bayes risk so that referees are

able to minimize their Bayes risks by maximizing their payoff functions.

The game of determining optimal quantizers for prior probabilities can be defined

in a similar way:

Game II: Determination of quantizers for prior probabilities

• I = 3 and I = {1, 2, 3} represent three referees,

• si = (a
(i)
1 , . . . , a

(i)
K , b

(i)
1 , . . . , b

(i)
K−1),∀i ∈ I, i.e., strategy is a quantizer for

prior probabilities, where a
(i)
k denotes the representation point of k-th

region [b
(i)
k−1, b

(i)
k ) ⊂ [0, 1].

• vi = −E[Ri] = −
∫
RifP0(p0) dp0, ∀i ∈ I is the payoff function for referee

i.

Note that there are 2K−1 degrees of freedom in a strategy when referees use K-point

quantizers. We define each player’s payoff function as the negative of his mean Bayes

risk so that they are able to determine minimum MBR quantizers.

� 4.2 Conflicting Referees

We investigate how conflicting referees will determine their optimal decision and quan-

tization rules. When referees have different cost functions, each referee’s optimal de-

cision rule depends on others’ decision rules. Conflicts among referees arise from this

dependency. Figure 4-2 shows the conflict between referees 1 and 2. Initially, referees

1, 2, and 3 use -0.886, 1.886. and 0.5 as their decision thresholds, respectively. Be-

cause referee 1 notices that he can do better by changing his decision threshold, he

changes his decision threshold from -0.886 to -1.5470 while referees 2 and 3 fix their

decision rules. The change, however, also affects the performance of the decision rule

of referee 2: not only is his minimum Bayes risk increased but also his optimal deci-

sion rule is changed. The change also affects the performance of the decision rule of

referee 3. We say that referees are conflicting if their only goal is minimizing their
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Figure 4-2. Change of the Bayes risks that shows how referees conflict. Referee 1 has Bayes costs
c
(1)
10 = 1 and c

(1)
01 = 4, referee 2 has c(2)10 = 4 and c

(2)
01 = 1, and referee 3 has c(3)10 = 4 and c

(3)
01 = 4.

p0 = 0.5. (a) The Bayes risk of Referee 1 for his decision threshold. (b) The Bayes risks of Referee
2 before and after Referee 1 changes his decision threshold.

own Bayes risk. We will also consider the case when they are collaborating in Section

4.3.

� 4.2.1 Decision-Making Strategy

We need to find out how the referees fix their decision rules. The rules are easy to

fix if there exists a dominant strategy in Game I, i.e., if there exists a decision rule

that is optimal regardless of other referees’ decision rules.

Theorem 4.1. If the density function of noises is continuous and always greater than

zero, then dominant strategies do not exist for any cost functions and p
(i)
0 , i = 1, 2, 3.

Proof. It is sufficient to consider dominant strategies of referee 1 due to the symmetry

among the referees. By definition, s∗1 is dominant if, for ∀s1 ∈ S1 and ∀(s2, s3) ∈

S2 × S3,

u1(s∗1, s2, s3) ≥ u1(s1, s2, s3),
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which is equivalent to

−c(1)
10 p

(1)
0 PE1(s∗1, s2, s3)− c(1)

01 (1− p(1)
0 )PE2(s∗1, s2, s3)

≥ −c(1)
10 p

(1)
0 PE1(s1, s2, s3)− c(1)

01 (1− p(1)
0 )PE2(s1, s2, s3), (4.1)

where PE1(s1, s2, s3) and PE2(s1, s2, s3) respectively denote probabilities of a global

false alarm and a global missed detection when the decision threshold of referee i is

si. According to our fusion rule,

PE1(s1, s2, s3) = P
(1)
e1 (s1)P

(2)
e1 (s2) + P

(2)
e1 (s2)P

(3)
e1 (s3) + P

(3)
e1 (s3)P

(1)
e1 (s1)

−2P
(1)
e1 (s1)P

(2)
e1 (s2)P

(3)
e1 (s3), (4.2)

PE2(s1, s2, s3) = P
(1)
e2 (s1)P

(2)
e2 (s2) + P

(2)
e2 (s2)P

(3)
e2 (s3) + P

(3)
e2 (s3)P

(1)
e2 (s1)

−2P
(1)
e2 (s1)P

(2)
e2 (s2)P

(3)
e2 (s3). (4.3)

By defining f1(s2, s3) = P
(2)
e1 (s2)+P

(3)
e1 (s3)−2P

(2)
e1 (s2)P

(3)
e1 (s3) and f2(s2, s3) = P

(2)
e2 (s2)+

P
(3)
e2 (s3)− 2P

(2)
e2 (s2)P

(3)
e2 (s3), (4.1) is equivalent to

c
(1)
10 p

(1)
0 P

(1)
e1 (s∗1)f1(s2, s3) + c

(1)
01 (1− p(1)

0 )P
(1)
e2 (s∗1)f2(s2, s3)

≤ c
(1)
10 p

(1)
0 P

(1)
e1 (s1)f1(s2, s3) + c

(1)
01 (1− p(1)

0 )P
(1)
e2 (s1)f2(s2, s3). (4.4)

Consider a variable t = P
(1)
e1 (s1) and a function g(t) = P

(1)
e2 (s1) such that g(t) is

referee 1’s probability of a missed detection when his probability of a false alarm is

t. If the density of noise W1 is continuous and always greater than zero, then the

function P
(1)
e1 : R 7→ [0, 1] is one-to-one and onto. Hence, it is possible to define an

inverse function (P
(1)
e1 )−1 of it and thus define g(t) = P

(1)
e2 ◦ (P

(1)
e1 )−1(t).

Subsituting t and g(t) into (4.4), we get

c
(1)
10 p

(1)
0 f1(s2, s3)t∗ + c

(1)
01 (1− p(1)

0 )f2(s2, s3)g(t∗)

≤ c
(1)
10 p

(1)
0 f1(s2, s3)t+ c

(1)
01 (1− p(1)

0 )f2(s2, s3)g(t), (4.5)
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where t∗ = P
(1)
e1 (s∗1). In order for s∗1 to be dominant, h(t) , c

(1)
10 p

(1)
0 f1(s2, s3)t +

c
(1)
01 (1 − p

(1)
0 )f2(s2, s3)g(t) should have a global minimum point at t∗. Since g(t) is

monotonically decreasing and convex in t, the slope of g(t) is negative and monoton-

ically increasing in t. Thus, the location of the minimal extreme of h(t) depends on

f1(s2, s3)/f2(s2, s3): the minimal extreme moves to the left as f1(s2, s3)/f2(s2, s3)

increases. Therefore, no t∗ exists such that h(t) is minimum at t = t∗ for all

(s2, s3) ∈ S2 × S3.

On the other hand, there exist dominated strategies. By definition, s∗1 is a domi-

nated strategy if, for all (s2, s3) ∈ S2 × S3, there exists some s1 ∈ S1 such that

−c(1)
10 p

(1)
0 PE1(s∗1, s2, s3)− c(1)

01 (1− p(1)
0 )PE2(s∗1, s2, s3)

≤ −c(1)
10 p

(1)
0 PE1(s1, s2, s3)− c(1)

01 (1− p(1)
0 )PE2(s1, s2, s3),

which is equivalent to

c
(1)
10 p

(1)
0 f1(s2, s3)t∗+c

(1)
01 (1−p(1)

0 )f2(s2, s3)g(t∗) ≥ c
(1)
10 p

(1)
0 f1(s2, s3)t+c

(1)
01 (1−p(1)

0 )f2(s2, s3)g(t).

(4.6)

The left-hand side of (4.6), which is defined as h(t∗), has local maximum points at 0

and 1, which do not depend on f1(s2, s3)/f2(s2, s3). Thus, we can find some point s1

such that u1(s∗1, s2, s3) < u1(s1, s2, s3) for all (s2, s3) ∈ S2 × S3, when P
(1)
e1 (s∗1) = 0 or

P
(1)
e1 (s∗1) = 1. However, such s∗1 is ∞ or −∞, and any other s1 cannot be dominated

because it can be dominant for some s2 and s3, which is shown in the proof of Theorem

4.1. Therefore, the problem is not solvable by iterative dominance.

Since no referee has a dominant strategy, it may seem arbitrary how to determine

decision rules. We propose computing a Nash equilibrium as a reasonable way to

determine them because any player does not benefit by changing his own strategy

unilaterally in a Nash equilibrium. However, it does not mean that the Nash equilib-

rium is an optimal strategy profile: there may exist a strategy profile that leads to

bigger benefit than the Nash equilibrium does. One famous example is shown in Fig-

ure 4-3, which is called prisoner’s dilemma. The only Nash equilbrium in the game is
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Cooperate Defect

Cooperate

Defect

A B

3, 3

5, 0

0, 5

1, 1

Figure 4-3. A classical payoff matrix in prisoner’s dilemma.

(defect, defect) but, in fact, playing (cooperate, cooperate) gives both players higher

payoffs than playing the Nash equilibrium. This example shows that optimality of

decision rules in this conflicting-referee case is difficult to be defined compared to that

in the identical-referee case.

Nevertheless, following Nash equilibrium is one of the safest strategies for all

players under the limitation that they should simultaneously make their own decisions

without knowledge about each others’ decisions, especially when they do not have a

dominant strategy. Thus, we assume that referees in the model always follow Nash

equilibria. The assertion requires existence of Nash equilibria. The game of decision-

making is an infinite game because each player has an infinite strategy space, and we

can show existence of Nash equilibria in the game by Theorem 2.3 [17–19].

Theorem 2.3 cannot be applied to Game I because strategy sets of Game I are

convex but not compact. Hence we need to define another game:

Game I′: Determination of decision rules in terms of the probability of error

• I = 3 and I = {1, 2, 3} represent three referees,

• Ti = [0, 1],∀i ∈ I is a set of possible probabilities of a false alarm ti for

referee i,

• u′i(t1, t2, t3) = ui(s1, s2, s3) = −Ri = −c(i)
10p

(i)
0 PE1− c(i)

01 (1− p(i)
0 )PE2,∀i ∈ I

is the payoff function for referee i.

Lemma 4.2. Game I and Game I′ are equivalent for additive Gaussian noises.
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Proof. Strategies si in Game I and ti in Game I′ have the following relation:

ti = P
(i)
e1 (si).

Since a Gaussian distribution is continuous and always greater than zero, the functions

P
(i)
e1 : R 7→ [0, 1] are one-to-one and onto. Thus, there exist inverse functions (P

(i)
e1 )−1,

which means that ti are uniquely determined by si and vice versa. Since choosing

either ti or si does not affect the players’ payoff functions, Game I and Game I′ are

equivalent.

Theorem 4.3. A pure Nash equilibrium always exists in Game I for additive Gaus-

sian noises.

Proof. We can prove Theorem 4.3 by showing that there always exists a pure Nash

equilibrium in Game I′ for additive Gaussian noises. Note that strategy sets Ti are

compact and convex.

Let gi(ti) , P
(i)
e2 (si), where si is the decision threshold such that ti , P

(i)
e1 (si). We

can rewrite the payoff function for referee 1 as follows:

u1 = −c(1)
10 p

(1)
0 [t1t2 + t2t3 + t3t1 − 2t1t2t3]

−c(1)
01 (1− p(1)

0 )[g1(t1)g2(t2) + g2(t2)g3(t3) + g3(t3)g1(t1)− 2g1(t1)g2(t2)g3(t3)]

= −c(1)
10 p

(1)
0 [t2 + t3 − 2t2t3]t1 − c(1)

01 (1− p(1)
0 )[g2(t2) + g3(t3)− 2g2(t2)g3(t3)]g1(t1)

−[c
(1)
10 p

(1)
0 t2t3 + c

(1)
01 (1− p(1)

0 )g2(t2)g3(t3)]

= A1t1 + A2g1(t1)− A3,

where A1 , −c(1)
10 p

(1)
0 [t2 +t3−2t2t3], A2 , −c(1)

01 (1−p(1)
0 )[g2(t2)+g3(t3)−2g2(t2)g3(t3)],

and A3 , c
(1)
10 p

(1)
0 t2t3 + c

(1)
01 (1 − p(1)

0 )g2(t2)g3(t3). A3 is a constant with respect to t1.

A1 ≤ 0 because

t2 + t3 − 2t2t3 = t2(1− t3) + (1− t2)t3 ≥ 0,

and likewise, A2 ≤ 0. Since g1(t1) is convex in t1 by the characteristic of probabil-

ities of errors [1], u′1(t1, t2, t3) is concave in t1. By the symmetries among players,
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u′i(t1, t2, t3) is concave in ti. Furthermore, gi(ti) is continuous in ti, so u′i(t1, t2, t3) is

continuous in t−i as well as ti.

Thus, the newly defined game satisfies all conditions for Theorem 2.3, which tells

that Game I′ has a pure Nash equilibrium (tNE1 , tNE2 , tNE3 ). Then we can determine

a strategy profile (s∗1, s
∗
2, s
∗
3) that leads to (tNE1 , tNE2 , tNE3 ). Since the two games are

equivalent, (s∗1, s
∗
2, s
∗
3) is a pure Nash equilibrium in Game I.

A Nash equilibrium (s∗1, s
∗
2, s
∗
3) satisfies

∂u1(s1, s2, s3)
∂s1

∣∣∣∣
(s∗1 ,s

∗
2 ,s
∗
3)

= −c(1)10 p
(1)
0

∂PE1

∂s1
− c(1)01 (1− p(1)

0 )
∂PE2

∂s1

∣∣∣∣
(s∗1 ,s

∗
2 ,s
∗
3)

= −c(1)10 p
(1)
0

(
P

(2)
e1 (s∗2) + P

(3)
e1 (s∗3)− 2P (2)

e1 (s∗2)P (3)
e1 (s∗3)

) dP (1)
e1 (s1)
ds1

∣∣∣∣∣
s1=s∗1

−c(1)01 (1− p(1)
0 )

(
P

(2)
e2 (s∗2) + P

(3)
e2 (s∗3)− 2P (2)

e2 (s∗2)P (3)
e2 (s∗3)

) dP (1)
e2 (s1)
ds1

∣∣∣∣∣
s1=s∗1

= 0. (4.7)

for referee 1’s payoff function. Likewise, the Nash equilibrium satisfies

∂u2(s1, s2, s3)
∂s2

∣∣∣∣
(s∗1 ,s

∗
2 ,s
∗
3)

= −c(2)10 p
(2)
0

(
P

(3)
e1 (s∗3) + P

(1)
e1 (s∗1)− 2P (3)

e1 (s∗3)P (1)
e1 (s∗1)

) dP (2)
e1 (s2)
ds2

∣∣∣∣∣
s2=s∗2

−c(2)01 (1− p(2)
0 )

(
P

(3)
e2 (s∗3) + P

(1)
e2 (s∗1)− 2P (3)

e2 (s∗3)P (1)
e2 (s∗1)

) dP (2)
e2 (s2)
ds2

∣∣∣∣∣
s2=s∗2

= 0, (4.8)

and

∂u3(s1, s2, s3)
∂s3

∣∣∣∣
(s∗1 ,s

∗
2 ,s
∗
3)

= −c(3)10 p
(3)
0

(
P

(1)
e1 (s∗1) + P

(2)
e1 (s∗2)− 2P (1)

e1 (s∗1)P (2)
e1 (s∗2)

) dP (3)
e1 (s3)
ds3

∣∣∣∣∣
s3=s∗3

−c(3)01 (1− p(3)
0 )

(
P

(1)
e2 (s∗1) + P

(2)
e2 (s∗2)− 2P (1)

e2 (s∗1)P (2)
e2 (s∗2)

) dP (3)
e2 (s3)
ds3

∣∣∣∣∣
s3=s∗3

= 0. (4.9)

A Nash equilibrium can be computed by solving (4.7)-(4.9). Note that the optimal

decision threshold in the identical-referee case also satisfies (4.7)-(4.9) and, thus, is

also a Nash equilibrium for the identical referees. Therefore, this method that follows

a Nash equilibrium can be applied to the identical-referee case as well.
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In general, a Nash equilibrium of conflicting referees does not satisfy s∗1 = s∗2 = s∗3

unless
c

(1)
10 p

(1)
0

c
(1)
01 (1− p(1)

0 )
=

c
(2)
10 p

(2)
0

c
(2)
01 (1− p(2)

0 )
=

c
(3)
10 p

(3)
0

c
(3)
01 (1− p(3)

0 )
.

Then their operating point will be located at somewhere middle of the operating

region in Figure 3-2. However, the point is not the best choice for any referee because

the referees can reduce either PE2 by moving their operating point vertically or PE1

by moving it horizontally, which will give all referees smaller Bayes risks than the

Nash equilibrium does. This result shows that their performance suffers when they

do not agree on Bayes costs and prior probabilities.

� 4.2.2 Quantization Strategy

It is reasonable that referees have different quantizers for prior probabilities when

referees have different cost functions. However, it is much more complicated to de-

termine optimal quantizers in the conflicting-referee case than in the identical-referee

case. Below we will discuss the reason.

Proposition 4.4. Game II does not always have a dominant strategy.

Proof. It is simple to show. Consider 1-point quantizers, and each referee needs to

determine one representation point a
(i)
1 , i = 1, 2, 3. Then referee 1’s payoff function

is

vi(a
(1)
1 , a

(2)
1 , a

(3)
1 ) =

∫ 1

0

(
−c(i)

10p0PE1 − c(i)
01 (1− p0)PE2

)
fP0(p0) dp0

= −c(i)
10 E[P0]PE1 − c(i)

01 (1− E[P0])PE2. (4.10)

Comparing (4.10) to the payoff function of Game I

ui = −c(i)
10p

(i)
0 PE1 − c(i)

01

(
1− p(i)

0

)
PE2,

we can see that the two equations are the same if p
(i)
0 = E[P0],∀i ∈ I. Since a domi-

nant decision rule does not exist according to Theorem 4.1, neither does a dominant
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Figure 4-4. An example of possible quantizers that referees use.

representation point.

Since it is not guaranteed that there exists a dominant strategy in Game I, we need

to consider a Nash equilibrium. However, not only may a Nash equilibrium not exist

in the game, but also it may be too complicated to find one if any. Because all referees

are supposed to use the same quantizers in the identical-referee case, representation

points for different regions are able to be independently chosen. In this conflicting-

referee case, however, we need to consider dependency between different regions.

Figure 4-4 depicts an example of triplets of 2-point quantizers. In the example,

referee 1’s mean Bayes risks in regions 1 and 2 are as follows:

E[R1]R1 =

Z b
(1)
1

0

“
c
(1)
10 p0P̄E1(a

(1)
1 , a

(2)
1 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a

(1)
1 , a

(2)
1 , a

(3)
1 )
”
fP0 (p0) dp0, (4.11)

E[R1]R2 =

Z b
(2)
1

b
(1)
1

“
c
(1)
10 p0P̄E1(a

(1)
2 , a

(2)
1 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a

(1)
2 , a

(2)
1 , a

(3)
1 )
”
fP0 (p0) dp0

+

Z b
(3)
1

b
(2)
1

“
c
(1)
10 p0P̄E1(a

(1)
2 , a

(2)
2 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a

(1)
2 , a

(2)
2 , a

(3)
1 )
”
fP0 (p0) dp0

+

Z 1

b
(3)
1

“
c
(1)
10 p0P̄E1(a

(1)
2 , a

(2)
2 , a

(3)
2 ) + c

(1)
01 (1− p0)P̄E2(a

(1)
2 , a

(2)
2 , a

(3)
2 )
”
fP0 (p0) dp0, (4.12)

where P̄E1(x, y, z) and P̄E2(x, y, z) denote the probabilities of a global false alarm and

a global missed detection when referees 1, 2, and 3 respectively use quantized prior

probabilities x, y, and z for decision-making. a
(2)
1 and a

(3)
1 are involved in (4.12) as

well as in (4.11). Thus, via a
(2)
1 and a

(3)
1 that are affected by a

(1)
1 , choice of a

(1)
1 affects

on choice of a
(1)
2 and vice versa.

What is even worse is that we do not know how the variables are related. Figure

4-5 depicts a different example of triplets of 2-point quantizers. Note the structure of

quantizers: b
(1)
1 < b

(2)
1 < b

(3)
1 in Figure 4-4, but b

(2)
1 < b

(1)
1 < b

(3)
1 in Figure 4-5. In this
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Figure 4-5. Another example of possible quantizers that referees use.

example, referee 1’s mean Bayes risks in regions 1 and 2 are as follows:

E[R1]R1 =
∫ b

(2)
1

0

(
c
(1)
10 p0P̄E1(a(1)

1 , a
(2)
1 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a(1)

1 , a
(2)
1 , a

(3)
1 )
)
fP0(p0) dp0

+
∫ b

(1)
1

b
(2)
1

(
c
(1)
10 p0P̄E1(a(1)

1 , a
(2)
2 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a(1)

1 , a
(2)
2 , a

(3)
1 )
)
fP0(p0) dp0,

E[R1]R2 =
∫ b

(3)
1

b
(1)
1

(
c
(1)
10 p0P̄E1(a(1)

2 , a
(2)
2 , a

(3)
1 ) + c

(1)
01 (1− p0)P̄E2(a(1)

2 , a
(2)
2 , a

(3)
1 )
)
fP0(p0) dp0

+
∫ 1

b
(3)
1

(
c
(1)
10 p0P̄E1(a(1)

2 , a
(2)
2 , a

(3)
2 ) + c

(1)
01 (1− p0)P̄E2(a(1)

2 , a
(2)
2 , a

(3)
2 )
)
fP0(p0) dp0.

Due to the difference of the structure, how a
(1)
1 depends on the other variables is not

the same in Figure 4-4 as in Figure 4-5. Since we do not know which structure is

better, however, we have to consider all possible scenarios. The number of possi-

ble scenarios is (3(K−1))!
(K−1)!(K−1)!(K−1)!

for K-point quantizers, which means computational

complexity is O(3K).

Quantization Using the Same Categorization

It makes the problem of quantization simpler to assume that referees use the same

categorization (i.e., the same endpoints) for their quantizers. Under this assumption,

all referees are allowed to optimize K representation points. Since choosing a repre-

sentation point for a region is independent of representation points for other regions,

the referees just need to consider the dependency among them within individual re-

gions. Thus, the game of quantization can be split into K subgames, in which each

players’ strategy is defined as selecting one representation point.

Suppose that all referees use the set of fixed endpoints {b0, b1, . . . , bK−1, bK}, where
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b0 = 0 and bK = 1. The kth subgame is described as follows:

Game III: Determination of representation points for fixed categories

For Rk = (bk−1, bk],

• I = 3 and I = {1, 2, 3} represent three referees,

• a(i)
k ∈ Rk = (bk−1, bk) is a representation point of Rk for referee i,

• vik(a(1)
k , a

(2)
k , a

(3)
k ) = −

∫
Rk

(
c

(i)
10p0PE1 − c(i)

01 (1− p0)PE2

)
fP0(p0) dp0 is the

payoff function for referee i.

The following equations hold at a Nash equilibrium (a
(1)∗
k , a

(2)∗
k , a

(3)∗
k ):

∂v1k(a
(1)
k , a

(2)
k , a

(3)
k )

∂a
(1)
k

= −c(1)
10 ε

I
k

∂PE1

∂a
(1)
k

− c(1)
01 ε

II
k

∂PE2

∂a
(1)
k

= 0,

∂v2k(a
(1)
k , a

(2)
k , a

(3)
k )

∂a
(2)
k

= −c(2)
10 ε

I
k

∂PE1

∂a
(2)
k

− c(2)
01 ε

II
k

∂PE2

∂a
(2)
k

= 0,

∂v3k(a
(1)
k , a

(2)
k , a

(3)
k )

∂a
(3)
k

= −c(3)
10 ε

I
k

∂PE1

∂a
(3)
k

− c(3)
01 ε

II
k

∂PE2

∂a
(3)
k

= 0, (4.13)

where εIk =
∫
Rk
p0fP0(p0) dp0 and εIIk =

∫
Rk

(1 − p0)fP0(p0) dp0. We can find a Nash

equilibrium by solving them.

In addition, we have another interesting way to determine representation points.

Consider the first region R1 of the referees’ quantizers. For any object whose prior

probability is p0 ∈ R1, the referees think that its prior probability is a
(1)
1 , a

(2)
1 , and

a
(3)
1 , respectively, and make their decisions based on the quantized versions of prior

probability. Hence, they apply the same decision rules to different objects as long

as they belong to the same category. Thus, it makes sense that the referees directly

optimize their own decision rules for each category rather than representation points.
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Game IV: Determination of decision rules for fixed categories

For Rk = (bk−1, bk],

• I = 3 and I = {1, 2, 3} represent three referees,

• λ(i)
k is a decision threshold for p0 ∈ Rk for referee i,

• v′ik(λ
(1)
k , λ

(2)
k , λ

(3)
k ) = −

∫
Rk

(
c

(i)
10p0PE1 − c(i)

01 (1− p0)PE2

)
fP0(p0) dp0 is the

payoff function for referee i.

The payoff function in Game IV becomes

v′ik(λ(1)
k , λ

(2)
k , λ

(3)
k ) = −c(i)10 ε

I
kPE1 − c(i)01 ε

II
k PE2

= −(εIk + εIIk )
(
c
(i)
10

(
εIk

εIk + εIIk

)
PE1 + c

(i)
01

(
1− εIk

εIk + εIIk

)
PE2

)
. (4.14)

Since the objective of Game IV is to find a strategy that maximizes the payoff function,

scalar multiplication of the payoff function does not change the result; we can use the

following instead of (4.14):

v′ik(λ
(1)
k , λ

(2)
k , λ

(3)
k ) = −c(i)

10

(
εIk

εIk + εIIk

)
PE1 − c(i)

01

(
1− εIk

εIk + εIIk

)
PE2. (4.15)

Comparison of (4.15) to the payoff function in Game I tells us that the two games are

equivalent if p0 =
εIk

εIk+εII
k

. Therefore, direct optimization of decision rules is equivalent

to quantizing p0 ∈ Rk to
εIk

εIk+εII
k

. Note that

εIk =

∫
Rk

p0fP0(p0) dp0

= P[P0 ∈ Rk]

∫
Rk

p0
fP0(p0)

P[P0 ∈ Rk]
dp0

= P[P0 ∈ Rk]

∫
Rk

p0
P[P0 ∈ Rk|P0 = p0]fP0(p0)

P[P0 ∈ Rk]
dp0

= P[P0 ∈ Rk]E[P0|P0 ∈ Rk],

where the third equality holds because P[P0 ∈ Rk|P0 = p0] = 1 for any p0 ∈ Rk.
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Since

εIk + εIIk =

∫
Rk

(p0 + (1− p0))fP0(p0) dp0

= P[P0 ∈ Rk],

we obtain the simple expression:

εIk
εIk + εIIk

= E[P0|P0 ∈ Rk].

Thus, direct optimization of decision rules is equivalent to quantizing ∀p0 ∈ Rk to

E[P0|P0 ∈ Rk] no matter what their cost functions are. Note that E[P0|P0 ∈ Rk] is

the centroid of the region Rk.

Figure 4-6 shows results of Games III and IV for several different sets of referees.

While using Game IV is almost as good as using Game III for the referees in Figure

4-6a, the referees in Figure 4-6b and in Figure 4-6c had better use Game III. In many

cases, Game III gives the better strategy that leads to lower mean Bayes risk than

Game IV does.

PE1 and PE2 can be determined if either referees’ quantized prior probabilities or

their decision rules are known. Whereas the latter gives PE1 and PE2 directly from

(4.2) and (4.3), the former does not: referees’ decision rules should be determined by

finding the Nash equilibrium in Game I, then PE1 and PE2 can be determined. At the

Nash equilibrium, not only referee 1’s decision rule but also referee 2 and 3’s decision

rules depend on referee 1’s representation point. In other words, for payoffs which

are functions of λ
(1)
k , λ

(2)
k , and λ

(3)
k , referee i searches for the optimal strategy along

certain curve that is defined by the dependency between his representation points

and (λ
(1)
k , λ

(2)
k , λ

(3)
k ) in Game III, but he searches for the optimal strategy only along

λ
(i)
k -axis in Game IV. Note that at a Nash equilibrium, any player does not benefit by

changing his own strategy unilaterally. Since each referee in Game III consequently

adjusts all of λ
(1)
k , λ

(2)
k , and λ

(3)
k by changing his representation point, referees in Game

III have more chances to find a better strategy profile than those in Game IV.
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Figure 4-6. Comparison of conflicting referees’ Bayes risks when they use the Nash equilibrium of
representation points to when they use the Nash equilibrium of decision rules for h0 = 0, h1 = 1,
and σ = 1.
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� 4.3 Collaborating Referees

Collaborating referees is a generalized version of identical referees. We compare the

performance of collaboration to that of conflict. We also explore the advantage of

diversity in quantization rules for collaborating referees.

We say that referees are collaborating when they are attempting to a minimize

Bayes risk function determined by mutual agreement. This function is formed by

summing each referee’s Bayes risk multiplied by weight wi according to his power. In

other words, the common risk is

R̄ =
3∑
i=1

wiRi,

where wi > 0 for all i ∈ I and
∑3

i=1wi = 1. For example, wi = 1/3 when all referees

are of the same rank, and R̄ becomes the average of Bayes risks of the referees. Even

though each referee cannot minimize his own Bayes risk, minimizing the common risk

has an effect on reducing each referee’s Bayes risk because it is a part of the common

risk.

The identical referees in Chapter 3 collaborate in the sense that they share one

cost function, but here we do not constrain the categorization used by the referees

to be the same. This makes it possible for the referees who share a common cost

function to maximize their performance by using optimal diverse quantization rules.

� 4.3.1 Decision-Making Strategy

Consider referee i who has Bayes costs c
(i)
10 and c

(i)
01 . He makes a decision on an object

whose true prior proability is p0 and quantized prior probability is p
(i)
0 . His true Bayes

risk is

c
(i)
10p0PE1 + c

(i)
01 (1− p0)PE2,

but he thinks his Bayes risk is

Ri = c
(i)
10p

(i)
0 PE1 + c

(i)
01 (1− p(i)

0 )PE2.
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Then the team of referees has a common risk

R̄ =
3∑
i=1

wiRi

=

[
3∑
i=1

wic
(i)
10p

(i)
0

]
PE1 +

[
3∑
i=1

wic
(i)
01 (1− p(i)

0 )

]
PE2.

We can find the optimal decision rule that minimizes R̄ in the same way as in

the identical-referee case. This is possible because PE1 and PE2 depend not on local

decisions but on their global decision and are the same for all referees even though

they are not identical. According to the result in Section 3.2, all referees have the

same optimal decision rule. Assuming an independent and identically distributed

additive Gaussian noise N (0, σ2), the optimal decision rule is

yi

Ĥi(yi)=h1

R
Ĥi(yi)=h0

λ,

where λ is the unique solution of a nonlinear equation

λ =
h1 + h0

2
+

σ2

h1 − h0

ln

[∑3
i=1wic

(i)
10p

(i)
0

] [
Q(λ−h0

σ
)−Q(λ−h0

σ
)2
][∑3

i=1 wic
(i)
01 (1− p(i)

0 )
] [
Q(h1−λ

σ
)−Q(h1−λ

σ
)2
] .

We compare results of collaboration to those of conflict in several examples in

Figure 4-7. In the case of Figure 4-7a, the first two referees have the same Bayes

costs; global decisions are highly likely to be determined by what referees 1 and 2 want

since referee 3 rarely affects the global decisions when the referees conflict because the

global decisions require only two referees’ agreement. When they collaborate, on the

contrary, since the characteristic (i.e., cost function) of referee 3 is considered in the

common risk, he benefits by collaborating while the others make a loss with regard

to Bayes risk.

When referees of similar characteristics make a team such as referees in the case

of Figure 4-7b, collaboration is better than conflict because the characteristic of their
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common risk agrees with their own characteristics. Furthermore, in some cases like

the case of Figure 4-7c, it depends on the prior probability of an observed object

whether referees make a profit or loss by collaboration.

Note that cost function of referee 2 does not change in the three examples. For

him, however, collaboration is always better than conflict in the first example, always

worse in the second example, and sometimes better and elsewhere worse in the last

example. This implies that the question of which one is better does not have a single

answer; it depends on situations. Thus, we do not intend to argue that collaboration

is better but want to see what happens when referees conflict or collaborate.
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Figure 4-7. Comparison of Bayes risks in collaborating-referee cases to those in conflicting-referee
cases. Referees use true prior probabilities.
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� 4.3.2 Quantization Strategy - Using Diverse Quantizers

We know how referees collaborate to make a decision. Now we need to know how

referees collaborate to categorize objects optimally. One method is using identical

quantizers like in Section 3.2 since all referees share one common risk. We showed

how to design such an optimal quantizer in Section 3.2. However, referees are able to

collaborate even if they quantize prior probabilities differently, and thus we are free

from the limitation that referees should use identical quantizers.

Consider three different quantizers for prior probabilities. Figure 4-8 shows one

example of them; from the top, they are 2-point quantizers for referees 1, 2, and 3,

respectively. In Figure 4-8, a
(i)
k and b

(i)
k respectively denote representation point and

right endpoint of k-th region of the quantizer of referee i. Each quantizer divides the

interval [0, 1] into two partitions, but the whole quantization system divides it into

four partitions: [0, b
(1)
1 ], (b

(1)
1 , b

(2)
1 ], (b

(2)
1 , b

(3)
1 ], and (b

(3)
1 , 1]. In general, three regular

K-point quantizers can split the entire interval into at most (3K − 2) partitions.

Thus, it is possible for us to consider a virtual (3K− 2)-point quantizer that behaves

exactly the same as the set of real quantizers like in Figure 4-9. Then we are faced

with two problems: Does such a virtual quantizer exist? If it exists, how can we find

the quantizer?

In order to answer the first question, let us introduce a set of virtual identical

referees1 who use the virtual quantizer in Figure 4-9. Suppose that their Bayes costs

are c′10 and c′01. In the first region R′1, mean Bayes risk of real referee i is

∫
R′1

[c
(i)
10p0PE1 + c

(i)
01 (1− p0)PE2]fP0(p0) dp0

=

[∫
R′1
p0fP0(p0) dp0

]
c

(i)
10PE1 +

[∫
R′1

(1− p0)fP0(p0) dp0

]
c

(i)
01PE2.

When the real referees collaborate with weight wi, their mean common risk in the

1We call them virtual referees in order to distinguish them from real referees 1, 2, and 3.
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Figure 4-8. An example of diverse quantizers for prior probabilities.
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Figure 4-9. A virtual 4-point quantizer which is identical for all referees such that using it leads
to the same results as using the real 2-point quantizers.

region becomes

[∫
R′1
p0fP0(p0) dp0

][
3∑
i=1

wic
(i)
10

]
PE1 +

[∫
R′1

(1− p0)fP0(p0) dp0

][
3∑
i=1

wic
(i)
01

]
PE2. (4.16)

In addition, mean Bayes risk of virtual referees in the region is[∫
R′1
p0fP0(p0) dp0

]
c′10PE1 +

[∫
R′1

(1− p0)fP0(p0) dp0

]
c′01PE2. (4.17)

If c′10 =
∑3

i=1wic
(i)
10 and c′01 =

∑3
i=1 wic

(i)
01 , then (4.16) and (4.17) are the same for

the same probabilities of errors, which means that the real referees’ optimal decision

rule is equal to the virtual referees’.2 This argument is true for any regions R′k.

The next step is to investigate how to determine representation points for such

2Note that the real referees use the same decision rules, and so do the virtual referees. Even
though the real referees are not identical, they are collaborating and their optimal decision rules are
the same. Thus, we do not need to consider the real referees’ using different decision rules.
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decision rules. In the first region R′1, the Bayes risk of real referee i is

c
(i)
10a

(i)
1 PE1 + c

(i)
01 (1− a(i)

1 )PE2,

and the common risk of real referees is[
3∑
i=1

wic
(i)
10a

(i)
1

]
PE1 +

[
3∑
i=1

wic
(i)
01 (1− a(i)

1 )

]
PE2. (4.18)

By defining the quantizer of referee i as a function qi(p0), we can write (4.18) as

[
3∑
i=1

wic
(i)
10qi(p0)

]
PE1 +

[
3∑
i=1

wic
(i)
01 (1− qi(p0))

]
PE2,

where p0 ∈ R′1.

The Bayes risk of the virtual referees is given by

c′10a
′
1PE1 + c′01(1− a′1)PE2. (4.19)

By comparing (4.18) to (4.19), we realize that the both real and virtual referees would

use the same decision rules in the first region if their quantizers satisfy
[∑3

i=1 wic
(i)
10a

(i)
1

]
=

c′10a
′
1 and

[∑3
i=1 wic

(i)
01 (1− a(i)

1 )
]

= c′01(1 − a′1). To summarize the above results, if

a set of identical referees whose cost function is defined by c′10 =
∑3

i=1wic
(i)
10 and

c′01 =
∑3

i=1wic
(i)
01 use the virtual (3K − 2)-point quantizers whose representation

point for the kth region is determined by the equation

∑3
i=1 wic

(i)
10qi(p0)∑3

i=1wic
(i)
10 (1− qi(p0))

=
c′10a

′
k

c′01(1− a′k)
, (4.20)

then the real referees and virtual referees use the same decision rules for any p0 ∈ [0, 1].

This result gives us the answers to the two questions: Yes, there exists such a virtual

quantizer. We can design the virtual quantizer by using the same categorizations as

the set of real quantizers and solving a set of linear equations about representation

points.
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Figure 4-10. An example of diverse 2-point quantizers that are equivalent to the identical 4-point
quantizer.

In the reverse direction, we are also able to find three real diverse quantizers which

are equivalent to a virtual quantizer if we know the virtual quantizer. For convenience,

we use x1, . . . , x6 to denote the representation points of the real quantizers that we

need to determine in Figure 4-10. In Figure 4-10, each region gives one equation like

(4.20):

α12[c̄(1)
10 x1 + c̄

(2)
10 x3 + c̄

(3)
10 x5] = α11[c̄(1)

01 (1− x1) + c̄
(2)
01 (1− x3) + c̄

(3)
01 (1− x5)], (4.21)

α22[c̄(1)
10 x2 + c̄

(2)
10 x3 + c̄

(3)
10 x5] = α21[c̄(1)

01 (1− x2) + c̄
(2)
01 (1− x3) + c̄

(3)
01 (1− x5)], (4.22)

α32[c̄(1)
10 x2 + c̄

(2)
10 x4 + c̄

(3)
10 x5] = α31[c̄(1)

01 (1− x2) + c̄
(2)
01 (1− x4) + c̄

(3)
01 (1− x5)], (4.23)

α42[c̄(1)
10 x2 + c̄

(2)
10 x4 + c̄

(3)
10 x6] = α41[c̄(1)

01 (1− x2) + c̄
(2)
01 (1− x4) + c̄

(3)
01 (1− x6)], (4.24)

where αk1 , c′10a
′
k, αk2 , c′01(1− a′k), c̄

(i)
10 , wic

(i)
10 , and c̄

(i)
01 , wic

(i)
01 . We can simplify

(4.21)-(4.24) as the following nice matrix form:


β

(1)
1 0 β

(2)
1 0 β

(3)
1 0

0 β
(1)
2 β

(2)
2 0 β

(3)
2 0

0 β
(1)
3 0 β

(2)
3 β

(3)
3 0

0 β
(1)
4 0 β

(2)
4 0 β

(3)
4





x1

x2

x3

x4

x5

x6


=



∑3
i=1 α11c̄

(i)
01∑3

i=1 α21c̄
(i)
01∑3

i=1 α31c̄
(i)
01∑3

i=1 α41c̄
(i)
01

 , (4.25)

where β
(i)
k , αk2c̄

(i)
10 + αk1c̄

(i)
01 .
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However, there can be infinitely many solutions that satisfy (4.25) because the

first matrix does not have full rank. Since the number of equations is generally less

than the number of variables (i.e., the total number of representation points of real

quantizers) by at least two, there is no unique solution. Instead, we obtain several

conditions about the representation points: First, representation points are quantized

prior probabilities and they should be lying within [0, 1]. Second, we want to design

regular quantizers so each representation point should be lying within the region that

is represented by the point. In the example of Figure 4-10, the conditions give us the

following: 

0

b′1

0

b′2

0

b′3


≺



x1

x2

x3

x4

x5

x6


≺



b′1

1

b′2

1

b′3

1


, (4.26)

where A ≺ B means that A is smaller than B elementwise. We can write (4.25) as


0 β

(2)
1 0 β

(3)
1

β
(1)
2 β

(2)
2 0 β

(3)
2

β
(1)
3 0 β

(2)
3 β

(3)
3

β
(1)
4 0 β

(2)
4 0




x2

x3

x4

x5

 =


−β(1)

1 0
∑3

i=1 α11c̄
(i)
01

0 0
∑3

i=1 α21c̄
(i)
01

0 0
∑3

i=1 α31c̄
(i)
01

0 −β(3)
4

∑3
i=1 α41c̄

(i)
01



x1

x6

1

 , (4.27)

or


x2

x3

x4

x5

 =


0 β

(2)
1 0 β

(3)
1

β
(1)
2 β

(2)
2 0 β

(3)
2

β
(1)
3 0 β

(2)
3 β

(3)
3

β
(1)
4 0 β

(2)
4 0



−1 
−β(1)

1 0
∑3

i=1 α11c̄
(i)
01

0 0
∑3

i=1 α21c̄
(i)
01

0 0
∑3

i=1 α31c̄
(i)
01

0 −β(3)
4

∑3
i=1 α41c̄

(i)
01



x1

x6

1

 . (4.28)

Thus, we have the following inequalities of x1 and x6 besides 0 < x1 < b′1 and
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b′3 < x6 < 1:
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0
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0 β
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1 0 β
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1
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2 β
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2 0 β
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i=1 α41c̄
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x1

x6

1

 ≺


1

b′2

1

b′3


(4.29)

All we have to do is to find a valid pair of (x1, x6) that satisfies (4.29) and compute

other variables from (4.28). There are still infinitely many solutions but any of them

makes the perfect three real quantizers.

Up to now, we discussed the relation and transformation between real diverse K-

point quantizers and virtual identical (3K − 2)-point quantizers. From now on, we

show how the discussion helps us optimize real diverse quantizers when referees are

collaborating. We showed that there exists a system consisting of virtual identical

referees and a virtual (3K − 2)-point quantizer such that for any p0, the referees’

decision rules are the same as those of the real collaborating referees using diverse

K-point quantizers in a true system. Since their decision rules are the same, the

mean Bayes risk of the virtual referees is equal to the mean common risk of the real

referees. Thus, the diverse K-point quantizers can achieve as good performance as

the virtual identical (3K − 2)-point quantizers can and vice versa. In other words,

if the virtual identical (3K − 2)-point quantizers are optimal for the virtual referees

then the real diverse K-point quantizers are also optimal for the real referees.

We propose to design the best diverse K-point quantizers from optimized identical

(3K−2)-point quantizers. Optimizing diverse quantizers directly is very complicated

but determining the best identical quantizers is easy, and we already know how to do

that from Section 3.3.

77



Algorithm II: Design of optimal diverse quantizers

1) We are given three referees with Bayes costs c
(i)
10 and c

(i)
01 and weights wi,

i = 1, 2, 3.

2) Consider three virtual identical referees with cost functions c′10 =∑3
i=1wic

(i)
10 and c′01 =

∑3
i=1wic

(i)
01 .

3) Design the best (3K−2)-point quantizer for the virtual referees using the

Lloyd-Max algorithm in Section 3.2.

4) Determine the optimal endpoints of three diverse K-point quantizers.

(i) The quantizer for the virtual referees has 3K − 3 endpoints except

0 and 1. Distribute them into three sets B1, . . . , B3 so that the car-

dinality of each set becomes K − 1. The elements of Bi become the

endpoints of K-point quantizer for referee i.

(ii) Find the valid B1, . . . , B3 in the sense that there exists a pair of

variables that satisfies inequalities like (4.29), and determine values

of the variables.

5) Compute the remaining variables (or representation points) from their

relationships like (4.28).

Note that there are infinitely many pairs that satisfy (4.29) at Step 4)-(ii). However,

choosing any pair will result in the same performance with respect to the common

risk because all of the resulting quantizers are mapped to the same virtual quantizer.

Figures 4-11 and 4-12 show resulting Bayes risks when referees use optimal diverse

quantizers. Note that we make no assumptions about referees’ Bayes costs. We can

apply Algorithm II to design optimal quantization rules for referees having the same

cost function. By introducing the concept of collaboration, we make it possible for

such referees to use different quantization rules, which was not possible in Section

3.3. Figure 4-11 shows that using diverse quantizers is the better choice even for
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Figure 4-11. Quantizers for uniformly distributed P0, h0 = 0, h1 = 1, σ = 1, and collaborating
referees who have the same Bayes costs c(i)10 = 1 and c(i)01 = 4. Bayes risks when collaborating referees
use identical quantization rules and diverse quantization rules are plotted for (a) K = 2, (b) K = 3,
and (c) K = 4.

referees with identical cost functions. Note that the set of diverse 2-point quantizers

(represented by the solid line in Figure 4-11a) is as good as identical 4-point quantizers

(represented by the dashed line in Figure 4-11c) for any p0, which supports our

discussion about relation between real diverse K-point quantizers and virtual identical

(3K−2)-point quantizers. It is a very positive result because we always have incentive

to use diverse quantizers. It is also an interesting result because optimal decision rules

are identical but optimal categorization rules are not identical for a team of referees

sharing the same cost function.
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Figure 4-12. Quantizers for uniformly distributed P0, h0 = 0, h1 = 1, σ = 1, and non-identical
referees.
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Chapter 5

Conclusion

In this thesis, we explored the questions regarding quantization of prior probabilities

in Bayesian group decision-making. In the single-referee case [6], the main problem

was to optimize the referee’s quantization rule for the minimum mean Bayes risk. On

the other hand, in the three-referee case, various issues arise not only from optimizing

quantization rules but also from determining decision rules. This is because the

referees mutually affect one another.

First of all, in Chapter 3, we consider the identical-referee case. Operation region

of the three-referee model shows that identical referees cannot do better than using the

same decision rules and cannot do worse than one referee does in terms of probabilities

of errors. It is a reasonable result that using the same decision rules is optimal

for identical referees in the sense that they are under the same circumstances for

everything, such as cost functions, quantized prior probabilities, and density functions

of noises. Using the same decision rules makes the problem simple: the Bayes risk

can be defined as a function of one variable, and an optimal decision threshold is a

global minimum of the function.

We assume that identical referees use the identical quantization rules to keep them

identical. From the fact that the identical-three-referee model can be converted into

an equivalent single-referee model, the results obtained for the single-referee model

in [6] can be applied to the identical-three-referee model, and the centroid and nearest

neighbor conditions are derived. Identical referees’ quantization rules are optimized

by the Lloyd-Max algorithm that alternates the conditions.

In Chapter 4, we consider non-identical referees to make a team. A referee’s
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decision rule may help or hurt the other referees because all referees may have different

cost functions. Game-theoretic methodologies are useful to analyze their behaviors. It

is impossible to find the best decision threshold that minimizes all referees’ Bayes risks

since no referee has a dominant strategy. On the other hand, a Nash equilibrium turns

out to exist for any cost functions and quantized prior probabilities. Furthermore,

following a Nash equilibrium is one of the safest strategies for all referees in the

sense that they can predict it and predict that their opponents can predict it. Thus,

we assume that they determine their decision threshold as the Nash equilibrium.

Note that the optimal decision threshold in the identical-referee case is also a Nash

equilibrium for the identical referees.

The quantizer optimization problem has an issue about complexity. For non-

identical referees, it is not possible to derive centroid and nearest neighbor conditions

similar to the identical-referee case because of the dependency among referees. Thus

optimization of three K-point quantizers has 3(2K − 1) degrees of freedom. Further-

more, we need to consider the structure of the quantizers, which has (3(K−1))!
(K−1)!(K−1)!(K−1)!

possible scenarios. In order to decrease the computational complexity, we optimize

the quantizers under the assumption that the referees use the same fixed categoriza-

tion for their quantizers. Two methods for optimization are introduced: adjusting

representation points of each category and finding optimal decision thresholds for

each category. The results show that the former method leads to a better set of

quantization rules.

In addition, we allow non-identical referees to collaborate with each other, which

is a generalized case of the identical-referee case. Virtual identical referees and their

virtual identical quantizers are derived from the similarity between the collaborating-

referee case and the identical-referee case. By investigating the virtual referees and

quantizers, we discover not only that collaborating referees’ K-point diverse quantiz-

ers can have as good performance as (3K−2)-point identical quantizers but also how

we design such diverse quantizers. We can apply this result to the identical-referee

model in Chapter 3. Our main finding is that using the identical decision rules is

optimal for the identical referees, but using the identical quantization rules is not
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optimal for them.

In summary, decision-makers may make a better decision when they have dif-

ferent categorizations for an object than when they have the same categorizations

even though they have the same preference. We have shown that there is a definite

improvement in using diverse categorizations. This thesis also presents the formula-

tion of quantization of prior probabilities in Bayesian group decision-making in the

game-theoretic point of view. This formulation helps us understand the problems

and enables us to find the ways for decision-makers to determine their decision and

quantization rules.
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