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Abstract

The ability of an active imaging system to accurately reconstruct scene properties in
low light-level conditions has wide-ranging applications, spanning biological imaging
of delicate samples to long-range remote sensing. Conventionally, even with time-
resolved detectors that are sensitive to individual photons, obtaining accurate images
requires hundreds of photon detections at each pixel to mitigate the shot noise inher-
ent in photon-counting optical sensors.

In this thesis, we develop computational imaging frameworks that allow accurate
reconstruction of scene properties using small numbers of photons. These frameworks
first model the statistics of individual photon detections, which are observations of an
inhomogeneous Poisson process, and express a priori scene constraints for the specific
imaging problem. Each yields an inverse problem that can be accurately solved using
novel variations on sparse signal pursuit methods and regularized convex optimiza-
tion techniques. We demonstrate our frameworks’ photon efficiencies in six imaging
scenarios that have been well-studied in the classical settings with large numbers
of photon detections: single-depth imaging, multi-depth imaging, array-based time-
resolved imaging, super-resolution imaging, single-pixel imaging, and fluorescence
imaging. Using simulations and experimental datasets, we show that our frameworks
outperform conventional imagers that use more naive observation models based on
high light-level assumptions. For example, when imaging depth, reflectivity, or fluo-
rescence lifetime, our implementation gives accurate reconstruction results even when
the average number of detected signal photons at a pixel is less than 1, in the presence
of extraneous background light.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Julius A. Stratton Professor, Massachusetts Institute of Technology

Thesis Supervisor: Vivek K Goyal
Title: Associate Professor, Boston University
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4-2 Photon-count histograms after censoring extraneous detections for the

state-of-the-art pseudo-array method [2] (red) and our method (blue).

The raw-data photon histogram is also given for reference (dashed

black). The blue block indicates the ground truth depth values of

objects in the scene scaled by 𝑐/2. By exploiting the scene’s longi-

tudinal sparsity, our method rejects more extraneous detections than

does the pseudo-array method, which relies on transverse correlations.

The greater the number of extraneous detections that survive censor-

ing, the greater the amount of regularization that will occur in depth

estimation, which will lead, in turn, to oversmoothing the depth image. 82

4-3 Stages of 3D structure and reflectivity reconstruction algorithm. (a)

Raw time-tagged photon detection data are captured using the SPAD

camera setup. Averaged over the scene, the number of detected signal

photons per pixel was ∼1, as was the average number of background-

light detections plus dark counts. (b) Step 1: raw time-tagged photon
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detections are first censored, based on the longitudinal sparsity con-

straint of natural scenes, by solving a sparse deconvolution problem.
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are used for 3D structure reconstruction, by solving a regularized op-

timization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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using the filtered histogram method, the state-of-the-art pseudo-array

imaging method, our proposed framework, and the ground-truth proxy

obtained from detecting 550 signal photons per pixel. For visualiza-

tion, the reflectivity estimates are overlaid on the reconstructed depth

maps for each method. The frontal views, shown here, provide the best

visualizations of the reflectivity estimates. (e)–(h) Results of imaging

3D structure and reflectivity from (a)–(d) rotated to reveal the side

view, which makes the reconstructed depth clearly visible. The fil-

tered histogram image is too noisy to show any useful depth features.

The pseudo-array imaging method successfully recovers gross depth

features, but, in comparison with the ground truth estimate in (h), it
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and oversmooths the facial features. Our SPAD-array-specific method
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tion at low flux. (i)–(k) The depth error maps obtained by taking the

absolute difference between estimated depth and ground truth depth
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sub-pulse-width resolution of less than 𝑐∆/2 ≈ 6 cm, while existing

methods fail to do so. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-5 Effect of varying the regularization parameters in our 3D structure

and reflectivity reconstruction algorithm for the mannequin and flower

scene. The optimal parameter set was {𝜏𝐴, 𝜏𝑍} = {2.6, 4.3}. . . . . . 88

4-6 Imaging results for the watering can and basketball scene. Notice the

stripes of the basketball being visible when using our method. . . . . 89
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Chapter 1

Introduction

Modern imaging systems enable us to better understand our physical environment by

providing capabilities that exceed those of the human eye. Active imaging systems in

particular use their own light sources and detectors to recover useful scene informa-

tion, such as 3D structure, object reflectivity, fluorescence, etc. In order to suppress

noise inherent in the optical sensing process, they usually require huge amounts of

light to form their images. For example, a commercially available flash camera typi-

cally collects more than 109 photons (103 photons per pixel in a 1 megapixel image) to

provide the user with a single photograph [3]. However, in sensing a macroscopic scene

at a long standoff distance, as well as in imaging of microscopic biological samples,

physical limitations on the amount of optical flux available and sensor integration

time preclude the collection of such a large number of photons. In those cases, when

the light incident on the detector is very low, we must resort to using sensitive single-

photon imaging systems that are able to resolve individual photon detections. A key

challenge in such scenarios is to make use of a small number of photon detections

to accurately recover the desired scene information. Driven by such constraints, it is

then natural to ask the following question: how many photons do we really need to

form an image?

In this thesis, we address that question by investigating an imaging framework

in which small numbers of photon detections are used as raw observations. Mainly,

we show how computation and signal processing play an integral role in the photon-
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efficient image formation process for the following imaging scenarios, which are well-

known in the classical high light-level regime.

∙ Single-reflector depth imaging: Pulsed illumination onto an opaque, re-

flective object leads to backscattered light, which is incident on the imager’s

detector. A time-resolved sensor is able to record the backreflected optical flux

and use its time-of-flight information to infer the object depth on a pixel-by-

pixel basis. This is the fundamental problem of light detection and ranging

(LIDAR) [4].

∙ Multi-depth imaging: Pulsed illumination of a complicated scene produces

reflections from many surfaces in a pixel, generating a complicated temporal

profile for the light arriving at the detector. Using a time-resolved sensor, we can

observe the combined response of the multi-reflections. Pixelwise reconstruction

of multiple object depths by analyzing the combined response is the multi-depth

imaging problem [5].

∙ Array-based time-resolved imaging: A detector array used for active

scene 3D and reflectivity imaging typically suffers from low temporal resolution,

because each detector element in the array can only be engineered to have a

moderate sampling rate, as compared to those for single-detector-based scanning

imagers. By mitigating this array-specific artifact, we can accurately reconstruct

the scene’s 3D and reflectivity characteristics from array measurements. This

is the problem of array-based time-resolved imaging [6].

∙ Single-pixel imaging: When photodetectors are expensive, such as those

operating at infrared or ultraviolet wavelengths or those capable of detecting

individual photons, a single-pixel imaging system that reconstructs spatially-

resolved reflectivity images using one photodetector, one source, and a spatial

light modulator is a desirable imager [7].

∙ Super-resolution depth imaging: Spatial resolution of an active 3D imager

is limited by its transverse pixelation degree. Is it possible to improve the spatial

28



resolution of the reconstructed depth map beyond the native pixel resolution?

This is the problem of super-resolution depth imaging [8].

∙ Fluorescence imaging: Fluorescent markers are used to label and track the

locations of molecular processes or samples. The aim in fluorescence imaging

is to recover spatially-resolved images of the sample fluorescence intensity and

lifetime that give information about its molecular properties [9].

1.1 A Unifying Viewpoint

The single-photon active imaging setup has three common components for all of the

previously described imaging scenarios. (See Figure 1-1 for an illustration of the

setup.)

1. Source: The single-photon imaging setup includes a light source that illu-

minates the scene with a temporally varying waveform, such as a pulse signal.

The source can either be a laser that illuminates one pixel at a time as part of a

raster-scanning process of the scene, or a floodlight source that sends out light

to all pixels simultaneously.

2. Single-photon detector: Depending on the imaging application, we can

either use a single-pixel photon counting detector or an array of single-photon

detectors to record the detection times of individual photons arriving from the

scene illuminated by a source.

3. Optics: Optical components such as lenses and spatial light modulators are

often required to focus and control the light transport, in addition to the source

and the single-photon detector.

We can then describe the common single-photon imaging setup employing those

three components as follows. We use 𝑠(𝑡) to denote the photon flux of a finite-duration

waveform emitted into the scene at time 𝑡 = 0, and 𝑇𝑝 to denote its root mean square

(RMS) duration. We take 𝑁𝑠 to be the total number of pulses employed per pixel and
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Figure 1-1: Single-photon active imaging setup with common components. The figure
specifically depicts a setup with scanning source and a single-pixel detector.

𝑇𝑟 be the repetition period of the pulse illumination. (See Appendix A for a complete

table of notations used in this thesis.)

To build up our model for the photodetection statistics, it is convenient to restrict

our attention to a single scene pixel for now. Let 𝐼(𝑡) be the scene impulse response

function that we are interested in knowing at the particular pixel. For example, 𝐼(𝑡)

is an impulse function when imaging a single reflector, a multi-peaked function when

imaging an object through diffuse media, and a decaying exponential function with

unknown lifetime when imaging target fluorescence. When 𝑠(𝑡) illuminates the pixel

in question, the photon flux 𝑟(𝑡) incident on the single-photon detector, is

𝑟(𝑡) = (𝑠 * 𝐼)(𝑡) + 𝑏(𝑡), 𝑡 ∈ [0, 𝑇𝑟), (1.1)

where (𝑠*𝐼)(𝑡) is the convolution between the pulse waveform and the scene response,

and 𝑏(𝑡) represents the unwanted background response, such as sunlight or light from

a competing active imager. The rate function 𝜆(𝑡) generating the photon detections

at the single-photon detector is then

𝜆(𝑡) = 𝜂(𝑟 * 𝐼𝑑)(𝑡) + 𝑏𝑑, 𝑡 ∈ [0, 𝑇𝑟), (1.2)

where 𝜂 ∈ (0, 1] is the detector’s quantum efficiency, 𝑏𝑑 is the detector’s dark count

rate, and 𝐼𝑑(𝑡) is the normalized detector response function (
∫︀ 𝑇𝑟

0
𝐼𝑑(𝑡) 𝑑𝑡 = 1). Defin-

30



ing 𝑠(𝑡) = (𝑠 * 𝐼𝑑)(𝑡) and 𝑏̃(𝑡) = (𝑏 * 𝐼𝑑)(𝑡), we can rewrite Eq. (1.2) as 𝜆(𝑡) =

𝜂(𝑠 * 𝐼)(𝑡) + 𝜂𝑏̃(𝑡) + 𝑏𝑑.

A time-correlated single-photon detector is capable of determining the time-of-

detection of a photon within an accuracy of ∆ seconds. We assume ∆ ≪ 𝑇𝑟 and

that 𝑇𝑟 is divisible by ∆. Then, we see that 𝑚 = 𝑇𝑟/∆ is the number of time bins

that contain our observed photon detection times. In other words, 𝑚 is the size of

the photon-count vector y, where y𝑘 ∈ {0, 1, 2, . . .} for 𝑘 = 1, 2, . . . ,𝑚. Using the

probabilistic theory of low-flux photon-counting, the number of photon detections

in the 𝑘th time bin after 𝑁𝑠 pulse illuminations of a motionless scene is an integer

random variable that is Poisson distributed:

y𝑘 ∼ Poisson

(︂
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆(𝑡) 𝑑𝑡

)︂
, 𝑘 = 1, 2, . . . ,𝑚, (1.3)

where we have assumed that 𝑇𝑟 is long enough to preclude pulse aliasing and that 𝑏(𝑡)

is constant over the total acquisition time 𝑁𝑠𝑇𝑟. Also, due to our low-flux assumption,

the dead time effect of single-photon detectors is negligible (See Appendix B). The

signal-to-noise (SNR) ratio, defined as the ratio of mean to the standard deviation,

of the photon-count at 𝑘th bin is then

snr(y𝑘) =

√︃
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆(𝑡) 𝑑𝑡, 𝑘 = 1, 2, . . . ,𝑚. (1.4)

We see that, as the number of illuminations increases, the signal-to-noise ratio also

increases at a rate of
√
𝑁𝑠. However, in order to operate in the regime of high

photon efficiency, we are interested in accurately recovering information about the

scene response 𝐼(𝑡) from single-photon observations y obtained using a small 𝑁𝑠.

In order to form an image using a small number of photon detections, we propose

a unifying single-photon imaging framework, which models the distribution of single-

photon observations combined with physical constraints on scene parameters. Below

we outline the elements of our framework, viz., the five-step procedure we will employ

in all that follows.
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∙ Step I: Derive the forward single-photon measurement model using the pho-

todetection process from Eq. (1.3), for a specific single-photon imaging problem.

∙ Step II: Identify constraints on the scene parameters that we aim to recover

for the specific single-photon imaging problem.

∙ Step III: Combine the photodetection model and physical constraints derived

in Steps I and II, respectively, to formulate an optimization program that solves

the inverse problem of recovering the parameters of scene response 𝐼(𝑡) (for a

single pixel or multiple pixels, depending on the problem).

∙ Step IV: Regularize and relax the optimization problem that is formulated in

Step III for computational efficiency, if necessary, while least perturbing the

optimal solution.

∙ Step V: Design an algorithm that efficiently solves the final optimization prob-

lem in Step IV.

We emphasize that our low light level imaging framework does not require any new

optical technology, although it will certainly benefit from continued advances in single-

photon detectors. Instead, it relies on the high computational power that can be made

available in modern imaging systems. In the chapters that follow, we will apply our

five-step framework for the single-photon imaging regime to the six imaging problems

that were described earlier, and develop photon-efficient approaches for each of them.
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Chapter 2

Single-Reflector Depth Imaging

2.1 Overview of Problem

A conventional LIDAR system, which uses a pulsed light source and a single-photon

detector, forms a depth image pixelwise using the histograms of photon detection

times. The acquisition times for such systems are made long enough to detect hun-

dreds of photons per pixel for the finely binned histograms these systems require to

do accurate depth estimation.

Prior art: The conventional LIDAR technique of estimating depth using his-

tograms of photon detections is accurate when the number of photon detections is

high, since the photon histogram can be considered as an observation of the backre-

flected waveform. In the low photon-count regime, the depth solution is noisy due to

shot noise. It has been shown that image denoising methods, such as wavelet thresh-

olding, can improve the performance of scene depth recovery [10]. In other work, an

imaging model that incorporates occlusion constraints was proposed to recover an

accurate depth map [11]. However, these imaging algorithms implicitly assume that

the observations are either noiseless or Gaussian distributed. Thus, at low photon-

counts, where photon-detection statistics are highly non-Gaussian, their performance

degrades significantly [2].

First-photon imaging (FPI) [12] is a framework that allows high-accuracy depth
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imaging using only the first detected photon at every pixel. It demonstrated that

centimeter-accurate depth recovery is possible by combining the non-Gaussian statis-

tics of first-photon detection with spatial correlations of natural scenes. The FPI

framework uses an imaging setup that includes a raster-scanning light source and a

lensless single-photon detector. More recently, a photon-efficient imaging framework

that uses a detector array, in which every pixel has the same acquisition time, has also

been proposed [13, 14]. It too relies on exploiting the spatial correlations of natural

scenes.

We observe two common limitations that exist in the prior active imaging frame-

works for depth reconstruction.

∙ Over-smoothing: Many of the frameworks assume spatial smoothness of

the scene to mitigate the effect of shot noise. In some imaging applications,

however, it is important to capture fine spatial features that only occupy a

few image pixels. Using methods that assume spatial correlations may lead to

erroneously over-smoothed images that wash out the scene’s fine-scale features.

In such scenarios, a robust pixelwise imager is preferable.

∙ Calibration: Many imaging methods assume a calibration step to measure

the amount of background flux existing in the environment. This calibration

mitigates bias in the depth estimate caused by background-photon or dark-count

detections, which have high temporal variance. In practical imaging scenarios,

however, the background response could vary in time, and continuous calibra-

tion may not be practical. Furthermore, many methods assume background

flux does not vary spatially. Thus, a calibrationless imager that performs simul-

taneous estimation of scene parameters and spatially-varying background flux

from raw photon detections is useful.

Summary of our approach: In this chapter, we propose a novel framework for

depth acquisition that is applied pixelwise and without background calibration [15].

At each pixel, our imager estimates the background response along with scene depth
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from photon detections. Our framework uses a Poisson observation model for the pho-

ton detections plus a union-of-subspaces constraint on the scene’s discrete-time flux

at any single pixel, similar to the occlusion-based imaging framework in [11]. How-

ever, our union-of-subspaces constraint is defined for both the signal and background

waveform parameters that generate photon detections; whereas the framework in [11]

assumes a system observing a noiseless signal waveform in high light-level operation,

without corruption by photon shot noise.

Using the derived imaging model, we propose a greedy signal pursuit algorithm

that accurately solves for the scene parameters at each pixel. We evaluate the photon

efficiency of this framework using experimental single-photon data. In the presence of

strong background light, we show that our pixelwise imager gives an absolute depth

error that is 6.1 times lower than that of the conventional pixelwise log-matched filter.

2.2 Single-Photon Imaging Setup

Figure 2-1 illustrates our imaging setup, for one illumination pulse, when the scene

is illuminated in raster-scanning manner and a single-element photon detector is em-

ployed. (Alternatively, to reduce the time needed to acquire a depth map, our frame-

work can be applied without modification when the scene is flood illuminated and

a detector array is used.) A focused optical source, such as a laser, illuminates a

pixel in the scene with the pulse waveform 𝑠(𝑡) that starts at time 0 and has root-

mean-square pulsewidth 𝑇𝑝. This illumination is repeated every 𝑇𝑟 seconds for a

sequence of 𝑁𝑠 pulses. The single-photon detector, in conjunction with a time cor-

relator, is used to time stamp individual photon detections, relative to the time at

which the immediately preceding pulse was transmitted. These detection times are

observations of a time-inhomogeneous Poisson process whose rate function combines

contributions from pixel return, background light, and dark counts. They are used to

estimate scene depth for the illuminated pixel. This pixelwise acquisition process is

repeated for 𝑁𝑥×𝑁𝑦 image pixels by raster scanning the light source in the transverse

directions.
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Figure 2-1: An illustration of the data acquisition procedure for one illumination
pulse. A pulsed optical source illuminates a scene pixel with photon-flux waveform
𝑠(𝑡). The flux waveform 𝑟(𝑡) that is incident on the detector consists of the pixel
return 𝑎𝑠(𝑡 − 2𝑑/𝑐)—where 𝑎 is the pixel reflectivity, 𝑑 is the pixel depth, and 𝑐
is light speed—plus the background-light flux 𝑏. The rate function 𝜆(𝑡) driving the
photodetection process equals the sum of the pixel return and background flux, scaled
by the detector efficiency 𝜂, plus the detector’s dark-count rate 𝑏𝑑. The record of
detection times from the pixel return (or background light plus dark counts) is shown
as blue (or red) spikes, generated by the Poisson process driven by 𝜆(𝑡).

2.3 Forward Imaging Model

In this section, we introduce a model relating photon detections and scene parameters.

For simplicity of exposition and notation, we focus on one pixel; this model is repeated

for each pixel of a raster-scanning or array-detection setup.

Let 𝑎, 𝑑, and 𝑏 be unknown scalar values that represent reflectivity, depth, and

background flux at the given pixel. The reflectivity value includes the effects of radial

fall-off, view angle, and material properties. Then, after illuminating the scene pixel

with a single pulse 𝑠(𝑡), the backreflected waveform that is incident at the single-

photon detector is

𝑟(𝑡) = 𝑎𝑠(𝑡− 2𝑑/𝑐) + 𝑏, 𝑡 ∈ [0, 𝑇𝑟). (2.1)

Comparing to our general light transport equation in Eq. (1.1), Eq. (2.1) specifically

assumes that the scene response is generated by a single reflector (𝐼(𝑡) is scaled and

shifted Dirac delta function) and that the background light is constant.
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Photodetection statistics: Using Eq. (2.1), we observe that the rate function

that generates the photon detections is

𝜆(𝑡) = 𝜂 (𝑎𝑠(𝑡− 2𝑑/𝑐) + 𝑏) + 𝑏𝑑, 𝑡 ∈ [0, 𝑇𝑟), (2.2)

where 𝜂 ∈ (0, 1] is the quantum efficiency of the detector and 𝑏𝑑 ≥ 0 is the dark-count

rate of the single-photon detector. Here, we have assumed an ideal detector response:

𝐼𝑑(𝑡) = 𝛿(𝑡).

Recall that ∆ is the time bin duration of the single-photon detector. Then, we

define 𝑚 = 𝑇𝑟/∆ to be the total number of time bins that capture photon detections.

Let y be the vector of size 𝑚 × 1 that contains the photon counts at each time bin

after we illuminate the pixel 𝑁𝑠 times with pulse waveform 𝑠(𝑡). Then, from low-flux

photon-counting theory in Eq. (1.3), we have that

y𝑘 ∼ Poisson

(︂
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

[𝜂(𝑎𝑠(𝑡− 2𝑑/𝑐) + 𝑏) + 𝑏𝑑] 𝑑𝑡

)︂
, (2.3)

for 𝑘 = 1, . . . ,𝑚. Note that we have assumed a stationary reflector and that our total

pixelwise acquisition time 𝑁𝑠𝑇𝑟 is short enough that 𝑏 is constant during that period.

We have also assumed that the low-flux condition
∑︀𝑚

𝑘=1 y𝑘 ≪ 𝑁𝑠 holds, so that the

effect of the single-photon detector’s reset (dead) time can be neglected. We wish to

reach an approximation in which the Poisson parameter of y𝑘 is given by the product

of a known matrix and an unknown (and constrained) vector.

Choose 𝑛 ∈ Z+ such that ∆′ = 𝑇𝑟/𝑛 is deemed adequate resolution for the esti-

mated time of flight. (Our interest is in high-resolution imaging, where 𝑛 ≥ 𝑚, and

hence ∆′ ≤ ∆.) Since 2𝑑/𝑐 ∈ [0, 𝑇𝑟), v ∈ R𝑛×1 defined by

v𝑗 =

⎧⎨⎩ 𝑁𝑠𝜂𝑎, if 2𝑑/𝑐 ∈ [(𝑗 − 1)∆′, 𝑗∆′);

0, otherwise,
𝑗 = 1, 2, . . . , 𝑛, (2.4)
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has exactly one nonzero entry. Using this vector,

𝑁𝑠𝜂𝑎𝑠(𝑡− 2𝑑/𝑐) ≈
𝑛∑︁

𝑗=1

v𝑗𝑠
(︀
𝑡−
(︀
𝑗 − 1

2

)︀
∆′)︀ (2.5)

is a good approximation when ∆′ is small enough, because the sum has one nonzero

term and 2𝑑/𝑐 has been quantized to an interval of length ∆′. Substituting (2.5) into

the Poisson parameter expression in (2.3) gives

𝑛∑︁
𝑗=1

(︂∫︁ 𝑘Δ

(𝑘−1)Δ

𝑠
(︀
𝑡−
(︀
𝑗 − 1

2

)︀
∆′)︀ 𝑑𝑡)︂v𝑗 + 𝑁𝑠∆(𝜂𝑏 + 𝑏𝑑).

Then, defining 1𝑚×1 to be an 𝑚× 1 vector of 1’s, we can rewrite (2.3) as

y𝑘 ∼ Poisson
(︀

(Sv + 𝐵1𝑚×1)𝑘
)︀
, (2.6)

for 𝑘 = 1, . . . ,𝑚, where

S𝑖,𝑗 =

∫︁ 𝑖Δ

(𝑖−1)Δ

𝑠
(︀
𝑡−
(︀
𝑗 − 1

2

)︀
∆′)︀ 𝑑𝑡, (2.7)

𝐵 = 𝑁𝑠∆(𝜂𝑏 + 𝑏𝑑), (2.8)

for 𝑖 = 1 . . . ,𝑚 and 𝑗 = 1, . . . , 𝑛. Finally, defining A = [S,1𝑚×1] and x = [v𝑇 , 𝐵]𝑇 ,

we can further rewrite (2.6) as

y𝑘 ∼ Poisson
(︀

(Ax)𝑘
)︀
. (2.9)

So far, we have simplified the pixelwise single-photon observation model, such that

the photon-count vector y ∈ N𝑚×1 is a linear measurement of scene response vector

x ∈ R(𝑛+1)×1
+ corrupted by signal-dependent Poisson noise.

Scene parameter constraints: We defined our (𝑛 + 1) × 1 signal x to be a

concatenation of v, which is the scene response vector of size 𝑛, and 𝐵, which is

the scalar representing background flux plus dark counts. Since v has exactly one
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Figure 2-2: Illustration of 𝒮2. Our non-convex union-of-subspaces constraint set
describes model-based signal sparsity that is specific to the LIDAR imaging setup.

nonzero entry, x lies in the union of 𝑛 subspaces defined as

𝒮𝑛 =

𝑛⋃︁
𝑘=1

{︀
x ∈ R𝑛+1 : x{1,2,...,𝑛}∖{𝑘} = 0

}︀
, (2.10)

where each subspace is of dimension 2. Figure 2-2 illustrates 𝒮𝑛 for 𝑛 = 2.

2.4 Solving the Inverse Problem

Using accurate photodetection statistics and scene constraints, we have interpreted

the problem of robust single-photon depth imaging as a noisy linear inverse problem,

where the signal of interest x lies in the union-of-subspaces 𝒮𝑛. Using (2.9), the

observed photon count histogram y has the probability mass function

𝑓𝑌 (y;A,x) =

𝑚∏︁
𝑘=1

𝑒−(Ax)𝑘(Ax)y𝑘

𝑘

y𝑘!
. (2.11)
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Thus, neglecting terms in the negative log-likelihood function that are dependent on

y but not on x, we can define the objective function

ℒ(x;A,y) =

𝑚∑︁
𝑘=1

[(Ax)𝑘 − y𝑘 log (Ax)𝑘] . (2.12)

This objective can be proved to be convex in x.

We solve for x by minimizing ℒ(x;A,y) with the constraint that x lies in the

union-of-subspaces 𝒮𝑛. Also, because photon flux is a non-negative quantity, the

minimization results in a more accurate estimate when we include a non-negative

signal constraint. In summary, the optimization problem that we want to solve can

be written as

minimize
x

ℒ(x;A,y) (2.13)

s.t. x ∈ 𝒮𝑛,

x𝑖 ≥ 0, 𝑖 = 1, . . . , (𝑛 + 1).

To solve our optimization problem in which the union-of-subspaces selects a sparse

support, we propose an algorithm that is inspired by an existing fast iterative algo-

rithm for sparse signal pursuit. Compressive sampling matching pursuit (CoSaMP) [16]

is a greedy algorithm that finds a 𝐾-sparse approximate solution to an underdeter-

mined linear inverse problem. CoSaMP iterates until it finds a solution that agrees

with the observed data (according to some convergence metric), while the solution is a

linear combination of 𝐾 columns of the forward matrix A. Adapting CoSaMP to our

imaging framework is interesting for two particular reasons. First, unlike algorithms

that only add to the solution support, never culling, CoSaMP has solution stability

and accuracy properties that compete with globally-optimal ℓ1-based convex opti-

mization methods for sparse approximation [17]. Second, CoSaMP has been shown

to be adaptable to applications in which the signal being estimated has a structured

support [18], as is true for the union-of-subspaces model. Thus, we are motivated to

modify the CoSaMP algorithm to our specific use case, where we are interested in
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recovering a sparse solution in the union-of-subspaces 𝒮𝑁 , instead of a 𝐾-sparse one,

using photon-noise corrupted data.

Algorithm 1 Single-photon depth imaging using a union-of-subspaces model

Input: y, A, 𝛿
Output: x̂UOS

Initialize x̂(0) ← 0⃗, u← y, 𝑘 ← 0
repeat

𝑘 ← 𝑘 + 1
x′ ← A𝑇u ◁ Compute adjoint
Ω← supp((x′

1:𝑛)[1]) ∪ supp(x̂
(𝑘−1)
1:𝑛 ) ∪ {𝑛 + 1} ◁ Merge support

w|Ω ← A†
Ωy, w|Ω𝑐 ← 0

x̂(𝑘) ← 𝒯0
(︁

[(w1:𝑛)𝑇[1], w𝑛+1]
𝑇
)︁

◁ Threshold and update solution

u← y −Ax̂(𝑘)

until ‖x̂(𝑘−1) − x̂(𝑘)‖22 < 𝛿
x̂UOS ← x̂(𝑘) ◁ Output converged solution

Our proposed greedy algorithm, inspired by CoSaMP, is given in Algorithm 1. We

define 𝒯0(x) to be the thresholding operator that sets all negative entries of x to zero,

supp(x) to be the set of indices of x’s nonzero elements, and x[𝑘] to be the vector that

approximates x with its 𝑘 largest terms. Also, we take A𝑆 to be a matrix generated

using the columns of A described by the index set 𝑆. Finally, we use A𝑇 and A† to

denote the transpose and pseudo-inverse of matrix A, respectively.

In Algorithm 1, for computational efficiency we have approximated ℒ(x;A,y)

with the ℓ2-loss ‖y −Ax‖22, which is the first-order Taylor expansion (up to a con-

stant) of ℒ(x;A,y) with respect to x (see Appendix D for derivation). Because

CoSaMP also assumes an ℓ2-loss function, the only change from CoSaMP to our al-

gorithm is then the update stage; instead of picking out the best 𝑘 terms, we pick

out the two terms from the intermediate solution based on the union-of-subspaces

and non-negativity constraints. We iterate the algorithm until the solution meets the

convergence criterion: ‖x̂(𝑘−1) − x̂(𝑘)‖22 < 𝛿, where 𝛿 is a small number.

Many sparse pursuit algorithms, such as CoSaMP, are successful given the as-

sumption that A is incoherent. In our setup, however, the forward matrix A is
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highly coherent due to ∆′ being small and the pulse waveform 𝑠(𝑡) being smooth.

Nevertheless, because the linear system’s degree of underdetermination is extremely

mild (A ∈ R𝑛×(𝑛+1)) and the sparsity level is fixed to a small number (dim(𝒮𝑛) = 2)

relative to the signal dimension (typically exceeding 100), our single-photon imaging

algorithm recovers the scene parameters of interest in a robust manner.

2.5 Results

Simulations: We simulated the single-photon imaging setup using Eq. (2.9) to

study the performance of the proposed depth imaging method. It would be valuable

to compare our imaging method with the ML estimator for scene parameters {𝑎, 𝑑, 𝑏}.

Unfortunately, due to nonzero background flux, ML estimation requires minimizing

a non-convex cost function, leading to a solution without convergence and accuracy

guarantees. Thus, zero background is assumed conventionally, even for data that is

contaminated by background, such that the ML depth estimate reduces to the simple

log-matched filter [19]:

𝑑ML =
𝑐∆′

2

(︃
argmax
𝑖∈{1,...,𝑛}

logS𝑇
𝑖 y

)︃
. (2.14)

Note that this estimator is equivalent to a one-step greedy algorithm (where a union-

of-subspaces constraint is irrelevant) of minimizing ℒ(x;A,y) for a 1-sparse solution.

We use (2.14) as the baseline depth estimator that is compared with our proposed

estimator using the union-of-subspaces model.

Figure 2-3 shows the root mean square error (RMSE) of depth reconstruction at

two different signal-to-background (SBR) levels. The SBR is defined as the ratio of

the probability of a detection coming from signal to the probability of a detection

coming from background light plus dark counts:

SBR =

∑︀𝑚
𝑘=1(Sv)𝑘∑︀𝑚

𝑘=1(𝐵1𝑚×1)𝑘
. (2.15)
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Figure 2-3: Simulation of pixelwise depth imaging results using single photon ob-
servations for two SBR levels. (a) Depth RMSE of log-matched filter and proposed
method for SBR = 200. (b) Depth RMSE of log-matched filter and proposed method
for SBR = 100.

Figure 2-3 was generated using 𝑚 = 𝑛 = 801 and using the RMS duration 𝑇𝑝 of a

Gaussian pulse such that 𝑐𝑇𝑝/2 = 1 cm. For each number of photon detections, 4000

Monte Carlo trials of Eq. (2.6) were run. We observe that our method improves over

conventional log-matched filtering for both SBR levels, with greater improvements

seen in the lower SBR case.

Experiments: To experimentally validate our imaging framework, we used a

dataset collected for the First-Photon Imaging project [12]; this dataset and others

are available from [20]. Figure 2-4 shows a photograph of the single-photon imaging

setup. The single-photon imaging setup used a pulsed laser diode with pulsewidth

𝑇𝑝 = 270 ps (such that 𝑐𝑇𝑝/2 = 4 cm) and repetition period 𝑇𝑟 = 100 ns. A two-axis

galvo was used to scan 350 × 350 pixels of a mannequin face at a distance of about

4 m. A lensless single-photon avalanche diode (SPAD) detector with quantum effi-

ciency 𝜂 = 0.35 was used for detection. The background light level was set using an

incandescent lamp. The original mannequin data from [20] had the background count

rate approximately equal to the signal count rate. Our experiment uses the cropped

data showing only the mannequin’s face, where the background count rate was ap-

proximately 0.1 of the average signal count rate. Although we used a raster-scanning
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Figure 2-4: Experimental setup with a raster-scanning source and a single SPAD
detector. The red arrows show the path of the optical signal from laser source, and
the green arrows show the path of the electrical signal that indicates whether a photon
has been detected or not.

setup for our single-photon imaging experiments, since our imaging algorithm is ap-

plied pixelwise, it can be also used for imaging with a floodlight illumination source

and a single-photon detector array. However, the current framework does not explic-

itly deal with array limitations such as the low resolution of time-correlation inherent

in single-photon camera operations; Chapter 4 develops an array imaging framework

to address that point.

Figure 2-5 shows the results of recovering depth of the mannequin face using single-

photon observations. The kernel matrix S was obtained by an offline measurement

of the pulse shape. Note that this measurement depends only on the source, not

on properties of the scene. The ground-truth depth, shown in Figure 2-5(b), was

generated separately by using background-calibrated ML estimation from 200 photon

detections at each pixel.

In our depth imaging experiment, the number of photon detections at each pixel

was set to 15. We observe that, due to extraneous background photon detections and

dark counts, the log-matched filter estimate in Figure 2-5(c) (average absolute error =
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(a) Photograph (b) Truth

(c) Log-matched filter (d) Proposed

(e) Error of (c) (f) Error of (d)

Figure 2-5: Experimental pixelwise depth imaging results using single photon obser-
vations. The number of photon detections at every pixel was set to be 15. The figure
shows the (a) photograph of imaged face, (b) ground-truth depth, (c) depth from
log-matched filtering, which is approximately ML and (d) depth using our method.
The absolute depth-error maps for ML and our framework are shown in (e) and (f),
respectively.

10.3 cm) is corrupted with high-variance noise and the facial features of the man-

nequin are heavily obscured. On the other hand, our estimate, shown in Figure

2-5(d), shows high-accuracy depth recovery (average absolute error = 1.7 cm). As

shown by the error maps in Figure 2-5(e), (f), both methods fail in depth recovery

in the face boundary regions, where very little light is reflected back from the scene

to the single-photon detector. This failure is because the SBR is very low in such

regions. Also, we observe that our estimated average background level over all pixels

(last entry of x̂UOS from our algorithm) was 𝐵̂ = 1.4×10−3, which is very close to the

calibrated true background level 𝐵 = 1.3× 10−3. This background flux information,

45



num. of photons per pixel
1 2 3 4 5 6 7 8 9 10

R
M

S
E

 (
cm

)

100

101

102

SBR low
SBR high

Figure 2-6: Depth recovery performance of our algorithm at a face pixel (SBR = 6.7
and pixel coordinates (81, 272)) and a depth boundary pixel (SBR = 1.5 and pixel
coordinates (237, 278)) for varying number of photon detections.

which is valuable in evaluating the confidence of image estimates, is not available

when using the conventional log-matched filtering.

Figure 2-6 shows, for a pixel in facial region and another at the face boundary,

which have SBRs of 6.7 and 1.5 respectively, how our depth reconstruction algorithm

performs as the number of photon detections increase. We observe that the algorithm

performs better for higher SBR overall, and that the rate of decrease in depth error

with increasing number of photon detections is faster for high SBR than for low SBR,

especially in the very low-flux regime (2 to 5 detections). Also, we observe a floor in

depth error for increasing number of photon detections, at around 1 cm when SBR

is 6.7. Knowing that 𝑐∆′ was around 1 cm in our experimental imaging setup, we

see, at low SBR and low photon counts, it is hard for the algorithm to achieve depth

resolution below 𝑐∆′. In this experiment, we had 𝑚 = 𝑛 = 801. Also, we set 𝛿 = 10−4

and the average number of iterations until convergence was measured to be 2.1 over

all pixels. Code and data used to generate results can be downloaded from [21].

Computational complexity: Solving the ML problem by performing likelihood

evaluations over the cube {𝑎𝑖, 𝑏𝑗, 𝑑𝑘}𝑛𝑖,𝑗,𝑘=1 takes 𝑂(𝑛3) searches. On the other hand,

the log-ML solution, which is a convolution operation between the pulse waveform
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and the photon-count histogram, takes 𝑂(𝑤𝑛) flops, where 𝑤 is the number of depth

bins defined by the support of the finite-duration pulse waveform.

The most computationally expensive step in our Algorithm 1 is when the adjoint

solution is being obtained, since A is size 𝑚× (𝑛 + 1). However, we see that due to

the Toeplitz structure of the submatrix S of A, we can reduce computing a single

iteration of our Algorithm to 𝑂(𝑤𝑛) flops, assuming 𝑚 = 𝑛. When tested empirically,

using both experimental and simulated data, we noticed that the number of iterations

required for our algorithm to converge was close to 2, which is our fixed LIDAR signal

sparsity level. Thus, the computational complexity of our algorithm is around 𝑂(𝑤𝑛),

which is still linear in the depth bin dimension 𝑛 that typically is the largest number

of all imaging parameters.

2.6 Summary and Discussion

In this chapter, we presented an imaging framework for background-calibrationless,

pixelwise depth reconstruction using single-photon observations. Our imaging model

combined photon detection statistics with the discrete-time flux constraints expressed

using a union-of-subspaces model. Then, using our imaging model, we developed a

greedy algorithm that recovers scene depth by solving a constrained optimization

problem.

Our pixelwise imaging framework can be used in low light-level imaging applica-

tions, in which the scene being imaged has fine features and filtering techniques that

exploit patchwise smoothness can potentially wash out those details. For example, it

can be useful in applications such as airborne remote sensing [22], where the aim is

to recover finely-featured 3D terrain maps.

The proposed single-photon imaging framework can be extended to multiple-depth

estimation, where more than one reflector may be present at each pixel. In the case of

estimating depths of 𝐾 reflectors at a pixel, one may use a more general 𝐾-sparsity

assumption instead of the 1-sparsity assumption when defining the union-of-subspaces

constraint. However, 𝐾 is typically unknown. By attempting to fix the value of 𝐾,
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this naive extension fails to accurately image scenes with number of reflectors varying

from one pixel to another. In the next chapter, we see how the generalized multi-

depth estimation problem can be addressed by using a convex optimization variant

of our framework developed in this chapter, such that the number of reflectors does

not have to be specified for multi-depth imaging.
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Chapter 3

Multi-Depth Imaging

3.1 Overview of Problem

As noted in the previous chapter, the ability to acquire a scene’s 3D structure is

important in many applications, spanning from biometrics [23] to terrestrial mapping

[24]. Active depth imagers use time-of-flight information of a backreflected light

signal to construct a scene’s depth map. However, as illustrated in Figure 3-1, scenes

that include partially-reflective or partially-occluding objects have complex patterns

of light being reflected at different depths even at a single pixel. For such scenes,

one can analyze multiple light returns to fully recover the multiple depths present in

the field-of-view. This is known as the problem of multi-depth reconstruction from

full-waveform measurements [5].

Prior art: Conventional time-of-flight imaging sensors, such as the amplitude-

modulated continuous-wave (AMCW) modules, aim to reconstruct multi-depth pro-

files by the methods of transient imaging [25–27]. For low-power and long-range 3D

imaging applications, a sensitive single-photon detector is used in the active imaging

setup for low-light level operations [2, 12, 13, 28]. Recent advances in single-photon

imaging system design allow time-of-flight imaging at long ranges and at low fluxes

[29, 30]. Photon-count histogramming methods have been used for pixelwise recon-

struction of depths using the time-correlated single-photon counting (TCSPC) imag-
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Figure 3-1: Examples of active imaging scenarios in which the scene response is a sum
of responses from multiple reflectors. (a) Imaging scene with a partially-reflecting
object (shown in gray dashed line). (b) Imaging scene with a partially-occluding
object.

ing setup [14, 31]. For example, the high sensitivity of time-correlated single-photon

imaging systems were demonstrated when full photon histogram measurements were

used to track pulses of light in flight [32]. For multi-depth imaging of scene reflec-

tors in particular, one may choose to identify the peaks in the photon histogram by

brute-force search over depth bins. However, since this leads to a large processing

time (polynomial in the number of time bins, with degree equal to the number of

depths), fast algorithms using parametric deconvolution or finite-rate-of-innovation

methods have been developed [33, 34]. Assuming accurate waveform measurement,

the compressive depth acquisition camera (CoDAC) [35] framework also exploits para-

metric deconvolution, but for estimating positions of extended planar facets rather

than multiple depths per transverse location.

The previously described multi-depth imaging methods using single-photon detec-

tors only give accurate results when the image acquisition time is long enough that

the number of photon detections is high enough to form a histogram that resembles

the backreflected waveform. The problem of recovering the multi-depth information

is generally difficult in low-flux scenarios due to the low signal-to-noise ratio of observ-

ing only a few photon detections, and extraneous background light and detector dark

counts. For moderate numbers of detected photons, a statistical approach has been
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used to estimate the multi-depth profile by learning a mixture of Gaussians (MoG)

model that interprets the photon detection data as samples from a distribution of the

full-waveform observation. In the mixture model, the mode of each mixture compo-

nent corresponds to a depth value of a target. Multi-depth estimation by learning

of the mixture model is achieved either by using the expectation-maximization (EM)

algorithm [36] or the Markov chain Monte Carlo (MCMC) method [37, 38]. However,

MoG-based multi-depth estimation involves a non-convex cost function and generates

locally optimal solutions whose accuracy is generally poor when the number of de-

tected photons is low. Thus, existing methods are limited in their ability to recover

a scene’s multi-depth information in a photon-efficient manner.

Summary of our approach: In this chapter, we develop a multi-depth imaging

framework that combines the statistics of single-photon detections with the sparsity

of the scene’s temporal response at a pixel. Using our model for the measured data,

we show that pixelwise multi-depth reconstruction can be interpreted as a sparse

deconvolution problem. We propose an adaptation of the iterative soft thresholding

algorithm (ISTA) [39, 40] for our single-photon imaging setup to solve the convex op-

timization problem that arises from discretizing and relaxing the sparse deconvolution

problem.

In single-photon imaging experiments, we demonstrate the performance of the

proposed framework in the two experimental configurations shown in Figure 3-1: a

scene with a partially-reflective object and a scene with a partially-occluding object.

In both cases, we show that our framework outperforms the existing MoG-based

method at low-light levels in the presence of strong background light. For example,

as detailed in Section 3.5, our framework was successful in accurately reconstructing

the depth features of a mannequin behind a partially-reflecting medium using only

19 signal photon detections with root mean square (RMS) depth error of 11.4 cm.

Compared to the conventional MoG-based method, which gave a RMS depth error of

48.7 cm, this is an improvement by a factor of 4.2.
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3.2 Single-Photon Imaging Setup

Figure 3-2 depicts the single-photon imaging setup for estimating the 3D structure

of scene. A focused optical source illuminates a scene patch with a sequence of

pulses. The single-photon detector, in conjunction with a time correlator, is used

to time stamp individual photon detections that are generated by the backreflected

waveform from the multiple reflectors in the scene plus extraneous detections arising

from background light and dark counts. The recorded time of a photon detection is

relative to the time of the most recent pulse illumination. We raster scan the optical

source over multiple pixels in the scene to recover a spatially-resolved depth profile.

3.3 Forward Imaging Model

We first derive the relationship between the scene’s reflector depths and our photon-

detection data. To avoid unnecessary notation, we characterize the light transport

and detection statistics for a single pixel; the same model applies at each pixel. Recall

that a time-correlated single-photon detector records the time-of-detection of a photon

within a timing resolution of ∆ seconds. Then, 𝑚 = 𝑇𝑟/∆ is the number of time bins

that may contain photon detections. In other words, 𝑚 is the dimension of the photon

count vector y with each of its entries distributed as

y𝑘 ∼ Poisson

(︂
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆(𝑡) 𝑑𝑡

)︂
(3.1)

= Poisson

(︃
𝑁𝑠𝜂

∫︁ 𝑘Δ

(𝑘−1)Δ

(𝐼 * 𝑠)(𝑡) 𝑑𝑡⏟  ⏞  
Mean count of
signal photons

+ 𝑁𝑠∆(𝜂𝑏 + 𝑏𝑑)⏟  ⏞  
Mean count of

background photons
plus dark counts

)︃
, for 𝑘 = 1, . . . ,𝑚, (3.2)

where 𝐼(𝑡) is the scene impulse response and 𝑠(𝑡) is the pulse waveform for 𝑡 ∈ [0, 𝑇𝑟).

Typically, we have 𝑇𝑝 ≪ 𝑇𝑟, where the pulse duration is much shorter than the

inter-pulse time interval. Here, we have taken the detector response to be ideal, i.e.,

𝐼𝑑(𝑡) = 𝛿(𝑡). We would like to reach an approximation in which the Poisson parameter

of y𝑘 is given by the product of a known matrix and an unknown deterministic vector
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Figure 3-2: (Top) Full-waveform single-photon imaging setup for depth estimation of
multiple objects. In this example, a pulsed optical source illuminates a scene pixel
that includes a partially-reflective object occluding a target of interest. The optical
flux incident at the single-photon detector combines the backreflected waveform from
multiple reflectors in the scene pixel with extraneous background light. (Bottom
left) The photon detections, shown as spikes, are generated by the 𝑁𝑠-pulse rate
function 𝑁𝑠𝜆(𝑡) following an inhomogeneous Poisson process. The green and blue
spikes represent photon detections from the first and second reflector, respectively;
the red spikes represent the unwanted photon detections from background light and
dark counts. (Bottom right) Our convex optimization processing enables accurate
reconstruction of multiple depths of reflectors in the scene from a small number of
photon detections.
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representing the scene response at a pixel.

Similar to the discrete modeling procedure in Chapter 2, we will approximate

(𝐼 * 𝑠)(𝑡) with a sampling period of ∆′, where ∆′ = 𝑇𝑟/𝑛 for some 𝑛 ∈ Z+. We can

approximate the first term in the Poisson parameter in Eq. (3.2) as

𝑁𝑠𝜂

∫︁ 𝑘Δ

(𝑘−1)Δ

(𝐼 * 𝑠)(𝑡) 𝑑𝑡 =

∫︁ 𝑘Δ

(𝑘−1)Δ

∫︁ 𝑇𝑟

0

𝑁𝑠𝜂𝐼(𝑦)𝑠(𝑡− 𝑦) 𝑑𝑦 𝑑𝑡 (3.3)

(𝑎)
=

∫︁ 𝑘Δ

(𝑘−1)Δ

𝑛∑︁
𝑗=1

∫︁ 𝑗Δ′

(𝑗−1)Δ′
𝑁𝑠𝜂𝐼(𝑦)𝑠(𝑡− 𝑦) 𝑑𝑦 𝑑𝑡 (3.4)

=

𝑛∑︁
𝑗=1

∫︁ 𝑘Δ

(𝑘−1)Δ

∫︁ 𝑗Δ′

(𝑗−1)Δ′
𝐼(𝑦)𝑁𝑠𝜂𝑠(𝑡− 𝑦) 𝑑𝑦 𝑑𝑡 (3.5)

(𝑏)
≈

𝑛∑︁
𝑗=1

∫︁ 𝑘Δ

(𝑘−1)Δ

∫︁ 𝑗Δ′

(𝑗−1)Δ′

x𝑗

∆′
S𝑘,𝑗

∆
𝑑𝑦 𝑑𝑡 (3.6)

=

𝑛∑︁
𝑗=1

S𝑘,𝑗 x𝑗, (3.7)

where (𝑎) follows from partitioning [0, 𝑇𝑟) into 𝑛 subintervals and (𝑏) from replacing

𝐼(𝑦) and 𝑁𝑠𝜂𝑠(𝑡− 𝑦) by constant approximations on (𝑦, 𝑡) ∈ [(𝑗 − 1)∆′, 𝑗∆′)× [(𝑘 −

1)∆, 𝑘∆); specifically, we define

x𝑗 =

∫︁ 𝑗Δ′

(𝑗−1)Δ′
𝐼(𝑦) 𝑑𝑦, for 𝑗 = 1, . . . 𝑛 (3.8)

S𝑘,𝑗 =
1

∆′

∫︁ 𝑘Δ

(𝑘−1)Δ

∫︁ 𝑗Δ′

(𝑗−1)Δ′
𝑁𝑠𝜂𝑠(𝑡− 𝑦) 𝑑𝑦 𝑑𝑡, for 𝑘 = 1, . . .𝑚, 𝑗 = 1, . . . , 𝑛. (3.9)

Note that the quality of the approximation (b) will depend on the size of ∆′. Finally,

using the derived approximations, the observation model of Eq. (3.2) can be rewritten

in a concise matrix-vector form as the following:

y𝑘 ∼ Poisson ( (Sx + 𝐵1𝑚×1)𝑘 ) , for 𝑘 = 1, 2, . . . ,𝑚, (3.10)

where x is an 𝑛 × 1 vector, S is an 𝑚 × 𝑛 matrix, and 1𝑚×1 is an 𝑚 × 1 vector of
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ones, and

𝐵 = 𝑁𝑠∆(𝜂𝑏 + 𝑏𝑑). (3.11)

Observation likelihood expressions: Our goal of multi-depth reconstruction is

to accurately estimate x from y. Using Eq. (3.10), the photon count histogram vector

y has the probability mass function

𝑝𝑌 (y;x,S, 𝐵) =

𝑚∏︁
𝑘=1

exp {−(Sx + 𝐵1𝑚×1)𝑘} (Sx + 𝐵1𝑚×1)
y𝑘

𝑘

y𝑘 !
. (3.12)

We can thus write the negative log-likelihood of x as

ℒ(x;y,S, 𝐵) = − log 𝑝𝑌 (y;x,S, 𝐵) ∼=
𝑚∑︁
𝑘=1

[(Sx)𝑘 − y𝑘 log (Sx + 𝐵1𝑚×1)𝑘] , (3.13)

where ∼= indicates equality up to terms independent of x. By checking the positive-

semidefiniteness of the Hessian matrix of the negative log-likelihood function, it is

straightforward to prove that ℒ(x;y,S, 𝐵) is convex in x (see Appendix C).

Characteristics of the impulse response functions of natural scenes: It

has been shown that the following 𝐾-reflector model is effective in describing the

impulse response of a natural scene with multiple reflectors [37]:

𝐼(𝑡) =

𝐾∑︁
𝑖=1

𝑎(𝑖)𝛿
(︀
𝑡− 2𝑑(𝑖)/𝑐

)︀
, 𝑡 ∈ [0, 𝑇𝑟), (3.14)

where 𝑎(𝑖) and 𝑑(𝑖) are respectively the reflectivity and depth values of the 𝑖th reflector

at an image pixel, 𝛿(·) denotes the delta function, 𝑐 is the speed of light, and 𝐾 is the

number of reflectors. Let us choose the indexing rule so that 𝑑(1) < 𝑑(2) < · · · < 𝑑(𝐾).

Then, we define the minimum separation of reflector depths as

𝑑𝑠 = min
𝑖=1,...,𝐾−1

⃒⃒
𝑑(𝑖) − 𝑑(𝑖+1)

⃒⃒
. (3.15)
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Assuming the 𝐾-reflector model and 𝑐∆′/2 < 𝑑𝑠, we see that exactly 𝐾 elements of

x are nonzero and those entries have values {𝑎(𝑖)}𝐾𝑖=1.

3.4 Solving the Inverse Problem

The multipath profile can be estimated by minimizing the negative log-likelihood

function, while including a signal support constraint that the number of nonzero ele-

ments in x must be equal to 𝐾. However, the ℓ0-norm constraint set, which describes

the set of vectors with 𝐾 nonzero elements, is a non-convex set. With no addi-

tional assumptions, exactly solving an optimization problem constrained to this set

is computationally infeasible, since the problem is NP-hard [41]. In order to design

a computationally feasible algorithm, we apply the convex relaxation whereby the

ℓ1-norm serves as a proxy for the ℓ0-norm [42]. We see later in this section that this

relaxation is also useful given the fact that 𝐾 varies from one pixel to another for a

scene (See Section 3.5). Our proposed imaging framework also constrains the reflec-

tivity estimates to be nonnegative. Thus, we obtain the multi-depth profile estimate

x̂OPT by solving the following ℓ1-penalized and constrained likelihood optimization

problem:

minimize
x

ℒ(x;y,S, 𝐵) + 𝜏‖x‖1 (3.16)

subject to x𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 𝑛,

where 𝜏 > 0 is the variational parameter controlling the degree of penalizing the

non-sparsity of the estimate. Because ℒ(x;y,S, 𝐵) and the ℓ1-norm are both convex

functions in x and the nonnegative cone is a convex set, the minimization problem

given in (3.16) is a convex optimization problem.

ISTA is a celebrated algorithm for rapidly solving the ℓ1-penalized constrained

likelihood optimization problem when the data is corrupted by additive white Gaus-

sian noise. However, instead of using a Gaussian likelihood, (3.16) is derived based on

the model for single-photon observations. Thus, we modify the first step of ISTA that
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Figure 3-3: Illustration of a shrinkage-thresholding operation used as a step in ISTA
(left) and the shrinkage-rectification operation used as a step in our SPISTA (right)
that includes the nonnegativity constraint. Here the operations map scalar 𝑣 to scalar
𝑧 (variables only used for illustration purposes), with regularization parameter 𝜏 .

takes a gradient descent in the least-squares cost to one that takes a gradient descent

in the negative log-likelihood obtained from photon observations given in Eq. (3.13).

We can compute the gradient of our negative log-likelihood function as

∇xℒ(x;y,S, 𝑏) =

𝑚∑︁
𝑘=1

∇x [(Sx)𝑘 − y𝑘 log (Sx + 𝐵1𝑚×1)𝑘] (3.17)

=

𝑚∑︁
𝑘=1

[︂
(S𝑇 )𝑘 −

y𝑘

(Sx + 𝐵1𝑚×1)𝑘
(S𝑇 )𝑘

]︂
(3.18)

= S𝑇 [1𝑚 − div(y, Sx + 𝐵1𝑚×1)] , (3.19)

where we used (S𝑇 )𝑘 to denote the 𝑘th column of S𝑇 and div(·, ·) represents elemen-

twise division of the vector in the first argument by the vector in the second one. We

then modify the second step of ISTA that performs a shrinkage-thresholding opera-

tion on the gradient-descent solution to include the nonnegativity constraint of scene

reflectivities. Our extra nonnegativity constraint replaces the shrinkage-thresholding

operation with a shrinkage-rectification operation. The shrinkage-thresholding used

in ISTA and the shrinkage-rectification used in our algorithm are illustrated in Fig.

3-3.

Our modified ISTA algorithm is thus given in Algorithm 2. After solving (3.16) us-
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ing Algorithm 2, we apply post-processing on x̂SPISTA that sets small residual nonzero

elements to zero and groups closely-neighboring nonzero elements into an average

depth. The depth grouping step is to ensure maximum sparsity of the multi-depth

profile, by using the assumption that a tight cluster of depth estimates originates

from a single reflector in the scene. This end-to-end processing is summarized in

Algorithm 3. Also, Fig. 3-4 shows the intermediate SPISTA output and the final

output of Algorithm 3, given single-pixel photon count observations obtained from

our experiments of imaging partially-occluding objects shown in Fig. 3-9.

In summary, we have developed a low-flux multi-depth imaging framework that

incorporates the statistics of single-photon detections with the sparsity of the multi-

depth profile at a pixel to formulate a convex optimization problem in (2.13). This

is unlike existing histogram-based low-flux methods, such as MoG, which solve a

non-convex problem directly and do not guarantee high accuracy solutions due to

local minima. Our framework modifies ISTA to include accurate photodetection

statistics and the nonnegativity constraint to accurately solve (2.13). Our algorithm

also employs post-processing to ensure filtering of residual signals and clustering depth

estimates to maximize the level of sparsity of the final multi-depth estimate.

3.5 Results

Simulations of two-path recovery: Using simulations, we first study the multi-

depth estimation performance for 𝐾 = 2, motivated by the two-Dirac recovery sce-

nario of second-order multipath interference from reflective surfaces [43] and looking

through a transparent object [44] in conventional high light-level time-of-flight imag-

ing. We focus on comparing two algorithms: the MoG-based estimator using a greedy

histogram-data-fitting strategy and our proposed imager using convex optimization.

Let {𝑑1, 𝑑2}, with 𝑑1 < 𝑑2, be the set of true depths at a pixel. Also, let {𝑑1, 𝑑2}, with

𝑑1 < 𝑑2, be the set of identified depths obtained using either the MoG method or

our proposed framework. Then, we used the pulsewidth-normalized root mean-square
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Algorithm 2 Single-photon iterative soft-thresholding algorithm (SPISTA)

Input: y,S, 𝐵, 𝜏, x̂(0), 𝛿
Output: x̂SPISTA

Initialize 𝑘 ← 0
repeat

𝑘 ← 𝑘 + 1
x̂(𝑘) ← x̂(𝑘−1) − S𝑇

[︀
1𝑚×1 − div(y, Sx̂(𝑘−1) + 𝐵1𝑚×1)

]︀
◁ Gradient descent

x̂(𝑘) ← 𝒯0(x̂(𝑘) − 𝜏) ◁ Shrinkage-rectification
until ‖x̂(𝑘−1) − x̂(𝑘)‖22 < 𝛿
x̂SPISTA ← x̂(𝑘) ◁ Output converged solution

Algorithm 3 Computational multi-depth single-photon imaging

Input: y,S, 𝐵, 𝜏, x̂(0), 𝛿, 𝜖
Output: x̂OPT, the sparse multi-depth vector

1. Convex optimization:
Obtain x̂SPISTA by solving (3.16) with SPISTA(y,S, 𝐵, 𝜏, x̂(0), 𝛿). Set x̂OPT =
x̂SPISTA.

2. Residual filtering:
Identify the index set 𝐿 = {𝑖 ∈ {1, 2, . . . , 𝑛} : (x̂OPT)𝑖 < 𝜖}, where 𝜖 is a small
positive number. Set (x̂OPT)|𝐿 = 0 to filter out residuals.

3. Depth grouping:
Identify index set in which the adjacent bins of x̂OPT are all non-negative. Replace
them with their average depth bin.
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Figure 3-4: Illustration of steps of Algorithm 3 using experimental photon-count data
for the single-pixel multi-depth example of partially-occluding reflectors in Fig. 3-
9. (a) The raw photon count vector y from a pixel that contains two reflectors at
around time bins 2600 and 3500. Other than the photon detections describing the
two targets of interest, we observe extraneous photon detections from background
and dark counts. (b) The output solution of SPISTA in Algorithm 2. Note that
the extraneous background and detector dark counts are suppressed. (c) The final
solution of Algorithm 3 that groups depths of SPISTA output.
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Figure 3-5: Simulated performance of MoG-based method and proposed framework
of Algorithm 3 in recovering signals with 𝐾 = 2 for two different background lev-
els. Signal photon detections are detections originating from scene response and do
not include the background-light plus dark-count detections. Note that the units of
NRMSE are in meters, after being normalized by the pulsewidth; 1 NRMSE corre-
sponds to an unnormalized mean-squared error of 𝑐𝑇𝑝/2 = 4.5 cm. The plots also
include error bars indicating the ±1 standard errors.

error (NRMSE) to quantify the recovery performance for the two-reflector signal:

NRMSE
(︁
{𝑑1, 𝑑2}, {𝑑1, 𝑑2}

)︁
=

1

𝑐𝑇𝑝/2

√︃
E
[︂

1

2

(︂(︁
𝑑1 − 𝑑1

)︁2
+
(︁
𝑑2 − 𝑑2

)︁2)︂]︂
, (3.20)

such that if NRMSE is below 1, then the imager has achieved sub-pulsewidth depth

accuracy. When more than two paths were estimated by the algorithm, two depth

values with highest intensities were used for NRMSE computation.

Figure 3-5 shows Monte Carlo simulated performance results of pixelwise two-

reflector estimation using the MoG-based method and our method. The results are

presented for low (𝐵 = 0.1) and high (𝐵 = 0.5) background levels. For learning MoG

components given photon observation samples, we used the EM algorithm. Simula-

tion parameters were set as the following: the number of detector time bins 𝑚 = 100,

the number of discretized depth bins 𝑛 = 100, RMS pulsewidth 𝑇𝑝 = 0.3 ns, and

bin width ∆ = 1 ns. The pulse shape was discrete Gaussian. The number of Monte

Carlo trials for the simulation was 2000. For each Monte Carlo trial, two entries out
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of 𝑛 were generated in a uniformly random fashion. (A two-path reflector profile was

chosen from 𝑛-choose-2 combinations at random.) Both selected entries were set to

1, in order to simulate two reflectors with unit reflectivities. For our algorithm, we

chose the regularization parameter 𝜏 = 𝐵, based on a heuristic that higher penalty is

required for higher background levels. We chose the convergence parameter 𝛿 = 0.01,

and the residual filtering parameter 𝜖 = 0.1. Also, our initialization x̂(0) was chosen

to be y. We see that for both low and high background levels, our proposed frame-

work uniformly outperforms the existing MoG method for various numbers of photons

backreflected from the scene. For example, for both 𝑏 = 0.1 and 𝑏 = 0.5, the differ-

ence in RMSE between our framework and MoG is around 2 given 10 signal photon

detections. This translates to RMS depth error reduction of 9 cm, since 1 NRMSE

equals 𝑐𝑇𝑝/2 = 4.5 cm. Also, our method successfully achieves sub-pulsewidth depth

accuracy (NRMSE less than 1) when the number of signal photons exceeds ∼30, while

the MoG method fails to do so.

In this simulation, we required an average of 85 SPISTA iterations per pixel. The

average per pixel processing time of Algorithm 3 was measured to be ∼0.004 seconds.

Our algorithm’s processing time is short because the computational time of a SPISTA

update is linear in the number of depth bins 𝑛, since the most costly operation in

SPISTA is the size-𝑛 convolution, and the post-processing step only requires a linear

search over 𝑛 bins. The average per pixel processing time of the MoG method was

measured to be ∼0.019 seconds. All processing was done using a laptop with Intel(R)

Core(TM) i7-4500u CPU running at 1.80 GHz.

Simulations of resolvability: In the problem of multi-depth estimation, it is

natural to ask how small the depth separation of two adjacent reflectors can be

so that the proposed algorithm can still accurately resolve two reflectors instead of

one. Figure 3-6 shows simulation results that describe how the number of reflectors

estimated by our algorithm (number of nonzero elements in x̂OPT) varies with the

distance between two reflectors and the relative reflectivities of the two reflectors. We

fixed the mean number of photons coming from the first target with unit reflectivity
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Figure 3-6: Simulated results of mean estimates of the number of reflectors produced
by Algorithm 2 at a pixel, when the RMS pulsewidth is set to give 𝑐𝑇𝑝 = 2 cm. Here
we show plots when the reflectivity ratio between the first and second target is (a) 1
(blue line), (b) 1/2 (sky blue line), (c) 1/4 (yellow line), and (d) 1/8 (red line).

at 100 by changing 𝑁 , the number of illumination trials, in Eq. (3.9). The reflectivity

of the second target was set to be one of the values in the set {1, 1/2, 1/4, 1/8}. Here

we had 𝑚 = 𝑛 = 100, ∆ = 1 cm, 𝛿 = 10−2, 𝜖 = 0.1, 𝜏 = 0.5, and 𝑏 = 0. Algorithm

2 was applied to 2000 independent simulated experiments and the results in Fig. 3-6

show the mean number of estimated reflectors. In Fig. 3-6, for all relative reflectivity

settings, we observe that if the distance between two reflectors is too small (around

3𝑐𝑇𝑝), then our algorithm falsely recognizes two reflectors as a single reflector. Even

when there is a large separation between reflectors (larger than 3𝑐𝑇𝑝), if the ratio

between target reflectivities is too small as 1/8, then the number of reflectors is most

likely to be falsely recognized as 1 by our Algorithm 3.

Effect of ℓ1 relaxation on estimating number of reflectors: Our framework

relies on the relaxation of the ℓ0-norm constraint into a ℓ1-norm constraint to formu-

late a convex optimization problem. By doing this, our algorithm does not explicitly

require a parameter specifying 𝐾̂, which is an estimate of number of scene reflectors,

as is the case for EM algorithms for MoG estimation. Instead, our framework employs

𝜏 , a continuous regularization parameter, to set the degree of penalizing non-sparse

estimates of x.
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Figure 3-7: For different values of signal amplitude a (reflectivity multiplied by
the peak value of pulse waveform) and regularization parameter 𝜏 , the plots show
success-1 in black and success-2 in red. Note that, by definition, success-1 upper-
bounds success-2.

Our use of a regularization parameter naturally leads to the following question.

What is the range of number of reflectors that a single 𝜏 value can cover in our

algorithm? In other words, how robust is our algorithm to using a single 𝜏 value for

accurate imaging of both a scene with two reflectors and a scene with ten reflectors,

for example? To answer this question, we first define two success rates for our multi-

depth estimate:

success-1 = E[1𝐾=𝐾̂ ], (3.21)

success-2 = E[1supp(x)=supp(x̂OPT)]. (3.22)

The values of success-1 and success-2 measure the probabilities that our framework

will output the correct number of reflectors and the correct depth values, respectively.

Note that both success-1 and success-2 have maximum values of 1. Moreover, success-

1 must always equal or exceed success-2, since if the depth estimates are correct, then

the estimated the number of reflectors must be correct.

Figure 3-7 shows success-1 and success-2 over increasing numbers of simulated re-
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flectors at a pixel (𝐾 ranging from 1 to 15) for two different regularization parameters

𝜏 and signal amplitude values 𝑎 for 𝐵 = 0. In this simulation, we chose 𝑚 = 𝑛 = 300,

𝛿 = 10−5, 𝜖 = max(x̂SPISTA)/5. and a Gaussian pulse illumination with RMS duration

equal to 1 detector time bin. For each subplot, success-1 and success-2 were computed

using Monte Carlo simulations of 3000 trials, where each trial randomly sampled the

reflector depths from 𝑛-choose-𝐾 settings as in the previous sections. We make two

observations from our simulation plots.

1. There is a graceful degradation in the success probabilities as the number of

reflectors increase for all 𝜏 and 𝑎 values. This is in contrast to the conventional

methods like EM, as they will give rise to non-zero success probabilities only

when 𝐾 = 𝐾̂, and not for a range of 𝐾’s.

2. The optimal values of 𝜏 depend on the amplitude 𝑎. For example, if the am-

plitude is low (𝑎 = 30), then we see that choosing 𝜏 = 0.1 is better than

setting 𝜏 = 1, as it leads to higher success probabilities for the entire range

of simulated reflector numbers. On the other hand, if the amplitude is high

(𝑎 = 300), then 𝜏 = 1 seems to be a more optimal choice than 𝜏 = 0.1, at least

for 𝐾 ∈ {2 . . . , 6}.

We also demonstrated the performance of the proposed multi-depth imager using

the experimental single-photon imaging setup employed in Chapter 2. A PicoQuant

LDH series pulsed laser diode with center wavelength of 640 nm, pulsewidth 𝑇𝑝 = 270

ps, and repetition period 𝑇𝑟 = 100 ns was used as the illumination source. In our

experiments, we observed that the laser spot size cast on a planar object at a 1 m

distance was around 1 mm, implying that the beam solid angle was around 7.9×10−7

sr. A Thorlabs GVS012 two-axis galvo was used to raster scan the scene with a

field-of-view of 40∘ × 40∘. A lensless Micro Photon Devices PDM series Geiger-mode

avalanche photodiode detector with quantum efficiency 𝜂 = 0.35, timing jitter less

than 50 ps, and dark counts per second less than 2 × 104 was used for detection

of photons. A PicoQuant model HydraHarp 400 time-correlator was used to record

the detection times of individual photons. We injected extraneous background light
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using an incandescent lamp. We chose to use the raster-scanning setup simply due

to availability of equipment; our computational framework can be applied without

modification when employing an imaging setup that includes a flood illumination

source and an array of single-photon detectors. The experimental data collection was

performed by collaborator F. Xu.

For all measurements, we obtained the pulse waveform matrix S and background-

light plus dark-count value 𝐵 through a calibration step prior to the scene measure-

ments. We obtained the pulse shape by projecting the laser light at the wall, which

was a reflective plane 4 meters from the imager, and collecting a photon count his-

togram. We time-gated an interval of the photon count histogram at around 4× 2/𝑐

seconds, such that the interval contained a clean representation of the pulse histogram.

By creating a convolution matrix using the calibrated pulse waveform shape, we got

a measurement of S. The value of 𝐵 was obtained by taking a baseline measurement

of the incandescent light with laser light not present in scene. Code and data are

available in [45].

Experimental imaging through a partially-reflective object: Figure 3-8

shows experimental results of imaging through a partially-reflective object, which is

the multi-depth imaging scenario in Fig. 3-1(a), using the MoG-based and proposed

multi-depth estimation methods with an average of 46 photon detections at each

pixel. We used a stack of plastic sheets enclosed in a plexiglass case as the partially-

reflective object, with an average reflectivity of ∼50%. Through calibration we found

that the probabilities of a photon coming from the scatterer, the scene behind the

scatterer, and background light or dark counts were equal to 0.44, 0.42, and 0.14,

respectively. These numbers were calibrated using a single histogram with 10000

photons gathered from all pixels, where each pixel contributed a single photon to the

aggregate histogram. Thus, the number of photons that originated from the scene-of-

interest behind the scatterer is calculated to be 46× 0.42 ≈ 19. The raster-scanning

resolution was set to be 100× 100 in this experiment.

We see that the existing MoG-based method fails to recover useful depth features
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Figure 3-8: (Left) Photograph of the mannequin placed behind a partially-scattering
object from the single-photon imager’s point of view. (Right) Experimental results
for estimating the mannequin’s depth map through the partially-reflective material
using MoG-based and our estimators, given that our imaging setup is at 𝑧 = 0. The
EM algorithm for MoG fitting used 𝐾 = 2. Our multi-depth results were generated
using the parameters 𝜏 = 0.1, 𝛿 = 10−4, 𝜖 = 0.1, and x̂(0) = S𝑇y.

of the mannequin, but our method successfully does so. For example, in the side view

of the reconstructed depth, the result from our method differentiates the longitudinal

locations of the face and the torso of the mannequin, unlike the result from the MoG

method. We were able to form the ground truth depth map of the mannequin by using

the log-matched filtering solution [46] on a larger dataset of 500 photons per pixel,

after time-gating the photon arrivals at around 2.6 ns such that remaining photons

only describe the mannequin scene placed at around 4 m. Then, we computed that

while the conventional MoG solution gave 48.7 cm of RMS depth error, ours gave

11.4 cm. The RMS depth error was computed as the square root of the average of

squared depth errors over all pixels. Our framework thus gave an improvement in

reducing erroneous depth pixels by a factor of 4.2, compared to the MoG method,

for the task of imaging a scene with partially-reflective object. In this experiment of

imaging through a partially-reflecting object, we required an average of 98 SPISTA

iterations per pixel. The processing times for MoG and the proposed methods are
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Per-pixel processing time Total processing time
MoG 0.003 seconds 30 seconds
Proposed 0.036 seconds 360 seconds

Table 3.1: Processing times for MoG and proposed methods for experimental imaging
through a partially-reflecting object.

given in Table 3.1.

Experimental imaging of a partially-occluding object: For experimental

validation of multi-depth estimation for scenes with partially-occluding objects, we

used a photon detection dataset that was collected by D. Venkatraman for the first-

photon imaging project [12] with the same raster-scanning setup. Our experimental

scene consisted of a sunflower and the background wall as shown in Figure 3-9. This

experiment models the multi-depth imaging scenario in Figure 3-1(b). Here we have

a higher raster-scanning resolution of 300 × 300, such that many pixels are at the

depth boundaries of the two reflective objects: the sunflower and the wall. There are

multiple returns at such pixels, where the sunflower’s petals partially occlude the wall

behind it. In our data, the probabilities of a photon originating from the scene and

from background light plus dark counts are 0.8 and 0.2, respectively. These numbers

were calibrated using a single histogram with 90000 photons gathered from all pixels,

where each pixel contributed to a single photon to the aggregate histogram.

Figure 3-10 shows how the proposed imager compares to the MoG estimator for

the sunflower and wall scene. The mean number of photon detections over all pixels

was measured to be 26 for this experiment. In the figure, we observe that our proposed

multipath imager successfully distinguishes the sunflower’s petals from its leaves and

the wall behind it, even though there exists mixed-depth-pixels at boundaries and high

background light plus dark counts. This is most visible in the side view, where we see

that the noisy depth estimates present in the MoG results are absent when using our

method. Similar to the previous imaging experiment, we were able to form the ground

truth depth map of the sunflower by using the log-matched filtering solution on a

larger dataset of 500 photons per pixel, after time-gating the photon arrivals at around
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Per-pixel processing time Total processing time
MoG 0.0057 seconds 8.5 minutes
Proposed 0.0014 seconds 2 minutes

Table 3.2: Processing times for MoG and proposed methods for experimental imaging
of a partially-occluding object.

1.6 ns such that remaining photons only describe the sunflower placed at around 2.5

m, and not the wall behind it. Then, we computed that while the conventional

MoG solution gave 46.5 cm of RMS depth error, ours gave 4.3 cm. Our framework

thus gave an improvement in RMS depth error by a factor of 10.8, compared to

the MoG method, for the task of imaging a scene with partially-occluded object.

In this experiment of imaging a partially-occluding object, we required an average

of 7 SPISTA iterations per pixel. The processing times for MoG and the proposed

methods are given in Table 3.2. Note that the MoG method in both depth accuracy

and time complexity performs worse in the partial-occluder imaging experiment than

in the previous partial-reflector imaging experiment. The reason is because, in the

previous experiment, the number of reflectors was fixed to be 2 (first bounce from

plexiglass and second bounce from mannequin scene) for all pixels, but it varies to be

either 1 or 2 from pixel to another here. Because the MoG method relies on recovering

two modes, the model mismatch is larger in the partial-occluder imaging experiment,

and thus leading to poorer performance.

3.6 Summary and Discussion

In this chapter, we presented a robust framework for reconstructing a scene’s multi-

depth profile using low light-level data from a single-photon detector. Our novel

imaging method accurately models the single-photon detection statistics from mul-

tiple reflectors in the scene, while exploiting the fact that multipath profiles can be

expressed as sparse signals. Using our signal model, the multipath estimation prob-

lem is one of sparse deconvolution. We designed an algorithm inspired by ISTA that

reaches the globally optimal solution of the sparse deconvolution problem’s convex
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Figure 3-9: Single-photon imaging setup for estimating multi-depth from partial oc-
clusions at depth boundary pixels. Sample data from 38 photon detections is shown
below for the pixel (94, 230) where partial occlusions occur. We show experimental
results of multi-depth recovery for this scene using the MoG-based and our methods
in Figure 3-10.
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Figure 3-10: Experimental results of depth reconstruction for a sunflower occluding
a wall, given that our imaging setup is at 𝑧 = 0. Using our imaging framework, the
mixed-pixel artifacts at the depth boundary of the flower and background light plus
dark count noise are suppressed. The EM algorithm for MoG fitting used 𝐾 = 2. Our
multi-depth results were generated using the parameters 𝜏 = 0.2, 𝛿 = 10−4, 𝜖 = 0.1,
and x̂(0) = S𝑇y.
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relaxation in a computationally efficient manner, relative to brute force search meth-

ods. For example, the average runtime of our algorithm to estimate the multiple

depths of a pixel of the mannequin scene in Figure 3-8 was ∼36 ms.

Using both simulations and experiments for scenes including partially-reflecting

and partially-occluding objects, we demonstrated that our imaging framework out-

performs the existing MoG-based method for multi-depth estimation in the presence

of background light and dark counts.

Unlike the parameter-free MoG-based multi-depth imaging method, our frame-

work introduces a number of free parameters, such as the regularization parameter.

For our experiments, we used the heuristic of choosing the parameters based on the

calibrated background level. In practice, when the signal-to-background ratio varies

over multiple imaging experiments, one can employ cross-validation techniques to

learn the scalar parameters from multiple experiments [47].

For future work, it is of interest to study how applying post-processing tech-

niques, such as 3D point cloud filtering, can improve recovery performance. Also,

optoelectronic techniques, such as range-gating and narrowband optical filtering, can

be incorporated to reject background counts at the data acquisition level and thus

enable a more accurate multi-depth reconstruction framework.
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Chapter 4

Array-Based Time-Resolved Imaging

4.1 Overview of Problem

As demonstrated in the previous two chapters, accurately estimating a scene’s 3D

structure at low light levels can be done using time-of-flight data collected from a

raster scanning source and a time-correlated single SPAD detector. However, unlike

conventional raster-scanning imagers, which use single-pixel photon counters capable

of ∼10-ps time tagging, a typical array setup requires highly parallelized time-to-

digital conversions that limit its photon time-tagging accuracy to ∼1 ns [48]. In this

chapter, we develop an array-specific algorithm that converts coarsely time-binned

photon detections to highly accurate scene depth and reflectivity by exploiting both

transverse smoothness and longitudinal sparsity of natural scenes.

Prior art: The state-of-the-art depth imaging technique in terms of achieving

high photon-efficiency was established by the authors of first-photon imaging (FPI)

[12], who demonstrated accurate 3D and reflectivity recovery from the first detected

photon at each pixel. Their experimental imaging setup, which was employed for our

imaging purposes in the previous two chapters, used a raster scanning source and

a time-correlated single SPAD detector. Using this setup, the first-photon imaging

framework acquired exactly one photon detection at every pixel, making each pixel’s

acquisition time a random variable. Consequently, FPI is not applicable to operation
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using a SPAD-detector array [49–54]—all of whose pixels must have the same acqui-

sition time—thus precluding FPI’s reaping the dramatic image-acquisition speedup

that such arrays afford [1, 32, 55]. Although there have been extensions of FPI to

the fixed acquisition-time operation needed for array detection [2, 14], both their the-

oretical modeling and experimental validations were still limited to raster scanning

with a single SPAD detector. As a result, they ignored the limitations of currently

available SPAD-array systems—much poorer time-tagging performance and pixel-to-

pixel variations of SPAD properties—implying that these initial fixed acquisition-time

(pseudo-array) frameworks will yield sub-optimal depth and reflectivity reconstruc-

tions when used with low-light experimental data from an actual SPAD array.

Summary of our approach: Here we propose and demonstrate a photon-efficient

3D structure and reflectivity imaging technique that can deal with the aforementioned

constraints that SPAD array imagers impose. We give the first experimental demon-

stration of accurate time-correlated SPAD-array imaging of natural scenes obtained

from ∼1 detected signal photon per pixel on average. Unlike prior work, our frame-

work achieves high photon efficiency by exploiting the scene’s structural information in

both the transverse and the longitudinal domains to censor extraneous (background-

light plus dark-count) detections from the SPAD array detector. Because our new

imager achieves highly photon-efficient imaging in a short data-acquisition time, it

paves the way for dynamic and noise-tolerant active optical imaging applications such

as monitoring an ultrafast biological process that is sensitive to light.

4.2 Single-Photon Imaging Setup

Our experimental setup is illustrated in Figure 4-1. The illumination source was a

pulsed laser diode (PicoQuant LDH series with a 640 nm center wavelength) whose

original output-pulse duration was increased to a root-mean-square (RMS) value of

𝑇𝑝 ≈ 1 ns. The laser diode was pulsed at a 𝑇𝑟 ≈ 50 ns repetition period set by

the SPAD array’s trigger output. A diffuser plate spatially spread the laser pulses
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Figure 4-1: Single-photon array imaging framework. (a) SPAD-array imaging setup.
A repetitively-pulsed laser flood-illuminates the scene of interest. Laser light reflected
from the scene plus background light is detected by a SPAD camera. Photon detec-
tions at each pixel are time tagged relative to the most recently transmitted pulse
and recorded. The raw photon-detection data were processed on a standard laptop
computer to recover the scene’s 3D structure and reflectivity. (b) Example of 3D
structure and reflectivity reconstruction of mannequin and flower scene using the
baseline single-photon imager from [1]. (c) Example of 3D structure and reflectivity
reconstruction of mannequin and flower scene from our processing. Large portions of
the mannequin’s shirt and facial features that were not visible in the baseline image
are revealed using our method. Both results in (b) and (c) were generated using an
average of ∼1 detected signal photon per pixel.
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to flood illuminate the scene of interest. An incandescent lamp injected unwanted

background light into the camera. The lamp’s power was adjusted so that (averaged

over the region that was imaged) each detected photon was equally likely to be due

to signal (back-reflected laser) light or background light. A standard Canon FL-series

photographic lens focused the signal plus background light on the SPAD array. Each

photon detection from the array was time tagged relative to the time of the most

recently transmitted laser pulse and recorded.

Our SPAD array [52, 54], covering a 4.8×4.8mm footprint, consists of 32×32 pixels

of fully independent Si single-photon avalanche diodes and CMOS-based electronic

circuitry that includes a time-to-digital converter for each SPAD detector. The SPAD

within each 150×150𝜇m pixel has a 30-𝜇m-diameter circular active region, giving the

array a 3.14% fill factor. At the 640 nm operating wavelength each array element’s

photon detection efficiency is ∼20% and its dark-count rate is ∼100Hz at room

temperature. To extend the region that could be imaged and increase the number

of pixels, we used multiple image scans to form a larger-size composite image. In

particular, we mounted the SPAD array on a feedback-controlled, two-axis motorized

translation stage, to produce images with 𝑁𝑥 ×𝑁𝑦 = 384× 384 pixels.

The SPAD array has a ∆ = 390ps time resolution set by its internal clock rate.

We set each acquisition frame length to 65𝜇s, with a gate-on time of 16𝜇s and a

gate-off time of 49𝜇s for limiting power dissipation of the chip and for data transfer.

At the start of each frame the SPAD array was set to trigger the laser to generate

pulses at a ∼20MHz repetition rate. Hence, in the 16𝜇s gate-on time of each frame,

about 320 pulses illuminated the scene. (See Appendix E for more details on the

SPAD detector array operation.)

4.3 Forward Imaging Model

We define Z,A ∈ R𝑁𝑥×𝑁𝑦 to be the scene’s 3D structure and reflectivity that we aim

to recover, and we let B ∈ R𝑁𝑥×𝑁𝑦 be the average rate of background-light plus dark-

count detections. Flood illumination of the scene at time 𝑡 = 0 with a photon-flux
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pulse 𝑠(𝑡) then results in the following Poisson-process rate function for (𝑖, 𝑗)-th pixel

of the composite image:

𝜆𝑖,𝑗(𝑡) = 𝜂𝑖,𝑗 A𝑖,𝑗 𝑠(𝑡− 2Z𝑖,𝑗/𝑐) + B𝑖,𝑗, 𝑡 ∈ [0, 𝑇𝑟), (4.1)

where 𝜂𝑖,𝑗 ∈ (0, 1] is the (𝑖, 𝑗)th detector’s photon detection efficiency, and 𝑐 is the

speed of light. Observe that, unlike the raster-scanner’s imaging model used in the

previous two chapters (Eq. (2.2)), the quantum efficiency and background plus dark-

count response are pixel-dependent in our array setup.

Fabrication imperfections of the SPAD array cause some pixels to have inordi-

nately high dark-count rates (B𝑖,𝑗 ≫ 𝜂𝑖,𝑗 A𝑖,𝑗

∫︀ 𝑇𝑟

0
𝑠(𝑡) 𝑑𝑡), making their detection

times uninformative in our imaging experiments because they are predominantly from

dark counts. Thus we performed camera calibration to determine the set ℋ of these

“hot pixels ” (2% of all pixels in our experiment reported below) so that their outputs

could be ignored in the processing of the imaging data.

Recall our definition of the total number of time bins as 𝑚 = 𝑇𝑟/∆ and let Y𝑖,𝑗,𝑘

be the observed number of photon counts in the 𝑘th time bin for pixel (𝑖, 𝑗) after 𝑁𝑠

pulsed-illumination trials. By the theory of low-flux photon counting from Eq. (1.3),

we have that Y𝑖,𝑗,𝑘’s statistical distribution is

Y𝑖,𝑗,𝑘 ∼ Poisson

(︂
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆𝑖,𝑗(𝑡) 𝑑𝑡

)︂
, (4.2)

for 𝑘 = 1, 2, . . . ,𝑚, where we have assumed that the pulse repetition period is long

enough to preclude pulse aliasing artifacts. Again, we operate in a low-flux condition

such that
∑︀𝑚

𝑘=1Y𝑖,𝑗,𝑘, the total number of detections at pixel (𝑖, 𝑗), is much less than

𝑁𝑠, the total number of illumination pulses, to avoid dead time effects of single-photon

detector array.

Our imaging problem is then to construct accurate image estimates, Âarray and

Ẑarray, of the scene’s reflectivity A and 3D structure Z using the sparse photon de-

tection data Y ∈ R𝑁𝑥×𝑁𝑦×𝑚.
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4.4 Solving the Inverse Problem

In the low-flux regime, wherein there are very few detections and many of them are

extraneous, an algorithm that relies solely on the aforementioned pixelwise photode-

tection statistics has very limited robustness. For example, we saw from Figure 2-6

of Chapter 2 that accurate pixelwise depth imaging methods can be robust when

we detect more than 10 photons per pixel. Instead of only using the pixelwise pho-

todetection statistics, we aim to achieve higher photon efficiency by exploiting the

structural constraints that are present in most natural scenes. Our 3D structure and

reflectivity reconstruction algorithm exploits such scene constraints in three steps.

∙ Step 1 – Estimating scene reflectivity: Using the statistics of the raw

photon data cubeY𝑖,𝑗,𝑘, we have thatC𝑖,𝑗, the total number of photon detections

at pixel (𝑖, 𝑗), is the sum of statistically independent Poisson random variables

and hence it is itself Poisson, i.e.,

C𝑖,𝑗 ≡
𝑚∑︁
𝑘=1

Y𝑖,𝑗,𝑘 ∼ Poisson

⎛⎝ 𝑚∑︁
𝑘=1

𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆𝑖,𝑗(𝑡) 𝑑𝑡

⎞⎠ (4.3)

= Poisson

(︃
𝑁𝑠

∫︁ 𝑇𝑟

0

𝜆𝑖,𝑗(𝑡) 𝑑𝑡

)︃
. (4.4)

Using the expression given in the previous section for 𝜆𝑖,𝑗(𝑡) we get

𝑁𝑠

∫︁ 𝑇𝑟

0

𝜆𝑖,𝑗(𝑡) 𝑑𝑡 = 𝑁𝑠(𝜂𝑖,𝑗A𝑖,𝑗𝑆 + 𝑚∆B𝑖,𝑗), (4.5)

where 𝑆 =
∫︀ 𝑇𝑟

0
𝑠(𝑡) 𝑑𝑡. We can thus write C𝑖,𝑗’s probability mass function in

terms of A𝑖,𝑗, as

𝑓𝐶(C𝑖,𝑗;A𝑖,𝑗) =
[𝑁𝑠(𝜂𝑖,𝑗A𝑖,𝑗𝑆 + 𝑚∆B𝑖,𝑗)]

C𝑖,𝑗 exp[−𝑁𝑠(𝜂𝑖,𝑗A𝑖,𝑗𝑆 + 𝑚∆B𝑖,𝑗)]

C𝑖,𝑗!
,

(4.6)

for C𝑖,𝑗 = 0, 1, 2, . . .. We let ℒ𝐴(A𝑖,𝑗;C𝑖,𝑗) = − log 𝑓𝐶(C𝑖,𝑗;A𝑖,𝑗) be the negative
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log-likelihood of A𝑖,𝑗, and, for convenience, we set 𝑆 = 1, because reflectivity

images can be scaled arbitrarily.

For robust reflectivity estimation, we first ignore data from the hot-pixel set ℋ

and then take our reflectivity image to be the non-negative Âarray that minimizes

the negative log-likelihood of the remaining pixels plus a term that penalizes

non-smoothness, i.e., we find Âarray by solving the following optimization prob-

lem:

Âarray = arg min
A

⎡⎣⎛⎝∑︁
(𝑖,𝑗)/∈ℋ

ℒ𝐴(C𝑖,𝑗;A𝑖,𝑗)

⎞⎠+ 𝜏𝐴 ‖A‖TV

⎤⎦ (4.7)

subject to A𝑖,𝑗 ≥ 0, for all 𝑖, 𝑗.

Here, 𝜏𝐴 is the regularization parameter penalizing non-smoothness in the re-

flectivity image and ‖ · ‖TV is the total-variation (TV) norm, which is known to

be effective in characterizing the spatial correlations in natural images [56, 57].

The objective function in (4.7) is convex, so computing the reflectivity image

can be done efficiently using projected-gradient methods [58].

In the experiment described below, we chose the regularization parameter by

first generating reflectivity images with 𝜏𝐴 = 𝜏 ′𝐴/(1−𝜏 ′𝐴) for 𝜏 ′𝐴 ∈ {0.1, 0.2, . . . , 0.9}

and then choosing the 𝜏𝐴 value that minimized ℓ2 distance from the ground

truth reflectivity. In practical imaging scenarios, where the ground truth is not

available, the regularization parameter is typically chosen using cross-validation

methods [47].

∙ Step 2 – Censoring extraneous detections: Unlike reflectivity estima-

tion, whose optimization problem is convex even in the presence of extraneous

detections from background light and dark counts, the optimization problem

for depth estimation when there are extraneous detections is not convex, and

hence not computationally tractable [2]. Thus, in order to obtain a tractable

problem for depth estimation, we first censor extraneous detections.
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Let zΔ = hist(ZΔ) be the one-dimensional histogram of the scene’s depth values,

Z, in 𝑚 bins of width 𝑐∆/2 m. A natural assumption for many applications,

such as ground-to-air LIDAR, is that the opaque reflective objects in scene are

individually clustered in depth, so that zΔ is sparse. Thus, by locating the non-

zero elements of zΔ we can be very effective in censoring extraneous detections,

because they are uniformly distributed over [0, 𝑇𝑟).

We obtain a proxy estimate for zΔ using our raw photon data cube as follows.

We compute z̃Δ = hist(𝑐T/2), where T is the set of detection times obtained by

ignoring hot pixels, summing Y𝑖,𝑗,𝑘 over its transverse-coordinate indices, and

then subtracting out the average background-light plus dark-count response,

viz.,

z̃Δ =
∑︁
(𝑖,𝑗)/∈ℋ

(Y𝑖,𝑗,𝑘 −∆B𝑖,𝑗), 𝑘 = 1, . . . ,𝑚. (4.8)

We note that z̃Δ is a noisy version of zΔ convolved with 𝑠𝑧 ∝ 𝑠(2𝑧/𝑐), where

𝑠(𝑡) is the laser’s pulse shape and
∫︀
𝑠𝑧 𝑑𝑧 = 1. Thus, the optimization problem

that solves for the sparse signal ẑΔ from z̃Δ is

ẑΔ = arg min
zΔ

𝐾∑︁
𝑘=1

‖z̃Δ − (s𝑧 * zΔ)𝑘‖22 (4.9)

subject to ‖zΔ‖0 = 𝐾, (zΔ)𝑘 ≥ 0, for all 𝑘,

where s𝑧 is 𝑠𝑧 discretized into bins of width 𝑐∆/2, * is the discrete one-dimensional

convolution operator, and 𝐾 is the number of non-zero elements in the recon-

structed ẑΔ. In our experiments, we chose 𝐾 = 2 because our scene of interest

consisted of two objects (i.e., a mannequin and a flower) with a small separation

in depth. In practice, one can always use a 𝐾 value that overestimates the true

number of depth clusters, since we are not interested in locating the exact depth

cluster centroids; we are only using Step 2 to coarsely identify relevant depth

regions in space to filter out extraneous detections.
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The optimization program in (4.9) is a discrete sparse-deconvolution problem

that we solve approximately using a modified version of orthogonal matching

pursuit (OMP) [59]. OMP is a fast and robust sparse signal-pursuit algorithm,

which we modified to orthogonally project the intermediate solution onto the

non-negativity constraint set at every iteration.

Let supp(ẑΔ) = {𝑘 : ẑΔ𝑘
̸= 0, 𝑘 = 1, 2, . . . ,𝑚} be the support of the solution

to (4.9). Because signal-photon detections at pixel (𝑖, 𝑗) are mostly confined to

𝑇𝑝 s around 2𝑍𝑖,𝑗/𝑐, we use

𝒮𝑇𝑝 = {𝑘 : |𝑘 − 𝑘′| < 𝑇𝑝/∆, for any 𝑘′ ∈ supp(ẑ)Δ}. (4.10)

to generate the photon-sparse data cube after censoring, denoted Ỹ ∈ R𝑁𝑥×𝑁𝑦×𝑚,

via

Ỹ𝑖,𝑗,𝑘 =

⎧⎪⎨⎪⎩ Y𝑖,𝑗,𝑘, if 𝑘 ∈ 𝒮𝑇𝑝 and (𝑖, 𝑗) /∈ ℋ,

0, otherwise.

(4.11)

Our extraneous-detection censoring mechanism differs significantly from the

ones used in first-photon imaging [12] and pseudo-array imaging [13]. Those

prior works exploited transverse correlations in a scene to discriminate extrane-

ous detections from signal detections, whereas our method relies on the longi-

tudinal sparsity of natural scenes when they are subjected to the coarse time-

binning inherent in a SPAD array. Figure 4-2 shows the increased censoring

of extraneous detections—for the mannequin and flower dataset—that results

from using our method instead of the pseudo-array method.

∙ Step 3 – Estimating scene depth: Assuming that Ỹ𝑖,𝑗,𝑘 contains only

the signal photon detections, the detection time-bin 𝑇𝑖,𝑗 at pixel (𝑖, 𝑗) /∈ ℋ has
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Figure 4-2: Photon-count histograms after censoring extraneous detections for the
state-of-the-art pseudo-array method [2] (red) and our method (blue). The raw-data
photon histogram is also given for reference (dashed black). The blue block indicates
the ground truth depth values of objects in the scene scaled by 𝑐/2. By exploiting
the scene’s longitudinal sparsity, our method rejects more extraneous detections than
does the pseudo-array method, which relies on transverse correlations. The greater
the number of extraneous detections that survive censoring, the greater the amount
of regularization that will occur in depth estimation, which will lead, in turn, to
oversmoothing the depth image.

probability mass function

𝑓𝑇 (𝑇𝑖,𝑗;Z𝑖,𝑗) =

∫︁ 𝑇𝑖,𝑗Δ

(𝑇𝑖,𝑗−1)Δ

𝑠(𝑡− 2Z𝑖,𝑗/𝑐) 𝑑𝑡

𝑚∑︁
𝑇 ′
𝑖,𝑗=1

∫︁ 𝑇 ′
𝑖,𝑗Δ

(𝑇 ′
𝑖,𝑗−1)Δ

𝑠(𝑡− 2Z𝑖,𝑗/𝑐) 𝑑𝑡

, 𝑇 = 1, 2, . . . ,𝑚. (4.12)

Approximating the laser’s pulse shape 𝑠(𝑡) by a Gaussian, and using left-

Riemann sums to approximate the integrals, we can reduce the negative log-

likelihood function ℒ𝑍(Z𝑖,𝑗;𝑇𝑖,𝑗) = − log 𝑓𝑇 (𝑇𝑖,𝑗;Z𝑖,𝑗) to the simple ℓ2-loss func-

tion:

ℒ𝑍(Z𝑖,𝑗;𝑇𝑖,𝑗) =

⎧⎨⎩ ‖𝑇𝑖,𝑗∆− 2Z𝑖,𝑗/𝑐‖22, (𝑖, 𝑗) /∈ ℋ,

0, otherwise.
(4.13)
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For robust depth estimation, we take our depth image to be the non-negative

Ẑ that minimizes the negative log-likelihood plus a term that penalizes non-

smoothness, viz., we find Ẑ by solving the following optimization problem:

Ẑarray = arg min
Z

⎡⎣∑︁
(𝑖,𝑗)/∈ℋ

∑︁
𝑇𝑖,𝑗∈U𝑖,𝑗

ℒ𝑍(Z𝑖,𝑗, 𝑇𝑖,𝑗)

⎤⎦+ 𝜏𝑧 ‖Z‖TV (4.14)

subject to Z𝑖,𝑗 ≥ 0, for all 𝑖, 𝑗,

whereU𝑖,𝑗 is the set of uncensored detection times that can be obtained using Ỹ

at pixel (𝑖, 𝑗) and 𝜏𝑧 is a regularization parameter penalizing non-smoothness in

the depth image. The problem in (4.14) is convex, so it can be solved efficiently

using projected-gradient methods.

Similar to what was done for reflectivity estimation, in our experiments, we

chose 𝜏𝑧 by first generating depth images using 𝜏𝑧 = 𝜏 ′𝑧/(1 − 𝜏 ′𝑧) for 𝜏 ′𝑧 ∈

{0.1, 0.2, . . . , 0.9} and then choosing the 𝜏𝑧 value that minimized the ℓ2 dis-

tance from the ground truth depth. As before, cross-validation methods can

be employed when ground truth is unavailable. Figure 4-3 illustrates the steps

of our algorithm using experimental photon count dataset obtained using the

SPAD array imaging setup.

4.5 Results

Experiments: Using the SPAD array imaging setup described in Section 4.2, we

performed experiments of using a small number of photon detections to recover scene

reflectivity and depth. Experimental data collection was performed by collaborator

F. Xu.

Figure 4-4 shows experimental results of 3D structure and reflectivity reconstruc-

tions for a scene comprised of a mannequin and sunflower when, averaged over the

scene, there was ∼1 signal photon detected per pixel and ∼1 extraneous (background-

light plus dark-count) detection per pixel. The image resolution was 384×384 for this
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Figure 4-3: Stages of 3D structure and reflectivity reconstruction algorithm. (a)
Raw time-tagged photon detection data are captured using the SPAD camera setup.
Averaged over the scene, the number of detected signal photons per pixel was ∼1, as
was the average number of background-light detections plus dark counts. (b) Step
1: raw time-tagged photon detections are used to accurately estimate the scene’s
reflectivity by solving a regularized optimization problem. (c) Step 2: to estimate 3D
structure, extraneous (background-light plus dark-count) photon detections are first
censored, based on the longitudinal sparsity constraint of natural scenes, by solving
a sparse deconvolution problem. (d) Step 3: the uncensored (presumed to be signal)
photon detections are used for 3D structure reconstruction, by solving a regularized
optimization problem.
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Figure 4-4: 3D structure and reflectivity reconstructions of the mannequin and flower
scene. (a)–(d) Results of imaging 3D structure and reflectivity using the filtered
histogram method, the state-of-the-art pseudo-array imaging method, our proposed
framework, and the ground-truth proxy obtained from detecting 550 signal photons
per pixel. For visualization, the reflectivity estimates are overlaid on the reconstructed
depth maps for each method. The frontal views, shown here, provide the best visu-
alizations of the reflectivity estimates. (e)–(h) Results of imaging 3D structure and
reflectivity from (a)–(d) rotated to reveal the side view, which makes the reconstructed
depth clearly visible. The filtered histogram image is too noisy to show any useful
depth features. The pseudo-array imaging method successfully recovers gross depth
features, but, in comparison with the ground truth estimate in (h), it overestimates
the dimensions of the mannequin’s face by several cm and oversmooths the facial fea-
tures. Our SPAD-array-specific method in (g), however, gives high-resolution depth
and reflectivity reconstruction at low flux. (i)–(k) The depth error maps obtained
by taking the absolute difference between estimated depth and ground truth depth
show that our method successfully recovers the scene structure with sub-pulse-width
resolution of less than 𝑐∆/2 ≈ 6 cm, while existing methods fail to do so.
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experiment. We compare our proposed method with the baseline pixelwise imaging

method that uses filtered histograms [1] and the state-of-the-art pseudo-array imaging

method [2]. From the visualization of reflectivity overlaid on depth, we observe that

the baseline pixelwise imaging method (Figure 4-4(a),(e)) generates noisy depth and

reflectivity images without useful scene features, owing to the combination of low-flux

operation and high background detections plus detector dark counts. In contrast, the

existing pseudo-array method—which exploits transverse spatial correlations but pre-

sumes constant 𝐵𝑖,𝑗—gives a reflectivity image that presents overall object features

but suffers oversmoothing from its effort to mitigate hot pixel contributions (Figure 4-

4(b)). Furthermore, because the pseudo-array method presumes the 10-ps-class time

tagging of a single-element SPAD that is used in raster-scanning setups, its depth

image fails to reproduce the 3D structure of the mannequin’s face from the ns-class

time tagging afforded by our SPAD array. In particular, it overestimates the head’s

dimensions and oversmooths the facial features (Figure 4-4(f)), whereas our array-

specific method accurately captures the scene’s 3D structure and reflectivity (Figure

4-4(c),(g)). This accuracy can be seen by comparing our framework’s result with the

high-flux pixelwise depth and reflectivity images (Figure 4-4(d),(h))—obtained by de-

tecting 550 signal photons per pixel and performing time-gated pixelwise processing—

that serve as ground-truth proxies for the scene’s actual depth and reflectivity. For

the fairest comparisons in Figure 4-4, each algorithm—baseline pixelwise processing,

pseudo-array processing, and our new framework—had its parameters tuned to min-

imize the mean-squared degradation from the ground-truth proxies. The depth error

maps in Figure 4-4(i)–(k) quantify the resolution improvements from our imager over

the existing ones for this low-flux imaging experiment. Recall that the time bin du-

ration of each pixel of the SPAD camera is ∆ = 390ps, corresponding to 𝑐∆/2 ≈

6 cm depth resolution. Our imager successfully recovers depth with sub-bin-duration

resolution, while existing methods fail to do so.

In practical imaging scenarios, the camera will collect extremely low levels of back-

reflected laser light at pixels where reflectors have very low reflectivity or are very

far away. In our imaging experiment, by covering the wall behind our mannequin
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and flower with a black cloth, we simulated such an environment in our experiments.

Conventional depth estimates, even with a high number of detections per pixel, will be

very noisy at such pixels because most of those pixels’ detections will be extraneous.

Because our Step 2 is highly effective in pixelwise censoring extraneous detections,

the regularization and inpainting that we employ in our Step 3 yields depth images

with sharp edges in such difficult imaging scenarios.

In Figure 4-5, we show the effect of varying the reflectivity and depth regularization

parameters 𝜏𝐴, 𝜏𝑍 for the mannequin and sunflower dataset. We see that for very small

regularization parameters (𝜏𝐴 = 0.4, 𝜏𝑍 = 0.4), the reconstruction result is noisy due

to undersmoothing. For very high regularization parameters (𝜏𝐴 = 9.0, 𝜏𝑍 = 9.0), we

find that the reflectivity estimate is almost featureless and the depth estimate has

oversmoothing distortions that are visible at the sunflower’s edges.

In Figure 4-6, we compare our 3D structure and reflectivity reconstruction method

with baseline pixelwise imaging [60] and the pseudo-array method [2, 13] for a scene

that consisted of a watering can and a basketball. The mean photon count averaged

over all 384×384 pixels was approximately 1.0, and the mean signal photon count per

pixel was approximately 0.5. Thus, the signal-to-background ratio was approximately

1, as in the mannequin and sunflower experiment. As the figure shows, our method

successfully recovers the undistorted 3D shapes of the two objects and their reflectivity

profiles, while the pixelwise method’s image is exceedingly noisy and the pseudo-

array’s is oversmoothed from its attempt to mitigate extraneous-detection noise.

Implementation details of the reconstruction algorithm: Prior to initiating

our three-step imaging algorithm, we first performed calibration measurements to:

identify ℋ, the SPAD array’s set of hot pixels; obtain the average background-light

plus dark-count rates for the remaining pixels; and determine the laser pulse’s RMS

time duration. It turned out that: about 2% of our camera’s 1024 pixels were placed

in ℋ; the background-light plus dark-count rates were indeed spatially varying across

the remaining pixels; and the laser pulse’s time duration was 𝑇𝑝 ≈ 1 ns and its

normalized shape was reasonably approximated as a Gaussian.
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Figure 4-5: Effect of varying the regularization parameters in our 3D structure and
reflectivity reconstruction algorithm for the mannequin and flower scene. The optimal
parameter set was {𝜏𝐴, 𝜏𝑍} = {2.6, 4.3}.
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Figure 4-6: Imaging results for the watering can and basketball scene. Notice the
stripes of the basketball being visible when using our method.
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Hot pixels in the 32× 32 pixel SPAD array are pixels whose dark-count rates are

so high that their outputs are non-informative in estimating scene reflectivity and

depth. To identify such pixels, we collected data with the laser turned off and the

SPAD array observing a low-reflectivity target (dark wall). Under these conditions,

hot pixels are clearly visible in the resulting photon-count image, see Figure 4-7(a),

and we get the SPAD array’s hot-pixel set by a simple thresholding procedure on that

image. With a threshold of 150 counts/s, 2% of the camera’s 1024 pixels are labeled

as hot pixels. The hot-pixel set ℋ for the 384 × 384 pixel composite image is then

obtained by appropriate translations of the array’s hot pixels.

To accurately measure the laser’s pulse shape, we replaced our SPAD array—which

has 390 ps time binning—with a single-pixel Micro Photon Devices SPAD detector

and a HydraHarp time-correlator that provides 8 ps time binning. We focused the

laser on a 1× 1m2 white planar calibration target placed 𝑧 ≈ 1m from the imaging

setup and obtained the photon-count histogram shown in Figure 4-7(b) when 3344

signal photons were detected. Extraneous photon detections were suppressed in this

data collection by time-gating around 2𝑧/𝑐 seconds. The laser’s root mean-square

(RMS) pulse duration was computed from this histogram to be 𝑇𝑝 ≈ 1 ns. For our

computational reconstruction algorithm, we apply the Gaussian approximation to the

calibrated pulse waveform.

To calibrate the background-light plus dark-count rate matrix B, we turned off the

laser and obtained the B image, shown in Figure 4-7(c), for the mannequin and flower

scene. Spatial variations in B and the presence of hot pixels are clearly visible (note

the periodic xy spacing of hot pixels, due to the translational scanning procedure).

We then proceeded to Step 1 of the reconstruction algorithm: we estimated re-

flectivity Âarray by combining the Poisson statistics of photon counts with a TV-

norm smoothness constraint on the estimated reflectivity—while censoring the set

of hot pixels—to write the optimization as a TV-regularized, Poisson image inpaint-

ing problem. This optimization problem is convex in the reflectivity image variable

A, which allowed us to solve it with simple projected-gradient methods [58] in a

computationally-efficient manner. For a 384 × 384 image, the processing time of

90



Figure 4-7: Calibration results for the SPAD camera and scene parameters. (a) A 32×
32 image of photon counts when the SPAD camera observes a weakly-reflecting planar
wall with the laser off (left) was used to generate a 32 × 32 binary mask indicating
hot-pixel locations with white markers (middle). The hot pixel mask was obtained by
thresholding the photon-count image with an appropriate threshold chosen from the
photon-count histogram (right). (b) Laser pulse shape. Extraneous photon detections
were suppressed by time-gating near the roundtrip delay to a 1×1m calibration target.
(c) The non-constant 384 × 384 background-light plus dark-count rate matrix B for
the mannequin and flower scene.
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Step 1 was about 6 seconds on a standard laptop computer.

For Step 2 of the reconstruction algorithm, we filtered the photon-detection dataset

to impose the longitudinal constraint that the scene has a sparse set of reflectors. This

is because the scaled detection-time histogram hist(𝑐T/2) that has been corrected for

the average background-light plus dark-count detections per bin is a proxy solution

for hist(ZΔ), where hist(ZΔ) is a size-𝑚 histogram that bins the scene’s 3D structure

at the camera’s 𝑐∆/2 native range resolution. Thus, we used orthogonal matching

pursuit (OMP) [59] on hist(𝑐T/2), the coarsely-binned histogram of photon detec-

tions, to find the non-zero spikes representing the object cluster depths. We then

discarded photon detections that implied depth values more than 𝑐𝑇𝑝/2 away from

the estimated depth values, because they were presumably extraneous detections. For

a 384× 384 image, the processing time of Step 2 was about 17 seconds on a standard

laptop computer.

Having censored detections from all hot pixels and, through the longitudinal con-

straint, censored almost all extraneous detections on the remaining pixels, we treated

all the uncensored photon detections as being from backreflected laser light, i.e., that

they were all signal-photon detections. For Step 3 of our reconstruction algorithm,

we estimated the scene’s 3D structure using these uncensored photon detections. Be-

cause we operated in the low-flux regime, many of the pixels had no photon detections

and thus are non-informative for 3D-structure estimation. A robust 3D estimation

algorithm must inpaint these missing pixels using information derived from nearby

pixels’ photon detection times. Approximating the laser’s pulse waveform 𝑠(𝑡) by a

Gaussian with RMS duration 𝑇𝑝, we solved a TV-regularized, Gaussian image in-

painting problem to obtain our depth estimate Ẑarray. This is a convex optimization

problem in the depth image variable Z, and projected-gradient methods were used

to generate Ẑarray in a computationally-efficient manner. For a 384× 384 image, the

processing time of Step 3 was about 20 seconds on a standard laptop computer.

Choice of laser-pulse RMS time duration: For a transform-limited laser

pulse, like the Gaussian 𝑠(𝑡) that our imaging framework presumes, the RMS time
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duration 𝑇𝑝 is a direct measure of system bandwidth. As such, it has an impact

on the depth-imaging accuracy in low-flux operation. This impact is borne out by

the simulation results in Figure 4-8, where we see that the pulse waveform with the

shortest RMS duration does not provide the best depth recovery. In order to improve

the reconstruction accuracy even with short RMS duation, frameworks for dithered

quantization may be employed [61, 62]. Thus, in our experiments, we broadened the

laser’s output pulse to 𝑇𝑝 ≈ 1 ns. This pulse duration allowed us to resolve depth

features well below the 𝑐∆/2 ≈ 6 cm value set by the SPAD array’s 390-ps-duration

time bins.

4.6 Summary and Discussion

We have proposed and demonstrated a SPAD-array-based imaging framework that

generates highly-accurate images of a scene’s 3D structure and reflectivity from ∼1

detected signal photon per pixel, despite the presence of extraneous detections at

roughly the same rate from background light and dark counts. By explicitly mod-

eling the limited single-photon time-tagging resolution of SPAD-array imagers, our

framework dramatically improves reconstruction accuracy in this low-flux regime as

compared to what is achieved with existing methods. The photon efficiency of our

proposed framework is quantified in Figure 4-9 where we have plotted the sub-pulse-

width RMS depth error it affords in imaging the mannequin’s face versus the average

number of detected signal photons per pixel. For this task our algorithm realizes

cm-class depth resolution down to less then 1 detected signal photon per pixel, while

the baseline pixelwise imager’s depth resolution is more than an order of magnitude

worse because of its inability to cope with extraneous detections.

Because our framework employs a SPAD camera for highly photon-efficient imag-

ing, it opens up new ways to image 3D structure and reflectivity on very short time

scales while requiring very few photon detections. Hence it could find widespread

use in applications that require accurate imaging using extremely small amounts of

light, such as remote terrestrial mapping [24], seismic imaging [63], fluorescence pro-
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Figure 4-8: Relationship between RMS pulse duration and depth-recovery accuracy.
(a) Plot of depth-recovery accuracy using our algorithm (Step 2 and Step 3) versus
RMS pulse duration 𝑇𝑝 obtained by simulating a low-flux SPAD imaging environment
with an average of 10 detected signal photons per pixel and 390 ps time bins. Depth
recovery is deemed a success at a pixel if estimated depth is within 3 cm of ground
truth, and the depth recovery accuracy of a method is computed by the mean suc-
cess rate over all pixels. (b) Ground-truth depth map used in the simulations. (c)
Estimated depth map for 𝑇𝑝 = 0.3 ns. (d) Estimated depth map for 𝑇𝑝 = 1.1 ns. (e)
Estimated depth map for 𝑇𝑝 = 2.4 ns. When 𝑇𝑝 is too short, there is a systematic
bias in the estimated depths, although random errors are minimal. When 𝑇𝑝 is too
long, the estimated depths are very noisy. In all our SPAD-array experiments we
used 𝑇𝑝 ≈ 1 ns, which is in the sweet spot between durations that are too short or
too long. We emphasize, however, that our algorithm is not tuned to a particular
pulse-width and can be performed using any 𝑇𝑝 value.
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Figure 4-9: Photon efficiency of proposed framework. (a) Plots of RMS depth error
(log scale) versus average number of detected signal photons per pixel for imaging the
mannequin’s face using our proposed framework and the baseline pixelwise processor.
Our method consistently realizes sub-pulse-width performance throughout the low-
flux region shown in the plot, whereas the baseline approach’s accuracy is more than
an order of magnitude worse, owing to its inability to cope with extraneous detections.
(b) Summary of photon efficiency versus acquisition speed (not the computational
speed) for existing 3D structure and reflectivity imagers, where fps denotes frames
per second and ppp denotes photons per pixel.
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filing [64], and astronomy [65]. We emphasize, in this regard, that our framework

affords automatic rejection of ambient-light and dark-count noise effects without re-

quiring sophisticated time-gating hardware. It follows that our imager could also

enable noise-tolerant 3D vision for self-navigating advanced robotic systems, such as

unmanned aerial vehicles (UAV) and exploration rovers [66].
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Chapter 5

Super-Resolution Imaging

5.1 Overview of Problem

In the previous chapters, we have developed photon-efficient depth and reflectivity

imaging frameworks, using an imaging setup that performs pixel-by-pixel signal ac-

quisition using a photon-counting detector. The core assumption behind these frame-

works was that each pixel defined a different scene patch, i.e., in object space pixels

were non-overlapping. In practice, this assumption can often break down due to non-

idealities in the illumination source and imaging conditions. For example, when using

a scanning setup to image very small features of a biological sample, the illumination

spot size for a scan point may be appreciably larger then the interpixel separation.

Another example is when we are constrained to image the scene through a strongly

scattering medium, whose effect is that a random illumination pattern with large spa-

tial spread will be cast on the scene instead of a low-spatial-spread illumination. As

a result, measurements from multiple scan points will be correlated [67]. (In Chapter

3, when we were imaging the scene behind a scattering medium, our scanning reso-

lution was low enough that we did not have to deal with the problem of interpixel

correlations.) Although the scanning resolution may be high, the effective spatial

resolution of the measurements can be low in such imaging scenarios. In this chapter,

we address the problem of recovering a high-resolution image from a low-resolution

measurements. As usual, we will be interested in recovering depth and reflectivity
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information from low light-level data.

Prior art: There are several approaches for image super-resolution, each model-

ing different physical constraints. The first is the upsampling approach, which aims

to increase the resolution of the low-resolution image by exploiting a scene’s spatial

prior, using techniques such as cubic splines [68], example-based learning [69], patch

recurrences [70], and depth-intensity correlations [71]. It has also been shown that

multiple misaligned low-resolution images at several viewpoints can be used to recon-

struct a high resolution image in the context of both digital photography and LIDAR

depth imaging [72, 73].

Another approach is based on the method of image deconvolution, which exploits

the fact that the image acquisition artifacts that convert measurement data from

high-resolution to low-resolution can be modeled using a two-dimensional convolu-

tion operation. This image convolution kernel is called the point spread function

(PSF). In conventional digital photography, this deconvolution problem for super-

resolution is solved to restore focus in blurry photographs [74]. For depth imaging

using amplitude modulated continuous wave (AMCW) illuminations, the camera lens-

blur PSF is typically modeled as a two-dimensional Gaussian function, and robust

deconvolution techniques that use the image smoothness prior to well-condition the

deconvolution problem have been developed [75, 76]. Theoretical recovery guarantees

of super-resolved signals by the means of sparse deconvolution methods have also

been published, both in noiseless and bounded-noise acquisition models [77, 78].

Summary of our approach: In this chapter, we propose a super-resolution imag-

ing framework that uses a photon-count histogram dataset for the purpose of low-light

depth and reflectivity reconstruction. When using the scanning LIDAR setup, we can

model the illumination patterns as a PSF, and so our super-resolution approach for

scanning LIDAR belongs in the set of deconvolution-based super-resolution methods.

However, our framework is different from existing deconvolution-based depth super-

resolution methods, because it models the effect of photon noise specific to low-light

98



pulsed LIDAR systems that employ photon-counting detectors. Furthermore, we not

only consider a PSF that is a decaying function, such as a two-dimensional Gaussian

used in classical super-resolution literature, but we also treat randomly-speckled PSFs

that are encountered when imaging a scene through strongly scattering media. We

propose two approaches for low-light super-resolution imaging.

∙ Approach 1: Our first approach to super-resolution imaging is to exploit

the LIDAR constraint that each pixel contains a single reflector at an unknown

depth. We develop a greedy algorithm, inspired by the compressive sensing

algorithm CoSaMP [16], to accurately recover the super-resolved depth image

from low-resolution photon-count data. Using a simulated single-photon imag-

ing setup, we demonstrate that our framework outperforms the conventional

maximum-likelihood (ML) and deconvolution imaging techniques for moderate

light-levels with ∼104 photons per pixel.

∙ Approach 2: As we derive later in this chapter, Approach 1 may not be

practical because of its high computational complexity of 𝑂(𝑁2𝑚2), where 𝑁

is the number of pixels and 𝑚 is the number of depth bins. Moreover, its

photon efficiency is limited. In particular, the imaging method starts to fail

in simulations with < 104 photons per pixel and a Gaussian PSF. Our second

approach uses a transformed photon-count dataset and computes the depth

and reflectivity images in 𝑂(𝑁) time. Unlike Approach 1, Approach 2 also

gains photon efficiency by exploiting the spatial correlations existing in natural

scenes. Using simulated photon-count datasets, we verify that Approach 2

outperforms conventional photon-noise-tolerant deconvolution methods, such as

the Richardson-Lucy algorithm [79, 80], and is robust to low light-level operation

at < 10 photons per pixel.
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5.2 Single-Photon Imaging Setup

Figure 5-1(a) illustrates our super-resolution imaging setup that uses a scanner and a

single-pixel photon-counting detector. (It is possible to formulate the super-resolution

problem using the dual setup of having an array detector with a floodlight illumination

source. In this array imaging setup, the PSF will be usually defined as a Gaussian

function modeling lens aberrations.) An optical source, such as a laser, illuminates the

scene with the pulse waveform 𝑠(𝑡) aimed at transverse angles of (𝜃𝑥, 𝜃𝑦). Recall that

𝑇𝑟 is the acquisition period for one pulse illumination at one scanning angle, and 𝑇𝑝

is the RMS duration of 𝑠(𝑡). The time-correlated photon-counting detector is able to

record the photon-count histogram of the backreflected waveform in [0, 𝑇𝑟) with time-

binning accuracy of ∆ seconds. The observed photon count histogram has multiple

peaks, because the PSF of illumination mixes responses from multiple reflectors with

different depths (Figure 5-1(b),(c)). This acquisition process is repeated for 𝑁𝑠 pulses

per scanning angle and for multiple scanning angles to form a spatially-resolved depth

map.

5.3 Forward Imaging Model

Consider the return from transmission of a single pulse 𝑠(𝑡), starting at time 0, that

was transmitted at transverse scanning angles (𝜃𝑥, 𝜃𝑦). The optical flux incident at

the detector, 𝑟(𝑡; 𝜃𝑥, 𝜃𝑦), is then given by

𝑟(𝑡; 𝜃𝑥, 𝜃𝑦) =

∫︁
(𝜃′𝑥,𝜃

′
𝑦)∈FOV

ℎ(𝜃𝑥 − 𝜃′𝑥, 𝜃𝑦 − 𝜃′𝑦)

× 𝑎(𝜃′𝑥, 𝜃
′
𝑦)× 𝑠(𝑡− 2𝑑(𝜃′𝑥, 𝜃

′
𝑦)/𝑐) 𝑑𝜃

′
𝑥𝑑𝜃

′
𝑦, (5.1)

for (𝜃𝑥, 𝜃𝑦) in the imaging system’s field-of-view (FOV) and 𝑡 ∈ [0, 𝑇𝑟). Here we take

FOV to be the rectangular angular region, e.g., FOV = {(𝜃𝑥, 𝜃𝑦) : 𝜃𝑥 ∈ [−80∘, 80∘], 𝜃𝑦 ∈

[−60∘, 60∘]}, we use 𝑐 to denote the speed of light, and ℎ(𝜃′𝑥, 𝜃
′
𝑦), 𝑎(𝜃′𝑥, 𝜃

′
𝑦), 𝑑(𝜃′𝑥, 𝜃

′
𝑦)

to be the illumination PSF value, reflectivity, depth of scene reflector at scanning di-
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(a) Super-resolution single-photon imaging setup

(b) Scanning procedure (c) Illumination patterns

Figure 5-1: (a) Scanning LIDAR setup. A repetitively pulsed source illuminates the
scene in a scanning manner, where at each scan point multiple reflectors at different
depths may be illuminated. The detector records the photon-count histogram of the
backreflected response. (b) From one scanning pixel to another, there can be over-
lap in illumination due to physical constraints. (c) The interpixel overlaps can come
from either illumination non-idealities, such as its finite beam-width (top), or scene
constraints such as the presence of strongly scattering media that generate random
speckle illumination patterns (bottom). We define the two-dimensional intensity pat-
tern cast on the scene as the transverse imaging kernel in our problem, and denote it
using the two-dimensional function ℎ centered at (0, 0).
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rection (𝜃′𝑥, 𝜃
′
𝑦), respectively. In our model, we have assumed that 𝑎(𝜃′𝑥, 𝜃

′
𝑦) combines

object reflectivity properties, effect of radial fall-off, and effect of reflector surface

angles.

To express the convolution equation in Eq. (5.1) in discrete matrix-vector form, we

let 𝑚 = 𝑇𝑟/∆ be the number of detector bins and 𝑁 be the number of scanned pixels.

Then, let X be an 𝑁×𝑚 sparse matrix, whose its 𝑖th row contains one non-zero entry

for 𝑖 ∈ {1, . . . , 𝑁} (single opaque reflector constraint), representing the 𝑖th pixel’s true

depth and reflectivity by its index and value. (For now, we focus on recovering a one-

dimensional depth image for illustration purposes.) Letting h be the 𝑁 × 1 vector

obtained by using a discrete approximation of PSF ℎ, we define H to be the 𝑁 ×𝑁

convolution matrix generated by h. Let S be the𝑚×𝑚 convolution matrix describing

the discretized temporal response coming from the non-zero duration of 𝑠(𝑡). Both H

and S can be calibrated prior to the imaging experiment. Finally, we use B to denote

the combined constant background and dark counts after 𝑁𝑠 acquisition trials. We

assume B is also known through offline calibration by measuring the incoming signal

while the laser is turned off. By the theory of photodetection, our set of photon-count

histogram measurements Y ∈ N𝑁×𝑚 can now be written as

Y ∼ Poisson
(︀
𝑁𝑠HXS𝑇 + B

)︀
, (5.2)

where Poisson(·) is defined entrywise. Here, for simplicity of modeling, we have

assumed unit detector quantum efficiency and a Dirac delta function for the detector

response. (If the quantum efficiency is non-unity, the final estimate can be scaled

appropriately and if the detector response is non-trivial, then it can be simply included

in S.) Figure 5-2 illustrates Eq. (5.2) using graphical representations of matrices Y,

H, X, S, and B when imaging a one-dimensional scene. From Eq. (5.2), we can write

the probability mass function of the random matrix Y as

𝑓𝑌 (Y;H,X,S,B) =
𝑁∏︁
𝑖=1

𝑚∏︁
𝑗=1

(𝑁𝑠HXS𝑇 + B)
Y𝑖,𝑗

𝑖,𝑗

Y𝑖,𝑗!
exp{−(𝑁𝑠HXS𝑇 + B)𝑖,𝑗}. (5.3)
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Figure 5-2: Illustration of the acquisition model when imaging a one-dimensional
scene. The PSF from scene illumination is modeled by H and the temporal pulse
waveform and detector response is modeled by S. Both H and S are Gaussian convo-
lution matrices in this example. B models the extraneous background and detector
dark count response. The set of photon-count histograms observed at each scan pixel
after 𝑁𝑠 illumination trials is represented by Y.

Our depth super-resolution problem is to recover the scene response of X from noisy

low-spatial-resolution histogram data Y, given the spatial and temporal kernel ma-

trices H and S, respectively, and the constant matrix B. The value and index of the

non-zero entry at the 𝑖th row of the estimate of X will indicate the reflectivity and

depth estimates of the 𝑖th pixel of images with improved resolution.

5.4 Solving the Inverse Problem

The first approach: Define 𝒮1(𝑁,𝑚) as the set of 𝑁 × 𝑚 matrices with the

sparsity pattern of every row of the matrix containing exactly one non-zero entry.

Figure 5-3 illustrates the constraint set 𝒮1(𝑁,𝑚) for 𝑚 = 3 as a product space of

1-sparse signal sets. We aim to solve the constrained maximum-likelihood (CML)

deconvolution problem:

minimize
X

ℒ (X;Y,H,S,B) (5.4)

subject to X ∈ 𝒮1(𝑁,𝑚), X𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗,

where ℒ (X;Y,H,S,B) is the negative log-likelihood function of X obtained from

Eq. (5.3) and X𝑖,𝑗 ≥ 0 models the non-negativity of light intensity. We have the

103



Figure 5-3: Illustration of 𝒮1(𝑁,𝑚) for 𝑚 = 3. Since every row of X ∈ 𝒮1(𝑁,𝑚)
belongs to a set of 1-sparse signals, our constraint set 𝒮1(𝑁,𝑚) is a product space of
𝑁 of 1-sparse signal sets.

kronecker product identity that vec(SX𝑇H𝑇 ) = (H⊗S)vec(X𝑇 ), where vec(·) denotes

matrix vectorization (column-first) and ⊗ denotes the kronecker product. Using the

kronecker product identity, we write the matrix optimization problem in (5.4) as

a vector optimization problem by defining our variables as x𝑣 = vec(X𝑇 ), y𝑣 =

vec(Y𝑇 ), b𝑣 = vec(B), and K = 𝑁𝑠(H⊗ S):

minimize
x𝑣

‖y𝑣 − (Kx𝑣 + b𝑣)‖22 (5.5)

subject to x𝑣 ∈ 𝒮1,𝑚(𝑁𝑚),

(x𝑣)𝑖 ≥ 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁𝑚},

where, for computational efficiency, we have replaced the negative log Poisson likeli-

hood function by its squared ℓ2-norm approximation for computational efficiency (see

Appendix D), and used 𝒮1,𝑚(𝑁𝑚) as the set of size-𝑁𝑚 𝑁 -sparse vectors with each

of its 𝑁 sub-block-vectors of size 𝑚 having only one non-zero entry.

Our problem in (5.5) is a problem of non-negative least squares (NNLS) with

a structured signal sparsity constraint x𝑣 ∈ 𝒮1,𝑚(𝑁𝑚). Similar to our algorithm

development in Chapter 2 for pixelwise depth imaging, we draw inspiration from the

well-known algorithms for sparse signal pursuit, such as CoSaMP [16] and union-of-

subspaces-based methods [11, 15], to design a greedy method that solves (5.5). Our

proposed approach is given in Algorithm 4.

In Algorithm 4, we define x̂[1,𝑚] as the 𝑁 -sparse vector generated by picking the
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Algorithm 4 Proposed algorithm for super-resolution LIDAR (Approach 1)

Input: y𝑣, K, b𝑣, 𝛿
Output: x̂SR

Initialize x(0) ← 0⃗, y′
𝑣 ← y𝑣 − b𝑣, u← y′

𝑣, 𝑘 ← 0

repeat
𝑘 ← 𝑘 + 1
x̂← K𝑇u ◁ Compute adjoint solution
Ω← supp

(︀
x̂[1,𝑚]

)︀
∪ supp

(︀
x(𝑘−1)

)︀
◁ Merge support

v|Ω ← N(KΩ,y
′
𝑣) ◁ Solve NNLS for deconvolution

v|Ω𝑐 ← 0
x(𝑘) ← v ◁ Update solution
u← y′

𝑣 −Kx(𝑘)

until ‖x(𝑘−1) − x(𝑘)‖22 < 𝛿
x̂SR ← x(𝑘)

best 1-sparse vector for every size-𝑚 subvector of the intermediate solution x̂, which

may be dense. We let KΩ be the submatrix of K that is obtained by horizontally

concatenating the columns of K indexed by set Ω, and we use supp(x) to be the

indices of vector x’s non-zero entries. We also define N(KΩ,y
′
𝑣), used in Algorithm

4 solving (5.5), to be the solution that minimizes the well-known non-negative least

squares program:

minimize
v

‖y′
𝑣 −KΩv‖22 (5.6)

subject to v𝑖 ≥ 0, ∀𝑖 ∈ {1, 2, . . . , |Ω|},

where y′
𝑣 is the background corrected y𝑣.

Because the non-negative least squares program has a convex cost and convex

constraint set, its optimal solution can be found quickly using projected-gradient

methods [81]. Our Algorithm 4 terminates based on the condition that the solution

gradient has squared 𝑙2-norm less than 𝛿 > 0.

Our super-resolution depth imaging algorithm is similar to existing greedy sparse

signal pursuit algorithms as it alternates between gradient descent on the cost func-

tion and pseudo-projection of the intermediate solution onto the sparsity constraint
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set. The core differences between existing sparse signal pursuit algorithms and the

proposed algorithm are

1. We compute the structured 𝑘-sparse vector specific to our single-reflector-per-

pixel constraint in LIDAR, instead of the vanilla 𝑘-sparsity constraint.

2. Instead of solving for the least squares estimate, we compute the non-negative

least squares estimate using N(KΩ,y
′
𝑣) to model the non-negativity of light

intensity.

Using x̂SR, which is the 𝑁 -sparse output vector of Algorithm 4, we obtain our

final scene depth reconstruction d̂SR by fetching the index of non-zero entry for each

of x̂SR’s 𝑚-dimensional sub-block-vector:

(d̂SR)𝑖 = supp
(︀
(x̂SR)(𝑚(𝑖−1)+1):𝑚𝑖

)︀
, ∀𝑖 = 1, . . . , 𝑁, (5.7)

where (x̂SR)(𝑚(𝑖−1)+1):𝑚𝑖 denotes the sub-vector of x̂SR created by using its indices

(𝑚(𝑖− 1) + 1), (𝑚(𝑖− 1) + 2), . . . ,𝑚𝑖.

Algorithm 4 solves for the super-resolved depth map using physically accurate

models using a non-parametric approach of estimating size-𝑁𝑚 matrix X that con-

tains information scene depth. This carries the limitation that K is a large 𝑁𝑚×𝑁𝑚

matrix. Because of the adjoint computation step, which consists of multiplying K𝑇

with a vector, the computational time of a single iteration of Algorithm 4 is then

𝑂(𝑁2𝑚2). Given that LIDAR image sizes can go up to 1 megapixels [82], compu-

tational time depending quadratically on 𝑁 is too large for Algorithm 4 to work for

applications requiring fast data processing. In addition, Algorithm 4 has limited pho-

ton efficiency, because its deconvolution relies solely on the single-reflector constraint.

In particular, it ignores the spatial prior information of depth maps being spatially

smooth, which is a safe assumption in high-resolution imaging applications. Thus, we

now propose an alternative super-resolution imaging framework that performs depth

and reflectivity reconstruction in linear time with respect to 𝑁 while incorporating

spatial priors by using a parametric approach of solving for the size-𝑁 depth and
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reflectivity maps directly, instead of using a non-parametric one.

The second approach: For the sake of illustration, let y′ define a new vector that

represents a size-𝑚 photon-count histogram measuring the combined responses from

reflectors at depths {𝑑(1), . . . , 𝑑(ℓ)} with reflectivities {𝑎(1), . . . , 𝑎(ℓ)}, that is obtained

by illuminating the scene with 𝑁𝑠 pulses, so that

y′ ∼ Poisson

(︃
𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

ℓ∑︁
𝑖=1

𝑎(𝑖)𝑠(𝑡− 2𝑑(𝑖)/𝑐)𝑑𝑡

)︃
, for 𝑘 = 1, 2, . . . ,𝑚. (5.8)

Here we assumed zero extraneous background and dark counts and unit quantum

efficiency. (In our algorithm, we will background-correct the raw histogram vector in

the pre-processing step).

Even when assuming that 𝑁𝑠 → +∞, so that SNR grows without bound, and

that the object reflectivities are known exactly, we see that the set of depth param-

eters of interest {𝑑(1), . . . , 𝑑(ℓ)} is hard to estimate as it is non-linearly related to our

observations. Consider the following linear sum of the raw photon count histogram

y′:

p =
𝑚∑︁
𝑘=1

𝑘 y′
𝑘. (5.9)

In the context of compressive depth imaging, and using assumptions of ideal noiseless

sensing conditions, it has been shown that the scalar variable p is linear in the depth

values {𝑑(1), . . . , 𝑑(ℓ)} [83]. This can be seen by first recognizing that

p
(𝑎)
≈

𝑚∑︁
𝑘=1

(︃
𝑘𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

ℓ∑︁
𝑖=1

𝑎(𝑖)𝑠(𝑡− 2𝑑(𝑖)/𝑐)𝑑𝑡

)︃
(5.10)

(𝑏)
≈ 𝑁𝑠

∆

∫︁ 𝑇𝑟

0

𝑡

ℓ∑︁
𝑖=1

𝑎(𝑖)𝑠(𝑡− 2𝑑(𝑖)/𝑐)𝑑𝑡, (5.11)

where (𝑎) comes from a strong assumption that the acquisition time is large (large
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𝑁𝑠) and (𝑏) assumes fine sampling (small ∆). Then, we have that

𝑁𝑠

∆

∫︁ 𝑇𝑟

0

𝑡

ℓ∑︁
𝑖=1

𝑎(𝑖)𝑠(𝑡− 2𝑑(𝑖)/𝑐)𝑑𝑡 (5.12)

=
𝑁𝑠

∆

ℓ∑︁
𝑖=1

𝑎(𝑖)
∫︁ 𝑇𝑟

0

𝑡𝑠(𝑡− 2𝑑(𝑖)/𝑐)𝑑𝑡 =
2𝑁𝑠

𝑐∆

[︃
ℓ∑︁

𝑖=1

𝑎(𝑖)𝑑(𝑖)

]︃
, (5.13)

assuming that
∫︀
𝑡𝑠(𝑡)𝑑𝑡 = 0. This data transformation technique was demonstrated

to be powerful in the compressive depth imaging framework of [83], where several

p values are measured independently using a spatial light modulator that defines a

forward imaging matrix with a restricted isometry property. (Essentially, Eq. (5.13),

which is linear in depth, is observed for many combinations of pixels for depth recon-

struction using linear inverse algorithms such as LASSO.)

Our imaging scenario’s imaging kernel ℎ mixes backscattered responses from sev-

eral pixels, and so we can attempt to solve for the high-resolution depth map by

defining an 𝑁𝑥 × 𝑁𝑦 matrix P that can be computed from low-light single-photon

datasets. In our low-light imaging setup, let Y be the 𝑁𝑥×𝑁𝑦×𝑚 photon count his-

togram array obtained by performing the raster scanning acquisition over an 𝑁𝑥×𝑁𝑦

uniform grid. We have that the mean of P𝑖,𝑗 is

E[P𝑖,𝑗] =
𝑚∑︁
𝑘=1

𝑘E [Y𝑖,𝑗,𝑘] (5.14)

=
𝑚∑︁
𝑘=1

𝑘𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

∑︁
(𝑖′,𝑗′)∈ℋ𝑖,𝑗

H𝑖−𝑖′,𝑗−𝑗′A𝑖′,𝑗′𝑠(𝑡− 2D𝑖′,𝑗′/𝑐)𝑑𝑡, (5.15)

where ℋ𝑖,𝑗 is the set of pixel indices defined by the support of the imaging kernel

centered at (𝑖, 𝑗), H is the 𝑤 × 𝑤 matrix representing the discretized version of the

two-dimensional kernel ℎ, and A and D are the 𝑁𝑥×𝑁𝑦 reflectivity and depth maps

of interest. We can further simplify the expression in Eq. (5.15) down to

E[P𝑖,𝑗] ≈
2𝑁𝑠

𝑐∆

∑︁
(𝑖′,𝑗′)∈ℋ𝑖,𝑗

H𝑖−𝑖′,𝑗−𝑗′A𝑖′,𝑗′D𝑖′,𝑗′ =
2𝑁𝑠

𝑐∆
(H * (A ∘D))𝑖,𝑗, (5.16)
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where the approximation only requires the fine sampling assumption (∆ → 0+), *

denotes two-dimensional discrete convolution, and ∘ denotes entrywise Hadamard

product. Similarly, the variance of P𝑖,𝑗 can be derived as follows:

Var(P𝑖,𝑗) =
𝑚∑︁
𝑘=1

𝑘2Var (Y𝑖,𝑗,𝑘) . (5.17)

=
𝑚∑︁
𝑘=1

𝑘2𝑁𝑠

∫︁ 𝑘Δ

(𝑘−1)Δ

∑︁
(𝑖′,𝑗′)∈𝒜𝑖,𝑗

H𝑖−𝑖′,𝑗−𝑗′A𝑖′,𝑗′𝑠(𝑡− 2D𝑖′,𝑗′/𝑐)𝑑𝑡, (5.18)

≈ 𝑁𝑠

∆2
(𝑇 2

𝑝 (H *A)𝑖,𝑗 + (4/𝑐2)(H * (A ∘D ∘D))𝑖,𝑗), (5.19)

where Eq. (5.17) is by the independence of photon counts among different time bins,

Eq. (5.18) is by the Poisson distribution of photon counts for each time bin, and the

approximation in Eq. (5.19) employs the fine sampling assumption. From our mean

and variance derivations of our new data variable P, we observe that to solve for D,

we require knowledge of A. Also, the variance of the data variable P𝑖,𝑗 is typically

larger than its mean, due to its quadratic dependence on D𝑖,𝑗 (see Appendix F for

a full analysis of P’s statistics). Finally, by summation of Poisson variables, noting

that the total observed photon count variable C𝑖,𝑗 =
∑︀𝑚

𝑘=1 Y𝑖,𝑗,𝑘 obeys

C𝑖,𝑗 ∼ Poisson((H *A)𝑖,𝑗), (5.20)

we can develop the steps of our photon-efficient and time-efficient super-resolution

framework (Approach 2) in the following way.

∙ Step 1 – Compute data variables:

Compute C𝑖,𝑗 =
∑︀𝑚

𝑘=1 Y
′
𝑖,𝑗,𝑘 and P𝑖,𝑗 =

∑︀𝑚
𝑘=1(𝑘Y

′
𝑖,𝑗,𝑘) for all 𝑖, 𝑗, where Y′ =

max(Y −B, 0.0) is the background corrected photon dataset. By employing a

pre-processing step for background subtraction, instead of direct noise photon

filtering mechanisms such as in the previous chapter, we are trading off decrease

in photon efficiency for an increase in computational efficiency.

∙ Step 2 – Reconstruct reflectivity:
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Compute the super-resolved reflectivity estimate ÂSR by finding the maximum-

likelihood solution with total variation (TV) regularization:

minimize
A

ℒA(A;H,C) + 𝜏A‖A‖TV (5.21)

subject to A𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗,

where ℒA(A;H,C) is the negative log Poisson likelihood function of reflectivity

map A, given that the rate parameter of Poisson variable C𝑖,𝑗 is (H * A)𝑖,𝑗,

for all 𝑖, 𝑗, and ‖A‖TV =
∑︀

𝑖,𝑗

∑︀
(𝑖′,𝑗′)∈neighbors(𝑖,𝑗) |A𝑖,𝑗 − A𝑖′,𝑗′ | to be the TV

norm. Also, 𝜏A > 0 is used as a regularization parameter that controls the

degree of penalizing non-smooth reflectivity map estimates with high TV norms.

Since the negative log Poisson likelihood and the TV norm are both convex

functions in A, (5.21) is a convex optimization problem whose optimum can

be solved efficiently using a combination of gradient descent and fast iterative

shrinkage-thresholding algorithm (FISTA) [40]. A general algorithm that solves

this convex optimization problem is summarized as pseudocode in Algorithm 5,

which is implemented in the software for sparse Poisson intensity reconstruction

algorithms (SPIRAL) [58].

∙ Step 3 – Reconstruct depth:

Compute the super-resolved depth estimate D̂SR by solving for the approximate

maximum-likelihood solution with total variation (TV) regularization:

minimize
D

ℒD(D;H, ÂSR,P) + 𝜏D‖D‖TV (5.22)

subject to D𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗,

where ℒD(D;H, ÂSR,P) is the negative log Poisson likelihood function of the

super-resolved depth map D, given that the rate parameter of Poisson variable

P𝑖,𝑗 is (H * (ÂSR ∘D))𝑖,𝑗. Observe that we use the Poisson approximation to

the distribution of P𝑖,𝑗, knowing that it is a signal-dependent variable with
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its mean being larger than its standard deviation, and that the super-resolved

reflectivity estimate ÂSR obtained from Step 2 is used as an input to Step 4.

The regularization parameter 𝜏D > 0 controls the degree of penalizing non-

smooth depth map estimates with high TV norms. Since the negative log

Poisson likelihood and the TV norm are both convex functions in D, (5.22) is

a convex optimization problem. A general algorithm that solves for this convex

optimization problem is also described by the pseudocode in Algorithm 5.

All steps of the above framework are summarized in Algorithm 6 as pseudocode.

5.5 Results

To validate our super-resolution imaging framework, we simulated a scanning LIDAR

setup at low light-levels. We first compared the depth recovery accuracy of the

proposed framework using our Approaches 1 and 2 with conventional methods of

pixelwise ML reflectivity and depth estimation and deconvolution-based ML.

Using Eq. (5.2), the baseline ML estimators âML and d̂ML given that the observa-

tions are corrupted by photon noise and assuming an identity matrix PSF (H = I𝑁×𝑁)

can be written as

(âML)𝑖 =
𝑚∑︁
𝑘=1

Y′
𝑖,𝑘 (5.23)

(d̂ML)𝑖 = arg max
𝑙∈{1,...,𝑚}

Y′
𝑖,: log(S:,𝑙 + 𝜖) (5.24)

for 𝑖 = 1, . . . , 𝑁 , where Y′
𝑖,: denotes the 𝑖-th row of Y′, S:,𝑙 denotes the 𝑙-th column of

S, and a small number 𝜖 is added to avoid numerical instability (we use 𝜖 = 2.2×10−16

using the built-in variable eps in MATLAB). The depth estimate is simply the log-

matched filter [19]. Another estimator we use for comparison is the deconvolution-
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Algorithm 5 Poisson deconvolution by TV-regularized optimization (Deconv-TV)

Input: J, K, L, 𝛿, 𝜏 , X̂(0)

Output: X̂dec

Initialize ℒ(X;J,K,L) to be the negative log Poisson likelihood with data J and
rate parameter K * (L ∘X)

𝑘 ← 0

repeat
𝑘 ← 𝑘 + 1
𝛼(𝑘−1) ← BB(𝛼(𝑘−1),J, X̂(𝑘−1), 𝛿) ◁ Optimal step size by Barzilai-Borwein [84]
X̂← X̂(𝑘−1) − 𝛼(𝑘−1)∇Xℒ(X;J,K,L)|X=X̂(𝑘−1) ◁ Gradient descent

X̂(𝑘) ← FISTA(X̂, 𝜏) ◁ TV denoising by FISTA [40]
until ‖X(𝑘−1) −X(𝑘)‖22 < 𝛿
X̂dec ← X̂(𝑘)

Algorithm 6 Proposed algorithm for super-resolution LIDAR (Approach 2)

Input: Y′, H, 𝛿, 𝜏A, 𝜏D
Output: ÂSR, D̂SR

Initialize C and P as 𝑁𝑥 ×𝑁𝑦 empty matrices

for 𝑖 = 1, 2, . . . , 𝑁𝑥 do
for 𝑗 = 1, 2, . . . , 𝑁𝑦 do

C𝑖,𝑗 ←
∑︀𝑚

𝑘=1Y
′
𝑖,𝑗,𝑘

P𝑖,𝑗 ←
∑︀𝑚

𝑘=1(𝑘Y
′
𝑖,𝑗,𝑘) ◁ Compute data variables

end for
end for

Compute pixelwise ML solutions ÂML, D̂ML to initialize convex programs

ÂSR ← Deconv-TV(C,H, I, 𝛿A, 𝜏A, ÂML) ◁ Compute super-resolved reflectivity
D̂SR ← Deconv-TV(P,H, ÂSR, 𝛿D, 𝜏D, D̂ML) ◁ Compute super-resolved depth
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based ML method (also known as pseudo-inverse filtering) where we have

(âML-DC)𝑖 =
𝑚∑︁
𝑘=1

(︀
H†Y′)︀

𝑖,𝑘
(5.25)

(d̂ML-DC)𝑖 = arg max
𝑙∈{1,...,𝑚}

(︀
H†Y′)︀

𝑖,:
log(S:,𝑙 + 𝜖), (5.26)

for 𝑖 = 1, . . . , 𝑁 , where H† is the minimum-norm pseudoinverse of the PSF H, which

is no longer taken to be the identity matrix. We observe that d̂ML-DC is obtained

from a two-step approach of first deconvolving the noisy data using the PSF and then

estimating depth.

In Figures 5-4 and 5-5, we show the results of reconstructing the reflectivity and

depth of the MIT logo using the scanning LIDAR setup with a photon-counting

detector. The spatial resolution of the MIT logo image was 19× 19 and thus we had

𝑁 = 361. The ground truth reflectivity and depth maps of the MIT logo are shown

in Figure 5-4(a) and Figure 5-5(a), respectively. For this simulation, the number of

detector time bins was 𝑚 = 10. Note that even with our low-resolution native image,

the size of matrix K in Algorithm 4 of Approach 1 is 𝑁𝑚×𝑁𝑚 = 3610×3610, which

is quite large.

Here the illumination PSF was set to be either a 2D symmetric Gaussian or

Bernoulli. The root mean square extent of the Gaussian PSF was approximately

1 scanning pixel (the dimensions of Gaussian PSF was 10 × 10), and the Bernoulli

PSF was generated randomly using 0.1 success probability with its dimensions being

19× 19. Also, we assumed that the pulsewidth 𝑇𝑝 is much smaller than the detector

time-bin ∆ and set S to be the identity matrix. For Approach 1, we set 𝛿 = 0.01

for all experiments. For Approach 2, we set 𝛿 = 10−4, 𝜏A = 1 and 𝜏D was chosen

to minimize the absolute error between D and D̂SR. In practice, since the true D is

unavailable for the tuning of 𝜏D, cross-validation methods can be used to train for

the regularization parameters prior to the imaging experiment [85]. The code used

to generate our results is available at [86].

For the imaging scenarios with the Gaussian PSF in the absence of background
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Gaussian PSF, sppp = 106, SBR = +∞
(a) True reflectivity (b) Pixelwise ML (c) ML deconv (d) Approach 1 (e) Approach 2

MAE = 0.17 MAE = 0.10 MAE = 0.03 MAE = 0.02

Gaussian PSF, sppp = 104, SBR = +∞
(f) Pixelwise ML (g) ML deconv (h) Approach 1 (i) Approach 2

MAE = 0.17 MAE = 0.59 MAE = 0.11 MAE = 0.04

Random PSF, sppp = 103, SBR = +∞
(j) Pixelwise ML (k) ML deconv (l) Approach 1 (m) Approach 2

MAE = 0.97 MAE = 0.28 MAE = 0.10 MAE = 0.12

Random PSF, sppp = 102, SBR = +∞
(n) Pixelwise ML (o) ML deconv (p) Approach 1 (q) Approach 2

MAE = 0.97 MAE = 0.76 MAE = 0.16 MAE = 0.21

Figure 5-4: Reflectivity reconstruction results (with mean absolute errors (MAE))
for a 19 × 19 MIT logo scene when SBR = +∞. We compare the pixelwise ML,
deconvolved ML, and the proposed frameworks (Approach 1 and 2) for different PSFs
and values of signal photons per pixel (sppp). (b–e) Using Gaussian PSF and sppp =
106. (f–i) Using Gaussian PSF and sppp = 104. (j–m) Using Bernoulli PSF and
sppp = 103. (n–q) Using Bernoulli PSF and sppp = 102.
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Gaussian PSF, sppp = 106, SBR = +∞
(a) True depth (b) Pixelwise ML (c) ML deconv (d) Approach 1 (e) Approach 2

MAE = 1.24 MAE = 0.70 MAE = 0.07 MAE = 0.26

Gaussian PSF, sppp = 104, SBR = +∞
(f) Pixelwise ML (g) ML deconv (h) Approach 1 (i) Approach 2

MAE = 1.22 MAE = 2.67 MAE = 0.75 MAE = 0.23

Random PSF, sppp = 103, SBR = +∞
(j) Pixelwise ML (k) ML deconv (l) Approach 1 (m) Approach 2

MAE = 2.51 MAE = 2.11 MAE = 0.84 MAE = 0.49

Random PSF, sppp = 102, SBR = +∞
(n) Pixelwise ML (o) ML deconv (p) Approach 1 (q) Approach 2

MAE = 2.68 MAE = 3.01 MAE = 2.22 MAE = 0.89

Figure 5-5: Depth reconstruction results (with mean absolute errors (MAE)) for a
19×19 MIT logo scene when SBR = +∞. We compare the pixelwise ML, deconvolved
ML, for different PSFs and values of signal photons per pixel (sppp). (b–e) Using
Gaussian PSF and sppp = 106. (f–i) Using Gaussian PSF and sppp = 104. (j–m)
Using Bernoulli PSF and sppp = 103. (n–q) Using Bernoulli PSF and sppp = 102.
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Gaussian PSF, sppp = 106, SBR = 1
(a) True reflectivity (b) Pixelwise ML (c) ML deconv (d) Approach 1 (e) Approach 2

MAE = 0.17 MAE = 0.10 MAE = 0.05 MAE = 0.03

Gaussian PSF, sppp = 104, SBR = 1
(f) Pixelwise ML (g) ML deconv (h) Approach 1 (i) Approach 2

MAE = 0.17 MAE = 0.86 MAE = 0.12 MAE = 0.05

Random PSF, sppp = 103, SBR = 1
(j) Pixelwise ML (k) ML deconv (l) Approach 1 (m) Approach 2

MAE = 0.97 MAE = 0.35 MAE = 0.10 MAE = 0.14

Random PSF, sppp = 102, SBR = 1
(n) Pixelwise ML (o) ML deconv (p) Approach 1 (q) Approach 2

MAE = 0.96 MAE = 1.12 MAE = 0.18 MAE = 0.27

Figure 5-6: Reflectivity reconstruction results (with mean absolute errors (MAE)) for
a 19×19 MIT logo scene when SBR = 1. We compare the pixelwise ML, deconvolved
ML, and the proposed frameworks (Approach 1 and 2) for different PSFs and values
of signal photons per pixel (sppp). (b–e) Using Gaussian PSF and sppp = 106. (f–i)
Using Gaussian PSF and sppp = 104. (j–m) Using Bernoulli PSF and sppp = 103.
(n–q) Using Bernoulli PSF and sppp = 102.
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Gaussian PSF, sppp = 106, SBR = 1
(a) True depth (b) Pixelwise ML (c) ML deconv (d) Approach 1 (e) Approach 2

MAE = 1.23 MAE = 0.67 MAE = 0.27 MAE = 0.30

Gaussian PSF, sppp = 104, SBR = 1
(f) Pixelwise ML (g) ML deconv (h) Approach 1 (i) Approach 2

MAE = 1.22 MAE = 2.84 MAE = 0.91 MAE = 0.42

Random PSF, sppp = 103, SBR = 1
(j) Pixelwise ML (k) ML deconv (l) Approach 1 (m) Approach 2

MAE = 2.43 MAE = 2.51 MAE = 0.84 MAE = 0.68

Random PSF, sppp = 102, SBR = 1
(n) Pixelwise ML (o) ML deconv (p) Approach 1 (q) Approach 2

MAE = 2.71 MAE = 3.71 MAE = 2.38 MAE = 1.20

Figure 5-7: Depth reconstruction results (with mean absolute errors (MAE)) for a
19× 19 MIT logo scene when SBR = 1. We compare the pixelwise ML, deconvolved
ML, and the proposed frameworks (Approach 1 and 2) for different PSFs and values
of signal photons per pixel (sppp). (b–e) Using Gaussian PSF and sppp = 106. (f–i)
Using Gaussian PSF and sppp = 104. (j–m) Using Bernoulli PSF and sppp = 103.
(n–q) Using Bernoulli PSF and sppp = 102.
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light, we see that conventional pixelwise ML lead to blurry reflectivity and depth

estimates of the letters MIT ((b) of Figures 5-4 and 5-5). The two-step approach of

deconvolving data and then performing ML estimation partially recovers the high-

resolution reflectivity and depth features of the MIT logo when the mean number of

photons-per-pixel (ppp) is 106 ((c) of Figures 5-4 and 5-5). Compared to the two-step

deconvolution approach, our Approach 1 successfully recovers the full reflectivity and

depth maps without many corrupted pixels ((d) of Figures 5-4 and 5-5). Approach

2 also gives successful reconstruction with minor errors ((e) of Figures 5-4 and 5-5).

The mean absolute error numbers presented for depth reconstruction are in the units

of 𝑐∆/2 meters. In other words, if we assume that the time bin length is 1 ns, then

the error of Approach 2 in cm is simply 100 × (0.12 × 𝑐 × 10−9)/2 = 1.8 cm with

maximum range of the imager being 𝑑max = 18 cm. At lower light-levels (ppp = 104),

the ML+deconvolution approach fails to recover useful features even compared to the

ML estimate ((f) of Figures 5-4 and 5-5), owing to a decrease in signal-to-noise ratio

((g) of Figures 5-4 and 5-5). On the other hand, Approach 1 recovers the MIT logo

reflectivity and depth while having a small number corrupted pixels ((h) of Figures 5-4

and 5-5) and Approach 2 gives an acceptable reconstruction with smoothing artifacts,

especially for the depth map ((i) of Figures 5-4 and 5-5).

For imaging scenarios with the Bernoulli PSF in the absence of background light,

we have a similar set of results showing that our framework outperforms conventional

LIDAR techniques for high-resolution reflectivity and depth imaging. One observation

that we can make is because the matrix condition number of A from the Gaussian

PSF is 3764 and that from the random PSF is 440, our Approach 1 is more robust

to photon noise with the random PSF than with the Gaussian PSF. For example,

the reflectivity and depth reconstructions of our Approach 1 using Gaussian PSF

at ppp = 104 is similar in quality to that using random PSF at ppp = 103 ((l) of

Figures 5-4 and 5-5). This leads to an interesting optical design question, related

to coded aperture photography in classical high light level imaging [87, 88], as to

how one should design the illumination PSF for optimal LIDAR performance. At

much lower light levels (ppp = 102), Approach 1 starts to break down with ∼1/3
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of the reconstructed pixels being noisy ((p) of Figures 5-4 and 5-5). Approach 2 is

unable to cope with the data variable P generated by the random PSF as effectively

as Approach 1. ((m),(q) of Figures 5-4 and 5-5). Figures 5-6 and 5-7 perform the

same imaging experiment while setting SBR = 1. As expected, compared to results

from Figures 5-4 and 5-5 we observe that there is a serious deterioration in image

reconstruction performance of the estimators at all light levels tested.

Earlier in this chapter, we noted that Approach 1 cannot be used for imaging

scenarios in which the number of pixels is large. Even for the previous simulations

with 𝑁 = 361, a single run of Algorithm 4 of Approach 1 took around 10 minutes,

while a single run of Algorithm 6 of Approach 2 took less than a second. Figure

5-8 and 5-9 shows simulated results on how Approach 2 succeeds in reconstructing

high spatial resolution reflectivity and depth maps at low light levels, where the mean

number of backscattered photons per pixel was around 9.8, for signal-to-background

(SBR) ratios of +∞ and 1. We chose H to be a Gaussian kernel with a 15-pixel

root mean square extent. Here we compare our framework not only with the results

of pixelwise ML reflectivity and depth estimate, but also with the Richardson-Lucy

deconvolution algorithm [79, 80], which is designed to perform super-resolution on

images corrupted with photon noise, applied on pixelwise ML solutions.

In Figure 5-8, the simulations used SBR = +∞ (zero extraneous background and

dark counts). Although the results from Richardson-Lucy (Figure 5-8(e),(f)) show

corrections of the image blurring effect from the pixelwise ML solutions (Figure 5-

8(c),(d)), they still suffer from noise coming from low photon counts. Because our

Approach 2 combines approximate likelihood functions derived from photodetection

with spatial correlations, it produces more accurate super-resolved image results than

the existing methods, which fail to capture all the LIDAR constraints (Figure 5-

8(g),(h)). Figure 5-9 shows simulation results when SBR = 1 (detecting a photon

from background plus dark counts is as likely as detecting a photon returning from

scene of interest), and comparing with results in Fig. 5-8 we can observe the similar

phenomena in recovery performance for all estimators, but with deterioration from

extra photon noise coming from background light.
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(a) A (b) D

(c) ÂML (d) error map of (c) (e) D̂ML (f) error map of (e)

(g) RL on ÂML (h) error map of (g) (i) RL on D̂ML (j) error map of (i)

(k) ÂSR (l) error map of (k) (m) D̂SR (n) error map of (m)

Figure 5-8: Reflectivity and depth reconstruction results for a simulated ultra low-
light LIDAR setup with MIT logo scene for SBR = +∞, with high native resolution
of 270 × 275 (thus, 𝑁 = 74250). Here, the mean number of photons per pixel was
9.8. We compare the pixelwise ML, ML after Richardson-Lucy (RL) deconvolution,
and results of our Approach 2 for both reflectivity and depth recovery. Here 𝑑max is
18 cm.
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(a) A (b) D

(c) ÂML (d) error map of (c) (e) D̂ML (f) error map of (e)

(g) RL on ÂML (h) error map of (g) (i) RL on D̂ML (j) error map of (i)

(k) ÂSR (l) error map of (k) (m) D̂SR (n) error map of (m)

Figure 5-9: Reflectivity and depth reconstruction results for a simulated ultra low-
light LIDAR setup with MIT logo scene for SBR = 1, with high native resolution of
270 × 275 (thus, 𝑁 = 74250). Here, the mean number of photons per pixel was 9.8.
We compare the pixelwise ML, ML after Richardson-Lucy (RL) deconvolution, and
results of our Approach 2 for both reflectivity and depth recovery. Here 𝑑max is 18
cm.
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5.6 Summary and Discussion

In this chapter, we presented a super-resolution LIDAR framework using moderate-

flux (∼103 ppp) and low-flux (∼10 ppp) photon-count measurements. Our framework

combined photon detection statistics, illumination PSF constraints, and model-based

sparsity constraints of reflective surfaces to formulate an optimization problem for

joint deconvolution and depth estimation. We proposed two super-resolution depth

imaging approaches. The first approach was a greedy algorithm, inspired by sparse

signal pursuit methods, that recovers the super-resolved depth image by solving a

model-based sparse optimization problem. The second approach relied on defining

new data variables and also incorporating spatial priors, such that the overall data-

processing burden is much lower and it can be more photon-efficient than the first

approach for high resolution scenes. Using low-light LIDAR simulation results, we

demonstrated that both approaches of our framework outperform the approach of

combining existing deconvolution methods with pixelwise ML for several low light

level conditions, even in the presence of strong background light.
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Chapter 6

Single-Pixel Imaging

6.1 Overview of Problem

To form an image consisting of 𝑁 pixels, a conventional digital camera uses an 𝑁 -

element detector array to take direct light intensity measurements. A single-pixel

camera, on the other hand, forms an 𝑁 -pixel reflectivity image by solving an inverse

problem using a single photodetector and𝑀 patterns projected from a 𝑁 -pixel spatial

light modulator (SLM) [89], such as a digital micromirror device (DMD) [90]. When

a photodetector is expensive, such as one that operates in non-visible wavelengths or

is sensitive to individual photons, single-pixel cameras have the potential to be much

cheaper than array detection-based cameras [91].

Prior art: When the amount of light reaching the imaging device is low and the

detector records the incident light intensity as discrete photon counts, the photode-

tection process is the dominating noise source [46]. Many works in signal processing,

such as the Rice single-pixel camera project, have concentrated on having 𝑀 < 𝑁 in

the context of compressed sensing [92]. For better reconstruction within the low-flux

single-pixel architecture, however, overcomplete measurements (𝑀 > 𝑁) are used

[93]. Even for the simplest estimators, analyzing their performance by computing

the mean-squared error (MSE) for this imaging architecture is non-trivial. This is

due to the difficulties introduced by the Poisson statistics of photon counting and the

123



random, non-Gaussian SLM patterns of the camera. Thus, MSE is conventionally

estimated using Monte Carlo simulations [94], which are computationally costly.

Recently, random matrix theory (RMT) has been used to obtain accurate closed-

form characterization of estimation errors in the context of channel identification

[95], wireless communications [96], inverse covariance estimation [97], and many more

topics in signal processing. Although it may be convenient to directly use RMT-

based error analysis results for the single-pixel imaging framework, there are two

novel constraints that prevent us from doing this.

1. In the low-flux single-pixel imaging scenario, measurements are described by

signal-dependent Poisson observations. This statistical behavior deviates from

the conventional noiseless channels or Gaussian channels with fixed-variance,

signal-independent noise.

2. In conventional error analysis frameworks, the random variables in the system

typically have zero means, allowing direct application of classical RMT results.

However, in our single-pixel imaging scenario, the modulation patterns are re-

quired to be non-negative as light intensity is non-negative.

Summary of our approach: In this chapter, we derive a closed-form approxima-

tion for the MSE of least-squares single-pixel imaging that accounts for the Poisson

observation channel and the random SLM patterns. We borrow techniques from RMT

to arrive at simple MSE expressions, avoiding the implicit characterizations obtained

through the replica method [98, 99] and issues arising from the non-zero mean of the

SLM patterns. Our numerical experiments show that our approximation is near ex-

act, while having lower computational complexity than Monte Carlo methods and

higher accuracy than a baseline asymptotic MSE computation. Because its image re-

construction performance is well-understood using our framework, the least-squares

single-pixel imager is an attractive one to use in low-flux conditions.
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Figure 6-1: Active single-pixel imaging setup. For the 𝑘th measurement, the constant
flux sent from source (𝑠(𝑡) = 1/𝑇𝑟, 𝑡 ∈ [0, 𝑇𝑟)) and reflected from x is spatially-
modulated using the pattern a𝑘, such that the flux incident on the single-photon
detector is a𝑇

𝑘 x. The observation y𝑘 ∼ Poisson(a𝑇
𝑘 x) is made by the photodetector,

and the process is repeated for 𝑀 measurements. Although this figure depicts the
spatial light modulator as a reflector, such as a programmable mirror device, it may
work in transmission mode by using a random diffraction grating instead.

6.2 Single-Photon Imaging Setup

Figure 6-1 illustrates our single-pixel imaging setup. Let x ∈ R𝑁×1
+ be the scene

reflectivity vector that we aim to recover. If the desired image is two-dimensional,

one can vectorize it to form x. An SLM with 𝑁 pixels reflects the light coming from

scene at a random subset of the pixels to the detector. Let a𝑘 denote the 𝑁 × 1

random vector representing the 𝑘th SLM pattern, where each of its entries are i.i.d.

on the support [0, 1], as the SLM is a device with no gain, i.e., it cannot amplify the

illumination incident upon it.

6.3 Forward Imaging Model

In this chapter, also for practical purposes [91], we assume that each entry of a𝑘, 𝑘 =

1, . . . ,𝑀 , is an i.i.d. Bernoulli variable with success probability of 𝑝 ∈ (0, 1). Using

low-flux photodetection statistics, we can write our 𝑘th photon count observation as

y𝑘 ∼ Poisson
(︀
a𝑇
𝑘 x
)︀
, 𝑘 = 1, 2, . . . ,𝑚, (6.1)
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meaning that it has the probability mass function

Pr(y𝑘|a𝑘;x) =
exp{−a𝑇

𝑘 x}
(︀
a𝑇
𝑘 x
)︀y𝑘

y𝑘 !
, for y𝑘 ∈ {0, 1, 2, . . .}, (6.2)

and that

Pr((a𝑘)𝑖) = 𝑝(a𝑘)𝑖(1− 𝑝)(1−(a𝑘)𝑖), for (a𝑘)𝑖 ∈ {0, 1}, (6.3)

where 𝑖 = 1, 2, . . . , 𝑁 given 𝑘 ∈ {1, . . . ,𝑀}. Because we are interested in steady-state

illumination for the single-pixel imaging architecture, we assume any background or

dark counts are included in x.

We write Eq. (6.1) more compactly as

y ∼ Poisson(Ax) , (6.4)

where y is the column vector formed from the 𝑀 observations of photon counts, A

is the 𝑀 × 𝑁 random matrix that row-concatenates the vectors a𝑇
1 , . . . , a

𝑇
𝑀 . The

inverse problem of single-pixel imaging is to recover the size-𝑁 image of x using the

observations y and SLM pattern matrix A. If A were replaced by an identity matrix,

Eq. (6.4) would be the intensity measurement model for raster-scanned LIDAR with

photon-counting detection [100]; methods to exploit spatial correlation for good low-

flux performance are presented in [12, 13]. Alternatively, acquisition with square

and nonsingular A not equal to the identity is termed multiplexed imaging [101].

Multiplexed imaging has been the subject of analysis supporting the use of Hadamard

matrices [102, 103], and it has been shown that enforcing non-negativity constraints

on x causes a multiplexing advantage to extend to low-flux operation [104].

6.4 Solving the Inverse Problem

Because we are interested in low-flux operations, we will assume 𝑀 ≥ 𝑁 to allow

effective noise mitigation. The linear inverse problem at hand is thus invertible in the
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classical sense, without employing image priors. Based on Eq. (6.4), we can write

the negative log likelihood function of x given data y and A as

ℒ(x;A,y) =
𝑀∑︁
𝑘=1

[(Ax)𝑘 − y𝑘 log(Ax)𝑘] , (6.5)

where terms independent of x have been omitted. We observe that ℒ(x;A,y) is a

convex function in x (see Appendix C). Thus, checking the zero-gradient condition

suffices to solve for the maximum likelihood solution. We have that the gradient is

∇xℒ(x;A,y) =
𝑀∑︁
𝑘=1

(︂
1− y𝑘

(Ax)𝑘

)︂
(A𝑇 ):,𝑘. (6.6)

When A is square (𝑀 = 𝑁) and invertible (rank(A) = 𝑁), the inverse solution

x̂inv = A−1y makes Eq. (6.6) zero as

𝑀∑︁
𝑘=1

(︂
1− y𝑘

(Ax̂inv)𝑘

)︂
(A𝑇 ):,𝑘 =

𝑀∑︁
𝑘=1

(︂
1− y𝑘

(AA−1y)𝑘

)︂
(A𝑇 ):,𝑘 (6.7)

=
𝑀∑︁
𝑘=1

(︂
1− y𝑘

y𝑘

)︂
(A𝑇 ):,𝑘. (6.8)

=
𝑀∑︁
𝑘=1

(1− 1) (A𝑇 ):,𝑘 = 0. (6.9)

However, we are interested in the setup using overcomplete measurements (𝑀 ≥ 𝑁),

where the inverse solution generalizes to the pseudoinverse least-squares estimator:

x̂LS = (A𝑇A)−1A𝑇y, (6.10)

where we have assumed that rank(A) = 𝑁 so thatA𝑇A is invertible. We observe that

x̂LS does not make the gradient vanish, because the projection P = A(A𝑇A)−1A𝑇

is not an identity matrix for 𝑀 > 𝑁 . However, due to the randomness of the

imaging matrix A, the projection P is approximately the identity, and the least-

squares method is thus approximately maximum-likelihood. Moreover, it serves as a
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popular inversion method due to its low computational complexity and its asymptotic

efficiency as 𝑀 → ∞ (see Appendix G). For example, the often-used correlation

estimator, also known as the ghost imaging estimator, that employs overcomplete

photon-count observations in practical single-pixel imaging systems is a variation of

the least-squares estimator [105].

In analyzing the performance of the least-squares imager, we compute its MSE:

mse(x, x̂LS) = E[‖x − x̂LS‖22]. Monte Carlo simulations of the expectation term can

be used to obtain an approximation for the MSE. However, the quality of the Monte

Carlo approximation is dependent on the number of trials employed, and to compute

highly accurate MSE values, long simulation runs are required. Thus, we aim to

derive a closed-form approximation to the MSE that allows direct computation.

Approximating the MSE: Our first step is to express the MSE in a form that

uses the imaging variablesA (random) and x (non-random). The Poisson observation

vector y has conditional mean and variance both equal to Ax. Thus, it is possible to

write y = Ax+𝜂, where 𝜂 is a zero-mean random vector. Because the measurements

y1, . . . ,y𝑀 are independent, the covariance matrix of 𝜂 is diagonal with Ax as the

𝑀 × 1 vector defining that diagonal. The error of the least-squares estimator is

x− x̂LS = x− (A𝑇A)−1A𝑇 (Ax + 𝜂) = −(A𝑇A)−1A𝑇𝜂, (6.11)

so the MSE can be written as

mse = E
[︁(︀

(A𝑇A)−1A𝑇𝜂
)︀𝑇

(A𝑇A)−1A𝑇𝜂
]︁

(6.12)

= E
[︀
𝜂𝑇A(A𝑇A)−1(A𝑇A)−1A𝑇𝜂

]︀
(6.13)

(𝑎)
= E

[︀
Tr
(︀
𝜂𝑇A(A𝑇A)−2A𝑇𝜂

)︀]︀
(6.14)

(𝑏)
= E

[︀
Tr
(︀
𝜂𝜂𝑇A(A𝑇A)−2A𝑇

)︀]︀
(6.15)

(𝑐)
= Tr

(︀
E
[︀
𝜂𝜂𝑇A(A𝑇A)−2A𝑇

]︀)︀
, (6.16)
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where in (a) the trace of a scalar is the same scalar; in (b) the trace of a product

is invariant to cyclic permutation of its factors; and in (c) the trace and expectation

operators commute.

Recall that both the SLM pattern A and the photodetection process are sources

of randomness. Denote the MSE conditioned on the choice of A by cmse. Then

cmse = Tr
(︀
E
[︀
𝜂𝜂𝑇 |A

]︀
A(A𝑇A)−2A𝑇

)︀
(6.17)

= Tr
(︀
diag(Ax)A(A𝑇A)−2A𝑇

)︀
. (6.18)

Exact computation of the expectation of cmse over A is complicated by the lack of

independence of diag(Ax) andA(A𝑇A)−2A𝑇 . We approximate these as independent,

giving

E
[︀
𝜂𝜂𝑇A(A𝑇A)−2A𝑇

]︀
≈ E

[︀
𝜂𝜂𝑇

]︀
E
[︀
A(A𝑇A)−2A𝑇

]︀
. (6.19)

This approximation can be justified for large𝑁 , because diag(Ax) approaches a scaled

identity matrix as 𝑁 grows without bound. By iterated expectation with conditioning

on A,

E
[︀
𝜂𝜂𝑇

]︀
= EA

[︀
E
[︀
𝜂𝜂𝑇 |A

]︀]︀
= EA[diag(Ax)] = 𝑝‖x‖1 I𝑀 , (6.20)

where I𝑀 is the 𝑀 ×𝑀 identity matrix and we have used the Bernoulli distribution

of A’s entries. We can now write

mse = Tr
(︀
E
[︀
𝜂𝜂𝑇A(A𝑇A)−2A𝑇

]︀)︀
(6.21)

(𝑎)
≈ Tr

(︀
E
[︀
𝜂𝜂𝑇

]︀
E
[︀
A(A𝑇A)−2A𝑇

]︀)︀
(6.22)

(𝑏)
= 𝑝‖x‖1Tr

(︀
E
[︀
A(A𝑇A)−2A𝑇

]︀)︀
, (6.23)

(𝑐)
= 𝑝‖x‖1Tr

(︀
E
[︀
(A𝑇A)−1

]︀)︀
, (6.24)

where (a) uses the independence approximation (6.19); (b) uses (6.20); and (c) uses

both the invariance of trace of a product to cycle permutation of factors and the
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Figure 6-2: Plots of EDFs 𝑓𝜆(W)(𝑥) for different 𝑞 values according to the Marchenko–
Pastur law.

commuting of expectation and trace.

So far, we have approximated the MSE of the least-squares estimator as a product

of imaging parameters and the trace-expectation of the inverse of a scalar multiple

of the correlation matrix C = A𝑇A/𝑀 . Since the trace of a matrix is the sum of

its eigenvalues, we aim to understand the properties of inverse correlation matrix

eigenvalues 𝜆(C−1) to compute the trace-expectation factor.

RMT characterizes the eigenvalue density function (EDF) of a random matrix

with known parameterization. The celebrated Marchenko–Pastur law that derives

the EDF of Wishart matrices for 𝑀 ≥ 𝑁 is given as follows [106]:

(Marchenko–Pastur Law) Let X be an 𝑀 × 𝑁 random matrix with each entry

being an i.i.d. random variable with mean 0 and variance 𝜎2. Letting 𝑀,𝑁 → ∞,

while keeping 𝑞 = 𝑁/𝑀 ∈ (0, 1] fixed, the EDF 𝑓𝜆(W) of the Wishart matrix W =

X𝑇X/𝑀 is given by

𝑓𝜆(W)(𝑥) =
1

2𝜋𝜎2

√︀
(𝑞+ − 𝑥)(𝑥− 𝑞−)

𝑞𝑥
, (6.25)

where 𝑞± = 𝜎2(1±√𝑞)2 and 𝑥 ∈ [𝑞−, 𝑞+].

Figure 6-2 plots the EDF expression stated by Marchenko–Pastur for different
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values of 𝑞 ∈ (0, 1]. If we denote the 𝑘th-order moment of the Wishart eigenvalues by

𝜇𝜆(W)(𝑘;𝑀,𝑁) =

∫︁
supp(𝑓)

𝑥𝑘𝑓𝜆(W)(𝑥) 𝑑𝑥, (6.26)

then the trace-expectation of the 𝑘th power of W can be expressed as the following

[96]:

Tr
(︀
E
[︀
W𝑘

]︀)︀
= 𝑁𝜇𝜆(W)(𝑘;𝑀,𝑁). (6.27)

The Marchenko–Pastur law is not directly applicable to simplification of (6.24) be-

cause the entries of A do not have zero means. Thus, we study variations for comput-

ing the moments when the correlation matrix is generated using non-negative random

vectors.

Let A′ = A − D, where D𝑖,𝑗 = 𝑝 for all 𝑖, 𝑗, so that A′ has zero-mean random

entries, and let C′ = (A′)𝑇A′/𝑀 be our Wishart matrix. Then, because the single

nonzero eigenvalue ofD𝑇D, which is 𝜆(D𝑇D) = 𝑀𝑁𝑝2, is much larger than 𝜆max(C
′),

we can approximate the EDF of C for our spiked model [107] as the following:

𝑓𝜆(C)(𝑥) ≈ 𝑁 − 1

𝑁
𝑓𝜆(C′)(𝑥) +

1

𝑁
𝛿(𝑥−𝑀𝑁𝑝2), (6.28)

where 𝛿(·) is the Dirac delta function. Its 𝑘th-order moment can then be written as

𝜇𝜆(C)(𝑘;𝑀,𝑁) ≈ 𝑁 − 1

𝑁
𝜇𝜆(C′)(𝑘;𝑀,𝑁) +

1

𝑁

(︀
𝑀𝑁𝑝2

)︀𝑘
, (6.29)

by the linearity of integrals.

To compute our trace-expectation factor, we are interested in the first negative

moment: 𝑘 = −1. Since 𝑀𝑁𝑝2 is significantly larger than 𝑞+, its inverse is very small

and negligible. Thus, we can relate the first negative moment of the Marchenko–

Pastur distribution to our spiked distribution as

𝜇𝜆(C)(−1;𝑀,𝑁) ≈ 𝑁 − 1

𝑁
𝜇𝜆(C′)(−1;𝑀,𝑁). (6.30)
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Combining (6.24), (6.27), and (6.30), we obtain an analytical expression that approx-

imates mse in the constant aspect ratio regime (constant 𝑞):

mse-rmt =
𝑝(𝑁 − 1)

𝑀
‖x‖1 𝜇𝜆(C′)(−1;𝑀,𝑁). (6.31)

Finally, using theWishart matrix moment computation result that 𝜇𝜆(C′)(−1;𝑀,𝑁) =

𝑀/(𝜎2(𝑀 −𝑁)) [96, 108], we have

mse-rmt =
(𝑁 − 1)‖x‖1

(1− 𝑝)(𝑀 −𝑁)
. (6.32)

6.5 Results

A well-known baseline approximation method for the MSE is asymptotic in the num-

ber of observations while fixing the signal dimension (𝑞 → 0 by 𝑀 → ∞ while 𝑁 is

constant) [109]. Specifically,

A𝑇A

𝑀
≈ lim

𝑀→∞

∑︀𝑀
𝑘=1 a𝑘a

𝑇
𝑘

𝑀
= E

[︀
aa𝑇

]︀
= 𝑝(1− 𝑝)I𝑁 + 𝑝21𝑁×𝑁 , (6.33)

where 1𝑁×𝑁 is the 𝑁 × 𝑁 matrix of ones and we have used the mean and variance

of a Bernoulli random variable. Since the inverse of the matrix in (6.33) is

1

𝑝(1− 𝑝)
I𝑁 −

1

(1− 𝑝)(𝑁𝑝 + 1− 𝑝)
1𝑁×𝑁 , (6.34)

(6.24) is approximated with

mse-baseline = 𝑝‖x‖1Tr

(︃(︀
E
[︀
aa𝑇

]︀)︀−1

𝑀

)︃

=
(𝑁 − 1)𝑝 + 1− 𝑝

𝑁𝑝 + 1− 𝑝

𝑁‖x‖1
(1− 𝑝)𝑀

. (6.35)

132



q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 20, p = 0.2

q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 20, p = 0.5

q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 20, p = 0.8

q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 100, p = 0.2

q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 100, p = 0.5

q
0.2 0.4 0.6 0.8

lo
g
-M

S
E

1

2

3

4

5

N = 100, p = 0.8

Figure 6-3: Plots of logarithmic mse (dashed black with ’x’ markers), mse-rmt (red
with ’o’ markers), and mse-baseline (blue with diamond markers) for different values
of the Bernoulli probability 𝑝 ∈ {0.2, 0.5, 0.8} and signal dimension 𝑁 ∈ {20, 100}.
Each log-MSE plot is shown over various values of 𝑞, the ratio between the number
of signal dimensions (𝑁) to the number of observations (𝑀).

The first factor in (6.35) is approximately 1 for large 𝑁 ; the second factor is approx-

imately the same as (6.32) when 𝑞 → 0.

In Figure 6-3, we study how the conventional closed-form approximation mse-

baseline (𝑞 → 0) and the proposed closed-form approximation mse-rmt (constant 𝑞)

compare to mse, which is computed using Monte Carlo simulations of 1000 trials for

each imaging parameter set. Each entry of the true image x is drawn i.i.d. from

the uniform distribution on [0, 10]. The code that was used to generate our results is

available from [110].

For a moderate image dimension (𝑁 = 100), we observe that for different values

of the Bernoulli probability 𝑝, mse-rmt is an almost exact approximation of mse, while

the baseline asymptotic model mse-baseline lower-bounds mse with a non-trivial gap
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Figure 6-4: Rice single-pixel camera setup. This photograph is taken from the Rice
single-pixel camera project website: http://dsp.rice.edu/cscamera.

for 𝑞 values that are not very small (𝑞 > 0.15).

For the smaller image dimension (𝑁 = 20) and for high 𝑞 values, we see that

our RMT-based approximation, although it is a better approximation to mse than

mse-baseline, deviates from true MSE as well, since our approximations in (6.19) were

based on the assumption of the problem size being large.

Results using experimental Rice single-pixel data: We used the public Rice

single-pixel camera dataset [111] to experimentally validate our MSE estimation per-

formance. The imaging setup is shown in Figure 6-4. The Rice single-pixel camera

uses a classical photodiode instead of a photon-counting detector, and thus the raw

measurements y′ are not exactly Poisson distributed:

y ∼ Poisson(Ax), (6.36)

y′ = ADC(y + e), (6.37)

where ADC(·) describes the analog-to-digital electrical conversion that scales and

quantizes the raw photodetection measurements and e is used to model the additional
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signal-independent sensor noise vector with zero-mean.

In order to apply our Poisson MSE results derived earlier, we scale the pho-

tocurrent observations y′ by the ADC quantization level to obtain ŷ, which is an

approximation to the photon count data y. Figure 6-5 shows the result of recovering

the 16 × 16 image of letter ‘R’ by the least-squares solution x̂LS(ŷ) for different 𝑀

values. As expected, the quality of imaging improves when larger 𝑀 values are used.

We used the least-squares estimate of 𝑀 = 4290 as ground truth in computing the

experimental MSE values. Figure 6-6 compares the experimental MSE (mse) with

the estimates of the baseline (mse-baseline) and the proposed (mse-rmt). We observe

that even when using ŷ, which is an estimate of the photon-count vector from ADC

measurements, mse-rmt is a better estimation to mse than mse-baseline. However, due

to the model mismatch, we have a bias error in mse-rmt in the experimental result,

unlike the simulation results in Figure 6-3.

6.6 Summary and Discussion

In this chapter, we derived a remarkably simple closed-form approximation to the

MSE of a low-flux least-squares single-pixel imaging system by using moment com-

putation methods from random matrix theory. Unlike conventional Monte Carlo

methods (high accuracy, long computational time) and asymptotic approximation

techniques (low accuracy, short computational time), our RMT-based MSE approx-

imation achieves both high accuracy and high computational efficiency as shown by

numerical experiments.

Analysis for Optical Design: Because our result in Eq. (6.32) gives a good

approximation to the MSE in closed-form, it can be used to choose optimal acquisition

parameters given imaging constraints. If the single-pixel camera is equipped with its

own light source, then we can ask the following optical design question: what is the

smallest number of observations that we can make and the lowest illumination power

that we can use given that we can tolerate up to a certain error in the image? Defining
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(a) Truth (b) 𝑀 = 300 (c) 𝑀 = 400 (d) 𝑀 = 500 (e) 𝑀 = 600

(f) 𝑀 = 1200 (g) 𝑀 = 1800 (h) 𝑀 = 2400 (i) 𝑀 = 3000

(j) error of (b) (k) error of (c) (l) error of (d) (m) error of (e)

(n) error of (f) (o) error of (g) (p) error of (h) (q) error of (i)

Figure 6-5: Least-squares single-pixel imaging estimates of letter ‘R’ for increasing
values of 𝑀 using the Rice single-pixel dataset. Here, 𝑁 = 16 × 16 = 256 and the
ground truth image was generated using the least squares solution with 𝑀 = 4290,
since it is an asymptotically efficient estimator.
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Figure 6-6: Comparison of MSE (plot in log scale) estimates for least-squares imaging
method on experimental Rice single-pixel camera data of letter ‘R’. Here 𝑁 = 16 ×
16 = 256.
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Figure 6-7: Plot of nrmse-rmt over 𝑀 and 𝑃 for 𝑁 = 50 and 𝑝 = 0.5. The red line
gives the contour for nrmse-rmt = 0.4.

normalized root mean square error (NRMSE) as nrmse-rmt =
√
mse-rmt/‖x‖1, our

approximation clearly shows the inverse relationship between that normalized error

and the number of observations (𝑀) and the amount of optical flux incident at the

SLM device (𝑃 = ‖x‖1). For example, suppose we have the constraint that we can

tolerate up to 1 normalized standard deviation (NRMSE) for image analysis purposes.

Then, we can use our NRMSE approximation to determine the optimal acquisition

parameters that simultaneously minimizes the number of observations and flux:{︃
(𝑀,𝑃 ) :

√︃
𝑁 − 1

(1− 𝑝)(𝑀 −𝑁)𝑃
= 1, 𝑀 ∈ {𝑁 + 1, 𝑁 + 2, . . .}, 𝑃 > 0

}︃
, (6.38)

for fixed 𝑝 and 𝑁 . For example, in Figure 6-7, we illustrate the trade-off between

amount of optical flux and number of measurements to achieve nrmse = 0.4, given a

single-pixel imaging setup with 𝑁 = 50 and 𝑝 = 0.5.

Equation (6.32) also tells us that there is a monotonic decrease in the MSE as 𝑝

gets smaller. This is intuitive as smaller 𝑝 implies smaller condition number for A, as

its largest singular value is quadratic in 𝑝 while the other 𝑁 − 1 singular values are

clustered around 1 from the EDF expression in (6.28). However, Eq. (6.32) assumes

that x̂LS is well-defined. In other words, what it fails to capture is that small 𝑝 can

lead to rank(A) < 𝑁 with high probability. Thus, we cannot conclude that lowering

𝑝 for MSE improvements is always the solution, because A𝑇A can be non-invertible

such that no least-squares solution is defined.

It is of future interest to see how the proposed performance-analysis framework can
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be extended to other estimators for single-pixel imaging. For example, the Tikhonov

estimator regularizes the least-squares estimate by perturbing the correlation matrix

with a positive definite matrix T [112],

x̂tik = (A𝑇A + T)−1A𝑇y. (6.39)

The Tikhonov approach is useful for modeling image priors that enforce smoothness

in image estimates. A perturbation analysis, for example, on the correlation matrix

may lead to an accurate MSE approximation for the Tikhonov estimator.
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Chapter 7

Fluorescence Imaging

7.1 Overview of Problem

The ability to acquire fluorescence lifetime data from a fluorophore is useful for molec-

ular studies involving pH distributions [113] and energy transfer rates [114]. The

technique of fluorescence lifetime imaging microscopy (FLIM) aims to recover the

lifetimes of fluorophores by exciting them with short optical pulses, measuring the

emitted exponentially-decaying light, and using algorithms to infer their lifetimes.

Prior art: There are two main approaches to FLIM: a time-domain technique

[115, 116] and a frequency-domain technique [117, 118]. The time-domain technique

perturbs the fluorescence sample with an ultrafast pulse, and aims to directly measure

the lifetime by using exponential-fitting methods on the fluorescent signal measured

by a time-resolved photodiode. The time-tagging accuracy typically is in picoseconds.

The frequency domain technique, on the other hand, employs a pulsed source and

a time-gated-and-intensified CCD camera setup. It uses homodyne detection tech-

niques (modulating the received signal with a cosine or a rectangular pulse function)

such that the sample lifetime can be inferred from the phase shift of the modulated

signal. Although the frequency-domain technique has its advantages of being compu-

tationally cheap, it is limited to high light-level operation as the demodulation step

requires almost noiseless signal for high accuracy reconstruction. In this chapter,
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we are interested in developing a time-domain FLIM method for extremely low-flux

imaging purposes (∼ 1 detected photon per pixel on average), and thus focus on

developing a fluorescence imaging framework that achieves high photon-efficiency by

employing a single-photon pulsed imaging setup.

A typical low-flux time-domain FLIM method aims to reconstruct the spatially-

resolved intensity and lifetime profiles of a fluorophore sample using raster-scanning

pulsed illumination source and a single-photon detector [64]. Due to the Poissonian

nature of photon counting, the conventional FLIM method requires a long acquisi-

tion time to detect many photons (typically up to thousands per pixel) in order to

construct a histogram modeling an almost noiseless exponential function for accurate

lifetime estimation [46]. Traditionally, pixelwise maximum-likelihood processing and

fast decay-rate fitting methods have been employed for lifetime estimation in the time

domain [119]. It has been demonstrated that the conventional pixelwise lifetime esti-

mation method leads to accurate results only when the number of photon detections

is large enough that amount of Poisson noise in the histogram is negligible. For exam-

ple, at least 200 detections are required per pixel in order to recover the lifetime with

10% accuracy, when the instrumental response function can be well-approximated

with a Dirac delta function. [120].

In order to use time-domain FLIM for accurate imaging with fewer photon de-

tections per pixel, methods of image denoising can be applied to the noisy pixelwise

intensity and lifetime image estimates to improve their signal-to-noise ratios [121].

Combining Markov random field based image denoising methods and range-gating

techniques, it has been shown that the number of photon counts per pixel can be

reduced to ∼100 for accurate lifetime reconstruction [122].

Summary of our approach: In this chapter, we propose a method for accurately

recovering fluorescence intensity and lifetime images using only a small number of

photon detections at each pixel. Unlike existing methods, our proposed framework

combines the probabilistic model of single-photon detection from the fluorescence

signal with spatial correlations existing in fluorescent scenes. Experimental and sim-
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ulation results show that our method recovers fluorescence intensity and nanosecond

lifetime images accurately using considerably fewer photon detections than what ex-

isting pixelwise recovery methods, such as pixelwise maximum-likelihood processing,

require.

In particular, we experimentally demonstrate that our proposed framework allows

accurate imaging of fluorescent markers using only one photon detection on average

at each image pixel, due to the following novelties:

1. We construct an accurate pixelwise probabilistic model for the detection times

of individual photons from the exponential fluorescence signal.

2. We develop an optimization framework that combines the accurate photodetec-

tion model with an image prior that models the spatial correlations of natural

fluorescent scenes. Using a transformation of variables, we show that this opti-

mization problem can be convex, which allows it to provide fast and accurate

solutions for high-dimensional images.

7.2 Single-Photon Imaging Setup

The low-light fluorescence imaging setup includes a raster-scanning pulsed light source,

a single-photon detector, and a time-correlator (see Figure 7-1). The laser source spot-

illuminates a pixel of the sample with a total of 𝑁𝑠 pulses with repetition period of

𝑇𝑟. For each trial of pulse illumination, the sample is excited so that it goes through

a process of fluorescence, and the exponentially-decaying fluorescent signal is emitted

towards the single-photon detector. Due to the low-flux condition, the detector with

high probability detects zero photons and with low probability detects a single pho-

ton per illumination trial. Each photon detection time, relative to the most recent

pulse-illumination time, is recorded using a time-correlator. Repeating the process of

illumination, detection, and time-correlation over a total of 𝑁𝑥×𝑁𝑦 image pixels, we

have the raw photon arrival dataset that can be used to estimate the intensity and

lifetime images of the fluorescent scene.
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Figure 7-1: Single-photon fluorescence imaging setup as described in Section 7-1 (Top)
and an illustration of the photodetection process (Bottom). In this illustration, we
have one photon detection (marked in red) resulting from the (𝑖, 𝑗)-th pixel’s second
pulse excitation of the fluorophore sample, given that 𝑁𝑠 = 3. Note that we define the
start of the fluorescence process as time 𝑡 = 2𝑑𝑖,𝑗/𝑐, which is defined by the calibrated
sample-to-imager distance. This distance offset in defining the decay signal does not
affect the lifetime measurements, as exponential processes are memoryless.
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7.3 Forward Imaging Model

For the sake of exposition, we focus on a single pixel for developing the statistics

of photodetection from fluorescence signals. Assume that a single optical pulse 𝑠(𝑡)

illuminates the given pixel in the scene at time 𝑡 = 0. Let 𝑎 and 𝛽 be the unknown

fluorescence amplitude and lifetime values at that pixel. Then, the optical waveform

incident at the single-photon detector is

𝑟(𝑡) =

[︂
𝑠(𝑡) * 𝑎 exp

{︂
−
(︂
𝑡− 2𝑑/𝑐

𝛽

)︂}︂
1𝑡≥2𝑑/𝑐

]︂
+ 𝑏, for 𝑡 ∈ [0, 𝑇𝑟), (7.1)

where 𝑑 is the distance from imager to fluorophore, 𝑐 is the speed of light, 1 is the

indicator function, 𝑏 is the photon count rate of residual background light, and * is

the one-dimensional convolution operator over the time variable 𝑡. Recall that the

rate function determining the photon counts after a single pulse illumination is

𝜆(𝑡) = 𝜂 [ (𝑟 * 𝐼𝑑)(𝑡) ] + 𝑏𝑑, for 𝑡 ∈ [0, 𝑇𝑟), (7.2)

where 𝜂 is the detector efficiency, 𝐼𝑑(𝑡) is the detector response, and 𝑏𝑑 is the dark

count rate of the single-photon detector. Assuming the practical imaging scenario

in which the RMS duration of 𝑠(𝑡) * 𝐼𝑑(𝑡) (typically ∼ps) is much smaller than the

fluorescent lifetime 𝛽 (typically ∼ns) [123], we use 𝑠(𝑡) * 𝐼𝑑(𝑡) = 𝛿(𝑡) throughout this

chapter. Also, let the distance 𝑑 from the imager to the fluorophore be known through

calibration. Because exponential processes are memoryless, we can express Eq. (7.2)

using an exponential function with a time support that corrects [2𝑑/𝑐, 𝑇𝑟), such that

the start of the fluorescence process is marked by time 𝑡 = 0:

𝜆′(𝑡) = 𝜂 𝑎 exp {−𝑡/𝛽}+ 𝑏̃ for 𝑡 ∈ [0, 𝑇 ′
𝑟), (7.3)

where 𝑇 ′
𝑟 = 𝑇𝑟 − 2𝑑/𝑐 and 𝑏̃ = 𝜂 𝑏 + 𝑏𝑑. In our setup, we emphasize that 𝑇 ′

𝑟 is always

set large enough, relative to 𝛽, such that the truncation of the received fluorescence

signal is avoided and the signal acquisition trials are statistically independent of each

other. Figure 7-2 shows an example of𝑁𝑠𝜆
′(𝑡) obtained by experimental photon-count

measurements, with 𝑁𝑠 being 100000 (collected by collaborator F. Xu).
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Figure 7-2: Example large photon count histogram of 𝜆′(𝑡) from a pixel of a quan-
tum dot sample with lifetime of ∼7 ns, used to visualize the properties of fluorescence
signals. The total number of detections contains information about fluorescence inten-
sity and the rate of decay of the histogram contains information about fluorescence
lifetime. The residual photon counts uniformly distributed over [0, 64) ns are the
extraneous background and dark counts.

We assume the low-flux condition in which the imager is operating at low-light

levels such that the mean number of photons of the received fluorescence signal is

much less than 1 (see Appendix B). Then, after 𝑁𝑠 pulse illuminations, the total

number of photon detections 𝐶 is distributed as

𝐶 ∼ Poisson

(︃
𝑁𝑠

∫︁ 𝑇 ′
𝑟

0

𝜆′(𝑡) 𝑑𝑡

)︃
= Poisson

(︁
𝑁𝑠𝑥 + 𝑁𝑠𝑏̃𝑇

′
𝑟

)︁
, (7.4)

where 𝑥 is the fluorescence intensity that we are interested in recovering. Thus 𝐶 has

the discrete probability mass function

𝑓(𝐶;𝑥) =
exp{−(𝑁𝑠𝑥 + 𝑁𝑠𝑏̃𝑇

′
𝑟)}(𝑁𝑠𝑥 + 𝑁𝑠𝑏̃𝑇

′
𝑟)

𝐶

𝐶 !
, for 𝐶 = 0, 1, 2, . . . (7.5)

Using on the low-flux condition from Appendix B, we can also derive the continuous
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probability density function of the detection time for an individual photon, as the

normalized rate function:

𝑝𝑇 (𝑡; 𝛽) =
𝜆′(𝑡)∫︀ 𝑇 ′

𝑟

0
𝜆′(𝑡) 𝑑𝑡

(7.6)

=
𝑁𝑠 𝜂 𝑎 exp{−𝑡/𝛽}+ 𝑁𝑠 𝑏̃

𝑁𝑠 𝜂 𝑎
∫︀ 𝑇 ′

𝑟

0
exp{−𝑡/𝛽} 𝑑𝑡 + 𝑁𝑠 𝑏̃ 𝑇 ′

𝑟

=
𝑁𝑠 𝜂 𝑎 exp{−𝑡/𝛽}+ 𝑁𝑠 𝑏̃

𝑁𝑠 𝜂 𝑎 𝛽 + 𝑁𝑠 𝑏̃ 𝑇 ′
𝑟

(7.7)

for 𝑡 ∈ [0, 𝑇 ′
𝑟).

7.4 Solving the Inverse Problem

Pixelwise maximum-likelihood estimation: Assuming 𝑏̃ = 0, using the proba-

bility distributions in Eq. (7.5) and Eq. (7.7), we can derive very simple closed-form

expressions for the pixelwise maximum-likelihood intensity and lifetime estimates

given 𝐶 photon detections from 𝑁𝑠 illuminations:

𝑥̂ML = arg max
𝑥≥0

log 𝑓(𝐶;𝑥), (7.8)

𝛽ML = arg max
𝛽≥0

log 𝑝𝑇 ({𝑡(𝑘)}𝐶𝑘=1; 𝛽). (7.9)

The lifetime estimate assumes non-zero detections. When using this pixelwise method,

we can always label pixels with zero detections as having unknown lifetimes or choose

to randomly guess their lifetimes.

For the pixelwise ML intensity estimate, we have

arg max
𝑥≥0

log 𝑓(𝐶;𝑥) = arg max
𝑥≥0

[𝐶 log(𝑁𝑠𝑥)−𝑁𝑠𝑥− log𝐶!] . (7.10)

Since log 𝑓(𝐶;𝑥) is a sum of a log, linear, and a constant function in 𝑥, log 𝑓(𝐶;𝑥) is

convex and the maximizer can be found by simply checking the zero-gradient condition

147



with the non-negativity constraint, which is also a convex set. We find that

𝑑

𝑑𝑥
[𝐶 log(𝑁𝑠𝑥)−𝑁𝑠𝑥− log𝐶!] = 𝐶/𝑁𝑠 −𝑁𝑠 = 0, given 𝑥 ≥ 0 (7.11)

⇒ 𝑥̂ML =
𝐶

𝑁𝑠

, (7.12)

which is the scaled photon count. For the pixelwise ML lifetime estimate, we can

perform a similar trick by checking the constrained zero-gradient condition and the

second-gradient of log 𝑝𝑇 ({𝑡(𝑘)}𝐶𝑘=1; 𝛽) around the unique zero-gradient solution is

negative, implying that it is also the unique maximizer. With some algebra, we have

𝛽ML =
1

𝐶

𝐶∑︁
𝑘=1

𝑡(𝑘), (7.13)

which is simply the mean of photon detection times.

Pixelwise estimators are practical due to their simple closed-form expressions, and

their asymptotic efficiency. However, they require a large number of photon detections

per pixel to form accurate images. Below we propose a framework that accurately re-

covers spatially-resolved fluorescence intensity and lifetime images (X,𝛽 ∈ R𝑁𝑥×𝑁𝑦

+ ).

using a small number of photon detections, by combining pixelwise single-photon

statistics with spatial correlations.

∙ Step 1 – Estimation of fluorescent intensity:

Let C be the 𝑁𝑥 ×𝑁𝑦 matrix whose (𝑖, 𝑗)th entry C𝑖,𝑗 is the observed number

of photon detections at pixel (𝑖, 𝑗). Then, we solve for the penalized minimum

negative log-likelihood fluorescence intensity solution as follows:

X̂CML = arg min
X:X𝑖,𝑗≥0

⎡⎣ 𝑁𝑥∑︁
𝑖=1

𝑁𝑦∑︁
𝑗=1

− log 𝑓(C𝑖,𝑗;X𝑖,𝑗, 𝑏̃)

⎤⎦+ 𝜏𝑥 pen𝑥(X), (7.14)

where pen𝑥(X) penalizes the high variations of the intensity solution to enforce

spatial smoothness. Here we use 𝜏𝑥 > 0 to control the degree of penalization.

Because the negative Poisson log-likelihood is convex in the intensity variable,
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as shown in the previous section, as long as the model prior pen𝑥(X) is a convex

function (e.g., the total-variation (TV) norm as used in Chapter 5 or the ℓ1-

norm of the image’s wavelet transform, etc.), Eq. (7.14) is a convex optimization

problem and thus easy to solve using simple projected gradient descent methods.

∙ Step 2 – Detection of fluorophores:

Because not all pixels contain fluorophores, before estimating the lifetime image,

we employ a thresholding technique to obtain M̂, which is the 𝑁𝑥 ×𝑁𝑦 binary

image indicating the presence of fluorophore at each pixel, using the accurate

intensity image recovered from Step 1.

M̂𝑖,𝑗 =

⎧⎪⎨⎪⎩1, if (X̂CML)𝑖,𝑗 > 𝜖 AND C𝑖,𝑗 > 0

0, otherwise

for all 𝑖, 𝑗, (7.15)

where 𝜖 is a small number of choice (e.g. 𝜖 = max𝑖,𝑗(X̂CML)𝑖,𝑗/1000). By using

data only at pixels with M̂𝑖,𝑗 = 1, we are effectively filtering out extraneous

background and dark counts that do not contain information about the fluo-

rophore lifetime.

∙ Step 3 – Estimation of fluorescent lifetime:

A direct application of the penalized minimum log-likelihood estimation as we

did in Step 1 for lifetime estimation will lead to the following optimization

problem:

arg min
𝛽:𝛽𝑖,𝑗≥0

⎡⎢⎣ ∑︁
(𝑖,𝑗):M̂𝑖,𝑗=1

C𝑖,𝑗∑︁
𝑘=1

− log 𝑓𝑇 (𝑡
(𝑘)
𝑖,𝑗 ;𝛽𝑖,𝑗, 𝑏̃ = 0)

⎤⎥⎦+ 𝜏𝛽 pen𝛽(𝛽). (7.16)

Here, observe that we are not using the data from all pixels, but only that from

ones defined by the set {(𝑖, 𝑗) | M̂𝑖,𝑗 = 1}.

Unfortunately, it can be shown that the negative log-likelihood function of the

fluorophore’s lifetime at a pixel is a not a globally convex function, and thus

149



greedy algorithms such as gradient descent can get stuck in a local minimum

point that does not have any solution-accuracy guarantees. However, if the

fluorescence lifetime likelihood is instead parametrized by 𝜇𝑖,𝑗 = 1/𝛽𝑖,𝑗, which

is the inverse lifetime, then the second derivative of the negative log-likelihood

function at pixel (𝑖, 𝑗) is

𝑑2

𝑑𝜇2
𝑖,𝑗

⎡⎣− C𝑖,𝑗∑︁
𝑘=1

log 𝑝𝑇 (𝑡
(𝑘)
𝑖,𝑗 ;𝛽𝑖,𝑗, 𝑏̃ = 0)

⎤⎦ = C𝑖,𝑗/𝜇
2
𝑖,𝑗, (7.17)

which is always non-negative, since 𝜇𝑖,𝑗 is non-negative. This implies that the

negative log-likelihood function is a convex function in 𝜇𝑖,𝑗. Thus, we employ a

heuristic of first accurately obtaining the inverse lifetime by solving a convex op-

timization, and then applying a variable transformation to get our final lifetime

image. The inverse lifetime image is obtained by solving the following optimiza-

tion problem that combines the photon-detection statistics from an exponential

distribution parametrized by inverse lifetime, with a spatial correlation prior:

𝜇̂CML = arg min
𝜇:𝜇𝑖,𝑗≥0

⎡⎢⎣ ∑︁
(𝑖,𝑗):M̂𝑖,𝑗=1

C𝑖,𝑗∑︁
𝑘=1

− log 𝑓𝑇 (𝑡
(𝑘)
𝑖,𝑗 ;𝜇𝑖,𝑗)

⎤⎥⎦+ 𝜏𝜇 pen𝜇(𝜇). (7.18)

Observe that if the lifetime image is spatially smooth then the inverse lifetime

is also spatially smooth, because the inverse function is continuous for positive

values. We can thus directly penalize for the non-smooth inverse lifetime images

using pen𝜇(𝜇). Similar to (7.14), as long as pen𝜇(𝜇) is a convex function in 𝜇,

we have that (7.18) is a convex optimization problem, which can be solved

efficiently. After solving for 𝜇̂CML, the lifetime image estimate is obtained using

a simple variable transformation: (𝛽CML)𝑖,𝑗 = 1/(𝜇̂CML)𝑖,𝑗 for all 𝑖, 𝑗. Also,

as a post processing step, pixels of 𝛽CML that have M̂𝑖,𝑗 = 0 are labeled as

non-fluorescent.
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7.5 Results

Experiments: Using the experimental raster-scanning single-photon imaging setup

we used in the first Chapter (Figure 2-4), we performed fluorescence imaging exper-

iments with the scene containing fluorescent markers, instead of room-scale objects

for depth and reflectivity imaging. On a non-fluorescent black cardboard, we placed

small patches of quantum dot fluorescent samples generated to have various lifetimes.

Fluorescence sample preparation was done by H. Utzat and Y. Chen from the Bawendi

group at MIT, and more details of the chemical properties of the solution can be found

in [123]. In terms of imaging setup, we used the exact same raster-scanning pulsed

laser system with a single SPAD detector employed in Chapter 2. The scanning res-

olution of the laser was set to be 100× 100, 𝑇𝑟 = 100 ns, and 𝑇𝑝 = 270 ps. Refer to

Chapter 2 for complete details in the single-photon imaging setup. The experimental

data collection was performed by F. Xu.

Figure 7-3 compares the performance of pixelwise ML estimators with that of the

proposed framework in recoverying fluorescent intensity and lifetime using a small

number of photon detections. The first scene uses a sample with lifetime of ∼ 15

ns and the second scene uses two samples with lifetimes of 7 and 23 ns. In the

lifetime image, only for visualization purposes, we set pixels with no fluorophores as

having a non-existent −1 ns lifetime. For both scenes, although the pixelwise method

gives the approximate locations of fluorophores in the image domain, it fails to give

their accurate intensity and lifetime values that may be useful for analyzing chemical

properties. On the other hand, our intensity and lifetime estimates XCML,𝛽CML

recovers not only the spatial fluorophore features in a robust manner, but also the

intensity and lifetime values accurately. We observe that our fluorophore identification

step (Step 2) is accurate enough such that our final lifetime images have finite lifetime

values only at the pixels of the fluorophores. In our algorithm, we used the intensity

and inverse lifetime penalty functions to be the TV-norm with parameters 𝜏𝐴, 𝜏𝜇 =

0.5, and 𝜖 = 0.03.
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Figure 7-3: Experimental recovery results of (top) fluorescence intensity normalized
to have maximum value of 1 and (bottom) lifetime for two different quantum dot
scenes with different mean numbers of photons-per-pixel (ppp) using the pixelwise
maximum-likelihood estimator and the proposed framework.

7.6 Summary and Discussion

In this chapter, we proposed a method of accurately recovering a scene’s fluorescence

intensity and lifetime using only a small number of photon detections at each pixel. To

solve for intensity and lifetime, we formulated an optimization problem that combined

pixelwise photodetection statistics with an image prior that models the spatial cor-

relations of natural fluorescent scenes. Using a transformation-of-variable technique,

we showed that this optimization problem can be solved using convex optimization

techniques, which allows for fast and accurate computation of high-dimensional im-

ages.

Recovering multiple lifetimes: In this chapter, we used the single-lifetime as-

sumption, i.e., that the fluorescence signal is well modeled by a single exponential

function at each pixel. However, fluorescent samples such as a cyan fluorescent pro-

tein (CFP) are known to have more than one lifetime, and thus emit a light waveform

that is a sum of exponential functions at each pixel [9]. Thus, our computational

framework must be improved to simultaneously perform non-binary estimation of the

number of lifetimes and the recovery of those lifetime values.
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Fluorescence imaging through diffusers: Extending the framework to enable

accurate imaging in the presence of a diffuser in between the imager and the sample

is of high interest, as the diffuser models fluorescence imaging through cell skins. It

can be shown that including the diffuser will give an effect of two-way blurring on

the observations (the first blurring comes from light going into the diffuser en route

to the sample, and the second blurring comes from light coming out of the diffuser to

approach the detector). For example, the intensity image observed in the presence of

the diffuser, even at very high-flux so that noise is negligible, is given as the spatially-

resolved measurements convolved with the two-dimensional kernel of the diffuser that

is typically a Gaussian function. The larger the extent of the kernel (width of the

Gaussian), the more difficult the inverse problem is to solve. Thus, extending the

low-flux super-resolution framework developed in Chapter 5 to the FLIM setup might

enable accurate low-light fluorescence imaging through diffusing media.
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Chapter 8

Conclusions and Final Remarks

In this thesis, we demonstrated how modeling and computation can play major roles

in acquiring high-quality scene information at low light-levels, where instead of mea-

suring continuous light intensities as in the classical high light-level regime, we are

constrained by the physical limitation of observing small numbers of photon detec-

tions using a single-photon imaging system.

We looked at six different imaging problems in the single-photon regime: single-

reflector depth imaging, multi-depth imaging, array imaging, super-resolution imag-

ing, single-pixel photography, and fluorescence imaging. For each low-light imaging

problem, we started by deriving an accurate observation model for single-photon de-

tections, characterizing the information the photons carry about the scene of interest.

Then, for the scene parameters of interest, we derived their physical constraints, based

on what statistics or assumptions we can reasonably make prior to the imaging ex-

periments. Using the imaging model that combines the single-photon statistics and

scene parameter constraints, we formulated an inverse problem to recover the scene

information in a statistically optimal manner. Finally, we developed fast and accurate

algorithms that solve the inverse problem using optimization methods.

In Chapter 2, we showed how discrete-flux modeling of photodetection combined

with the union-of-subspaces constaint from single-reflector LIDAR setup lead to a

photon-efficient pixelwise depth imaging framework. We then developed a greedy

algorithm, inspired by CoSaMP, a ℓ0-norm-based sparse signal pursuit method, to
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solve the resulting inverse imaging problem.

Chapter 3 extended the framework from Chapter 2 to imaging multiple reflectors

per pixel. We showed that the accurate multidepth imaging framework solves a

convex optimization problem that is formulated using photon-count statistics with a

sparse-reflector profile constraint. The inverse problem then could be solved using a

variation of the iterative shrinkage-thresholding algorithm for LASSO.

Unlike Chapters 2 and 3, which assumed raster-scanning operation with a sin-

gle detector, Chapter 4 developed a framework that modeled limitations inherent

in single-photon cameras with array detectors. There, we showed how combining

hardware constraints, photodetection statistics, and image prior models can lead to

an accurate array-based depth plus reflectivity imager. Here we were able to solve

the inverse problem using a mixture of sparse signal pursuit by OMP and convex

optimization methods.

Chapter 5 addressed a particular problem of depth and reflectivity super-resolution.

There we showed that a photon-efficient super-resolution technique could be devel-

oped by modeling the limitations of optical illumination and sensing and photodetec-

tion statistics. The inverse problem could be solved using either a greedy pursuit or

convex optimization for deconvolution.

Chapter 6 studied the single-pixel camera architecture, and showed how the ac-

curate photodetection model can be used to reason that the least-squares imager is

a useful estimator at low flux as it uses non-compressive measurements. Separately,

we derived its closed-form MSE performance at low flux using results from random

matrix theory.

Finally, in Chapter 7, we used the photodetection statistics from fluorophore sig-

nals and image priors to develop a photon-efficient method of fluorescent imaging.

Once again the inverse problem was relaxed so that it could be solved using convex

heuristics.

In conclusion, this thesis presented a unifying viewpoint on how accurate modeling

and the design of computational reconstruction algorithms can lead to photon-efficient

reconstruction of scene properties. Our framework opens up new ways to reconstruct
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scene properties, such as depth, reflectivity, and fluorescence, in a variety of imaging

scenarios while using very few photon detections. Thus, it could find widespread use

in engineering applications, spanning from long-range and large-scene remote optical

sensing to small and sensitive biological imaging, where the imaging task must be

performed fast and accurately using extremely small amounts of light.
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Appendix A

Table of Notations

Given below is a list of notations commonly used in this thesis along with their

meanings. For illustration purposes, define 𝑥 to be a real scalar, x to be a real vector

of size 𝑝 × 1 and X to be a real matrix of size 𝑝 × 𝑞. Also, we assume that 𝑝 is an

integer divisible by integer 𝑝′. Quantities that have physical units have those units

indicated in brackets.

I. Notation used for modeling

Notation Meaning
𝑁 number of image pixels
𝑚 number of sampling bins defined by single-photon detector
𝑛 number of discretized depth bins
𝐾 number of reflectors in a scene pixel
∆ sampling period of time-correlated single-photon detector [s]
𝑁𝑠 number of independent pulse illuminations
𝑇𝑟 period of pulsed illumination [s]
𝑇𝑝 root mean square pulsewidth [s]
𝐼(𝑡) scene impulse response function
𝑠(𝑡) illumination optical flux [photons/s]
𝑏(𝑡) background flux [photons/s]
𝑟(𝑡) optical flux incident at sensor [photons/s]
𝜆(𝑡) rate function of single-photon detector [counts/s]
𝑐 speed of light [m/s]
𝜂 quantum efficiency of single-photon detector
𝑏𝑑 dark count rate of single-photon detector [counts/s]
ℒ(x;y) negative log likelihood function of x given data y
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II. Notation used for inference

Notation Meaning
x𝑖 value of 𝑖-th entry of x
x|𝒜 subvector of x picked out by indices in set 𝒜
‖x‖𝑝 ℓ𝑝-norm of vector x
X𝑖,: a 1× 𝑞 row vector defined by the 𝑖-th row of matrix X
X:,𝑗 a 𝑝× 1 column vector defined by the 𝑗-th column of matrix X
X𝑇 transpose of matrix X
X−1 inverse of square, full-rank matrix X
X† pseudoinverse of full-rank matrix X
rank(X) rank of matrix X
X|𝒜 submatrix of X defined by columns of X picked out by indices in set 𝒜
𝒮𝑘(𝑝, 𝑞) set of real 𝑝× 𝑞 matrices with every row being 𝑘-sparse
1𝒜(𝑥) indicator function that equals to 1 if 𝑥 ∈ 𝒜 and 0 otherwise
I𝑝 identity matrix of size 𝑝× 𝑝
0𝑝×𝑞 matrix of size 𝑝× 𝑞 with all entries being zeros
1𝑝×𝑞 matrix of size 𝑝× 𝑞 with all entries being ones
vec(X) vector of size 𝑝𝑞 × 1 obtained by orderly stacking the columns of X vertically
supp(x) set of indices of x that contain non-zero values
x[𝑘] a 𝑝× 1 vector with best 𝑘-term approximation to x
x[𝑘,𝑝′] a 𝑝× 1 vector with every block subvector of size 𝑝′ approximated with its

best 𝑘 terms
𝒯𝑧(·) thresholding operator that sets every entry of input vector less than 𝑧 to 𝑧.
(𝑓 * 𝑔)(𝑡) one-dimensional convolution of functions 𝑓(𝑡) and 𝑔(𝑡)
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Appendix B

Dynamic Range of Single-Photon

Detectors

Consider the active imaging setup with an illumination source and an ideal single-

pixel photon counter, one that can record multiple photon detections over time from

the scene-backreflected light with unit detector efficiency. Then, based on classical

photodetection theory, the number of photon detections at the 𝑘th time bin of the

ideal photon counter is Poisson distributed as [46]

y𝑘 ∼ Poisson

(︂∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆(𝑡) 𝑑𝑡

)︂
, for 𝑘 = 1, . . . ,𝑚. (B.1)

We can always define 𝜆(𝑡) = 𝑎𝜆′(𝑡) such that 𝜆′(𝑡) integrates to 1 and 𝑎 =
∫︀ 𝑇𝑟

0
𝜆(𝑡)𝑑𝑡

is the effective strength of the rate function. Then we can write the probabilities of

having no detection and at least one detection event at time bin 𝑘 are

𝑝miss(𝑘) = Pr[y𝑘 = 0] = exp

{︂
−𝑎
∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆′(𝑡) 𝑑𝑡

}︂
, (B.2)

𝑝hit(𝑘) = Pr[y𝑘 ̸= 0] = 1− exp

{︂
−𝑎
∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆′(𝑡) 𝑑𝑡

}︂
, (B.3)

using Eq. (B.1).

In contrast to the ideal photon counter, a practical photon-counting detector,
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such as the single-photon avalanche diode (SPAD) [124], suffers from what is known

as dead (or reset) time, which is the time it takes for the detector to become active

and start recording again after a photon detection event. Letting 𝑇𝑑 be the dead time

of a detector, we assume that 𝑇𝑑 > 𝑇𝑟.

Based on Eq. (B.2) and (B.3), we can write the probability of the detection at

time bin 𝑘 of such a non-ideal detector suffering from dead time effects as

Pr[detection at bin 𝑘 | detection in [0, 𝑇𝑟)] (B.4)

=
1

𝑍

⎛⎝ 𝑘−1∏︁
𝑖=1

𝑝miss(𝑖)

⎞⎠ 𝑝hit(𝑘) (B.5)

=
1

𝑍
exp

{︃
−𝑎
∫︁ (𝑘−1)Δ

0

𝜆′(𝑡) 𝑑𝑡

}︃(︂
1− exp

{︂
−𝑎
∫︁ 𝑘Δ

(𝑘−1)Δ

𝜆′(𝑡) 𝑑𝑡

}︂)︂
, (B.6)

where 𝑍 is the normalization scalar, given by

𝑍 =

𝑚∑︁
𝑘=1

(︃
exp

{︃
−𝑎
∫︁ (𝑘−1)Δ

0

𝜆′(𝑡) 𝑑𝑡

}︃
− exp

{︂
−𝑎
∫︁ 𝑘Δ

0

𝜆′(𝑡) 𝑑𝑡

}︂)︃
(B.7)

= 1− exp

{︂
−𝑎
∫︁ 𝑚Δ

0

𝜆′(𝑡) 𝑑𝑡

}︂
= 1− exp {−𝑎} . (B.8)

Note that the photodetection events in bins later than 𝑘, which is the first bin with a

detection event, are considered as “don’t cares” due to the detector dead time. After

𝑁𝑠 independent illumination trials, we would have gathered a number of detections.

By the dead-time constraint, note that the number of detections must be less than

or equal to 𝑁𝑠. In fact, the distribution of the total number of photon detections is

c ∼ Binomial(𝑁𝑠, 1− exp{−𝑎}), (B.9)

as every illumination period defines a Bernoulli trial for detection with success proba-

bility 1−
∏︀𝑚

𝑘=1 𝑝miss(𝑘) = 1− exp{−𝑎}. Here we have assumed that there is sufficient

time gap between one illumination trial to its next, such that the dead time effect

does not overflow and the two adjacent trials are completely independent.
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In our applications, we are interested in the photodetection characteristics of

non-ideal detectors suffering from dead time when operating at low-flux condition.

We define the vector x that represents the discretized normalized waveform: x𝑘 =∫︀ 𝑘Δ

(𝑘−1)Δ
𝜆′(𝑡) 𝑑𝑡 for 𝑘 = 1, . . . ,𝑚. Then the behavior of the detection probability under

the low-flux condition, 𝑎→ 0+ becomes

Pr[detection at bin 𝑘 | detection in [0, 𝑇𝑟)] (B.10)

∝ exp

{︃
−𝑎

𝑘−1∑︁
𝑖=1

x𝑖

}︃
− exp

{︃
−𝑎

𝑘∑︁
𝑖=1

x𝑖

}︃
(B.11)

𝑎→0+→

(︃
1− 𝑎

𝑘−1∑︁
𝑖=1

x𝑖

)︃
−

(︃
1− 𝑎

𝑘∑︁
𝑖=1

x𝑖

)︃
(B.12)

= 𝑎x𝑘. (B.13)

Because
∑︀𝑚

𝑘=1 x𝑘 = 1 by definition, we conclude that

lim
𝑎→0+

Pr[detection at bin 𝑘 | detection in [0, 𝑇𝑟)] = x𝑘. (B.14)

The result in Eq. (B.14) states that under the low-flux condition, the distribution

from which photon detection times are sampled is proportional to the rate function

defined by the detector. Letting 𝑁𝑠 → +∞, we can see that the total number of

photon detections is distributed as

c ∼ Poisson(𝑁𝑠𝑎) = Poisson

(︃
𝑁𝑠𝑎

𝑛∑︁
𝑘=1

x𝑘

)︃
, (B.15)

using the fact that the limiting distribution of the binomial expression in Eq. (B.9)

is Poisson. Since c𝑖 ∼ Poisson(𝑁𝑠𝑎x𝑖) and c𝑗 ∼ Poisson(𝑁𝑠𝑎x𝑗) are independent for

𝑖 ̸= 𝑗 for 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, we can conclude that

y ∼ Poisson (𝑁𝑠𝑎x) , (B.16)

where Poisson(·) is defined entrywise. In other words, even when using a non-ideal
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Figure B-1: Plots of probability function in Eq. (B.6) for different values of 𝑎. For
increasing 𝑎, the probability function deviates away from the normalized rate function
x shown as the dashed black line.

detector with dead time effects, as long as we operate in the low-flux regime with suf-

ficiently large 𝑁𝑠, the photodetection statistics is still Poissonian. Also, by gathering

a large number of photon detections, the optical waveform x can be reconstructed

from y with arbitrarily small error.

On the other hand, the above properties no longer hold when we consider imaging

scenarios with moderate or high flux conditions. In such cases, because of the dead

time effect, the photon count observation y inaccurately models x, even when 𝑁𝑠 →

+∞. Intuitively, we can observe that a high amplitude of an optical signal incident at

the detector leads to an early detection event, and thus results in a mismatch between

y and normalized rate function x. Figure B-1 illustrates this phenomenon; as the flux

level 𝑎 increases, the photodetection probability in Eq. (B.6) deviates away from the

normalized rate function. Accurate imaging cannot be performed by directly using

raw photon count observations, due to the mismatch of the histogram y and 𝜆′(𝑡).

By correcting the effect of dead time from y, we hope to increase the amplitude range

over which our photon count observations well model the received optical waveform,

and thus be used for accurate scene information recovery.

Assuming a large number of illuminations (𝑁𝑠 ≫ 0) and using Eq. (B.6) and
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(B.9), the 𝑘th bin value of the count histogram vector can be approximated as

y𝑘 ≈ E[c]Pr[detection at bin 𝑘 | detection in [0, 𝑇𝑟)] (B.17)

= (𝑁𝑠(1− exp{−𝑎}))
exp

{︁
−𝑎
∑︀𝑘−1

𝑖=1 x𝑖

}︁
(1− exp {−𝑎x𝑘})

1− exp{−𝑎}
. (B.18)

= 𝑁𝑠 exp

{︃
−𝑎

𝑘−1∑︁
𝑖=1

x𝑖

}︃
(1− exp {−𝑎x𝑘}) , (B.19)

for 𝑘 = 1, . . . ,𝑚. Using Eq. (B.19), we propose Algorithm 7 that corrects the

dead time effect to estimate an 𝑚 × 1 waveform x̂fix from raw photon-count data

y. Our algorithm observes that the summation in the first exponential term of Eq.

(B.19) is a cumulative sum, and thus uses the sum of estimates (x̂fix)1, . . . , (x̂fix)𝑘−1

to compute (x̂fix)𝑘 from y𝑘 for 1 < 𝑘 ≤ 𝑚, Thus, because of its recursive form,

the algorithm has computational complexity which is quadratic in the number of

detector time bins. Also, note that the proposed algorithm uses a two-step approach

of maximum likelihood estimation of amplitude 𝑎̂ from Eq. (B.9), and using 𝑎̂ for

iterative estimation of waveform x̂fix from Eq. (B.19).

Algorithm 7 Proposed algorithm for dead time effect mitigation

Input: y, 𝑁𝑠

Output: x̂fix

𝑠 = 0, 𝑘 = 0
𝑎̂ = log(𝑁𝑠/(𝑁𝑠 −

∑︀𝑚
𝑖=1 y𝑖)) ◁ ML amplitude estimate

repeat
𝑘 ← 𝑘 + 1
(x̂fix)𝑘 ← − log (1− y𝑘/(𝑁𝑠 exp{−𝑎̂𝑠})) /𝑎̂
𝑠← 𝑠 + (x̂fix)𝑘

until 𝑘 = 𝑚

Simulation results: Figure B-2 shows a simulation example of using Algorithm

7 to perform waveform correction for a photon counting detector suffering from dead

time. The ground truth waveform distribution x (blue dashed line, labeled as “truth”

in the plot) was taken to be a shifted Gaussian pulse on a pedestal that models the

ambient light in the scene. We set 𝑁𝑠 = 10000 and 𝑎 = 2, such that the mean number
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Figure B-2: Plots of x (dashed blue line, labeled as “truth”), y/𝑛𝑠 (solid black line,
labeled as “dead”), and x̂fix (solid red line, labeled as “estimate”), which was obtained
using Algorithm 7.

of photon detections was calculated to be around 8000. The scaled raw observation

y/𝑁𝑠 (blue dashed line, labeled as “dead” in the plot), which was corrupted by dead

time effects, had root mean square error (RMSE) of 0.005. As expected, the plot

shows that the dead time effect translates to a bias in photodetection earlier in the

acquisition interval. The corrected waveform x̂fix using Algorithm 7 had RMSE of

0.001.

Experimental validation: The dead time phenomenon and the effectiveness of

the correction algorithm were also validated by using photon counting experimental

data (see Figure B-3). With the single-photon avalanche photodiode detector plus

the HydraHarp time-correlator, we were able to record photon arrivals from pulse

illuminations on a white board that was 2 meters away. We used three illumination

powers: 30 mW (low), 50 mW (moderate), and 70 mW (high). In order to compute

reconstruction errors, we calibrated the ground truth rate function x, by gathering

high photon counts at very low-flux operations such that the dead time effect is neg-

ligible. We found that our algorithm successfully corrects the distortions in observed

photon-count histograms to achieve a lower RMSE for the three light levels. At low

light levels, because the dead time effect is not that severe, the raw and corrected

results are both close to the ground truth, and exhibit low RMSE. On the other hand,
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Figure B-3: Plots of log-RMSE of y and x̂fix for increasing number of photon detec-
tions at three different laser illumination powers.

at high light levels, the RMSE improvement from our correction method is large.
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Appendix C

Convexity of Negative Log Poisson

Likelihood

Consider the linear observation model from photodetection:

y ∼ Poisson(Ax + b), (C.1)

where y is an 𝑚×1 photon count vector, A is an 𝑚×𝑛 deterministic forward imaging

matrix, x is an 𝑛× 1 deterministic vector representing scene information, and b is an

𝑚× 1 deterministic perturbation vector. The negative log-likelihood of x is then

ℒ(x;A,y) =
𝑚∑︁
𝑘=1

[(Ax + b)𝑘 − y𝑘 log(Ax + b)𝑘 + log(y𝑘)!] . (C.2)

It suffices to show that the Hessian matrix of ℒ(x;A,y) is non-negative to prove

that it is convex in x. The gradient of ℒ(x;A,y) is

∇x ℒ(x;A,y) = A𝑇1𝑚×1 −
𝑚∑︁
𝑘=1

[︂
y𝑘

(Ax + b)𝑘
(A𝑇 ):,𝑘

]︂
, (C.3)

from which we can compute the Hessian as

∇2
x ℒ(x;A,y) = A𝑇 diag(y) diag−2(Ax + b)A. (C.4)
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For any v ∈ R𝑛×1, we have

v𝑇∇2
x ℒ(x;A,y)v = (Av)𝑇 diag(y) diag−2(Ax + b)(Av) (C.5)

=
𝑚∑︁
𝑘=1

y𝑘

(Ax + b)2𝑘
(Av)2𝑘. (C.6)

Since y is a non-negative count vector, the expression in Eq. (C.6) is always non-

negative. Thus, the negative log Poisson likelihood is a convex function in x.
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Appendix D

Approximation of Poisson Likelihood

for Single-Photon Depth Imaging

Consider the general Poisson channel:

y ∼ Poisson(Ax), (D.1)

where y is an 𝑚 × 1 observed vector with entrywise Poisson distributed samples,

A is an 𝑚 × 𝑛 non-negative deterministic matrix, and x is an 𝑛 × 1 non-negative

deterministic vector. Recall that the negative log likelihood function of x is

ℒ(x;A,y) =
𝑚∑︁
𝑘=1

[(Ax)𝑘 − y𝑘 log(Ax)𝑘 + log(y𝑘!)] . (D.2)

Then, we can write the first-order Taylor approximation ℒ(1)(x;A,y) of ℒ(x;A,y)

about x = 1𝑛×1 as follows:

ℒ(1)(x;A,y) (D.3)

=
𝑚∑︁
𝑘=1

(︂
(Ax)𝑘 − y𝑘

(︂
logA𝑘,:1𝑛×1 +

1

A𝑘,:1𝑛×1

A𝑘,:(x− 1𝑛×1)

)︂
+ log(y𝑘!)

)︂
(D.4)

∼=
𝑚∑︁
𝑘=1

(Ax)𝑘⏟  ⏞  
term 1

−
𝑚∑︁
𝑘=1

y𝑘

A𝑘,:1𝑛×1

A𝑘,:x⏟  ⏞  
term 2

(D.5)
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where ∼= denotes equality up to a constant independent of x. Recall that in Chapter 2,

our inverse problem had the specific constraints of pixelwise reconstruction of object

depth.

1. All columns of A have equal ℓ2-norm and all of its rows has equal sum.

2. x is 1-sparse.

Then, “term 1” and the denominator in the sum of “term 2” in Eq. (D.5) are constants.

It follows that Eq. (D.5) can be rewritten as

ℒ(1)(x;A,y) ∼= −
𝑚∑︁
𝑘=1

y𝑘

A𝑘,:1𝑛×1

A𝑘,:x (D.6)

∝
𝑚∑︁
𝑘=1

−y𝑘A𝑘,:x (D.7)

∝
𝑚∑︁
𝑘=1

−2y𝑘A𝑘,:x (D.8)

∼=
𝑚∑︁
𝑘=1

[︀
y𝑇
𝑘 y𝑘 − 2y𝑘A𝑘,:x + (A𝑘,:x)(A𝑘,:x)

]︀
(D.9)

=
𝑚∑︁
𝑘=1

(y𝑘 −A𝑘,:x)2 = ‖y −Ax‖22. (D.10)

In conclusion, given that Poisson inverse problem includes the the single-reflector

constraint for LIDAR, then the maximum likelihood estimator of x can be approx-

imated using the least-squares solution by using the first-order Taylor expansion of

the negative log likelihood.
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Appendix E

Operation of SPAD Detector Array

In this appendix, we detail the operational characteristics of the SPAD array used for

the imaging experiments in Chapter 4.

SPAD detector array: The 32 × 32-pixel single-photon avalanche photodiode

(SPAD) array was developed by F. Villa et al. at the Politecnico di Milano [48, 54, 125].

It has two modes of operation: counting mode and timing mode. In counting mode,

a 6-bit counter located at each detector site is incremented each time a photon is

detected, allowing for up to 63 photon detections before rolling over to 0. In tim-

ing mode, the SPAD camera outputs a digital signal at the start of each acquisition

window for synchronization with external devices and for time stamping photon de-

tection events. An internal clock running at 160MHz controls the timing signals of

the SPAD array, and each pixel has a time-to-digital converter (TDC) comprising the

same 6-bit counter plus a 4-bit interpolator to provide 10 bits of timing resolution

at 390 ps. In our experiment, we operated the SPAD array in the timing mode for

simultaneous depth and reflectivity imaging.

Data-acquisition timing terminology and rationale: Figure E-1 illustrates

the terminology and time scales for the timing-mode acquisition process. Acquisition

begins when the camera issues the trigger signal to the laser diode—for synchronizing

its pulse generation schedule—and ends 400 ns later, i.e., the acquisition window set by
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Figure E-1: SPAD-camera image acquisition terminology for RS-mode operation.

the TDC’s 10-bit timing resolution combined with its ∆ = 390 ps time-bin duration.

The TDC timing results at each pixel are stored locally in a 10-bit memory, and

the data from all 1024 memory registers are then transferred to an off-chip random

access memory (RAM) from which they are routed to a computer for processing.

During the 10𝜇s needed for this data transfer, no photon detections can be recorded.

The resulting 4% duty cycle for a single acquisition-readout cycle severely impacts

measurements that require quick acquisition of a large amount of data. In particular,

our laser’s 𝑇𝑟 = 50 ns pulse repetition period implies that only 8 laser pulses are

sent in an acquisition window, making our experiment’s effective pulse rate 800 kHz,

instead of 20MHz, when each acquisition window is immediately followed by data

readout.

174



The camera has a work-around provision, called readout-skip (RS) mode, that

allows acquisition windows to be strung together without gaps by holding off the

long readout process. In the experiment we adjoined 40 windows to form a single

continuous gate-on period of 16𝜇s. The gate-on period is followed by a 49-𝜇s-long

gate-off period, for limiting chip power dissipation and for reading out and transferring

data from 1024 local memory registers to the computer. As indicated in Figure E-1,

a full cycle of a gate-on period and the subsequent gate-off period constitutes a 65-

𝜇s-long frame. In our experiment we acquired 1.06 s of imaging data—comprised of

16,384 frames—for each camera position in a high-precision scan. These scans, which

were performed with a two-axis translation stage, formed a 384×384 pixel composite

image, as detailed below.

There is a compromise inherent in operating the SPAD camera in its RS mode:

suspending readout until the end of the gate-on period means that at most one photon

detection per frame can be recorded at any given pixel, and this limitation could

have consequences for depth and reflectivity imaging. Consider a photon detection

recorded at a particular pixel in a particular frame. RS-mode operation precludes

our knowing in which of that frame’s 40 acquisition windows the detection event

occurred, even though the 10-bit timing information within that window is intact.

Because the laser’s pulse-repetition period is chosen to satisfy 𝑐𝑇𝑟/2 > 𝑧max, where

𝑧max is the scene’s maximum depth, each detection of a back-reflected photon is due

to the immediately preceding laser pulse. Hence the quality of timing data collected

with RS-mode enabled is the same as would be obtained—over a much longer image-

acquisition time—with that mode disabled.

The situation is different for reflectivity measurements, because the number of

preceding laser pulses before the detection event within a frame yields useful reflec-

tivity information. We operate in a low-flux scenario, however, so the probability

of obtaining a detection event at a particular pixel within a frame of 40 windows

is very low. It follows that many frames are needed to acquire the first detection

event. RS-mode operation records the frame in which each detection event occurs,

but neither the window within that frame in which it occurred, nor the laser pulse
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within that window which produced that detection. In other words, we retain coarse

timing information (number of frames before the detection event happens) but lose

the finer timing details (number of laser pulses preceding the detection event within

the frame). Given that we use over 16,000 frames per acquisition sequence, RS-mode

operation has minimal adverse impact on reflectivity estimation.

Setup and spatial scanning: A diagram of the experimental setup is shown in

Figure E-2. The SPAD array occupies a 4.8× 4.8 mm footprint that contains 32× 32

pixels. We would like to have a larger imaging area, as well as more pixels, in order

to more fully explore computational reconstruction methods. Given the limited size

of the current SPAD array, we opted to stitch together multiple image acquisitions

to form a larger-size composite image. To do so we mounted the SPAD array on

a feedback-controlled, two-axis motorized translation stage and translated the array

in a square pattern of 6 × 6 seamless tiles, as shown in Figure E-3(a), giving us a

total imaging area of 28.8× 28.8mm and a resolution of 192× 192 pixels. The 30𝜇m

diameter of each pixel’s circular active area being less than half the 150-𝜇m pixel

pitch provided a way to increase resolution with the same image area by translating

the SPAD array along its horizontal (𝑥) and vertical (𝑦) axes to all combinations

of 0 and 1/2 pixel-pitch distances before moving on to the next tile, as shown in

Figure E-3(c). In other words, we combined 6 × 6 tiling with factor-of-2 sub-pixel

sampling by collecting data at (𝑥, 𝑦) = (𝐿𝑥 + ∆𝑥, 𝐿𝑦 + ∆𝑦) for all combinations of

𝐿𝑥, 𝐿𝑦 ∈ {0, 4.8, 9.6, 14.4, 19.2, 24} and ∆𝑥,∆𝑦 ∈ {0, 0.075}, where all dimensions are

in mm. This gave us a total imaging resolution of 32× 6× 2 = 384 pixels along each

axis and required a total of 6×6×2×2 = 144 image acquisition sequences to produce

the resulting 384×384 pixel image. Although this approach required scanning, it was

still significantly faster than raster scanning with a single-pixel SPAD, which would

have required a total of 3842 = 147, 456 image acquisition sequences for the same

resolution.

To obtain sufficient data for comparison with conventional imaging methods, we

configured the SPAD camera to output a total of 16,384 frames for each acquisition
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sequence, which at 65𝜇s per frame took 1.06 s. MATLAB control programming was

used to automate the acquisition procedure and synchronously drive the translation

stage to each of the 144 camera positions, outputting a separate file for each position

containing photon detection data. To speed up data processing, collaborator D.

Venkatraman developed a custom GNU C program to read the SPAD array binary

files and output a file containing only a sequence of photon detections tagged by pixel

number and time location number. The C program also has both ASCII and binary

output modes, which are conveniently and efficiently read in MATLAB.

Mounted in front of the translatable SPAD array was a standard Canon FL-series

photographic lens with a focal length of 55mm and an f/1.2 maximum photographic

aperture. We set the lens’ aperture to f/2.8, which provided depth of field sufficient to

capture details from the object depths in our scene, increased sharpness, and reduced

vignetting. The lens, designed for 35mm film cameras, had an image-circle diameter

slightly larger than 35mm, allowing us to mount the lens at a fixed position and

conveniently fit our 24 × 24mm imaging area entirely within the lens’ image circle.

Preliminary tests in counting mode showed that at f/2.8 the lens was able to easily

and clearly resolve objects as small as one pixel in the 384 × 384 pixel image with

almost zero cross-talk.
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Figure E-2: Experimental SPAD-array imaging setup.
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Figure E-3: Scanning scheme to obtain increased image area and image resolution
using the 32 × 32-pixel SPAD array. (a) Array translation by increments of a full
array size (4.8mm) along both axes to image multiple tiles of the entire array. (b)
Zoom-in view of individual SPAD pixels showing the active area with no sub-pixel
scanning, (c) 2× 2 sub-pixel scanning by translating along each axis by 75𝜇m, hence
multiplying resolution by 2 in each dimension.
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Appendix F

SNR of the Histogram Sum Variable

Recall in Chapter 5, as part of our super-resolution single-photon imaging framework,

we defined the variable P, which is a linear sum of the raw photon-count histogram

data:

P𝑖,𝑗 =
𝑚∑︁
𝑘=1

(𝑘 y𝑖,𝑗,𝑘) . (F.1)

Our interest is in computing the SNR of P𝑖,𝑗:

snr(P𝑖,𝑗) =
E[P𝑖,𝑗]√︀
Var(P𝑖,𝑗)

, (F.2)

which tells us how confident we can be with our super-resolution image estimates. In

Chapter 5, we saw that

E[P𝑖,𝑗] =
2𝑁𝑠

𝑐∆
(H * (A ∘D))𝑖,𝑗 (F.3)

Var(P𝑖,𝑗) =
𝑁𝑠

∆2

(︀
𝑇 2
𝑝 (H *A)𝑖,𝑗 + (4/𝑐2)(H * (A ∘D ∘D))𝑖,𝑗

)︀
, (F.4)

where ∘ denotes the entrywise Hadamard product. We can then have that the SNR

for P𝑖,𝑗 is

snr(P𝑖,𝑗) =

√
𝑁𝑠(H * (A ∘D))𝑖,𝑗√︀

((𝑐𝑇𝑝/2)2(H *A)𝑖,𝑗 + (H * (A ∘D ∘D))𝑖,𝑗)
. (F.5)
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One immediate observation we can make from the above expression is that the SNR

of P𝑖,𝑗 increases linearly with the square root of the number of illuminations 𝑁𝑠. In

other words, by using an arbitrarily long acquisition time (𝑁𝑠 → +∞), we can always

make P𝑖,𝑗 behave almost like a noiseless variable.

However, we are interested in low-flux operations, and thus using small 𝑁𝑠 for our

acquisition. For the sake of SNR analysis, let us assume a very short pulse (𝑇𝑝 → 0+),

unit reflectivity map, and a blur kernel that is constant over all pixels. Let ℋ𝑖,𝑗 be the

index set of pixels that the kernel defines when it is centered at pixel (𝑖, 𝑗). Because of

the normalization rule of the blur kernel, we have H𝑖′,𝑗′ = 1/|ℋ𝑖′,𝑗′| for (𝑖′, 𝑗′) ∈ ℋ𝑖,𝑗

for any 𝑖 and 𝑗. Then, we can approximate and simplify Eq. (F.5) as

snr(P𝑖,𝑗) ≈
√︀

𝑁𝑠

1
|ℋ𝑖,𝑗 |

∑︀
(𝑖′,𝑗′)∈ℋ𝑖,𝑗

D𝑖′,𝑗′√︁
1

|ℋ𝑖,𝑗 |
∑︀

(𝑖′,𝑗′)∈ℋ𝑖,𝑗
D2

𝑖′,𝑗′

(F.6)

=
√︀

𝑁𝑠

ℳ1({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
)

ℳ2({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
)
, (F.7)

where ℳ𝑝({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
) denotes the generalized mean of power 𝑝 for the set

{D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
:

ℳ𝑝({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
) =

⎛⎝ 1

|ℋ𝑖,𝑗|
∑︁

(𝑖′,𝑗′)∈ℋ𝑖,𝑗

D𝑝
𝑖′,𝑗′

⎞⎠1/𝑝

. (F.8)

The generalized means of power 1 and 2 obey

ℳ1({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
) ≤ℳ2({D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗

) (F.9)

with equality holding only when all the elements of {D𝑖′,𝑗′}(𝑖′,𝑗′)∈ℋ𝑖,𝑗
are equal. In

other words, the SNR value in Eq. (F.7) is maximized, when the depths of pixels

defined by the blur kernel ℎ represent a planar surface.
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Figure F-1: Depth variation vs. SNR. The solid blue line shows Eq. (F.7) and the
dashed red line indicates

√
𝑁𝑠, which is an upper bound to SNR, for various values

of depth-var.

Define the depth variation quantity at pixel (𝑖, 𝑗) by

depth-var(𝑖, 𝑗) =

⎯⎸⎸⎸⎷ 1

|ℋ𝑖,𝑗|
∑︁

(𝑖′′,𝑗′′)∈ℋ𝑖,𝑗

⎛⎝D𝑖′′,𝑗′′ −
1

|ℋ𝑖,𝑗|
∑︁

(𝑖′,𝑗′)∈ℋ𝑖,𝑗

D𝑖′,𝑗′

⎞⎠2

, (F.10)

which is simply the standard deviation of depths of reflectors defined by the kernel

H at pixel (𝑖, 𝑗). Figure F-1 verifies our intuition that little variation in depths is

required to achieve high SNR of the data variable P𝑖,𝑗, by plotting Eq. (F.7) with

respect to depth-var(𝑖, 𝑗). This plot was generated by simulating Eq. (F.7) with

reflectors placed in 𝑚 = 100 depth bins in a uniformly random fashion for a 5 × 1

image. In other words, the dimension of H was set to be 5 pixels for this simulation.
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Appendix G

Asymptotic Efficiency of

Least-Squares Single-Pixel Imaging

The Fisher information matrix (FIM) of the probability function 𝑓y(y;x) that is

parametrized by a column vector x is defined as

J(x) = Ey

[︃(︂
𝜕

𝜕x
log 𝑓(y;x)

)︂(︂
𝜕

𝜕x
log 𝑓(y;x)

)︂𝑇
]︃
. (G.1)

Intuitively speaking, the FIM measures the average concavity of a likelihood function.

The Cramér-Rao bound (CRB) is the trace of the inverse of FIM:

crb(x) = Tr
(︀
J(x)−1

)︀
. (G.2)

The CRB is a particularly useful quantity as it is a lower bound on the variance of

unbiased estimators of x [126]. Then, an estimator x̂(y) of x is efficient if

I. it is unbiased (E[x̂] = x),

II. its mean square error is the Cramér-Rao bound (mse(x̂,x) = crb(x)).

In other words, efficient estimators are the optimal unbiased estimators. In regards

to our least-squares single-pixel imaging framework in Chapter 6, we can make the

following observation.
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Observation 1. Consider our single-pixel imaging setup, where x is an 𝑁 × 1 non-

negative scene reflectivity vector, A is an 𝑀 ×𝑁 forward imaging matrix with each

entry being non-negative and i.i.d., and

y ∼ Poisson(Ax). (G.3)

Then, x̂LS = A†y is an asymptotically efficient estimator of x, given 𝑀 → +∞ for

fixed 𝑁 .

Proof. We first prove its unbiasedness.

E[x̂LS] = E[
(︀
A𝑇A

)︀−1
A𝑇y] (G.4)

(𝑎)
=
∑︁
A′

E[
(︀
A𝑇A

)︀−1
A𝑇y|A = A′]Pr[A = A′] (G.5)

=
∑︁
A′

(︀
(A′)𝑇A′)︀−1

(A′)𝑇E[y|A = A′]Pr[A = A′] (G.6)

(𝑏)
=
∑︁
A′

(︀
(A′)𝑇A′)︀−1

(A′)𝑇A′xPr[A = A′] (G.7)

=
∑︁
A′

xPr[A = A′] (G.8)

= x
∑︁
A′

Pr[A = A′] (G.9)

= x, (G.10)

where (𝑎) uses the law of total expectation and (𝑏) uses the fact that the mean of a

Poisson random variable is equal to its rate parameter Ax.

Also, we have that the FIM is

J(x) = Ey,A

[︃(︂
𝜕

𝜕x
log 𝑓(y,A;x)

)︂(︂
𝜕

𝜕x
log 𝑓(y,A;x)

)︂𝑇
]︃

(G.11)

= EA

[︃
Ey

[︃(︂
𝜕

𝜕x
log 𝑓(y,A;x)

)︂(︂
𝜕

𝜕x
log 𝑓(y,A;x)

)︂𝑇 ⃒⃒⃒⃒
A = A′

]︃]︃
(G.12)

= EA

[︀
A𝑇diag(Ax)−1A

]︀
, (G.13)
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and thus

crb(x) = Tr
(︁
E
[︀
A𝑇diag(Ax)−1A

]︀−1
)︁
. (G.14)

When 𝑀 → +∞, the diagonal matrix term effectively becomes an identity matrix

scaled with 𝑔(x) = 𝑝‖x‖1. Also, in this limit, the term inside the expectation ap-

proaches the correlation matrix, which is deterministic, and by Jensen’s equality, the

inverse and the expectation operators commute. In other words,

crb(x)→ 𝑔(x)Tr
(︀
E
[︀
(A𝑇A)−1

]︀)︀
. (G.15)

We recall from (6.16), that mse is computed as

mse = Tr
(︀
EA

[︀
diag(Ax)A(A𝑇A)−2A𝑇

]︀)︀
. (G.16)

In the limit of 𝑀 → +∞, the diagonal matrix becomes a scaled identity and we can

write

mse→ 𝑔(x)Tr
(︀
E
[︀
A(A𝑇A)−2A𝑇

]︀)︀
(G.17)

= 𝑔(x)Tr
(︀
E
[︀
(A𝑇A)−1

]︀)︀
, (G.18)

where the last line used the commutation between trace and expectation and the cyclic

property of trace. Comparing Eq. (G.15) and Eq. (G.18), we conclude that our least-

squares single-pixel imaging estimator is asymptotically efficient as 𝑀 → +∞.

The asymptotic efficiency is also observable from Figure G-1, which shows the

plots of mse and crb for increasing 𝑀 , given that x was generated using a uniformly

random sample of size 10 with a Bernoulli matrix A.
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Figure G-1: Plots of crb and mse generated using Monte Carlo simulations of Eq.
(G.14) and Eq. (G.16). Observe that as 𝑀 increases, the crb becomes a tighter lower
bound for mse.
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