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Abstract

Imaging the 3D structure and re�ectivity of a scene can be done using photon-counting
detectors. Traditional imagers of this type typically require hundreds of detected
photons per pixel for accurate 3D and re�ectivity imaging. Under low light-level
conditions, in which the mean photon count is small, the inverse problem of forming
3D and re�ectivity images is di�cult due to the Poisson noise inherent in low-�ux
operation. In this thesis, we propose and study two computational imagers (one
passive, one active) that can form accurate images at low light levels. We demonstrate
the superior imaging quality of the proposed imagers by comparing them with the
state-of-the-art optical imaging techniques.
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Chapter 1

Introduction

Modern optical imaging systems collect a large number of photon detections in order

to suppress optical detector noise and form accurate images of object properties. For

example, a commercially available digital camera provides the user with a clean pho-

tograph by detecting trillions of photons with the sensor array. Traditional imagers

are thus required to operate with long acquisition times or at high light levels such

that the total optical �ux hitting the detector is su�ciently high.

In this thesis, we propose two computational imagers (one passive, one active)

that can accurately recover images of scene properties, such as re�ectivity and 3D

structure, at low-�ux regimes where the mean photon count per pixel can even be less

than one. The core principle that allows high-quality imaging for both proposed im-

agers is the combination of the photodetection physics with the statistical properties

of image representations. The proposed imagers are as follows.

1. A single-pixel camera with high photon e�ciency: We propose a passive

single-pixel re�ectivity imager that can accurately estimate the scene re�ectiv-

ity in photon-limited imaging scenarios by using an extension of the theory of

multiplexed sensing. The proposed method, which makes use of the physically

realistic constraint that re�ectivity values are non-negative, disproves the ac-

cepted wisdom that re�ectivity estimation based on multiplexed measurements

always degrades imaging performance under low light-level Poisson noise of the
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photodetector. We demonstrate through numerical experiments that the pro-

posed imager outperforms the classical single-pixel camera that takes direct

raster observations at low light levels.

2. An active 3D imaging system with high photon e�ciency: We pro-

pose an active imager that will simultaneously recover scene re�ectivity and

3D structure with high accuracy using a single-photon detector. The proposed

imager allows high-quality 3D imaging by combining the accurate single-photon

counting statistics with the prior information that natural scenes are spatially

correlated. Experimental results show that the proposed imager outperforms

state-of-the-art 3D imaging methods that incorporate denoising algorithms. We

form accurate 3D and re�ectivity images even when the mean number of pho-

ton detections at a pixel is close to 1. Also, we give an information-theoretic

framework that can be used to choose optimal design parameters such as the

illumination pulse shape, at least for the pixelwise imaging scenario.

Higher photon e�ciency of an imaging system directly translates to shorter data ac-

quisition time. For 3D imaging speci�cally, it can translate to lower illumination

power and longer range imaging. Thus, the theory of highly photon-e�cient imag-

ing in this thesis opens up many interesting research areas for building real-time

imaging systems that can robustly operate at low-power and under low light-level

conditions.

The remainder of the thesis is organized as follows. In Chapter 2, we discuss the

single-pixel camera and propose a computational imaging method that achieves high

photon e�ciency in estimating scene re�ectivity. Chapter 3 describes the method

of 3D imaging using an active illumination source and a single-photon detector, and

proposes a highly photon-e�cient computational 3D imaging method. Chapter 4

gives the conclusions of the two proposed imaging frameworks.
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Chapter 2

Single-Pixel Re�ectivity Imaging with

High Photon E�ciency

2.1 Prior Work

Passive optical imaging relies on an ambient light source to form an image of the

scene re�ectivity. Commercially available digital cameras are well-known examples of

passive optical imagers. Since a two-dimensional sensor array is used for a camera,

the re�ectivity image is formed by measuring the total optical power hitting the

photodetector over a �nite acquisition time at every image pixel. The array allows

the pixelwise measurements to be made in parallel.

Unlike cameras with a two-dimensional sensor array, the single-pixel camera [1]

uses a single photodetector that takes pixelwise measurements not in parallel, but

sequentially using a light modulator. The single-pixel camera has its advantages in

size, complexity, and cost compared to an array-based camera. However, array based

sensing is still preferred over single-pixel sensing when having a short acquisition time

is important such as in real-time imaging.

The single-pixel camera is particularly useful in low light-level imaging scenarios,

in which one is required to use single-photon avalanche detectors and photomultipliers,

that are typically not available as arrays. Accurate formation of intensity images

at low light levels is important in engineering applications such as astronomy [2],
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night vision [3], medical imaging applications such as positron emission tomography

(PET), and imaging of light-sensitive biological and chemical samples [4]. In all

of these applications, the low-light measurements are collected using single-photon

detectors. The main challenge is that the measurements made using such detectors

are inherently noisy due to low photon-count levels and are thus corrupted by signal-

dependent photon noise that comes from the quantum nature of light detection. In

this section, we survey several techniques for low light-level imaging using a single-

pixel camera equipped with a photon-number resolving detector.

2.1.1 Classical Passive Re�ectivity Imaging

Let x be the ideal pixelated scene re�ectivity of size n × 1 that we are interested

in imaging. If the scene is two-dimensional, then x is its vectorized version. Here,

we include the e�ects of passive illumination and radial fall-o� of optical �ux in the

re�ectivity vector x. At every image pixel, we use the photon-counting photodetector

to record the number of photons detected in an acquisition time of Ta. Since we have

a total of n image pixels in the single-pixel camera, the total image acquisition time

using raster scanning then equals nTa.

Let yi be the photon count measurement that the photodetector makes at the i-th

pixel. In the absence of illumination, our observations yi are simply detector dark

counts. We denote the dark count rate as d ≥ 0. We assume that we know d exactly

through a calibration process prior to the imaging experiment. The photon counting

noise that corrupts our observations is known as shot noise and is well-modeled as

Poisson distributed [5]. Our observation model at pixel i is then

yi ∼ Poisson(Ta(xi + d)). (2.1)

The probability mass function of our observation at pixel i is thus

Pr[Yi = yi ; xi, d] =
exp{−Ta(xi + d)} (Ta(xi + d))yi

yi !
, (2.2)
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Ta = 100 Ta = 10 Ta = 1 Ta = 0.1

d = 0.1 d = 1 d = 10 d = 100

Figure 2-1: E�ect of shot noise on image quality for several acquisition times Ta (top)
and dark count rate values d (bottom). The maximum re�ectivity value of the saturn
image is 25.

for yi = 0, 1, 2, . . .. Thus, the maximum-likelihood (ML) pixelwise re�ectivity esti-

mate from our data y = [y1, . . . ,yn]T is simply x̃ = y/Ta − d, where d = [d, . . . , d]T .

We observe that the ML estimate is obtained by normalizing and bias-correcting the

raw photon count observations y. The variance of the pixelwise re�ectivity estimate

x̃ at the i-th pixel is Var(x̃i) = (xi + d)/Ta. As shown in Figure 2-1, we observe that

traditional pixelwise ML estimate using the single-pixel camera is limited to having

a long acquisition time Ta and low dark count rate d to minimize the variance from

shot noise and form high-quality images in photon-limited scenarios.

2.1.2 Single-Pixel Camera based on Compressive Sensing

Recently, the authors of [6] developed an architecture for a photon-e�cient single-pixel

camera that uses compressed sensing theory. The theory of compressed sensing [7]

accurate image formation is guaranteed with high probability even when the num-

ber of measurements is less than the number of image pixels. Although it uses only

one photodetector like the raster-scanned system considered above, the compressed

sensing imaging setup has a major di�erence from that of traditional pixelwise imag-

ing. Unlike traditional imaging which involves sensing one image pixel at a time and

acquiring n measurements in total, compressive imaging acquires a sequence of m

measurements by observing light from multiple pixels at the same time using pre-
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designed coded patterns. Typically, the structured pattern of pixels can be achieved

using a digital micromirror device (DMD). Experimental results in [8] show the high-

quality re�ectivity images which are formed using traditional scanning method can be

obtained using compressed sensing with one tenth the number of total measurements,

and thus with higher photon e�ciency.

Let {w1, . . . ,wm} be the set of m vectors, each of size n× 1, describing the coded

pattern of pixelwise measurements. By the optical �ux conservation law, we see that

every entry of wi must be between 0 and 1, for i = 1, 2, . . . ,m. Then, the observation

model for the i-th measurement taken by the compressive single-pixel camera is

zi ∼ Poisson
(
Ta(w

T
i x + d)

)
, (2.3)

where wT
i is the vector transpose of wi. We can also write the observation model in

matrix-vector form:

z ∼ Poisson (Ta(Wx + d)) , (2.4)

where now W is an m×n matrix that row-concatenates the m measurement patterns

{wT
1 , . . . ,w

T
m} and z is the measurement vector of size m × 1. Then, the theory of

robust compressed sensing [9] allows us to have m < n and form accurate re�ectivity

images with high probability, given that the matrixW satis�es the restricted isometry

property (RIP) and the prior information that the image is sparse in the transform-

domain.

However, the authors of [10] proved that image estimation based on compressed

sensing under low light conditions (Ta(Wx + d)i < 1 for all i ∈ {1, . . . ,m}) fails due

to the signal-dependent nature of Poisson noise. Thus, at low light levels, it is instead

preferable to rely on traditional pixelwise methods described in the previous section

than compressive methods. In other words, although compressive single-pixel imaging

achieves higher photon e�ciency by making fewer total measurements at high light

levels, the method has no performance guarantees when the total �ux hitting the

detector is low and when the e�ect of shot noise is signi�cant.
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Figure 2-2: The multiplexed imaging setup. Measurement zi is collected using pattern
wi for i = 1, 2, . . . n, where n is the total number of image pixels.

2.1.3 Single-Pixel Camera based on Multiplexed Sensing

Multiplexed imaging is another powerful mechanism used to boost imaging perfor-

mance when the observation noise is signal independent. Unlike compressed imaging,

multiplexed imaging requires the number of measurements of coded patterns to be

equal to the number of image pixels (m = n). The multiplexed imaging setup is

shown in Figure 2-2. Unlike compressed imaging, the method of multiplexed imag-

ing does not require any sparsity assumptions on the scene re�ectivity and is thus a

non-Bayesian imaging method.

It has been shown [6] that multiplexed imaging outperforms classical pixelwise

imaging when the observations are corrupted by signal-independent noise. We em-

phasize that this is the case when we are operating with a simple photodiode detector

at high light levels, where the e�ect of shot noise and dark current contribution is

minimal. Our measurement vector z of size n can be assumed to be corrupted by

additive Gaussian noise:

z = TaWx + η, (2.5)

whereW ∈ [0, 1]n×n is a square multiplexing matrix and η is a vector whose entries are

independent and identically distributed (i.i.d.) zero-mean Gaussian random variables

with variance σ2. Note that if W is the identity matrix, then we have the observation
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model of traditional pixelwise imaging. Assuming that the multiplexing matrix W

is non-identity and non-singular, we can decode the multiplexed measurements and

estimate the re�ectivity image by performing a simple matrix inversion. The matrix

inversion estimate x̂inv = W−1(z/Ta) is the traditional demultiplexing solution [11].

Researchers were interested in using multiplexed measurements instead of direct

measurements, with the aim of reducing the mean-square error (MSE). For an es-

timator x̂ of x, the MSE is de�ned as MSE(x, x̂) = tr
(
E[(x− x̂)(x− x̂)T ]

)
, where

tr(·) and E respectively denote the trace and expectation operators. The multiplexing

gain G(W) associated with the multiplexing code W is de�ned as the reduction ratio

in the root MSE from pixelwise imaging to multiplexed imaging:

G(W) =

√
MSE(x,y/Ta)

MSE(x, x̂inv)
. (2.6)

We see that G(W) > 1 implies that multiplexed imaging using patternW outperforms

traditional imaging when the noise is additive Gaussian. In this case, we can write

G(W) =

√
tr (E[(x− y/Ta)(x− y/Ta)T ])

tr (E[(x− x̂inv)(x− x̂inv)T ])

=

√
tr(E[ηηT ])

tr(E[W−1ηηTW−T ])

=

√
tr(diag([σ2, . . . , σ2]))

tr(W−1diag([σ2, . . . , σ2])W−T )

=

√
n

tr ((WTW)−1)
, (2.7)

where diag(v) is a matrix that has v as its diagonal and zeros as its o�-diagonal

entries. Then, the optimal multiplexing pattern that maximizes the gain is obtained
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by solving the following optimization problem:

max
W

√
n

tr((WTW)−1)
(2.8)

s.t. Wi,j ∈ [0, 1], i, j = 1, . . . , n

|W| 6= 0,

where |W| is the determinant of W. The optimization problem in (2.8) is non-convex

in W and thus is a di�cult problem to solve. However, with the extra constraints

that Wi,j ∈ {0, 1} and that every measurement should combine optical �ux from

exactly C pixels, previous works [12] proved that Hadamard multiplexing is optimal

for certain values of n. The Hadamard multiplexing matrix H of size n × n can be

constructed by deleting the �rst row and column of a Hadamard matrix of size n+ 1

and replacing 1's with 0's and −1's with 1's [11]. By construction, the Hadamard

multiplexing matrix will have C = (n + 1)/2 ones and (n− 1)/2 zeros at every row.

Also, because Hadamard matrices can only be constructed when n is a multiple of

4, H can only be constructed when n ≡ 3 (mod 4). For example, a Hadamard

multiplexing matrix of size 7 is

H =



1 0 1 0 1 0 1

0 1 1 0 0 1 1

1 1 0 0 1 1 0

0 0 0 1 1 1 1

1 0 1 1 0 1 0

0 1 1 1 1 0 0

1 1 0 1 0 0 1


.

It is shown in [13] that the set of eigenvalues of a size-n H is

λ(H) =


n+ 1

2
,

√
n+ 1

4
, . . .

√
n+ 1

4︸ ︷︷ ︸
# = (n−1)/2

,−
√
n+ 1

4
, . . . ,−

√
n+ 1

4︸ ︷︷ ︸
# = (n−1)/2

 .

Using observation on the set of eigenvalues of a Hadamard multiplexer, the Hadamard
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multiplexing gain can then be computed to be G(H) = (n + 1)/(2
√
n) [14]. For

high n, we see that Hadamard multiplexed imaging gives an astounding
√
n/2-fold

improvement over traditional pixelwise imaging at high light levels when observations

are assumed to be corrupted by additive signal-independent noise. Intuitively, the

Hadamard multiplexing matrix gives high multiplexing gain because C is a large

number such that the signal-to-noise ratio of observations is high, and the rows of H

are almost orthogonal so that the condition number of H is low.

2.2 Multiplexed Sensing under Poisson Noise

We are mainly interested in photon-limited imaging scenarios, in which the obser-

vations are corrupted by signal-dependent Poisson noise. Although Hadamard mul-

tiplexing followed by matrix inverse decoding gives a performance boost when the

noise is signal independent, we will see that it severely degrades the image quality

at low light levels when the shot noise e�ect is dominant. In the photon-limited

imaging setup, the multiplexed observation vector z of size n obtained from the

photon-counting Poisson channel model is

z ∼ Poisson(Ta(Wx + d)) (2.9)

Using the Hadamard multiplexing matrixH, we calculate the multiplexed gain (again,

for demultiplexing by code matrix inversion) under Poisson noise as

G(H) =

√
tr (E[(x− (y/Ta − d))(x− (y/Ta − d))T ])

tr (E[(x− x̂inv)(x− x̂inv)T ])
, (2.10)

where y ∼ Poisson(Ta(x+d)). Assuming zero dark-count contribution and using the

eigenvalue properties of Hadamard multiplexers, we derive that the gain from using

Hadamard multiplexing is simply G(H) =
√

(n+ 1)/(2n) (Appendix A.1). Because

n > 1 implies G(H) < 1, the matrix inverse estimate x̂inv from Hadamard multi-

plexed data under Poisson noise will always have MSE higher than that obtained
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from direct measurements. In fact, it has been numerically demonstrated [15] that

general multiplexing methods fail to give MSE reduction in the presence of Poisson

noise. Furthermore, in Appendix A.2, we prove that for circulant multiplexing ma-

trices, which are useful for coded aperture imaging applications, multiplexing failure

(G(W) ≤ 1) is guaranteed.

One proposed solution to increase the multiplexing gain is to use Bayesian es-

timators that assume structural properties about the scene [16]. However, many

imaging scenarios require one to make no assumptions about the scene and thus it

is preferred to use non-Bayesian estimation methods. Hence, it is naturally advised

that one should not use conventional multiplexing methods in photon-limited imaging

scenarios.

We emphasize that the claims on multiplexing failure (G(W) ≤ 1) under Poisson

noise presented in this section only hold when demultiplexing is accomplished using

the matrix inverse solution. In the following section, we demonstrate that it is pos-

sible to have multiplexing advantage even under Poisson noise, when we enforce the

physically-realistic non-negativity constraint of re�ectivity images in the estimation

process.

2.3 Non-Negativity of Re�ectivity

The re�ectivity of a scene is always non-negative. However, we will observe that the

matrix inverse solution x̂inv for demultiplexing may not always be non-negative. First,

we see that the matrix inverse solution is equal to the ML estimate using multiplexed

measurements under Poisson noise. For notational convenience, we write x ≥ 0 to

state that every entry of x is non-negative. The ML estimate is

x̂ML = arg max
x: Wx+d≥0

n∏
i=1

Pr[Zi = zi ;W,x,d],

= arg max
x: Wx+d≥0

n∏
i=1

exp{−Ta(Wx + d)i}(Ta(Wx + d)i)
zi

zi !
.
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Figure 2-3: The non-negative orthant cone and the polyhedral cone c(W), assuming
zero dark count. True re�ectivity image (black) lies in the non-negative orthant.
From one realization of data, we obtain a feasible re�ectivity estimate (blue) using
the matrix inverse solution. From another realization of data, the estimate (red) has
negative entries and thus is not valid.

We denote the log-likelihood Lx(x; z) =
∑n

i=1 logPr[Zi = zi ; W,x,d] so that the

ML estimate is equivalent to

arg min
x: Wx+d≥0

− Lx(x; z). (2.11)

Due to the non-negativity of Poisson rate parameter Ta(Wx+d), we observe that the

ML solution x̂ML is constrained to be in the polyhedral set c(W) = {v : Wv+d ≥ 0}.

Because Lx(x; z) is strictly convex (see Appendix A.3), if there is a solution x̂ that

gives zero gradient (∇x Lx(x̂; z) = 0) and satis�es x̂ ∈ c(W), then it is the ML

solution.

The gradient of Lx(x; z) is given by

∇x Lx(x; z) = −TaWT
1 +

n∑
i=1

zi
eTi (Wx + d)

WT ei, (2.12)

where 1 is a size-n vector of ones and ei is a size-n vector that has a single non-zero

entry equal to one at i-th index. We observe that the gradient becomes zero at the
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point de�ned by the matrix inverse solution x̂inv = W−1(z/Ta − d). Also, since

Wx̂inv + d = WW−1(z/Ta − d) + d = z/Ta

and z is a Poisson random vector, we see that x̂inv ∈ c(W). Thus, the matrix inverse

estimate is equal to the ML estimate.

The matrix inverse estimate must then be in the set c(W). Also, because x ≥ 0

implies Wx + d ≥ 0, the non-negative orthant cone is always contained in c(W).

This implies that there is a non-zero probability of the matrix inverse estimate x̂inv

being an infeasible re�ectivity estimate by having negative entries. Figure 2-3 shows

an example of feasible and infeasible re�ectivity estimates contained in the polyhedral

cone c(W) given d = 0.

2.4 Novel Image Formation

In the previous section, we observed that the traditional demultiplexing method based

on the matrix inverse solution can give invalid re�ectivity estimates that have negative

entries. Thus, using the physically realistic constraint that re�ectivity values are non-

negative, we propose to solve for the non-negatively constrained maximum-likelihood

(CML) re�ectivity estimate using multiplexed measurements z:

x̂CML = arg min
x: x≥0

n∑
i=1

[ (Ta(Wx + d))i − zi log (Ta(Wx + d))i ] . (2.13)

Due to the non-negativity constraint, the solution to the constrained maximum-

likelihood optimization problem no longer has a closed-form solution. However, be-

cause the non-negative orthant is a convex set and the cost function is also a convex

function in x, we can use a simple projected gradient algorithm to solve the opti-

mization problem for a global minimum solution [17]. Starting at an initial guess of

27



solution x(0), we iterate

x(k+1) = max

{
x(k) + α(k)

(
WT

1−
n∑
i=1

zi
eTi (Wx + d)

WT ei

)
, 0

}
, (2.14)

where α(k) is the step size chosen at k-th iteration and the maximum operator acts

entrywise. The solution at convergence is x̂CML. It is also possible to use the log-

barrier method to enforce the non-negativity constraint, so that we only use a pure

descent algorithm to solve for the CML estimate:

min
x

n∑
i=1

[ (Ta(Wx + d))i − zi log (Ta(Wx + d))i − λ log xi ] , (2.15)

for a su�ciently small value of λ ≥ 0.

We would like to know when does the proposed CML demultiplexing solution

outperform the traditional pixelwise imaging methods and give us a multiplexing

advantage. First, we want to understand when does the CML solution diverge away

from the traditional matrix inverse demultiplexing solution, which is simply ML. In

other words, when does the non-negativity constraint become active in the CML

estimation?

2.4.1 When is the Non-Negativity Constraint Active?

The non-negativity constraint becomes active in the constrained solution, only when

the unconstrained solution, which is the matrix inverse solution, violates the con-

straint. We can write the probability mass function of the matrix inverse solution

x̂inv as

Pr[X̂ = x̂ ; W,x,d] =
Ta
|W−1|

n∏
i=1

(Ta(Wx + d))
(Ta(Wx̂+d))i
i exp {−(Ta(Wx + d))i}

(Ta(Wx̂ + d))i !
,

for x̂ ∈ {W−1(z/Ta−d) : z ∈ Zn+}. We are interested in solving for the probability of

non-negativity constraint violation (the probability of at least one entry of the matrix
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inverse solution being negative): Pr[Violation] = 1−
∑

x̂≥0 Pr[X̂ = x̂ ; W,x,d]. If the

violation probability is high, then the degree to which the constrained ML estimate

diverges away from the unconstrained ML solution by having physically-realistic non-

negativity corrections is also high. Thus, we are using the violation probability as a

proxy for reduction in MSE.

In Appendix A.4, we show that the matrix inverse solution is in fact an unbiased

estimator that achieves minimum mean-square error. Thus, if the CML estimate

eventually has lower MSE compared to traditional multiplexed imaging method based

on ML, then it must be that the non-negativity constraint introduces bias in the CML

estimate and creates a bias-variance tradeo�.

Calculation of the violation probability using the probability mass function can

only be done using Monte Carlo methods. Thus, we instead try to derive a lower

bound on the violation probability and how it relates to the signal x. In order

to construct a lower bound on the violation probability, we �rst give the following

de�nition.

De�nition 1. A size-n continuous random vector X is symmetric i.i.d. if

pX(x) =
1

Z

n∏
i=1

f(xi),

where f(·) is a positive symmetric function and Z is a normalization factor so that

pX(x) is a probability density function of X.

Using the previous de�nition, we can lower bound the violation probability as

follows, assuming zero dark count rate.

Remark 1. If the matrix inverse solution is unbiased, continuous, and symmetric

i.i.d., then

Pr[violation] ≥
n0∑
k=1

1

2k
, (2.16)

where n0 ≥ 1 is the number of zeros in the signal vector x.
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Figure 2-4: Covariance matrices of Hadamard inverse solution x̂inv for several sparsity
levels of size 63 vector x (k is the number of non-zero entries). The non-zero support
of x was randomly selected and non-zero entries were set to 100.

The proof of Remark 1 is given in Appendix A.5. Remark 1 simply states that

if the matrix inverse solution is unbiased, continuous, and symmetric i.i.d., then the

violation probability increases as the number of zeros in x increases. Note that it is

indeed possible to assume that x̂inv is a continuous random vector in certain cases.

For example, if we assume that the non-zero entries of x are arbitrarily large, then

the Poisson random vector z can be approximated as a Gaussian random vector.

2.4.2 Choosing the Multiplexing Pattern

We saw in Remark 1 that the violation probability is related to signal sparsity, when

the matrix inverse demultiplexing solution is symmetric i.i.d. Can we construct a

multiplexing matrix such that the matrix inverse solution satis�es the symmetric

i.i.d. condition? The following remark will imply that the Hadamard matrix inverse

solution is approximately symmetric i.i.d. given that the re�ectivity signal x is a

constant vector with arbitrarily large entries.

Remark 2. If the multiplexing pattern is determined by the Hadamard multiplexer

H, then the matrix inverse solution has a covariance matrix Σ with the following

properties.

1. If i = j, then Σi,j =
1

Ta

(
2

n+ 1

)2
(

n∑
i=1

(Hx + d)i

)
,
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Figure 2-5: Simulated violation probability using Hadamard multiplexing (blue) and
the derived theoretical lower bound (red) in Equation (2.16) vs. number of zeros.
The re�ectivity vector x has size 15. The non-zero support of signal x was randomly
generated and its non-zero entries were all set to 100.

2. If i 6= j, then

|Σi,j| ≤ max
S0∈S

∣∣∣∣∣∣ 1

Ta

(
2

n+ 1

)2
∑
k1∈S0

(Hx + d)k1 −
∑

k2∈{1,...,n}\S0

(Hx + d)k2

∣∣∣∣∣∣ ,
where S = {T |T ⊂ {1, 2, . . . , n}, |T | = (n− 1)/2}.

We give the proof of Remark 2 in Appendix A.6. Remark 2 tells us that the covari-

ance matrix of Hadamard demultiplexing solution x̂inv has large diagonal entries and

small o�-diagonal entries, given that x is close to being a constant vector. Figure 2-4

shows that the covariance matrix of x̂inv indeed becomes more diagonally dominant

as the number of non-zero entries of x increases.

For example, let x = α1n×1 be a constant vector without any zero entries, where

α > 0. Assume zero dark counts. Then, Hx = α(n+1
2

)1n×1 and

1. Σi,j =
α

Ta

(
2

n+ 1

)2(
n(n+ 1)

2

)
, for i = j,

2. Σi,j =
α

Ta

(
2

n+ 1

)2(
n+ 1

2

)
, for i 6= j.

As n→ +∞, we observe that the diagonal entries of the Σ converge to 2α/Ta while

the o�-diagonal entries converge to 0. We then observe that x̂inv is symmetric i.i.d.,
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if n → +∞ so that the limiting covariance matrix is diagonal and α → +∞ so that

x̂inv is assumed to be Gaussian distributed.

Given that x is a large constant vector, we saw that the Hadamard matrix inverse

solution can be approximated to be continuous and symmetric i.i.d., and thus obeys

the violation probability bound in Equation (2.16). We would like to know how valid

is the bound when x is non-constant and x̂inv may not necessarily be symmetric i.i.d.

The numerical result in Figure 2-5 shows that the probability of violation when using

Hadamard multiplexing is in fact well-described by the lower bound for various signal

sparsity levels, at least when the non-zero entries of x are large and constant.

2.5 Numerical Experiments

2.5.1 Comparison of Mean-Square Errors

We performed numerical experiments to compare the MSE's of traditional pixelwise

imaging, multiplexed imaging based on ML matrix inverse solution, and our proposed

CML multiplexed imaging. In all our multiplexed imaging experiments, we use the

Hadamard multiplexing strategy. Also, we set d to be zero.

The plot on the left of Figure 2-6 shows how the MSE values of estimators depend

on the number of zeros in signal x. We set Ta = 1. In this experiment, we chose x

to be a vector of size 15. The non-zero support of signal x was randomly generated

and its non-zero entries were all set to 100. As we expected, the ML demultiplexing

estimate using matrix inverse performs worse than the pixelwise imaging estimate for

all sparsity levels. We also con�rm our derivations in Section 2.4.1 that high signal

sparsity implies high violation probability, since, as the number of zeros increases, our

CML solution diverges away from the ML demultiplexing solution. When the number

of non-zero entries in x is small enough, the CML solution outperforms traditional

pixelwise imaging. Contrary to popular belief, we demonstrated that it is possible to

achieve multiplexing gain even under Poisson noise in a non-Bayesian way by simply

including physically accurate constraints.

32



10
−2

10
0

10
2

10
−1

10
0

α

R
M

S
E

 

 

Pixelwise
ML
CML

5 10 15

10
2

10
3

Number of non−zeros

M
S

E

 

 

Pixelwise
ML
CML

Figure 2-6: (Left) MSE vs. number of non-zeros n0. (Right) RMSE vs. signal
strength α, where x = α · 1n×1 is a constant vector.

The plot on the right of Figure 2-6 shows that the signal strength is another

factor a�ecting the violation probability and thus the relative MSE (RMSE), which

is de�ned as

RMSE(x, x̂) =

√
MSE(x, x̂)∑n

i=1 xi
. (2.17)

In this experiment, we set the true re�ectivity image to be a constant vector x =

α · 1n×1 of size 15, that is controlled by the parameter α > 0. We set Ta = 1.

From the de�nition of RMSE, the RMSE expressions are linear in α, on a log-log

scale, for pixelwise imaging and ML demultiplexing methods, and this is observed in

the plot. We con�rm the failure of traditional ML multiplexing methods compared

to pixelwise imaging for all values of α. When x is a vector with large entries, the

violation probability is low and the RMSE of CML is also linear in α on a log-log scale.

In this high light-level regime, the CML solution converges to the ML solution and

both ML and CML multiplexed imaging methods perform worse than the pixelwise

imaging method. However, if x is described by small entries (low light-level), then

we observe that the non-negativity constraint is activated and the CML solution

outperforms pixelwise imaging [18]. Thus, in photon-limited imaging scenarios, even

when the signal does not have zero entries, multiplexing gain come from the signal
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having low re�ectivity and violating non-negativity conditions.

2.5.2 Natural Images

Figure 2-7 compares the performances of pixelwise imaging and CML multiplexed

imaging for two di�erent re�ectivity vectors. For all imaging experiments in this

section, we set Ta = 1 and d =
∑n

i=1 xi/n. The quality of image estimate x̂ is

quanti�ed by the peak signal-to-ratio (PSNR):

PSNR(x, x̂) = 10 log10

 max
i=1,...,n

x2
i

1
n

∑n
i=1(xi − x̂i)2

 . (2.18)

Also, the error image for estimate x̂ of x is computed as |x̂− x|, where all operators

are entrywise.

We observe that, for the MIT logo image, the CML estimate gives a PSNR boost

of 4.7 dB over the classical pixelwise estimate. For the Shepp-logan phantom image,

CML estimate boosts PSNR by 4.3 dB. Also, by comparing the error maps for each

estimate, we see the superior imaging quality of CML.

So far, we have demonstrated that multiplexing gain comes from using a non-

Bayesian demultiplexer that is physically accurate due to the non-negativity con-

straint. It is possible to improve our multiplexed CML estimation performance by

incorporating the prior knowledge that natural scenes are spatially correlated. We

propose the constrained and penalized maximum likelihood (CPML) estimate, which

is now Bayesian, as the following:

x̂CPML = arg min
x: x≥0

n∑
i=1

(Ta(Wx + d)i − zi log Ta(Wx + d)i ) + β pen(x), (2.19)

where pen(x) is a function that penalizes the non-smoothness of the image esti-

mate over pixels and β is the regularization parameter controlling the strength of

the penalty. If pen(x) is a convex function in x, then the optimization problem is

globally convex and can be solved using computationally e�cient �rst-order gradient
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methods. Popular penalty functions used for accurate image representations are the

`1-norm of wavelet transform and the total variation semi-norm [19].

In Figure 2-8, we compare the accuracy of CPML estimation with the state-of-

the-art Poisson-denoised pixelwise estimation x̂den [20] from direct measurements y.

x̂den = arg min
x

n∑
i=1

(Ta(x + d)i − yi log Ta(x + d)i ) + β pen(x). (2.20)

In this experiment, for both x̂den and x̂CPML, we use the total variation (TV) semi-

norm penalty function

pen(x) = ‖x‖TV =

n∑
i=1

∑
j∈N(i)

|xi − xj|, (2.21)

where N(i) is the set of four neighboring pixels of pixel i in the two-dimensional

image domain. The TV penalty function allows us to model the spatial smoothness of

image and sparsity of edges. Their respective regularization parameters are chosen to

maximize PSNR. We see that, for the Mandrill image, the CPML estimate (Figure 2-

8 (d)) gives a PSNR boost of 12.9 dB over the baseline pixelwise estimation method

(Figure 2-8 (b)) and 6.4 dB over the Poisson denoising method (Figure 2-8 (c)) applied

to the pixelwise estimate. For the cameraman image, the PSNR of the CPML estimate

(Figure 2-8 (k)) is 17 dB higher than that of the pixelwise estimation (Figure 2-8 (i))

and 5.9 dB higher than that of the Poisson denoised estimate (Figure 2-8 (j)). Also,

by comparing the error images, we see the relative high photon e�ciency of the CPML

estimate.
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(a) Ground truth (b) Pixelwise (c) CML

PSNR = −3.2 dB PSNR = 1.5 dB

(d) Error map of (b) (e) Error map of (c)

(f) Ground truth (g) Pixelwise (h) CML

PSNR = 3.5 dB PSNR = 7.8 dB

(i) Error map of (g) (j) Error map of (h)

Figure 2-7: Re�ectivity estimates of the MIT logo image (top) and the Shepp-Logan
image (bottom) from traditional pixelwise ML and the proposed CML that uses
multiplexed measurements. All images are sized 127× 129.
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(a) Ground truth (b) Pixelwise (c) Denoised (b) (d) CPML

PSNR = −8.1 dB PSNR = −1.6 dB PSNR = 4.8 dB

(e) Error map of (b) (f) Error map of (c) (g) Error map of (d)

(h) Ground truth (i) Pixelwise (j) Denoised (i) (k) CPML

PSNR = −8.6 dB PSNR = 2.5 dB PSNR = 8.4 dB

(l) Error map of (i) (m) Error map of (j) (n) Error map of (k)

Figure 2-8: Re�ectivity estimates of the Mandrill image (top) and the cameraman
image (bottom) using CPML. All images are sized 127× 129.
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Chapter 3

Active 3D Imaging with High Photon

E�ciency

3.1 Prior Work

We can acquire 3D structure and re�ectivity of a scene using an active imager � one

that supplies its own illumination. When the optical �ux incident at the detector is

high, the shot noise e�ect is minimal. As the mean count of the �ux reaching the

detector approaches a few photons, 3D and re�ectivity images degrade in quality. In

this section, we study how active optical 3D imaging is traditionally done at low-�ux

regimes.

3.1.1 Classical Active 3D Imaging

Active optical imaging systems di�er in how they modulate their illumination. Modu-

lating intensity temporally enables distance measurement by the time-of-�ight (ToF)

principle. Ordered by increasing modulation bandwidth (shorter pulses), these in-

clude: homodyne ToF sensing, pulsed ToF cameras [21], and picosecond laser radar

systems [22]. Methods that modulate light spatially include speckle decorrelation

imaging, structured light [23], and active stereo imaging [24]. Active 3D imaging

methods using spatial light modulation have low photon e�ciency because they oper-
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ate with an always-on optical output. On the other hand, pulsed ToF systems achieve

millimeter-accurate sensing using optical output that is activated only for short in-

tervals. Among these, ToF imagers using single-photon avalanche diode (SPAD)

detectors have the highest photon e�ciency.

Optoelectronic techniques in the low-�ux regime: In the low-�ux regime, the

robustness of imaging technique can be improved using optoelectronic techniques. For

example, active ToF imagers use light sources, such as lasers, with narrow spectral

bandwidth and spectral �lters to suppress ambient background light and dark current.

However, optical �ltering methods also attenuate signal as well as noise. Range-gated

imaging [25] is another popular technique that increases SNR by activating the de-

tector selectively in time. However, range-gating requires a priori knowledge of the

approximate object location. A SPAD detector may be replaced with a superconduct-

ing nanowire detector (SNSPD) [26], which is much faster, has lower timing jitter,

and has lower dark count rates than a typical SPAD. However, SNSPDs have much

smaller active areas, and hence have narrower �elds-of-view.

Image denoising: When imaging using a SPAD detector in the low-�ux regime, it

is typical to �rst obtain a noisy pixelwise estimate of scene depth using photon arrival

data, and then apply image denoising methods. This two-step approach usually

assumes a Gaussian noise model [20], which is appropriate for high-�ux scenarios. At

low light levels, denoising is more challenging due to the signal-dependent nature of

the noise.

3.1.2 First-Photon Imaging

First-photon imaging (FPI), recently proposed in [27], is a computational imaging

framework that allows accurate 3D and re�ectivity reconstruction using only the �rst

detected photon at every pixel obtained by raster-scanning the scene. It combines the

�rst-photon arrival statistics with spatial correlations existing in natural scenes for

robust low light-level imaging. The statistics of �rst photon arrival derived in [27, 28,
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29] are drastically di�erent than traditional Gaussian noise models in LIDAR. Thus,

the FPI framework can allow accurate 3D imaging in the �rst-photon regime, where

traditional denoising algorithms fail due to the inaccuracy in modeling noise.

However, the main limitation of the �rst-photon imaging framework is that it is

limited to a raster-scanning setup, in which the data acquisition time at each pixel

is random. Thus, it does not extend naturally to operation using sensor arrays,

which employ �xed exposure times, and with which image acquisition time can be

greatly reduced in comparison with raster-scanned, single-detector systems. In this

chapter, we demonstrate highly photon e�cient 3D and re�ectivity imaging when

the pixelwise dwell time is �xed, thereby opening up the possibility of robust SPAD-

array-based imaging under low light-levels and short exposure times. We compare

our proposed imaging technique with the state-of-the-art image denoising methods

that use sparsity-promoting regularization.

3.2 Single-Photon Imaging Setup

Figure 3-1 shows the signal acquisition model using a pulsed light source and a single

SPAD detector. Our aim is to form re�ectivity and depth images x, z ∈ Rn×n
+ of the

scene. We index the scene pixels as (i, j), where i, j = 1, . . . , n. The distance to patch

(i, j) is denoted by zi,j ≥ 0 and the patch re�ectivity is denoted by xi,j ≥ 0, including

the e�ect of radial fall-o�, view angle, and material properties.

3.2.1 Active Illumination

We use an intensity-modulated light source that illuminates the scene in a raster

scanning fashion. This source emits a pulse train with a repetition period of Tr

seconds. As shown in Figure 3-1, we reset the clock to 0 at the start of every period

of pulse illumination for notational convenience. The photon-�ux pulse shape s(t) has

units counts/sec (cps). In order to avoid distance aliasing, we assume Tr > 2zmax/c,

where zmax is the maximum scene range and c is the speed of light. With conventional

processing, the root mean square (RMS) pulse width Tp governs the achievable depth
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Figure 3-1: Data acquisition model. Rate function λi,j(t) of inhomogeneous Poisson
process combining desired scene response and noise sources is shown for pixel (i, j).
Here, N = 3 and ki,j = 2. A noise photon (red) was detected after the second

transmitted pulse at t
(1)
i,j , and a signal photon (blue) was detected after the third

transmitted pulse at t
(2)
i,j .

resolution in the absence of background light [30]. As typically done in range imaging,

we assume that Tp � 2zmax/c < Tr.

3.2.2 Detection

A SPAD detector provides time-resolved single-photon detections [31]. Its quantum

e�ciency η is the fraction of photons passing through the pre-detection optical �lter

that are detected. Each detected photon is time stamped within a time bin of duration

∆ measuring a few picoseconds. Then, as it is typical for a LIDAR system, we have

∆ � Tp � 2 zmax/c. For theoretical derivations, we assume that the exact photon

detection time is available at each pixel. When the detector records a photon arrival,

it becomes inactive for a period of time called the reset time or dead time. We
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will assume that the detector is active at the start of each illumination period, i.e.

immediately after the transmission of each laser pulse, regardless of whether a photon

was detected in the previous illumination period.

3.2.3 Data Acquisition

Each patch (i, j) is illuminated with a total of N light pulses. The pixelwise data

acquisition time is then Ta = NTr seconds. We record the total number of ob-

served photon detections ki,j, along with their set of photon arrival times Ti,j =

{t(1)
i,j , t

(2)
i,j , . . . , t

(ki,j)
i,j } at each pixel. If ki,j = 0, then Ti,j = ∅. Also, modeling realistic

imaging scenarios, we assume background light with �ux bλ at the operating optical

wavelength λ.

Measurement uncertainty in the photon arrival time results from:

• Background light : Ambient light at the operating wavelength causes photon

detections unrelated to the scene.

• Dark counts : Detection events can occur at times when there is no light incident

on the detector.

• Pulse width: The illumination pulse has a non-zero width because the modula-

tion bandwidth cannot be in�nite. Thus, the timing of a detected photon could

correspond to the leading edge of the pulse, the trailing edge, or anywhere in

between. This uncertainty translates to error in depth estimation.

Accounting for these characteristics is central to our contribution, as described in the

following section.

3.3 Observation Model

Illuminating a scene pixel (i, j) with intensity-modulated light pulse s(t) results in

backre�ected light signal ri,j(t) = xi,j s(t− 2 zi,j/c) + bλ at the detector.
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3.3.1 Poisson Detection Statistics

The quantum nature of light in our setup (Figure 3-1) is correctly accounted for by

taking the counting process at the SPAD output to be an inhomogeneous Poisson

process with rate function

λi,j(t) = η ri,j(t) + d = η xi,j s(t− 2 zi,j/c) + (η bλ + d). (3.1)

For notational convenience, we de�ne S =
∫ Tr

0
s(t) dt and B = (η bλ + d)Tr as the

mean signal and background count per period. We assume that both S and B are

known, since it is straightforward to measure them before we begin data acquisition.

Also, we emphasize that the derivations to follow assume that the total �ux is low,

i.e., η xi,j S + B → 0+, as would be the case in low light-level imaging where photon

e�ciency is important.

3.3.2 Statistics of Number of Detected Photons

SPAD detectors are not number-resolving photon counters; they only provide us with

the knowledge that no photons or one or more photons have been detected. Using

Poisson process statistics [32] and the expression of rate function λi,j(t), we have

that the probability of the SPAD detector not recording a detection from one pulse

transmission is

P0(xi,j) =
exp

{
−
(∫ Tr

0
λi,j(t)dt

)}(∫ Tr
0

λi,j(t)dt
)0

0 !
= exp {− (η xi,j S +B)} . (3.2)

Since we illuminate with a total of N pulses, the number of detected photons Ki,j is

binomially distributed with probability mass function

Pr [Ki,j = ki,j; xi,j] =

(
N

ki,j

)
P0(xi,j)

N−ki,j ( 1− P0(xi,j) )ki,j , (3.3)

for ki,j ∈ {0, 1, . . . , N}.

Under the low-�ux condition η xi,j S+B → 0+ and assuming N → +∞ such that
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N(1− exp{−(η xi,j S+B)}) = C is a constant, we see that the photon count variable

Ki,j converges to a Poisson random variable [33] and has the limiting probability mass

function

Pr[Ki,j = k; xi,j] =
Ckexp{−C}

k !
, (3.4)

which is simply a Poisson distribution with mean C.

Pixelwise maximum-likelihood re�ectivity estimation: Given the total ob-

served photon count data ki,j at pixel (i, j), we �nd that the non-negatively con-

strained maximum-likelihood (ML) re�ectivity estimate is

x̂ML
i,j = arg max

xi,j≥0
Pr [Ki,j = ki,j; xi,j] = max

{
1

ηS

(
log

(
N

N − ki,j

)
−B

)
, 0

}
, (3.5)

by checking the zero-gradient condition of the strictly convex log-likelihood function

obtained from Equation (3.3). Traditionally, when the number of photon detections

is large, the normalized photon-count value is used as the re�ectivity estimate [34],

x̃i,j =
ki,j
NηS

. (3.6)

We note that the normalized count value estimate is equal to the ML estimate un-

der the limiting Poisson approximation (Equation (3.4)) of the binomial distribution

with the condition B = 0. The performance guarantees for the unconstrained ML

re�ectivity estimation are given in Appendix B.1.

3.3.3 Statistics of Single Photon Arrival Times

At pixel (i, j), the single-photon arrival time Ti,j recorded by the SPAD detector is lo-

calized down to a bin integration time of ∆. Because the SPAD detector only provides

us with the timing information of the �rst detected photon in a single illumination

period, we write the probability of a SPAD �ring in a [t, t+ ∆) interval, given that a
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SPAD �ring must occur in that illumination period, as

Pr[No �re in [0, t), Fire in [t, t+ ∆) | Fire in [0, Tr) ]

=
Pr[No �re in [0, t) ] × Pr[Fire in [t, t+ ∆) ]

Pr[Fire in [0, Tr) ]

(a)
=

1

1− exp{−(η xi,j S +B)}

(
exp

{
−
∫ t

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}

×

(
1− exp

{
−
∫ t+∆

t

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}))

=
1

1− exp{−(η xi,j S +B)}

(
exp

{
−
∫ t

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}

−exp

{
−
∫ t+∆

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}) (3.7)

where (a) uses Equation (3.2). Then, assuming in�nitesimally small ∆, we can obtain

the probability density function of the continuous arrival time random variable Ti,j,

fTi,j(t; xi,j, zi,j)

=
1

1− exp{−(η xi,j S +B)}
× lim

∆→0+

d

d∆

(
exp

{
−
∫ t

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}

−exp

{
−
∫ t+∆

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

})

=
η xi,j s(t− 2 zi,j/c) +B/Tr
1− exp{−(η xi,j S +B)}

exp

{
−
∫ t

0

(η xi,j s(τ − 2 zi,j/c) +B/Tr) dτ

}
. (3.8)

Then, we observe that the limiting probability density function when (η xi,j S+B)→

0+ (low-�ux condition) is

fTi,j(t; xi,j, zi,j) =
η xi,j s(t− 2 zi,j/c) +B/Tr∫ Tr

0
(η xi,j s(t− 2 zi,j/c) +B/Tr) dt

=
η xi,j S

η xi,j S +B

(
s(t− 2 zi,j/c)

S

)
︸ ︷︷ ︸

Density 1

+
B

η xi,j S +B

(
1

Tr

)
︸ ︷︷ ︸
Density 2

, (3.9)
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for t ∈ [0, Tr). According to Equation (3.9), it is clear that a photon detection could

originate from the backre�ected light signal, ambient light, or a dark count. The

arrival statistics observed at the detector result from the merging of the Poisson pro-

cesses corresponding to these sources. Under the low-�ux condition, the arrival time

of a detected photon originating due to backre�ected signal is exactly characterized

by the normalized time�shifted pulse shape, which is Density 1. On the other hand,

the photon arrival time from background and dark counts is uniformly distributed

in the interval [0, Tr) as Density 2. The probability density function in the low-�ux

limit is a mixture distribution with mixture weights

Pr [Detected photon at pixel (i, j) is signal ] =
η xi,j S

η xi,j S +B
,

Pr [Detected photon at pixel (i, j) is noise ] =
B

η xi,j S +B
.

Pixelwise maximum-likelihood depth estimation: Under the low-�ux assump-

tion, we use the photon arrival time dataset Ti,j = {t(1)
i,j , t

(2)
i,j , . . . , t

(ki,j)
i,j } to construct

the pixelwise constrained ML depth estimate using Equation (3.9):

ẑML
i,j = arg max

zi,j∈[0,cTr/2)

ki,j∏
i=1

fTi,j(t
(i)
i,j ;xi,j, zi,j)

= arg max
zi,j∈[0,cTr/2)

ki,j∑
`=1

log
(
η xi,j s(t

(`)
i,j − 2 zi,j/c) +B/Tr

)
, (3.10)

assuming that ki,j ≥ 1. If ki,j = 0, then we leave the pixel empty. If B > 0, then the

ML depth estimate is obtained by solving a non-convex optimization problem. Also,

in that case, the ML estimation requires the knowledge of the true re�ectivity xi,j,

which is not available. Thus, the log-matched �lter [32] is instead traditionally used

for depth estimation using ki,j photon detections:

z̃i,j = arg max
zi,j∈[0,cTr/2)

ki,j∑
`=1

log s(t
(`)
i,j − 2 zi,j/c). (3.11)
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We note that the log-matched �lter solution can be obtained by assuming B = 0 in

constrained ML estimate. The performance guarantees for ML depth estimation are

given in Appendix B.2.

3.4 Novel Image Formation

In the limit of large sample size or high signal-to-noise ratio (SNR), ML estimation

converges to the true parameter value [35]. However, when the data is limited or SNR

is low � such as in our problem � pixelwise ML solutions yield inaccurate estimates.

We compare our 3D imaging method with the baseline normalized-count re�ectivity

estimate x̃i,j and the log-matched �lter depth estimate z̃i,j, which are ML estimates

asymptotically. Along with using the single-photon detection statistics, we exploit the

spatial correlation present in real-world scenes by regularizing the ML estimators [36].

Our approach provides signi�cant improvements over pixelwise ML estimators and

traditional denoising techniques that may exploit scene sparsity, but assume additive

Gaussian noise. Our computational reconstruction proceeds in three steps.

1. Estimation of re�ectivity: The log-likelihood of scene re�ectivity xi,j given

photon count data ki,j is

Lx(xi,j; ki,j) = −(N − ki,j) η xi,j S + ki,j log (1− exp {−(η xi,j S +B)}) (3.12)

after constants not dependent of xi,j are dropped. Since Lx(xi,j; ki,j) is a strictly

convex function in xi,j, it is amenable to global minimization using convex optimiza-

tion [20]. Then, the penalized ML (PML) estimate for scene re�ectivity image is

obtained from noisy data {ki,j}ni,j=1 by solving the following convex program:

x̂PML = arg min
x: xi,j≥0

n∑
i=1

n∑
j=1

− Lx(xi,j; ki,j) + βx pen(x), (3.13)
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where pen(x) is a convex function that penalizes the non-smoothness of the estimate

and βx controls the degree of penalization.

2. Rejection of background photon detections: Direct application of the sim-

ilar regularized ML approach to depth estimation using time-of-arrival data is infea-

sible. This is because the background light contribution to the likelihood function

gives rise to a non-convex cost function with locally optimal solutions that may be

arbitrarily far from the global optimum. Hence, before estimating depth, the second

processing step attempts to censor the photon detections that are due to background

light and dark counts.

Detections from background light and dark counts do not contain any scene depth

information. Their arrival times are mutually independent over spatial locations with

variance scaling with Tr. In contrast, since light pulses have duration Tp � Tr and

depths zi,j are correlated over spatial locations, the detection times of signal photons

have low conditional variance given data from neighboring positions. Based on this

key observation, our method to censor a noisy detection at (i, j) is as follows:

1. Compute the rank-ordered mean (ROM) [37] value tROMi,j , which is the median

value of all the photon arrival times at the 8 neighboring pixels of (i, j). If tROMi,j

cannot be computed, due to missing data, then we set tROMi,j = +∞.

2. Detect and censor out background photons to obtain the index set of signal pho-

tons:

Ui,j =

{
` : |t(`)i,j − tROMi,j | < 2Tp

(
B

η x̂PML
i,j S +B

)
, 1 ≤ ` ≤ ki,j

}
(3.14)

It is demonstrated in [37] that the method of rank-ordered means is e�ective in

detecting pixels that are corrupted by high variance uniform noise. Since detections

from background light are uniformly distributed, we use the ROM method to reject

such detections and only keep signal detections for further processing.
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3. Estimation of 3D structure: With extraneous background and dark-count

detections rejected, the log-likelihood function of depth zi,j given data {t(`)i,j }`∈Ui,j
is

Lz(zi,j; {t(`)i,j }`∈Ui,j
) =
∑
`∈Ui,j

log s(t
(`)
i,j − 2 zi,j/c), (3.15)

except when the (i, j)-th pixel does not have uncensored data (|Ui,j| = 0), in which

case we let Lz(zi,j; {t(`)i,j }`∈Ui,j
) = 0, so that it has zero contribution to the cost func-

tion. Our framework allows the use of arbitrary pulse shapes, but many practical

pulse shapes are well approximated as s(t) = exp{−v(t)}, where v(t) is a convex

function in t. Then, Lz(zi,j; {t(`)i,j }`∈Ui,j
) =

∑
`∈Ui,j

v(t
(`)
i,j −2 zi,j/c) is a convex function

in zi,j. Our penalized ML estimate for the 3D image is thus obtained using uncensored

data and solving the following convex optimization problem:

ẑPML = arg min
z: zi,j∈[0,cTr/2)

n∑
i=1

n∑
j=1

− Lz(zi,j; {t(`)i,j }`∈Ui,j
) + βz pen(z). (3.16)

3.5 Experiments

3.5.1 Experimental Setup

The experimental setup used to collect the photon arrival data is shown in the top

of Figure 3-2. A pulsed laser diode with pulse width Tp = 270 ps and repetition

period Tr = 100 ns was used as the illumination source. A two-axis galvo was used

to raster scan 1000× 1000 pixels. A lensless SPAD detector with quantum e�ciency

η = 0.35 was used for detection. Also, the background light level was set such

that the average value of η xi,j S approximately equaled B. Further details of the

experimental setup are given in [27]. Because raster scanning with a �xed pixelwise

dwell time is equivalent to using a �oodlight illumination source and a detector array,

our experimental results are indicative of what can be accomplished in real-time

imaging scenarios using SPAD arrays. The experimental dataset was collected by

Dheera Venkatraman, a collaborator in this project.
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Figure 3-2: Experimental setup for single-photon imaging.

3.5.2 Re�ectivity Resolution Test

Re�ectivity contrast was tested using a linear grayscale intensity chart. A photograph

of the re�ectivity chart taken with a DSLR camera is shown in Figure 3-3 (a). As

shown in Figure 3-3 (e), our method resolves 16 gray levels using a mean photon count

of 0.48. The estimated re�ectivity images were rescaled to have visual information

in range [0, 1]. The performance of our method is comparable to that of the baseline

imaging shown in Figure 3-3 (b), which required about 1000 photon detections per

pixel.

We quantify the performance of an estimate x̂ of the true re�ectivity image x ∈

R1000×1000
+ using PSNR de�ned in Equation (2.18). Our method using the total-

variation penalty function outperforms pixelwise ML (Equation (3.6)) by 16.6 dB and

denoised pixelwise ML using bilateral �ltering [38] by 3.3 dB. The penalty parameter

in our method was chosen to maximize PSNR. Also, the bilateral �ltering parameters,
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(a) Photograph (b) Ground truth (c) Pixelwise ML (d) Denoised (c) (e) Our method
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Figure 3-3: Resolution test experiments. Re�ectivity chart imaging (top) was done
using Ta = 300µs and mean photon count of 0.48. Depth chart imaging (bottom)
was done using Ta = 6.2µs, mean photon count of 1.1, and 33 % of the pixels missing
data. The mean photon count was computed simply by averaging the number of
photon counts at every pixel over the �xed acquisition time.

such as window size, were picked to maximize PSNR.

We note that bilateral �ltering is a patch-based denoising method [39] and its

computational complexity is linear time in the total number of image pixels. Thus,

under certain real-time imaging scenarios, the �ltering approach may be preferred

over our convex optimization method, which has computational complexity that is

polynomial time in the number of pixels.

3.5.3 Depth Resolution Test

Depth resolution was evaluated with a test target comprising 5 cm × 5 cm squares of

varying thickness mounted on a �at board. A photograph of the depth chart is shown

in the bottom of Figure 3-3 (a). The smallest resolvable height (thickness) above the

reference level is an indicator of achievable depth resolution. Our method using total-

variation penalty achieves a depth resolution slightly more than 4 mm, and a 3.5 mm

depth accuracy using only noisy �rst photon detections. In contrast, the pixelwise

ML depth estimates (Equation (3.11)) are extremely noisy (Figure 3-3 (c)), and the

52



baseline imaging (Figure 3-3 (b)) requires approximately 100 photon detections at

each pixel to achieve performance comparable to our method under identical imaging

conditions. The penalty parameter in our method was chosen to minimize RMSE.

We quantify the performance of a depth estimator ẑ of the true depth image

z ∈ R1000×1000
+ using root mean square error (RMSE):

RMSE(z, ẑ) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

(zi,j − ẑi,j)2. (3.17)

As shown in Figure 3-3 (c), the pixelwise ML estimates have an RMSE of at least

3 m. The high error is due to the high variance of background and dark-count noise

that is present in our experiment.

Figure 3-3 (d) shows a denoised pixelwise ML depth image. Because 33% of the

pixels are empty with no photon arrival data, we �rst apply bicubic interpolation

in the 4-by-4 pixel neighborhood to inpaint the missing pixel values. Then, we per-

formed denoising using median �ltering, which is e�ective in removing high-variance

impulse noise in images, of window 3 × 3. We observe that the depth resolution of

our method (4 mm) corresponds to approximately 800-fold depth error reduction in

RMSE, compared to state-of-the-art denoised pixelwise imaging methods.

3.5.4 Natural Scenes

Imaging results for natural scenes are shown in Figure 3-4, which shows the results of

recovering 3D and re�ectivity of a life-size mannequin and a scene of a basketball and

a soda can using traditional and our imaging methods. In the mannequin dataset,

the mean count over all pixels was 1.2 and 55% of pixels were missing data. In the

basketball dataset, the mean count over all pixels was 2.1 and 32% of pixels were

missing data. Ground truth images were generated using ML estimation from 200

photon detections at each pixel (Figure 3-4 (a)). All re�ectivity images were rescaled

to have visual information in range [0, 1].

We see, from Figure 3-4 (b), that the pixelwise ML approach gives 3D and re�ectiv-

53



(a) Ground truth (b) Pixelwise ML (c) Denoising of (b) (d) Our method
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Figure 3-4: Experimental results for imaging natural scenes.
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LIDAR (Ta = 1000µs) Our method (Ta = 30µs)

RMSE = 0.59 cm RMSE = 0.41 cm

Figure 3-5: Comparison between our framework and LIDAR technology for 3D imag-
ing.

ity estimates with high root mean square error (RMSE) and low peak signal-to-noise

ratio (PSNR), respectively, due to background light and shot noise at low light-levels.

Pixels with missing data were imputed with the average of their neighboring 8 pixel-

wise ML values. Denoising the ML re�ectivity estimate using bilateral �ltering [38]

and the ML depth estimate using median �ltering improves the image qualities (Fig-

ure 3-4 (c)). However, we see that denoising the 3D structure of the mannequin shirt

fails, since the region has very low re�ectivity and many pixels have missing data.

On the other hand, our framework, which combines accurate photon arrival statistics

with spatial prior information, accurately reconstructs images with RMSE and PSNR

values of 0.8 cm and 30.6 dB (Figure 3-4 (d)). We used the total-variation penalty

function in our method. The penalty parameters were chosen to minimize RMSE for

3D imaging and maximize PSNR for re�ectivity imaging.

Figure 3-5 shows how much photon e�ciency we gain over traditional LIDAR-

based 3D imaging systems [40] that use the histogramming approach for a scene

with a sun�ower. The histogramming method, which is a standard pixelwise depth

estimation technique in LIDAR systems, simply searches for the location of the peak

in the photon arrival time histogram to estimate scene depth at every image pixel.

We observe that while the log-matched �lter (Equation (3.11)) is asymptotically ML

as B → 0+, the histogramming-based depth estimation method is asymptotically

ML as N → +∞. Thus, when Ta is long, as is the case in traditional LIDAR, it is
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Figure 3-6: Sample MSE images with 100 independent trials for two natural scenes.

e�ective to use the histogramming-based depth estimation method. Based on PSNR

and RMSE values, we see that our framework can allow more than 30× speedup

in acquisition, while reconstructing the same high-quality 3D and re�ectivity images

that a traditional LIDAR system would have formed using long acquisition times.

3.5.5 Pixelwise Root Mean-Square Error Test

For the basketball and mannequin scenes, we processed 100 independent photon ar-

rival datasets and obtained the RMSE images of our recovery method by computing√
E[(xi,j − x̂PML

i,j )2] and
√

E[(zi,j − ẑPML
i,j )2] for every pixel (i, j) using sample variance

and bias values. The RMSE images in Figure 3-6 show that our computational im-

ager achieves sub-centimeter depth resolution and repeatedly recovers high re�ectivity

information.

3.5.6 E�ect of System Parameters

Figure 3-7 shows how the performances of traditional ML and our image formation

methods are a�ected by changing acquisition time Ta and the signal-to-background
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(a) Ta = 100µs, SBR = 7 (b) Ta = 100µs, SBR = 1

3
D
st
ru
ct
u
re

RMSE = 0.51 cm RMSE = 0.88 cm

(c) Ta = 50µs, SBR = 7 (d) Ta = 50µs, SBR = 1

3
D
st
ru
ct
u
re

RMSE = 5.80 cm RMSE = 11.91 cm

Figure 3-7: E�ect of dwell time Ta and signal-to-background ratio (SBR) on our 3D
recovery method. For acquisition times of 100µs and 50µs, we calculated the mean
photon count ki,j over all pixels to be 1.4 and 0.6, respectively.

ratio (SBR). We de�ne SBR as the ratio between the mean counts of signal and noise:

SBR =
1

n2

n∑
i=1

n∑
j=1

η xi,j S

B
. (3.18)

In our experiment, SBR is modi�ed by changing Tr such that B = (ηbλ+d)Tr changes

while η xi,j S remains the same. We see in Figure 3-7 that RMSE of our recovered 3D

image increases monotonically with decreasing Ta and SBR. Even when the acquisition

time is short and SBR is low as shown in Figure 3-7 (d), our 3D recovery method

demonstrates near pulsewidth RMSE of 11.9 cm (Pulsewidth is cTp ≈ 9 cm).
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3.5.7 Limitations

Results of 3D imaging using our method have high error near the edges of scene

objects. The surface normals at these locations are nearly perpendicular to the line

of sight and these regions incur more background noise detections, relative to signal

detections. Although our method censors noisy detections near edges, it estimates

the missing depth values using spatial correlations, leading to a loss of details.

Also, a detected photon may have originated from an indirect bounce, causing

estimation inaccuracy. However, as it was in our experiments, di�use scattering

in quasi-Lambertian scenes causes the light multipath bounces to be considerably

weaker than the direct re�ection. Combined with Poisson statistics, this implies an

exponentially diminishing probability of photon detections from indirect re�ections.

Finally, our method of estimating re�ectivity fails if background noise is su�cient to

provide a detection in each pulse-repetition period, with high probability. Hence, in

our experiments, we employed a suitably narrowband spectral �lter so that B � 1.

3.6 Information Theory for Optical Design

So far, we described our proposed framework for robust active 3D imaging and com-

pared it against the state-of-the-art LIDAR technology to demonstrate its e�ective-

ness. However, we have not yet commented on how optical design parameters, such as

shape of the pulse waveform, can a�ect depth recovery performance. In this section,

for pixelwise imaging scenarios, we study which optical pulse shapes give high recovery

performance and how information theory can be used to compare the performance

of two arbitrary pulse waveforms, without the relatively expensive computation of

estimation-theoretic quantities.

We focus our analysis on a single image pixel. Let z be the depth value and

τ = 2z/c be the time-delay parameter that we are interested in recovering. Also,

under the low-�ux condition, let t be the arrival time of the single photon that we

detect and fT (t; τ) be the probability density function given that we detect exactly one

photon from the backscatter pulse waveform. According to our previous derivation in
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Figure 3-8: Distributions of generalized Gaussian random variables for several values
of p with �xed σ.

Equation (3.9), we observe that fT (t; τ) = s(t− τ)/S. We see that the Cramér-Rao

lower bound (CRLB) of the time-delay parameter given only a single photon detection

can then be shown to be

CRLB(τ) = −
(
E
[
d2

dτ 2
log

(
s(t− τ)

S

)])−1

=

(∫ Tr

0

ḟT (t; τ)2

fT (t; τ)
dt

)−1

, (3.19)

where the expectation is over T and ḟT (t; τ) = dfT (t; τ)/dt. For example, if our

pulse s(t) belongs to the generalized Gaussian family, the likelihood function from a

single-photon observation is

fT (t; τ) =
1

2aΓ(1 + 1/p)
exp

{
−
(
|t− τ |
a

)p}
, (3.20)

where a > 0 is the scale parameter, p ≥ 1 is the order parameter, and Γ(x) =∫ +∞
0

tx−1e−t dt is the gamma function. Parameter a controls the pulse width and p

controls the concavity of pulse waveform. The generalized Gaussian distribution (see

Figure 3-8) includes pulses frequently used in practical depth imaging systems such

as the Gaussian pulse (p = 2) and near-uniform pulse (p � 1). We note that the

variance of the generalized Gaussian random variable is σ2 = a2Γ(3/p)/Γ(1/p).

We have shown in [41] that the CRLB of depth parameter τ givenM independent
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single photon detections using generalized Gaussian pulses is

CRLB(τ) =

(
Γ(1/p)2

p(p− 1)Γ(3/p)Γ(1− 1/p)

)
σ2

M
. (3.21)

We observe that arg maxp>1 CRLB(τ) = 2 based on a two-step logic.

1. According to our previous derivation in Equation (3.9), the random variable T

of single photon time-of-arrival from the backscattered Gaussian pulse at low

light levels is described as T ∼ N (τ, σ2).

2. Gaussian random variables have minimum Fisher information [42] among all

random variables with �xed variance.

Also, for any p > 1, the ML estimator using the generalized Gaussian pulse wave-

form is unbiased, because the generalized Gaussian distribution is always symmetric.

Thus, the ML estimator using Gaussian pulse performs worst asymptotically in the

generalized Gaussian family of pulses with �xed RMS duration σ. On the other hand,

because

lim
p→+∞

CRLB(τ) = lim
p→+∞

(
Γ(1/p)2

p(p− 1)Γ(3/p)Γ(1− 1/p)

)
σ2

M
= 0,

the ML estimator that uses uniform pulse performs best asymptotically among all

the generalized Gaussian pulses with equal σ.

According to the time-bandwidth uncertainty principle [43], if the RMS bandwidth

is �xed instead of RMS time duration, then the Gaussian pulse is (approximately)

the best performing pulse. The Gaussian pulse does not give the absolute best perfor-

mance, because the time variance de�ned for the uncertainty principle is not exactly

the same as the mean-square pulse time duration.

In practice, the CRLB using general illumination pulse waveforms can only be

computed numerically because we can only observe the photon count histogram of the

pulse. Such computations are di�cult due to the di�erentiation operators existing in

the CRLB expression. Thus, we study how certain information-theoretic quantities,
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which require only integrating operations that are numerically stable, can predict

error trends without explicitly computing the CRLB.

As we de�ned earlier, let T be the random variable describing the single photon

time-of-arrival. The entropy power of T is de�ned as [42]

N(T ) =
1

2πe
exp{2h(T )}, (3.22)

where h(T ) is the di�erential entropy of T . Based on the results given in [44], we

observe the following series of inequalities:

σ2 ≥ N(T ) ≥M · CRLB(τ), (3.23)

where equalities hold if and only if T is Gaussian. Using Equation (3.23), we show how

the information-theoretic quantities can be used to compare performance between the

ML estimators of two arbitrary pulse waveforms. Suppose that we have two pulse

waveform candidates, sx(t) and sy(t), and we would like to choose the pulse that gives

rise to a ML estimator with lower MSE. Let the RMS pulse durations of sx(t) and sy(t)

be σ2
x and σ2

y, respectively. Given M photon detections, can we know whether τML
x

(ML estimate from using pulse sx(t) and arrival time data {t(1)
x , . . . , t

(M)
x }) performs

better or worse than τML
y (ML estimate from using pulse sy(t) and arrival time data

{t(1)
y , . . . , t

(M)
y })? Without loss of generality, if we know the Fisher information of the

arrival time variable Tx of pulse sx(t), we can make the following remark.

Remark 3. If N(Ty) ≤ J(Tx)
−1, then ∃ M0 such that

M > M0 ⇒ MSE(τ, τML
y ) ≤ MSE(τ, τML

x ).

We obtain Remark 3 by combining Equation (3.23) and the asymptotically e�cient

property of ML estimators. Remark 3 tells us that, using the entropy power of Ty

and the Fisher information of Tx, we can compare performances between two pulse

waveforms in the large M regime. Note that no computation of estimation-theoretic

quantities of Ty is required for the remark to hold.
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Figure 3-9: Comparison of MSE of time-delay recovery using single-photon detections
for two di�erent illumination pulses. (Left) Plot of sx(t), a Gaussian pulse, and sy(t),
an arbitrary bimodal pulse. (Right) MSE of ML estimators vs. number of photon
detections.

Figure 3-9 gives a concrete example of comparing the ML estimation performances

of two pulse shapes. In this example, sx(t) is a Gaussian pulse with σx = 5 and

sy(t) is a bimodal pulse with σy = 5.5. The smaller RMS pulse duration of sx(t)

may lead us to think that τML
x is superior to τML

y for all M . However, we see that

J(Tx)
−1 = σ2 = 25 and N(Ty) is numerically computed to be approximately 23.

Thus, the entropy power condition in Remark 3 holds in this example. By Remark 3,

even though τML
x may perform better than τML

y for small M , eventually τML
y will

outperform τML
x for high enoughM . We see using numerical simulations of MSE that

τML
y outperforms τML

x after 27 single-photon detections.
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Chapter 4

Conclusions

4.1 Highly Photon-E�cient Re�ectivity Imaging

We proposed a single-pixel multiplexed method for passive imaging that achieves

higher photon e�ciency compared to traditional pixelwise imaging methods. Thus,

we presented an exception to the view against using multiplexing in the presence of

signal-dependent Poisson noise coming from photon-limited imaging scenarios.

Our results entail performance analysis of di�erent multiplexers under signal-

dependent Poisson noise. We showed that the multiplexing advantage depends on

the strength and sparsity level of the re�ectivity image. Based on simulated imaging

results, we observed that our method has clear improvements in PSNR over pixelwise

methods. Out proposed method is computationally cheap as it involves solving a

single convex optimization problem.

It is of future interest to analyze the performance of the proposed multiplexed

imaging framework when the re�ectivity signal is �rst degraded through a blurring

kernel or a forward imaging operator before being corrupted by Poisson noise.

4.2 Highly Photon-E�cient 3D Imaging

We demonstrated the high accuracy of our proposed active 3D and re�ectivity imaging

technique, even with signi�cant background light contribution. For the �xed pixel-
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wise dwell-time model, our proposed imager simultaneously recovers high-quality 3D

and re�ectivity images by combining accurate single-photon counting statistics with

the spatial correlation of natural scenes in both depth and re�ectivity. Under mild

conditions on the pulse shape, our method forms 3D and re�ectivity images by solving

two convex optimization problems; thus, it is computationally e�cient. We observed

in our experiments that centimeter accurate 3D imaging is possible, with 1000×1000

spatial resolution, even when the mean photon count per pixel is close to 1, and the

signal-to-background ratio is 1. Thus, our computational imager motivates the de-

velopment of accurate and low-power SPAD array-based 3D and re�ectivity imagers.

Our framework can be used in many low light-level imaging applications using

photon-counting detectors, such as spatially-resolved �uorescence lifetime imaging

(FLIM) [4] and high-resolution LIDAR [31]. Our proposed methods naturally extends

to imaging at other wavelengths, making them suitable for practical implementations.

Also, several extensions in optoelectronic methods can improve the accuracy of our

3D and re�ectivity imager. In particular, our framework can bene�t from improved

background suppression techniques [40] and range gating methods [25].
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Appendix A

Proofs

A.1 Multiplexing Failure using Hadamard Matrix

under Poisson Noise

Claim. Let z ∼ Poisson(TaWx), where W is a Hadamard multiplexing matrix H.

Then, G(W) =
√

(n+ 1)/(2n) and n > 1⇒ G(W) < 1.

Proof. Our pixelwise observation model is simply y ∼ Poisson(Tax). Let Ta = 1 for

notational convenience. Then, by the de�nition of multiplexing gain,

G(H) =

√
MSE(x,y)

MSE(x,H−1z)

=

√
tr
(
E[(x− y)(x− y)T ]

)
tr (E[(x−H−1z)(x−H−1z)T ])

=

√
tr(diag(x))

tr(H−1diag(Hx)H−T )

(a)
=

√( ∑n
i=1 xi∑n

i=1(Hx)i

)(
n

tr((HTH)−1)

)
,

where (a) uses the fact that (HTH)−1 is a circulant matrix by the properties of the

Hadamard multiplexing matrix. As shown in [13], the eigenvalue set of the Hadamard
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multiplexer is

λ(H) =


n+ 1

2
,

√
n+ 1

4
, . . . ,

√
n+ 1

4︸ ︷︷ ︸
#=(n−1)/2

,−
√
n+ 1

4
, . . . ,−

√
n+ 1

4︸ ︷︷ ︸
#=(n−1)/2

 ,

and we observe

G(H) =

√( ∑n
i=1 xi∑n

i=1(Hx)i

)(
n

tr((HTH)−1)

)

=

√( ∑n
i=1 xi

((n+ 1)/2)
∑n

i=1 xi

)(
n

(2/(n+ 1))2 + 4(n− 1)/(n+ 1)

)
=

√
n+ 1

2n
.

Since G(H) < 1 for all n > 1, we conclude that Hadamard multiplexing strategy fails

under Poisson noise.

A.2 Multiplexing Failure using Circulant Matrices

under Poisson Noise

Claim. Let z ∼ Poisson(TaWx), where W is a circulant multiplexing matrix. Then,

G(W) ≤ 1.

Proof. A matrix W is circulant, if the i+ 1-th row vector is a right-shifted version of

i-th row vector for i = 1, 2, . . . , n− 1. A circulant matrix is then necessarily Toeplitz.

Let w be the �rst column vector of W. Also, for notational convenience, let Ta = 1.
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Then, the MSE of the matrix inverse solution is

tr
(
E[(x− x̂inv)(x− x̂inv)T ]

)
= tr

(
E[(x−W−1z)(x−W−1z)T ]

)
= tr((WTW)−1 diag(Wx))

(a)
=

1

n

(
n∑
i=1

(Wx)i

)
tr((WTW)−1)

(b)
=

1

n

(
n∑
i=1

xi

)(
n∑
i=1

wi

)
tr((WTW)−1)

(c)
=

1

n

(
n∑
i=1

xi

)(
n∑
i=1

wi

)(
n∑
i=1

1

|Fw|2i

)
.

In the above derivation, (a) uses the fact that (WTW)−1 is circulant since W is

circulant. (b) is true since a circulant matrix has columns with equal norm. Also,

(c) holds because of the Fourier diagonalization property of circulant matrices: W =

1
n
F∗diag(Fw)F, where F is the n×n discrete Fourier transform (DFT) matrix. Thus,

G(W) =

√ ∑n
i=1 xi

1
n

(
∑n

i=1 xi) (
∑n

i=1 wi) (
∑n

i=1 1/|Fw|2i )

=

√
n

(
∑n

i=1 wi)(
∑n

i=1 1/|Fw|2i )
.

Now, on the contrary to what we aim to prove, suppose that G(W) > 1. Then, from

our above expression, n/(
∑n

i=1 1/|Fw|2i ) >
∑n

i=1 wi. However, by the arithmetic-

harmonic mean inequality (d) and Parseval's property (e), we observe

n∑n
i=1 1/|Fw|2i

(d)

≤ 1

n

n∑
i=1

|Fw|2i
(e)
=

n∑
i=1

w2
i ≤

n∑
i=1

wi,

which is a contradiction.

The claim we have just proved simply states that direct estimation is preferred

over circulantly multiplexed estimation when observations are corrupted by Poisson

noise. Intuitively, this property of multiplexing failure is due to the signal-dependence

of Poisson noise and that mixed observations will thus lead to lower SNR.
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A.3 Strict Concavity of Log-Likelihood under Mul-

tiplexing

Claim. The function Lx(x; z) given in Chapter 2 is strictly concave in x.

Proof. It su�ces to prove that the negative Hessian −∇2Lx(x; z) is positive de�nite

(has positive eigenvalues). If z is a zero vector, then trivially the optimal re�ectivity

solution is also a zero vector. Thus, we assume that z is not a zero vector. The

negative gradient of Lx(x; z) is

−∇Lx(x; z) = TaW
T
1−

n∑
i=1

zi
eTi (Wx + d)

WT ei, (A.1)

where 1 is a size-n vector of ones and ei is a size-n vector with the only non-zero

entry, which is at i-th index, equal to one. The negative Hessian of the log-likelihood

is

−∇2Lx(x; z) = WT

 n∑
i=1

zi
(eTi (Wx + d))2

eie
T
i

W. (A.2)

Then, for any vector v ∈ Rn×1,

−vT∇2Lx(x; z)v = vT

WT

 n∑
i=1

zi
(eTi (Wx + d))2

eie
T
i

W

v

= (Wv)T


n∑
i=1

zi
(eTi (Wx + d))2

eie
T
i︸ ︷︷ ︸

=A

 (Wv)

> 0,

where the last strict inequality is due to A being a diagonal matrix with positive

entries. Thus, the Hessian is positive de�nite and the log-likelihood function is strictly

concave.
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A.4 E�ciency of Matrix Inverse Demultiplexing So-

lution

Claim. The matrix inverse solution x̂inv is an e�cient estimator given multiplexed

measurements corrupted by Poisson noise.

Proof. An estimator x̂ is e�cient if it is unbiased (E[x̂] = x) and its mean-square

error is equal to the Cramér-Rao lower bound: CRLB(x) = MSE(x, x̂). An e�cient

estimator is thus an unbiased estimator with minimum MSE.

Our Poisson observation model is z ∼ Poisson(Ta(Wx + d)). Assume Ta = 1 for

notational convenience. Then, we trivially see that the matrix inverse demultiplexing

solution x̂inv = W−1(z− d) is unbiased, since

E[x̂inv] = E[W−1(z− d)] = W−1E[z]− d = W−1(Wx + d)− d = x.

In order to derive the CRLB, we derive the Fisher information matrix (FIM) J(x) of

the re�ectivity signal x given the Poisson channel after multiplexing.

J(x)

=E

[(
∂

∂x
logPr[z; W,x,d]

)(
∂

∂x
logPr[z; W,x,d]

)T]

=E

 ∂

∂x

n∑
i=1

[(Wx + d)i − zi log(Wx + d)i]

 ∂

∂x

n∑
i=1

[(Wx + d)i − zi log(Wx + d)i]

T
=E

WT
1−

n∑
i=1

zi
eTi (Wx + d)

WT ei

WT
1−

n∑
i=1

zi
eTi (Wx + d)

WT ei

T
=−WT

11
TW + E

 n∑
i=1

zi
eTi (Wx + d)

WT ei

 n∑
i=1

eTi W
zi

eTi (Wx + d)


=

n∑
i=1

1

(Wx + d)i
WT eie

T
i W

=WTdiag(Wx + d)−1W,
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where 1 is a n× 1 vector of ones. The CRLB is then computed as

CRLB(x) = tr(J(x)−1) = tr(W−1diag(Wx + d)W−T ).

Because CRLB(x) = MSE(x, x̂inv), we conclude that the matrix inverse demultiplexer

x̂inv is an e�cient estimator.

A.5 Violation Probability for Symmetric i.i.d. Ma-

trix Inverse Estimators

Claim. If the matrix inverse solution is unbiased, continuous, and symmetric i.i.d.,

then

Pr[violation] ≥ 1− 1

2n0
,

where n0 is the number of zeros in the signal vector x.

Proof. Let S be the index set of (n − n0) non-zero entries of x. Also, let x̂ be the

matrix inverse solution computed using multiplexing matrix W. Then,

Pr[Violation] = Pr[(x̂1 < 0) ∪ . . . ∪ (x̂n < 0); W,x]

= 1− Pr[(x̂1 ≥ 0) ∩ . . . ∩ (x̂n ≥ 0); W,x]

(a)
= 1−

n∏
i=1

Pr[x̂i ≥ 0; W,x]

(b)
= 1−

(
1

2

)no ∏
i∈S

Pr[x̂i ≥ 0; W,x]

≥ 1− 1

2n0

where (a) uses the fact that the entries of x̂ are i.i.d. and (b) uses the fact that x̂ is

unbiased, continuous and symmetric.
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A.6 Covariance Matrix of Hadamard Matrix Inverse

Solution

Claim. If the multiplexing pattern is determined by the Hadamard multiplexer H,

then the matrix inverse solution has a covariance matrix Σ with the following prop-

erties.

1. If i = j, then Σi,j =
1

Ta

(
2

n+ 1

)2
(

n∑
i=1

(Hx + d)i

)
,

2. If i 6= j, then

|Σi,j| ≤ max
S0∈S

∣∣∣∣∣∣ 1

Ta

(
2

n+ 1

)2
∑
k1∈S0

(Hx + d)k1 −
∑

k2∈{1,...,n}\S0

(Hx + d)k2

∣∣∣∣∣∣ ,
where S = {T |T ⊂ {1, 2, . . . , n}, |T | = (n− 1)/2}.

Proof. The covariance matrix of the matrix inverse solution x̂ that is obtained using

the Hadamard multiplexing strategy is

Σ =
1

Ta
H−1diag(Hx + d)H−T .

The authors in [14] derive a closed-form expression of H−1 in terms of H as

H−1 =
2

n+ 1
(2H− 1n×n) ,

where 1n×n is a n × n matrix with ones. Since every row of H has (n + 1)/2 ones

and (n− 1)/2 zeros, we see that every row of 2H−1n×n will have (n+ 1)/2 ones and

(n− 1)/2 minus ones. Let hi be the i-th column of H−1. The i-th diagonal entry of
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the covariance matrix is then,

Σi,i =
1

Ta
hTi diag(Hx + d)hi

=
1

Ta

n∑
j=1

(Hx + d)j (hi)
2
j

(a)
=

1

Ta

(
2

n+ 1

)2 n∑
j=1

(Hx + d)j,

where (a) uses the fact that every row of 2H−1n×n has (n+ 1)/2 ones and (n− 1)/2

minus ones.

Before computing the o�-diagonal entry of the covariance matrix indexed by (i, j),

where i 6= j, let Si,j be the index set where entries of hi and hj have the same signs.

Then, we write

|Σi,j| =
∣∣∣∣ 1

Ta
hTi diag(Hx + d)hj

∣∣∣∣
=

∣∣∣∣∣∣ 1

Ta

(
2

n+ 1

)2
∑
k1∈Si,j

(Hx + d)k1 −
∑

k2∈{1,2,...,n}\Si,j

(Hx + d)k2

∣∣∣∣∣∣
≤ max

S0∈S

∣∣∣∣∣∣ 1

Ta

(
2

n+ 1

)2
∑
k1∈S0

(Hx + d)k1 −
∑

k2∈{1,2,...,n}\S0

(Hx + d)k2

∣∣∣∣∣∣ ,
where S = {T |T ⊂ {1, 2, . . . , n}, |T | = (n− 1)/2}.
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Appendix B

Performance Guarantees for

Pixelwise Single-Photon Imaging

The Cramér-Rao lower bound (CRLB) is used to analyze the mean square error (MSE)

of an unbiased estimator of a parameter. Let x be a scalar continuous parameter that

describes the probability density function fY (y;x) of random variable Y . Then, the

CRLB is de�ned as the inverse of the Fisher information J(x) [35]:

CRLB(x) = J(x)−1 =

(
E
[
d2

dx2
(− log fY (y;x))

])−1

. (B.1)

For an unbiased estimator x̂ of parameter x, the CRLB lower bounds the MSE:

E[(x−x̂)2] ≥ CRLB(x). An unbiased estimator x̂ is e�cient if E[(x−x̂)2] = CRLB(x).
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B.1 Pixelwise Maximum-Likelihood Re�ectivity Es-

timation

The CRLB for the re�ectivity parameter at pixel (i, j), when data is obtained from

setup in Figure 3-1 can be derived as follows.

CRLB (xi,j) =

(
E
[
d2

dx2
i,j

(− logPr[Ki,j = ki,j;xi,j])

])−1

=

(
E

[
k η2 S2 exp {η xi,j S +B}
(exp {η xi,j S +B} − 1)2

])−1

=
exp {η xi,j S +B} − 1

N η2 S2
. (B.2)

We see that as the number of pulse repetitionsN increases to collect more photons, the

CRLB decreases. However, we cannot directly use the CRLB result to lower bound

the MSE of the ML re�ectivity estimate (without the non-negativity constraint) given

by

x̂ML
i,j =

1

η S

(
log

N

N − ki,j
−B

)
,

because it is a biased estimator (E [x̂ML
i,j ] 6= xi,j):

E
[
x̂ML
i,j

]
= E

[
1

ηS
log

N

N − ki,j
− B

ηS

]
=

1

ηS
logN − 1

ηS
E [log (N − ki,j)]−

B

ηS

>
1

ηS
logN − 1

ηS
log (N − E[ki,j])−

B

ηS

= xi,j,

where the strict inequality follows from Jensen's inequality and the fact that the

logarithm function is strictly concave.

Under the conditions N → +∞ and η xi,j S + B → 0+, holding N(η xi,j S + B)
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constant, the limiting ML estimate is

x̂ML
i,j =

ki,j
NηS

− B

ηS
. (B.3)

Then, we observe that the CRLB equals the MSE of the ML re�ectivity estimate,

CRLB(xi,j) = E
[(
xi,j − x̂ML

i,j

)2
]

=
1

N

(
xi,j
ηS

+
B

η2S2

)
,

We see that the CRLB expression from Poisson likelihood is equal to the �rst-order

Taylor expansion of the CRLB expression of the exact binomial likelihood given by

Equation (B.2).

Knowing that the ML solution in the limiting Poisson distribution is unbiased and

e�cient, we conclude that the ML re�ectivity estimate x̂ML
i,j is e�cient asymptotically

as (ηxi,jS +B)→ 0+ and N → +∞.

B.2 Pixelwise Maximum-Likelihood Depth Estima-

tion

We again assume the low-�ux condition η xi,j S + B → 0+ and N → +∞ such that

C = N(1− exp{ηxi,jS+B}) is a constant at every pixel (i, j). Then, CRLB of depth

parameter obeys

CRLB(zi,j) =

(
E
[
d2

dz2
i,j

(
− log fTi,j({t

(`)
i,j }

ki,j
`=1; zi,j)

)])−1

=

E

− ki,j∑
`=1

d2

dz2
i,j

log fTi,j(t
(`)
i,j ; zi,j)

−1

=
1

C

(∫ Tr

0

ṗ(t; zi,j)
2

p(t; zi,j)
dt

)−1

, (B.4)

where p(t; zi,j) is the distribution obtained by normalizing λi,j(t) to have area 1 over

the [0, Tr) interval.
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We can exactly compute the MSE for certain pulse waveforms. For example,

assume that the illumination waveform is a Gaussian pulse s(t) ∝ exp
{
−t2/(2T 2

p )
}
.

We saw previously that log-matched �lter estimator is ML when B = 0. Thus, for the

Gaussian pulse s(t), the ML depth estimate (without the [0, Tr) interval constraint)

is

ẑML
i,j = arg max

zi,j

ki,j∑
`=1

log s(t
(`)
i,j − 2 zi,j/c) =

c

2

(∑ki,j
`=1 t

(`)
i,j

ki,j

)
,

given ki,j ≥ 1. Let R = (zi,j − cTr/4)2 be the mean-square error of the depth estimate

that we choose to be the middle of the interval [0, cTr/2) when ki,j = 0. Then, the

MSE expression of ẑML
i,j can be derived as

E [(zi,j − ẑML
i,j )2] =

+∞∑
ki,j=0

Pr[Ki,j = ki,j]E [(zi,j − ẑML
i,j )2 |Ki,j = ki,j]

=

+∞∑
ki,j=0

exp{−C}Cki,j

ki,j!
E [(zi,j − ẑML

i,j )2 |Ki,j = ki,j]

= exp{−C}

R +

+∞∑
ki,j=1

Cki,j

ki,j!
Var

(
c

2
·
∑ki,j

`=1 t
(`)
i,j

ki,j

)
= exp{−C}

R +

+∞∑
ki,j=1

Cki,j

ki,j!

1

ki,j

(
cTp
2

)2


(a)
= exp{−C}

(
R +

(
cTp
2

)2
∫ C

0

exp{x} − 1

x
dx

)
,

where (a) uses an identity given in [45]. We observe that, due to term exp{−C}, ẑML
i,j

achieves zero mean-square error as C → +∞.
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