
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013 3931

Intersensor Collaboration in
Distributed Quantization Networks

John Z. Sun, Student Member, IEEE, and Vivek K Goyal, Senior Member, IEEE

Abstract—Several key results in distributed source coding offer
the intuition that little improvement in compression can be gained
from intersensor communication when the information is coded
in long blocks. However, when sensors are restricted to code their
observations in small blocks (e.g., one) or desire fidelity of a
computation applied to source realizations, intelligent collabora-
tion between sensors can greatly reduce distortion. For networks
where sensors are allowed to “chat” using a side channel that is
unobservable at the fusion center, we provide asymptotically-
exact characterization of distortion performance and optimal
quantizer design in the high-resolution (low-distortion) regime
using a framework called distributed functional scalar quanti-
zation (DFSQ). The key result is that chatting can dramatically
improve performance even when intersensor communication is
at very low rate. We also solve the rate allocation problem when
communication links have heterogeneous costs and provide a
detailed example to demonstrate the theoretical and practical
gains from chatting. This example for maximum computation
gives insight on the gap between chatting and distributed
networks, and how to optimize the intersensor communication.

Index Terms—Distributed source coding, high-resolution quan-
tization, sensor networks, side information.

I. INTRODUCTION

A LONGSTANDING consideration in distributed com-
pression systems is whether sensors wishing to convey

information to a fusion center should communicate with each
other to improve efficiency. Architectures that only allow com-
munication between individual sensors and the fusion center
simplify the network’s communication protocol and decrease
sensor responsibilities. Moreover, information theoretic results
such as the Slepian–Wolf theorem demonstrate distributed
compression can perform as well as joint compression for
lossless communication of correlated information sources [1].
Although this surprising and beautiful result does not extend
fully, comparable results for lossy coding show that the rate
loss from separate encoding can be small using Berger–
Tung coding (see, e.g., [2]), again suggesting communication
between sensors has little or no utility.

Although it is tempting to use results from information
theory to justify simple communication topologies, it is im-
portant to note the Slepian–Wolf result relies on coding over
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long blocks; in the finite-blocklength regime, the optimality of
distributed encoding does not hold [3]. Moreover, investiga-
tions on lossy extensions of the Slepian–Wolf theorem usually
focus on compression fidelity of the source amplitudes rather
than more general computations that are of interest in practical
sensor networks, where separation may be suboptimal.

This paper examines the use of communication among sen-
sors when the compression block length is one, a regime where
intersensor collaboration, or chatting, can greatly decrease the
aggregate communication from sensors to the fusion center
to meet a distortion criterion as compared to a distributed
network. This is especially true when the fusion center’s
objective is to compute a function of the sources with high
fidelity rather than to determine the sources themselves. We
analyze these networks using the distributed functional scalar
quantization (DFSQ) framework, which constrains sensors to
using scalar quantizers to compress their observations [4], [5].
In our problem model (Fig. 1), N correlated but memoryless
continuous-valued, discrete-time stochastic processes produce
scalar realizations XN

1 (t) = (X1(t), . . . , XN (t)) for t ∈ Z.
For each t, realizations of these sources are scalar quantized
by sensors and transmitted to a fusion center at rates RN

1 .
To aid this communication, sensors can collaborate with each
other via a side channel that is unobservable to the fusion
center.

The side channel facilitating intersensor communication has
practical implications. In typical communication systems, the
transmission power needed for reliable communication in-
creases superlinearly with distance and bandwidth [6]. Hence,
it is much cheaper to design short and low-rate links between
sensors than reliable and high-rate links to a fusion center.
Moreover, milder transmission requirements provide more
flexibility in determining the transmission media or commu-
nication modalities employed, which can allow intersensor
communication to be orthogonal to the main network. One
such example is cognitive radio, a paradigm where the wireless
spectrum can have secondary users that communicate only
when the primary users are silent [7]. This means secondary
users have less priority and hence lower reliability and rate,
which is adequate for intersensor communication.

The main contributions of the paper are to precisely char-
acterize the distortion performance of a distributed network
when chatting is allowed and to identify the optimal quantizer
design for each sensor. We show that collaboration can have
significant impact on performance; in some cases, it can
dramatically reduce distortion even when the chatting has
extremely low rate. We also give necessary conditions on the
chatting topology and protocol for successful decodability in
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Fig. 1. A distributed computation network, where N sensors (comprising
quantizer and encoder) observe realizations of correlated sources. Each
observation Xn is encoded and communicated with rate Rn to a fusion center.
Simultaneously, each sensor can interact with a subset of other sensors using
a noiseless but rate-limited chatting channel to improve compressibility. The
decoder at the fusion center computes an estimate of the function g(XN

1 )

from the received data using a reconstruction function ĝ( ̂XN
1 ) but cannot

observe messages communicated on the chatting channel.

the DFSQ framework, thus providing insight into the archi-
tecture design for chatting networks. Finally, we recognize
that intersensor communication can occur on low-cost chan-
nels and solve the rate allocation problem in networks with
heterogeneous links and different costs of transmission. The
key theoretical result, Theorem 1 in Section IV, is a modest
extension of the results in [4, Section VIII], which introduced
intersensor collaboration in the context of one-bit chatting for
a two-sensor network; we further discuss these contributions
in Section II-E. We generalized chatting to a larger network
and provided design optimization for the setting where the
quantized valued may be coded in [8]. This paper provides
more complete and definitive coverage, including more re-
sults on rate allocation, a discussion on generalizing chatting
messages, and details on the impact of various optimizations.
These contributions yield new insights into the effectiveness of
chatting when communication between sensors costs less than
communication to the fusion center and illustrate interesting
implications on how performance scales with the size of the
network.

We begin by introducing related work, notation and prereq-
uisite results in Section II and formalizing the problem model
in Section III. In Section IV, we analyze the performance
of chatting networks and discuss how to optimize the com-
munication that occurs. We then determine the proper rate
allocation for chatting networks in Section V. Finally, we
develop intuition for the behavior of chatting by considering
a maximum computation network in Section VI; this specific
example demonstrates the incremental gains achieved by in-
corporating the different optimizations discussed in the paper.

II. PRELIMINARIES

A. Previous Work

There is a large body of literature studying asymptotic
performance of the distributed network in Fig. 1 without the
chatting channel; a comprehensive review of these works and
their connections to DFSQ appears in [4]. Similarly, connec-
tions to coding for computing (e.g., [9], [10]) are discussed
there as well. Recent work to generalize the asymptotic nature

of Shannon theory [11] has led to characterization of the rate–
distortion function at finite blocklengths [12], [13]. In general,
this analysis technique is meaningful for block lengths as low
as 100, but is unsuitable for regimes traditionally considered
in high-resolution theory.

We now summarize results that relate to the chatting chan-
nel, focusing on Shannon-theoretic results. Kaspi and Berger
provided inner bounds for the rate region of a two-encoder
problem where one encoder can send information for the
other using compress-and-forward techniques [14]. Recently,
this bound has been generalized in [15], but the exact rate
region is still unknown except in special cases. Chatting is
related to source coding problems such as interaction [16],
omniscience [17] and data exchange [18]. However, these
settings are more naturally suited for discrete-alphabet sources
and existing results rely on large-blocklength analysis.

There are also strong connections between this work and
distortion side information [19] and vector quantization with
alternative distortion measures [20].

B. High-Resolution Quantization

The focus of this work is on compression of continuous-
valued, finite-support sources using small blocks of data. Here,
performance results from Shannon theory are overly optimistic
since tools such as joint-typicality encoding and decoding
are not reliable without operating far from the distortion–rate
bound. Instead, we consider the complementary asymptotic
of high resolution, where the block length is small and the
compression rate R is large [21], [22]. Before introducing
the high-resolution asymptotic, we summarize the quantization
model for the case of coding over scalars and set up the
notation used for the rest of the paper. A more formal
formulation of the quantization model is given in [5].

A scalar quantizer QK is a mapping from the real line
to a codebook C = {ck}Kk=1 ⊂ R, where QK(x) = ck
if x ∈ Pk and the cells {Pk}Kk=1 form a partition of R.
Uniform quantization is common in practice, but nonuniform
quantization can be better for compression if the source can
be modeled properly. One way of constructing a nonuniform
quantizer is using the compander model, where the scalar
memoryless source is transformed using a nondecreasing and
smooth compressor function c : R → [0, 1], then quantized
using a uniform quantizer comprising K levels on the granular
region [0, 1], and finally passed through the expander function
c−1. It is convenient to define a point density function as
λ(x) = c′(x). By constraining the range of c, there is a one-
to-one correspondence between λ and c; hence, a companding
quantizer can be uniquely specified using a point density
function and codebook size, and is denoted QK,λ.

It is generally difficult to determine the distortion of a scalar
quantizer for any codebook size K . However, the performance
of QK,λ can be precisely analyzed as the number of codewords
K becomes large, which is the basis of high-resolution theory.
As a sample result, under mild conditions on the source
distribution fX the asymptotic mean squared error (MSE)
distortion is

Dmse(K,λ) � 1

12K2
E[λ−2(X)], (1)
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where � indicates that the ratio of the two expressions ap-
proaches 1 as K increases [23]. In fact, companding quantizers
are asymptotically optimal, meaning that the quantizer opti-
mized over λ has distortion that approaches the performance
of the best QK found by any means [24], [25]. Experimen-
tally, the high-resolution approximation is accurate even for
moderate K [21].

We consider two ways of measuring the communication
rate at the output of a scalar quantizer, yielding a distortion–
rate trade-off which quantifies compression performance. In
the simpler case, the codewords are indexed with equal-length
labels and the communication rate is R = �log2(K)�; this is
called fixed-rate quantization. By applying Hölder’s inequality
to the distortion function, we can show that the point density
of the optimal fixed-rate quantizer is asymptotically [26]

λ∗
mse,fr(x) ∝ f

1/3
X (x).

The limit conditions on c imply the integral of λ is unity.
Alternatively, the codeword indices can be coded to pro-

duce bit strings of different lengths based on probabilities of
occurrence; the rate is then lower-bounded by H(QK,λ(X)),
the entropy of the quantizer output. This particular setting,
called entropy-constrained quantization, can be analyzed using
Jensen’s inequality to show the optimal point density λ∗

mse,ec

is asymptotically constant on the support of the input dis-
tribution [26]. Therefore, a uniform quantizer, as implied by
a constant point density, is the optimal choice for entropy-
constrained quantization and MSE distortion.

C. Distributed Functional Scalar Quantization

When the goal of acquisition is to approximate some com-
putation applied to the sources, optimizing the compression
to the source distribution can be suboptimal and potentially
worse than uniform quantization. This is most evident in
distributed networks since each sensor cannot determine the
overall computation at the encoder. The distributed functional
scalar quantization (DFSQ) framework accounts for the com-
putational task at the fusion center, and the resulting quantizers
can be substantially better than naive designs [4], [5]. In this
setting, the distortion criterion is functional MSE (fMSE):

Dfmse(K
N
1 , λN

1 ) = E
[∣∣g(XN

1 )− ĝ(QKN
1 ,λN

1
(XN

1 ))
∣∣2] ,

where g is a scalar function of interest, ĝ is the decoding
function and QKN

1 ,λN
1

is scalar quantization performed on a
vector such that

QKN
1 ,λN

1
(xN

1 ) = (QK1,λ1(x1), . . . , QKN ,λN (xN )) .

Before understanding how a quantizer changes fMSE, it
is convenient to define how a computation locally affects
distortion.

Definition 1 ([4]): The nth functional sensitivity profile of
a multivariate function g is defined as

γn(x) =
(
E
[|gn(XN

1 )|2 ∣∣Xn = x
])1/2

, (2)

where gn(x) is the partial derivative of g with respect to its
nth argument evaluated x.

Given the functional sensitivity profile, the main result of
DFSQ [4] says the distortion of a set of N companding
quantizers has the asymptotic form

Dfmse(K
N
1 , λN

1 ) �
N∑

n=1

1

12K2
n

E

[(
γn(Xn)

λn(Xn)

)2
]
, (3)

where the reconstruction is the joint centroid

ĝ(xN
1 ) = E

[
g(XN

1 )
∣∣∣QKN

1 ,λN
1
(XN

1 ) = QKN
1 ,λN

1
(xN

1 )
]
, (4)

provided the following conditions are satisfied:
MF1. The function g is Lipschitz continuous and twice

differentiable in every argument except possibly on a set of
Jordan measure 0.

MF2. The source pdf fXN
1

is continuous, bounded, and
supported on [0, 1]N .

MF3. The function g and set of point densities λN
1 allow

E[(γn(Xn)/λn(Xn))
2] to be defined and finite for all n.

Similar performance results under different conditions can
be derived for infinite-support distributions and a simpler
decoder [5].

Following the same recipes to optimize over λN
1 as in

the MSE setting, the relationship between distortion and
communication rate is found. In both cases, the functional
sensitivity profile acts to shift quantization points to where
they can reduce the distortion in the computation. Using the
notation ‖f‖p = (

∫∞
−∞ fp(x) dx)1/p, the asymptotic mini-

mum distortion for fixed-rate quantization is

D∗
fmse,fr(R

N
1 ) �

N∑
n=1

1

12
‖γnfXn‖1/3 2−2Rn , (5)

where fXn is the marginal distribution of Xn and each optimal
point density satisfies

λ∗
n,fmse,fr(x) ∝ (γn(x)fXn(x))

1/3
. (6)

Meanwhile, for entropy-constrained quantization, the asymp-
totic minimum distortion is

D∗
fmse,ec(R

N
1 ) �

N∑
n=1

1

12
22h(Xn)+2E[log2 γ(Xn)]2−2Rn , (7)

which results from point densities satisfying

λ∗
n,fmse,ec(x) ∝ γn(x). (8)

Note that the point densities above are the asymptoti-
cally optimal companding quantizers. This coincides with
the asymptotically optimal non-companding scalar quantizers
when the computation is strictly monotonic in every input.
More generally, one can design better quantizers using binning
partitions but these can be complicated to design.

D. Don’t-Care Intervals

When the computation induces the functional sensitivity
profile to be 0 on some subintervals of the support, the
high-resolution assumptions are violated and the asymptotic
distortion performance may not be described by (3). This issue
is addressed by carefully coding when the source is in such a
“don’t-care” interval [4, Section VII] and then applying high-
resolution theory to the remaining support. This consideration
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is particularly relevant because chatting among sensors can
often induce the functional sensitivity profile to be 0, and
proper coding can lead to greatly improved performance.

Consider Ln don’t-care intervals in γn and let An be the
event that the source variable Xn is not in the union of them.
In the fixed-rate setting, one codeword is allocated to each
don’t-care interval, and the remaining Kn−Ln codewords are
used to form reconstruction points in the nonzero intervals.
There is a small degradation in performance from the loss
corresponding to Ln, but this quickly becomes negligible as
Kn increases. In the entropy-constrained case, the additional
flexibility in coding allows for the encoder to split its message
and reduce cost. The first part is an indicator variable revealing
whether the source is in a don’t-care interval and can be coded
at rate IA ≡ HB(P(An)), where HB is the binary entropy
function. The actual reconstruction message is only sent if
event An occurs, and its rate is amplified to (Rn−IA)/P(An)
to meet the average rate constraint. The multiplicative factor
1/P(An) is called the rate amplification.

E. Chatting

In [4, Section VIII], chatting is introduced in the setting
where one sensor sends exactly one bit to another sensor.
Under fixed-rate quantization, this collaboration can at most
decrease the distortion by a factor of 4 using a property of
L1/3 quasi-norms. Because using that bit to send additional
information to the fusion center would fusion center would
asymptotically decrease distortion by exactly a factor of 4,
this is considered a negative result. Here, there is an implicit
assumption that links have equal cost per bit and the net-
work wishes to optimize a total cost budget. In the entropy-
constrained setting, chatting may be useful even when links
have equal costs. One example was given to demonstrate
a single bit of chatting can decrease the distortion by an
unbounded amount; more generally, the benefit of chatting
varies depending on the source joint distribution and decoder
computation.

In previous work, there is no systematic theory on perfor-
mance and quantizer design of chatting. Moreover, collabo-
ration in larger networks was still an open problem. In this
paper, we extend previous results and provide a more complete
discussion on how a chatting channel affects a distributed
quantization network. A sample result is that chatting can be
beneficial in the fixed-rate setting if the cost of communicating
a bit to another sensor is lower than the cost of communicating
a bit to the fusion center.

III. PROBLEM MODEL

We begin by defining the capabilities and restrictions of the
sensors and fusion center in Fig. 1, recalling that the N sensors
observe realizations from correlated and memoryless sources.
The quantizer at each sensor is scalar, meaning its output
depends on the current observation. In this model, we assume
that the quantizer’s mapping can also be affected by informa-
tion it receives from other sensors via the chatting channel, but
that information is limited to their current observations as well.
Because there is no intertemporal communication, we remove
the time index and model the sources as being drawn from a

joint distribution fXN
1

at each t. We first describe the notation
used to model the chatting channel, then summarize what each
sensor is allowed to communicate and finally conclude the
section with a simple example.

We model the chatting channel in Fig. 1 as a directed
graph Gc = (V , E), where the set of nodes V is the set of
all sensors and E ⊆ V × V is the set of noiseless, directed
chatting links. If (i, n) ∈ E , then for each source realization,
Sensor i sends to Sensor n a chatting message Mi→n with
codebook size Ki→n. The parent and children sets of a sensor
n ∈ V are denoted Np(n) and Nc(n) respectively; when
(i, n) ∈ E , i is a parent of n and n is a child of i. The
set of all chatting messages is M c = {Mi→n}(i,n)∈E and the
set of corresponding codebook sizes is Kc = {Ki→n}(i,n)∈E .
Modeling the chatting channel as a graph becomes useful later
when we analyze the topology of intersensor collaboration for
successful communication with the fusion center.

The chatting messages are communicated in sequential
order according to a schedule that the sensors and the fusion
center know in advance; the set of chatting messages M c can
therefore also be thought of as a sequence. This communi-
cation occurs quickly in that all chatting is completed before
the next discrete time instant, at which point new realizations
of XN

1 are measured. We assume that each chatting link can
support one message per source realization and an outgoing
chatting message from Sensor n can only depend on Xn and
the chatting messages received from the sensor’s parent set
Np(n). After chatting is complete, Sensor n compresses its ob-
servation Xn into a message Mn using a codebook dependent
on the information gathered from chatting messages, which
is then noiselessly communicated to the fusion center. In the
most general setting, both the codebook mapping and size,
i.e., communication rate, may depend on incoming chatting
messages. The fusion center then estimates the computation
g(XN

1 ) using MN
1 but not M c. While the above treatment of

the chatting channel is very general, the final assumption that
the fusion center cannot observe chatting messages directly
restricts the type of communication can occur. In the next
section, we will discuss in greater detail what type of com-
munication schedules are allowed to optimize compression
performance.

We now present a simple example based on a two-sensor
network shown in Fig. 2a. Here, the computation of interest
is Y = max(X1, X2) and two sensors compress iid uniform
random variables X1 and X2 using fixed-rate scalar quantiz-
ers. Naı̈vely, one may predict that the best scalar quantizer
should be uniform using (1). However, larger amplitudes are
more likely to be meaningful for the max computation and
the best fixed-rate scalar quantizer is found using (6); the
quantizer mapping is shown in Fig. 2b. If the chatting channel
has very high rate, then Sensor 2 can effectively compute
and compress Y and achieve joint-encoding performance,
as shown in Fig. 2d. The chatting described in this paper
falls between the distributed and joint-encoding scenarios; the
main regime of interest is when the chatting channel has
low rate, e.g., 2 bits/sample in Fig. 2c. We will revisit this
example in a more general setting later in the paper and
show how rate allocation and chatting codebook optimization
affects compression performance. Note that the example uses
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(a) (b) Distributed (c) Chatting (d) Joint encoding

Fig. 2. A two-sensor network demonstrating chatting. In this example, Sensor 1 communicates some information about its realization to Sensor 2 with some
chatting rate Rc, as illustrated in (a). The quantizer mappings for the (b) distributed, (c) chatting, and (d) joint-encoding cases are shown.

independent sources for simplicity, but the same analysis can
account for correlated sources. The correlation will influence
the functional sensitivity profile, which alters the shape of the
companding quantizers.

IV. PERFORMANCE AND DESIGN OF CHATTING

NETWORKS

With the chatting model explicit, we present performance
of QKN

1 ,λN
1

in the fixed-rate and entropy-constrained settings,
and then show how to optimize λN

1 given KN
1 and Kc to

minimize fMSE. We first analyze the network assuming the
chatting graph is acyclic. Later, we will show this condition
on the graph is sufficient for the fusion center to successfully
infer the codebook used by each sensor and hence recover
the quantized values from messages MN

1 . The graph structure
provides the schedule of transmission on the chatting channel,
i.e., a sensor transmits its chatting messages to its children
only when it receives its parents’ chatting messages.

Before studying fMSE, we need to extend the definition of
the functional sensitivity profile.

Definition 2: Let Np(n) ⊆ V be the set of parents of
Sensor n in the graph Gc induced by chatting. The nth con-
ditional functional sensitivity profile, or conditional sensitivity
for short, of computation g given all chatting messages M c is

γn|Mc(x|m) =
(
E
[|gn(XN

1 )|2 ∣∣Xn = x,

Mi→n = mi→n for all i ∈ Np(n)])
1/2 .

Notice only messages from parent sensors are relevant to
γn|Mc . Intuitively, chatting messages reveal information about
the parent sensors’ quantized values and reshape the functional
sensitivity profile appropriately. Depending on the encoding of
chatting messages, this may induce don’t-care intervals in the
conditional sensitivity (where γn|Mc = 0).

The distortion’s dependence on the number of codeword
points and the conditional sensitivity is given in the following
theorem:

Theorem 1: Given the source distribution fXN
1

, compu-
tation g, and point densities λN

1 (M c) satisfying conditions
MF1–3 for every possible realization of M c, the asymptotic
distortion of the conditional expectation decoder (4) given
codeword allocation KN

1 and Kc is

Dfmse(K
N
1 ,Kc, λN

1 ) �

EMc

[
N∑

n=1

EXn|Mc

[
1

12K2
n(m)

γ2
n|Mc(Xn|m)

λ2
n|Mc(Xn|m)

∣∣∣∣∣ M c = m

]]
.

Proof: Extend the proof of [4, Theorem 17] using the
Law of Total Expectation. Note that the chatting codebook is
assumed fixed and known to all sensors and the fusion center
in this formulation.

Compared to the DFSQ result, the performance of a chat-
ting network can be substantially more difficult to compute
since the conditional sensitivity may be different with each
realization of M c and affects the choice of the point density
and codebook size. However, Sensor n’s dependence on M c

is through a subset of messages from its parent nodes. In
Section VI, we will see how structured architectures lead
to tractable computations of fMSE. Following the techniques
in [5], the theorem can be expanded to account for infinite-
support distributions and a simpler decoder. Some effort is
necessary to justify the use of normalized point densities in
the infinite-support case, especially in the entropy-constrained
setting, but high-resolution theory applies in this case as well.

A. Don’t-Care Intervals

We have already alluded to the fact that chatting can induce
don’t-care intervals in the conditional sensitivity of certain
sensors. In this case, we must properly code for these intervals
to ensure the high-resolution assumptions hold, as discussed
in Section II-C.

For fixed-rate coding where Rn = log2(Kn), this means
shifting one codeword to the interior of each don’t-care
interval and applying standard high-resolution analysis over
the union of all intervals where γn(x) > 0. The resulting
distortion of a chatting network is then given as follows:

Corollary 1: Assume the source distribution fXN
1

, compu-
tation g, and point densities λN

1 (M c) satisfy conditions MF1–
3 for every possible realization of M c, with the additional
requirement that λn(x |m) = 0 whenever γn|Mc(x |m) = 0.
Let Ln(m) be the number of don’t-care intervals in the condi-
tional sensitivity of Sensor n when M c = m. The asymptotic
distortion of such a chatting network where communication
links use fixed-rate coding is

Dfmse(R
N
1 ,Kc, λN

1 ) �

EMc

[
N∑

n=1

EXn|Mc

[
1

12K ′
n

γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

∣∣∣∣∣ M c = m

]]
,

where K ′
n = 2Rn − Ln(m).

In the entropy-constrained setting where Rn = H(X̂n), we
must code first the event An(m) that the source is not in
a don’t-care interval given the chatting messages, and then
code the source realization only if An occurs. The resulting
distortion of a chatting network is given as follows:
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Corollary 2: Assume the source distribution fXN
1

, compu-
tation g, and point densities λN

1 (M c) satisfy conditions MF1–
3 for every possible realization of M c, with the additional
requirement that λn(x |m) = 0 whenever γn|Mc(x |m) = 0.
Let An(m) be the event that Xn is not in a don’t-care interval
given M c = m. The asymptotic distortion of such a chatting
network where communication links use entropy coding is

Dfmse(R
N
1 ,Kc, λN

1 )

� EMc

[
N∑

n=1

EXn|Mc

[
P(An(m))

12

γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

· 22(Cn(m)−R′
n(m))

∣∣∣ M c = m
]]

,

where Cn(m) = h(Xn|An(m))+E[log2 λn(Xn)|An(m)] and
R′

n(m) = (Rn(m)−HB(An(m)))/P (An(m)).
We will use both corollaries in optimizing the design of

λN
1 (M c) in the remainder of the paper.

B. Fixed-Rate Quantization Design

We mirror the method used to determine (6) in the DFSQ
setup but now allow the sensor to choose from a set of
codebooks depending on the incoming messages from parent
sensors. The mapping between chatting messages and code-
books is known to the decoder of the fusion center, and each
codebook corresponds to the optimal quantizer for a given
conditional sensitivity induced by the incoming message. Let
Zn(M

c) be the union of the don’t-care intervals of a particular
conditional sensitivity. Then using Corollary 1, the asymptoti-
cally optimal point density for fixed-rate quantization satisfies

λ∗
n,fmse,fr,chat(x |m) (9)

∝
⎧⎨⎩

(
γn|Mc(x |m)fXn|Mc(x |m)

)1/3
,

x /∈ Zn(m) and fXn|Mc(x |m) > 0;
0, otherwise.

Recall that the point density is the derivative of the compres-
sor function c(x) in the compander model. Hence, codewords
are placed at the solutions to c(x) = (k − 1)/(K − L) for
k = 1, . . . , (K−L). In addition, one codeword must be placed
in each of the L don’t-care interval.

C. Entropy-Constrained Quantization Design

Using Corollary 2, the asymptotically optimal point density
when entropy coding is combined with scalar quantization has
the form

λ∗
n,fmse,ec,chat(x |m) (10)

∝
⎧⎨⎩

γn|Mc(x |m),
x /∈ Zn(m) and fXn|Mc(x |m) > 0;

0, otherwise.

Note that rate amplification can arise through chatting, and
this can allow distortion terms to decay at rates faster than
2−2Rn . However, there is also a penalty from proper coding of
don’t-care intervals, corresponding to HB(P (An)). This loss
is negligible in the high-resolution regime but may become
important for moderate rates.

D. Conditions on Chatting Graph

We have observed that chatting can influence optimal design
of scalar quantizers through the conditional sensitivity, and
that sensors will vary their quantization codebooks depending
on the incoming chatting messages from parent sensors. Under
the assumption that the fusion center does not have access to
M c, success of compression is contingent on the fusion center
identifying the codebook employed by every sensor from the
messages MN

1 .
Definition 3: A chatting network is codebook identifiable

if the fusion center can determine the codebooks of QKN
1 ,λN

1

using the messages it receives from each sensor. That is, it
can determine Cn(M c) from MN

1 for each time instant.
We have argued that a chatting network can successfully

communicate its compressed observations if it is codebook
identifiable. The following are sufficient conditions on the
chatting graph Gc and messages M c such that the network
is codebook identifiable:

C1. The chatting graph Gc is a directed acyclic graph
(DAG).

C2. The causality in the chatting schedule matches Gc,
meaning for every n, Sensor n sends its chatting message
after it receives messages from from all parent sensors.

C3. The quantizer at Sensor n is a function of the source
joint distribution and all incoming chatting messages from
parent sensors in Np(n).

C4. At any discrete time, the chatting message transmitted
by Sensor n is a function of Mn and incoming chatting
messages from parent sensors in Np(n).

The sufficiency of these conditions can be seen by construc-
tion. Because Gc is a DAG, there is at least one sensor which
is a head node and does not have incoming chatting messages.
Therefore, the chatting messages of these sensors are known
to the decoder by condition C4. The remaining codebooks and
chatting messages can be recovered by the decoder by C3 and
C4 provided C2 holds.

When each sensor’s quantizer is regular and encoder only
operates on the quantized values X̂n, matching the DFSQ
setup, the chatting message can only influence the choice
of codebook. In this setting, the above conditions become
necessary as well. Alternatively, if sensors can locally fuse
messages from parents with their own observation, there
may exist other conditions for a network to be codebook
identifiable.

We now revisit the example at the end of Section III and see
that the graph is a DAG. Assuming the system requires that C3
and C4 hold, having an additional chatting link from Sensor
2 to Sensor 1 is not useful. This illuminates an important
design decision in intersensor communication. When there is
flexibility in the design of chatting channels we can restrict the
topology to ones that form DAGs. Choosing between different
graphs is beyond the scope of the paper but is of future interest.

V. RATE ALLOCATION IN CHATTING NETWORKS

A consequence of chatting is that certain sensors can exploit
their neighbors’ acquisitions to refine their own. Moreover, a
sensor can potentially use this side information to adjust its
communication rate in addition to changing its quantization
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if the network is codebook identifiable. These features of
chatting networks suggest intelligent rate allocation across
sensors can yield significant performance gains. In addition,
a strong motivation for intersensor interaction is that sensors
may be geographically closer to each other than to the fusion
center and hence require less transmit power, or can employ
low-rate orthogonal channels that do not interfere with the
main communication network. As a result, the cost of com-
municating a bit may vary in a network.

This section explores proper rate allocation to minimize
the total cost of transmission in a chatting network, allowing
asymmetry of the information content at each sensor and
heterogeneity of the communication links. Consider the dis-
tributed network in Fig. 1. The cost per bit of the communica-
tion link and the resource allocation between Sensor n and the
fusion center are denoted by αn and bn respectively, leading
to a communication rate of Rn = bn/αn from Sensor n to the
fusion center. Similarly, for a chatting link between Sensors i
and n, the cost per bit and resource allocation are denoted by
αi→n and bi→n respectively, corresponding to a chatting rate
of Ri→n = bi→n/αi→n. Consistent with previous notation, we
denote the set of costs per chatting bit, resource allocations
on chatting links, and chatting rates by αc = {αi→n}(i,n)∈E ,
bc = {bi→n}(i,n)∈E , and Rc = {Ri→n}(i,n)∈E .

Given a total resource budget C, how should the rates
be allocated among these links? For simplicity, assume all
chatting links employ fixed-rate quantization; this implies that
Kn = 2Rn for all n ∈ {1, 2, . . . , N} and Ki→n = 2Ri→n for
all (i, n) ∈ E . The distortion–cost trade-off is then expressed
as

D(C) = inf
bN1 ,bc,λN

1 :
∑N

n=1 bn+
∑

(i,n)∈E bi→n=C

Dfmse

(
KN

1 ,Kc, λN
1

)
.

In general, this optimization is extremely difficult to de-
scribe analytically since the distortion contribution of each
sensor is dependent in a nontrivial way on the conditional
sensitivity, which in turn is dependent on the design of the
chatting messages. However, the relationship between bN1 and
the overall system distortion is much simpler, as described in
Theorem 1. Hence, once the chatting allocation vector bc is
fixed, the optimal bN1 is easily determined using extensions of
traditional rate allocation techniques described in Appendix A.
In particular, the optimal bN1 can be found by applying
Lemmas 2 and 3 with a total cost constraint

C′ = C −
∑

(i,n)∈E
bi→n.

A brute-force search over bc then provides the best allocation,
but this procedure is computationally expensive. More realis-
tically, network constraints may limit the maximum chatting
rate, which greatly reduces the search space.

In Fig. 3, we show optimal communication rates for the
network described in Section VI. We delay description of the
specific network properties and aim only to illustrate how the
cost allocations bn(m) may change depending with sensors or
chatting messages. Under fixed-rate coding, bn varies depend-
ing on the chatting graph. In the entropy-constrained setting,
the allocation can also vary with the chatting messages, except
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Fig. 3. Cost allocation for a maximum computation network, as described
in Section VI. In this case, N = 10, C = 5N , Rc = 3, αc = 0,
and αn = 1. In the fixed-rate setting (a), the sensors are allowed to have
different communication rates but cannot adjust the rate with the received
chatting message. In the entropy-constrained setting (b), each sensor except
sensor 1 receives chatting messages and can adjust its communication rate
appropriately.

for Sensor 1. This increased flexibility allows for a wider range
of rates, as well as improved performance in many situations.

VI. MAXIMUM COMPUTATION

The results in the previous sections hold generally, and
we now build some intuition about chatting by extending the
example of Section III. The choice of this computation is not
arbitrary; we will show that it allows for a particular chatting
architecture that makes it convenient to study large networks.
Moreover, this network reveals some surprising insights into
the behavior of chatting. The source variables are assumed
to independent so that performance gains come from chatting
rather than from the dependence that is traditionally exploited
in distributed source coding; one could additionally exploit
correlations. While this paper restricts its attention solely
to the maximum computation, more examples are discussed
in [8].

A. Problem Model

We consider a network where the fusion center aims to
reproduce the maximum of N sources, where each Xn is
independent and uniformly distributed on [0, 1]. The sensors
measuring these sources are allowed to chat in a serial chain,
meaning each sensor has at most one parent and one child (see
Fig. 4). Initially, we will consider the simplest such network
with the following assumptions:

1) The chatting is serial, meaning the sequence of chatting
messages is {M(n−1)→n}Nn=2.

2) Each chatting link is identical and has rate Rc, codebook
size Kc = 2Rc and cost αc.

3) The communication links between sensors and the fusion
center are allowed to have different rates. For simplicity,
we assume all their costs per bit to be equal, with αn = 1.

4) The outgoing chatting message at Sensor 1 is the index
of a uniformly quantized version of its observation with
Kc levels.

5) For n > 1, the chatting message from Sensor n is the
maximum of the index of Sensor n’s own uniformly
quantized observation and the chatting message from its
parent.
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Fig. 4. A fusion center wishes to determine the maximum of N iid
uniform sources and receives messages Mn from each sensor n at rate Rn.
The sensors are allowed to chat serially down the network using messages
M(n−1)→n at rate Rc.

Under this architecture, the chatting messages effectively
correspond to a uniformly quantized observation of the max-
imum of all ancestor nodes:

M(n−1)→n = I(QKc,U (max(Xn−1
1 ))), (11)

where I is the index of the quantization codeword and
can takes values {1, . . . ,Kc}. The simplicity of the chatting
message here arises from the permutation-invariance of the
maximum function. We will exploit this structure to provide
precise characterizations of system performance.

B. Quantizer Design

Using (2), we find the max function has functional sensi-
tivity profile γ2

n(x) = xN−1 for all n. Without chatting, each
sensor’s quantizer would be the same with a point density that
is a function of the source distribution and functional sensi-
tivity profile. Moreover, since the cost per bit of transmitting
to the fusion center is the same, the solution of the resource
allocation problem assigns equal weight to each link. Hence,
minimizing (5) yields the optimal fixed-rate distortion–cost
trade-off:

Dmax,fr(C) � N

12

(
3

N + 2

)3

2−2C/N .

Similarly, the minimum of (7) leads to the optimal entropy-
constrained distortion–cost trade-off

Dmax,ec(C) � N

12
e−N+12−2C/N .

These high-resolution expressions provide scaling laws on
how the distortion relates to the number of sensors. They
require the total cost C increase linearly with N to hold.

With chatting, we first need to determine the conditional
sensitivity, which is given below for uniform sources:

Proposition 1: Given Kc = 2Rc , the conditional sensitivity
corresponding to a received chatting message M(n−1)→n = k
is

γ2
n |M(n−1)→n

(x | k)

=

⎧⎪⎨⎪⎩
0, x < k−1

Kc
;

(Kcx)
n−1−(k−1)n−1

kn−1−(k−1)n−1 xN−n, k−1
Kc

≤ x < k
Kc

;

xN−n, x ≥ k
Kc

.

Proof: See Appendix B.

We have already noted the incident chatting message of
Sensor n is a uniformly quantized observation of Yn =
max(Xn−1

1 ), where fY (y) = (n− 1)yn−2. Hence,

P
(
M(n−1)→n = k

)
=

(
k

Kc

)n−1

−
(
k − 1

Kc

)n−1

. (12)

Below, we give distortion asymptotics for the serial chatting
network under both fixed-rate and entropy-constrained quan-
tization.

1) Fixed-rate case: From Theorem 1, the asymptotic total
fMSE distortion is

N∑
n=1

βn2
−2Rn ,

where βn = 1
12‖γ2

n|Mc‖1/3. Because Sensor 1 has no incom-
ing chatting messages, its conditional sensitivity is γ2

1(x) =
xN−1 and the resulting distortion constant is

β1 =
1

12

(
3

N + 2

)3

.

For other sensors, the distortion contribution is

βn =
1

12

Kc∑
k=1

P
(
M(n−1)→n = k

) ∥∥γ2
n |M(n−1)→n=k

∥∥
1/3

.

For Sensor n with n > 1, all incoming messages besides k = 1
induce a don’t-care interval, so one of the 2Rn codewords is
placed exactly at (k − 1)/K.

We study the trade-off between chatting rate Rc and fMSE
for several choices of N and αc using optimal cost allocation
as determined by Lemma 2. In Fig. 5a, we observe that
increasing the chatting rate yields improvements in fMSE. As
the number of sensors increases, this improvement becomes
more pronounced. However, this is contingent on the chatting
cost αc being low. As discussed in Section II-C, chatting can
lead to worse system performance if the cost of chatting is
on the same order as the cost of communication given a total
resource budget, as demonstrated by Fig. 5c. Although the
main results of this work are asymptotic, we have asserted the
distortion equations are reasonable at finite rates. To demon-
strate this, we design real quantizers under the same cost
constraint and demonstrate that the resulting performance is
comparable to high-resolution approximations of Theorem 1.
This is observed in Figs. 5a and c, which shows the asymptotic
prediction of the distortion–rate trade-off is accurate even at
4 bits/sample.

2) Entropy-constrained case: Generally, the total distortion
in the entropy-constrained case is

N∑
n=1

E
[
βn,k2

−2Rn,k
∣∣M(n−1)→n = k

]
,

noting each sensor is allowed to vary its communication rate
with the chatting messages it receives. Like in the fixed-
rate setting, an incoming message k will induce a don’t-care
interval of [0, (k − 1)/K] in the conditional sensitivity. If An,k

is the event that Xn is not in a don’t-care interval when
receiving message k, then

βn,k =
1

12
P
(
M(n−1)→n = k

)
· 22h(Xn|An,k)+2E[log2 γn |M(n−1)→n

(Xn|k)]
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Fig. 5. Performance of the maximum computation network in both the fixed-rate (left plots) and entropy-constrained (right plots) settings. Plots (a) and
(b) illustrate the trade-off between fMSE and chatting rate for choices of N assuming total cost C = 4N and αc = 0.01. Plots (c) and (d) illustrate the
trade-off between fMSE and chatting rate for choices of αc assuming N = 4 sensors and total cost C = 4N . In all cases, the cost of communication is
αn = 1. For the fixed-rate setting, we validate the distortion through simulated runs on real quantizers designed using (9). We observe that high-resolution
theory predicts actual performance at rates as low as 4 bits/sample, as shown by crosses in the fixed-rate plots.

and Rn,k = (Rn −HB(P(An,k)))/P(An,k).
Like in the fixed-rate setting, we study the relationship

between the chatting rate Rc and fMSE, this time using
the probabilistic allocation optimization of Lemma 3 in Ap-
pendix A. Due to the extra flexibility of allowing a sensor to
vary its communication to the fusion center with the chatting
messages it receives, we observe that increasing the chatting
rate can improve performance more dramatically than in the
fixed-rate case (see Fig. 5b). Surprisingly, chatting can also
lead to inferior performance for some combinations of Rc and
N , even when αc is small. This phenomenon will be discussed
in greater detail below. In Fig. 5d, we compare different
choices of αc to see how performance changes with the
chatting rate. Unlike for fixed rate, in the entropy-constrained
setting, chatting can be useful even when its cost is close to
the cost of communication to the fusion center.

C. Generalizing the Chatting Messages

We have considered the case where a chatting message
is the uniform quantization of the maximum of all ancestor
nodes, as shown in (11). Although simple, this coding of
chatting messages is not optimal. Here, we generalize chatting
messages to understand how the performance can change with
this design choice.

We begin by considering the same network under the
restriction that the chatting rate is Rc = 1, but allow the single
partition boundary p1 to vary rather than setting it to 1/2.
Currently, we keep the coding consistent for every sensor such
that a chatting message k = 1 implies max(Xn−1

1 ) ∈ [0, p1]
and k = 2 means max(Xn−1

1 ) ∈ (p1, 1]. Distortions for a
range of N and p1 are shown in Fig. 6.

From these performance results, we see that the choice of
p1 should increase with the size of the network, but precise
characterization of the best p1 is difficult because of the
complicated effect the conditional sensitivity has on both the
distortion constants and rate allocation. We can recover some

of the results of Fig. 5 by considering p1 = 1/2. It is
now evident that this choice of p1 can be very suboptimal,
especially as N becomes large. In fact, we observe that
for certain choices of the partition with entropy coding, the
distortion with chatting can be larger than from a traditional
distributed network even though the chatting cost is 0. This
unintuitive fact arises because the system’s reliance on the
conditional sensitivity is fixed, and the benefits of a don’t-
care interval are mitigated by creating a more unfavorable
conditional sensitivity. We emphasize that this phenomenon
disappears as the rate becomes very large.

Since the flexibility in the choice of the chatting encoder’s
partitions can lead to improved performance when Rc = 1,
we can expect even more gains when the chatting rate is
increased. However, the only method for optimizing the choice
of partition boundaries developed currently involve brute-force
search using the conditional sensitivity derived in Appendix B.
Another extension that leads to improved performance is to
allow chatting encoders to employ different partitions. This
more general framework yields strictly improved results, but
some of the special structure of the serial chatting network
is lost as the chatting message is no longer necessarily the
maximum of all ancestor sensors. The added complexity of
either of these extensions make their performances difficult to
quantify.

D. Optimizing a Chatting Network

In this paper, we have formulated a framework allowing
low-rate collaboration between sensors in a distributed net-
work. We have introduced several methods to optimize such a
network, including nonuniform quantization, rate allocation,
and design of chatting messages. Here, we combine these
ingredients and see how each one impacts fMSE.

We will continue working with the maximum computation
network from Fig. 4 assuming Rc = 1, αc = 0, N = 5 and
C = 5N . We further assume the coding of chatting messages
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Fig. 6. Distortion improvement compared to no chatting in the maximum computation network for the fixed-rate (left plot) and entropy-constrained (right
plot) settings when varying the partition boundary p1. We assume chatting is free, i.e., αc = 0, but the chatting rate is limited to one bit.
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Fig. 7. Distortion improvement for Scenarios 1–3 over a distributed network
without chatting. Both rate allocation (RA) and chatting message optimization
(CM) are considered.

is the same for every sensor on the serial chain. We will then
consider the following scenarios:

1) A chatting network with Rn = 5 for all n and chatting
designed by (11).

2) A chatting network with rate allocation and chatting
designed by (11).

3) A chatting network with rate allocation and optimization
over chatting messages.

We compare the fMSE of each scenario to the performance
of the distributed network without chatting (Rc = 0). In the
results of Fig. 7, we see that the simple chatting network with
a chatting codebook described in (12) provides meaningful
performance boost, while additional optimizations such as
rate allocation and more general chatting codebooks do not
add appreciable benefits. The opposite is true in the entropy-
constrained setting, where the addition of the chatting channel
is only meaningful when rate allocation and chatting codebook
optimizations are considered. However, the potential gains
from chatting in the entropy-coded setting is much greater;
in the example presented, a 20 dB improvement in fMSE
can be seen. We highlight that the current results restrict
the communication in the fixed-rate setting to employ fixed-
rate quantization. Allowing for entropy-coding on the chatting
channel may lead to even greater compression gain at the
expense of increased system complexity.

VII. CONCLUSIONS

In this work, we explored how intersensor communication—
termed chatting—can improve approximation of a function
of sensed data in a distributed network constrained to scalar
quantization. We have motivated chatting from two directions:
providing an analysis technique for distortion performance

when low-blocklength limitations make Shannon theory too
optimistic, and illustrating the potential gains over simplistic
practical designs. There are many opportunities to leverage
heterogeneous network design to aid information acquisition
using the tools of high-resolution theory, and we provide
precise characterizations of distortion performance, quantizer
design, and cost allocation to optimize distributed networks.
Many challenges remain in analyzing chatting networks. Some
future directions that are meaningful include a more system-
atic understanding of how to design chatting messages and
applications where chatting may be feasible and beneficial.

One can consider “sensors” being distributed in time rather
than space, with the decoder computing a function of samples
from a random process. Connections of this formulation to
structured vector quantizers are of independent interest.

APPENDIX A
RATE ALLOCATION FOR DISTRIBUTED NETWORKS

Consider the distributed network in Fig. 1 without the
chatting channel. The cost per bit of the communication link
and the cost allocation between Sensor n and the fusion
center is denoted by αn and bn respectively, leading to a
communication rate of Rn = bn/αn. Below, we solve the
cost allocation problem under the assumption that companding
quantizers are used and noninteger rates are allowed.

Lemma 1: The optimal solution to

D(C) = min∑
bn=C,bn≥0

N∑
n=1

βn2
−2bn/αn

has cost allocation

b∗n = max

(
0,

1

2
log2

βn/αn

β̃

)
, (13)

where β̃ is chosen such that
∑

b∗n = C.
Proof: This lemma extends the result from [27] or can

be derived directly from the KarushKuhnTucker (KKT) con-
ditions.

Each βn is calculated using only the functional sensitivity
profile γn and marginal source pdf fXn . Although Lemma 1 is
always true, we emphasize that its effectiveness in predicting
the proper cost allocation in a distributed network is only
rigorously shown for high cost (i.e., high rate) due to its
dependence on (3). However, it can be experimentally verified
that costs corresponding to moderate communication rates still
yield near-optimal allocations.
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When the solution of Lemma 1 is positive, a closed-form
expression exists:

Lemma 2: Assuming each b∗n in (13) is positive, it can be
expressed as

b∗n =
αn

α̃
C +

αn

2
log2

βn/αn(∏
j (βj/αj)

αj

)1/
∑

αi
,

where α̃ =
∑

n αn/N .
Proof: The proof uses Lagrangian optimization.

If Sensor n is allowed to vary the communication rate de-
pending on the side information Msi,n it receives, further gains
can be enjoyed. This situation is natural in chatting networks,
where the side information is the low-rate messages passed
by neighboring sensors. Here, we introduce probabilistic cost
allocation, yielding a distortion–cost trade-off

D(C) = min∑
E[bn(Msi,n)]=C

bn(m)≥0

N∑
n=1

E
[
βn(Msi,n)2

−2bn(Msi,n)/αn

]
,

(14)
where the expectation is taken with respect to Msi,n. Each link
will have a cost allocation bn(m) for every possible message
m while satisfying an average cost constraint. An analogous
result to Lemma 1 can be derived; for the situation where
the optimal allocation is positive, it can again be expressed in
closed form:

Lemma 3: Assume the side information Msi,n received at
Sensor n is m ∈ Mn and the cost per bit of the communica-
tion link may vary with m. Assuming each allocation b∗n(m)
in the solution to (14) is positive, it can be expressed as

b∗n(m) =
αn(m)

α̃
C

+
αn(m)

2
log2

βn(m)/αn(m)∏
j

∏
l

(
(βj(l)/αj(l))

αj(l)/α̃
) ,

where α̃ =
∑

n

∑
m fMsi,n(m)αn(m).

Here, we extended previous known rate allocation re-
sults [27], [28] to account for heterogeneity in distributed
networks. Although these results do not account for chatting,
we see in Section V that they become important tools in
optimizing performance in such networks.

APPENDIX B
SENSITIVITY OF MAXIMUM COMPUTATION NETWORK

Assuming iid uniform sources on the support [0, 1], the
functional sensitivity profile of each sensor in the maximum
computation network in Fig. 4 without chatting is

γ2
n(x) = E[|gn(XN

1 )|2 |Xn = x]

= P
(
min(XN

1 ) = Xn |Xn = x
)

= P(X1 < x) · · ·P(Xn−1 < x)

· P(Xn+1 < x) · · ·P(XN < x)

= xN−1.

When the chatting graph is a serial chain, Sensor n has
some lossy version of the information collected by its ancestor
sensors. For the max function, chatting reduces the support
of the estimate of max(Xn−1

1 ) by Sensor n. Hence, the

message M(n−1)→n reveals the max of the ancestor sensors
is in the range [sl, su]. This side information forms three
distinct intervals in the conditional sensitivity. First, in the
interval x < sl, Xn is assuredly less than max(Xn−1

1 ) and the
conditional sensitivity is 0 since the information at Sensor n is
irrelevant at the fusion center. Second, if x > su, Xn is greater
than max(Xn−1

1 ) and the conditional sensitivity should only
depend on the number of descendant sensors, which yields
xN−n. Finally, when sl ≤ x < su, Sensor n must take
into consideration both ancestors and descendants, yielding
conditional sensitivity

P
(
min(XN

1 ) = Xn

∣∣Xn = x,max(Xn−1
1 ) ∈ [sl, su]

)
= P

(
max(Xn−1

1 ) < x
∣∣max(Xn−1

1 ) ∈ [sl, su]
)

· P (
max(XN

n+1) < x
)

=
xn−1 − sn−1

l

sn−1
u − sn−1

l

xN−n.

More specific to the case when messages correspond to
uniform quantization, we define Kc = 2Rc and denote each
received message M(n−1)→n as kn. Setting sl = (kn − 1)/Kc

and su = kn/Kc gives Proposition 1.
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