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Abstract

In modern systems, it is often desirable to extract relevant information from large
amounts of data collected at different spatial locations. Applications include sensor
networks, wearable health-monitoring devices and a variety of other systems for infer-
ence. Several existing source coding techniques, such as Slepian-Wolf and Wyner-Ziv
coding, achieve asymptotic compression optimality in distributed systems. However,
these techniques are rarely used in sensor networks because of decoding complexity
and prohibitively long code length. Moreover, the fundamental limits that arise from
existing techniques are intractable to describe for a complicated network topology or
when the objective of the system is to perform some computation on the data rather
than to reproduce the data.

This thesis bridges the technological gap between the needs of real-world systems
and the optimistic bounds derived from asymptotic analysis. Specifically, we charac-
terize fundamental trade-offs when the desired computation is incorporated into the
compression design and the code length is one. To obtain both performance guar-
antees and achievable schemes, we use high-resolution quantization theory, which
is complementary to the Shannon-theoretic analyses previously used to study dis-
tributed systems. We account for varied network topologies, such as those where
sensors are allowed to collaborate or the communication links are heterogeneous. In
these settings, a small amount of intersensor communication can provide a signifi-
cant improvement in compression performance. As a result, this work suggests new
compression principles and network design for modern distributed systems.

Although the ideas in the thesis are motivated by current and future sensor net-
work implementations, the framework applies to a wide range of signal processing
questions. We draw connections between the fidelity criteria studied in the thesis and
distortion measures used in perceptual coding. As a consequence, we determine the
optimal quantizer for expected relative error (ERE), a measure that is widely use-
ful but is often neglected in the source coding community. We further demonstrate
that applying the ERE criterion to psychophysical models can explain the Weber–
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Fechner law, a longstanding hypothesis of how humans perceive the external world.
Our results are consistent with the hypothesis that human perception is Bayesian op-
timal for information acquisition conditioned on limited cognitive resources, thereby
supporting the notion that the brain is efficient at acquisition and adaptation.

Thesis Supervisor: Vivek K Goyal
Title: Principle Research Scientist, Research Laboratory of Electronics
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Chapter 1

Introduction

Despite previous theoretical breakthroughs in understanding information compres-

sion for distributed networks, hardware limitations and deployment feasibility have

historically inhibited the growth of practical systems such as sensor networks and

cloud computing. However, recent innovations in implementation have now made

distributed systems ubiquitous in many environments and applications. In fact, the

rapid proliferation of such systems and the resulting data deluge [7] has opened a gap

between theory and practice and introduced a difficult open problem—how can we

efficiently eliminate information redundancy in large asynchronous networks where

nodes have different objectives and appetites for data?

In this thesis, we consider a more modest objective of understanding how impactful

information can be extracted out of data when sensing nodes know the computational

aims of the network. With the insight that information communication is a precious

commodity, we provide precise conditions under which incorporating system goals

into acquisition and compression blocks can lead to more information per bit com-

municated. Further gains can be realized when sensors collaborate. We believe the

insights and intuitions gained in this study can influence the design of efficient source

coding algorithms, network architectures and sensor implementations. These com-

ponents can then aid in constructing smarter systems that addresses the changing

nature of data and information in a network.

There has been substantial effort to study distributed coding using information
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theoretic concepts, taking advantage of long code blocks and powerful decoders to

approach fundamental limits of compression. However, techniques inspired by this

theory are infeasible for many applications. In particular, strong dependencies be-

tween source variables imply low information content per variable, but exploiting this

is difficult under strict latency requirements. Other reasons why Shannon-style analy-

sis may be a poor proxy for studying real-world systems include high complexity, need

for large memory storage, unrealistic synchronization assumptions, and sensitivity to

the accuracy of the assumed probabilistic models near the fundamental limit.

The existence of methods for which there is a very optimistic theory has strongly

discouraged the development of alternative approaches. Thus, the failure of these

methods in practice has left a glaring technological gap for understanding compres-

sion performance under application-specific constraints. In fact, most sensor network

systems use simple uniform scalar quantization and either compression that does not

exploit intersensor correlation or no compression at all. Rather than require long

blocks, the complementary asymptotic of high-resolution quantization theory is more

useful for these scenarios; most of this theory is focused on the scalar case, where

the block length is one. The principal previous work in applying high-resolution

quantization theory to the acquisition and computation network of Figure 1-1 is the

distributed functional scalar quantization (DFSQ) framework [120]. The key message

from DFSQ is that the design of optimal encoders for systems that perform non-

linear computations can be drastically different from what traditional source coding

theory suggests. In recent years, ideas from DFSQ have been applied to compressed

sensing [172], compression for media [173], and channel state feedback in wireless

networks [151].

We will briefly summarize the contributions of this thesis in Section 1.2 after a

short thought experiment that illustrates the usefulness of the overall work in Sec-

tion 1.1. The publications developed for this thesis are listed in Section 1.3.
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Figure 1-1: A distributed computation network, where N sensors (comprising quan-
tizer and encoder) observe realizations of correlated sources. Each observation Xn

is encoded and communicated with rate Rn to a fusion center. Simultaneously, each
sensor can interact with a subset of other sensors using a noiseless but rate-limited
chatting channel to improve compression. The decoder at the fusion center computes
an estimate of the function g(XN

1 ) from the received data using a reconstruction

function ĝ(X̂N
1 ) but cannot observe messages communicated on the chatting channel.

1.1 A Motivating Application

Communication through sensor networks is a major topic of interest. Unlike previous

network architectures such as the Internet, sensor networks are designed to be dispos-

able, cheap and application-specific. This not only creates innovations in hardware,

but also new design constraints and desired properties. In particular, factors such

as the goals at the fusion center, energy constraints, and computational abilities of

individual nodes lead to domain-specific knowledge that can be exploited.

We provide a simple and admittedly contrived example that inspires some of

the goals of the thesis. Consider sensors placed throughout a nuclear power plant

that collect temperature readings and communicate to a fusion center that sounds

an alarm if any temperature reading exceeds a threshold which may vary over time

and be adaptive. Having good spatial coverage is important but too many sensors

lead to communication interference, unneeded power consumption and high cost.

Hence, a balance must be struck between the number of sensors, the complexity of the
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communication topology, and the need for fast and reliable temperature information

to indicate the health of the plant.

In this setting, stale information is not useful so the large-blocklength analysis

is not applicable. Given constraints on the communication rates of the network,

how should data be conveyed to the central fusion center? How can we fold in the

objective of the network, which is to sound an alarm whenever any sensor reading

is abnormally large? Generally, system designers will opt for simple design and will

simply convey temperature data with good signal fidelity. However, this does not

exploit the correlations among sensor data and, more importantly, the computation

that governs the fusion center’s objectives.

Using the ideas in this thesis, we will see that we can precisely analyze the effect

of compression on the computation performed at the fusion center and how it scales

with the communication rate. We can also determine the effect of correlations and

intersensor communication over side channels, e.g. using cognitive radio [203]. The

main insight is that incorporating the fusion center’s goals into the compression at

each sensor can yield substantial savings over just coding for source reproduction.

As a result, the sensor network in this power plant can enjoy better estimates of

sensor readings or allow for more sensors using the same amount of communication

resources.

1.2 Outline and Contributions

In this thesis, we provide theoretical and empirical results for quantization in dis-

tributed systems described by the topology in Figure 1-1. The thesis has three major

themes:

1. Theoretical foundations – provide fundamental understanding of the perfor-

mance and design trade-offs of distributed functional scalar quantization for a

variety of source models and computations.
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2. Intersensor collaboration – demonstrate that communication between sen-

sors can lead to dramatic improvement in compression performance when the

block length of acquisition is restricted to be small.

3. Coding for perceptually relevant distortion measures – use the underly-

ing theory developed in this thesis to understand perceptual coding and human

perception.

We will focus our efforts on quantizer design. Concurring with Neuhoff [127], we

feel that “high-resolution quantization theory has surpassed rate–distortion theory

in its relevance to practical code design.” High-resolution quantization theory gives

successful architectural prescriptions and quantitative performance estimates. It thus

provides a foundation for our invention and analysis toward the goal.

The outline of the thesis will be as follows:

Chapter 2 – Background

In this section, we provide a comprehensive survey of source coding results directly

related to the thesis, with strong emphasis placed on the two asymptotic theories

of high resolution and large blocklength. Of particular interest are results in DFSQ,

vector quantization for nondifference distortion measures, multiterminal source coding

and the Shannon lower bound for rate–distortion theory. We will also formally define

ideas such as quantization and source coding, and describe the notation that will be

used in the thesis.

Chapter 3 – DFSQ Simplified

The main analysis technique of the thesis is DFSQ; previous investigations have de-

veloped rigorous analyses to understand performance limits when sources have joint

densities supported on a unit cube and the decoder uses a complicated joint centroid

estimator. The aims of this chapter are to loosen the requirements on the source

model and introduce a “simple” decoder that is the desired computation performed

on the quantized measurements. Remarkably, the simpler decoder achieves the same
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asymptotic performance as the optimal decoder even though it does not use the joint

density of the source. Moreover, the communication and computation aspects of the

decoding are decoupled, which is more useful in real-world applications. Our results

demonstrate that similar analytical forms for performance arise in these new systems,

demonstrating the generality of DFSQ theory. The new results are based on careful

application of Taylor’s theorem and lead to new insights on the rate of convergence

of different quantization decoders. Performance results are given using Monte Carlo

simulation of real quantizers, illustrating that the high-resolution approximation may

be close to the performance of quantizers at low rates under mild conditions.

Chapter 4 – Performance Loss from DFSQ

High-resolution theory provides asymptotic achievability bounds on the best scalar

quantizers. It is natural to wonder what the gap is between these results and the

Shannon-style results that provide the ultimate performance bounds of compression,

especially where the goal is to optimize fidelity of a function of source realizations.

In this chapter, we develop bounds that characterize the achievable rate gap between

DFSQ and Shannon-theoretic coding for distributed networks. We use existing results

in Shannon theory that look at the behavior of the rate–distortion function for very

small distortion, effectively a high-resolution large-blocklength asymptotic. In order

to understand the performance gap, we introduce some new performance bounds for

this regime.

Chapter 5 – Chatting Networks

A celebrated result in distributed source coding argues that intersensor collaboration,

or “chatting” cannot improve compression performance by very much. However, this

remarkable intuition relies on complicated decoders that exploit coding over long

blocks; it does not hold for scalar quantizers. In this chapter, we show intersensor

communication can improve the overall compression ability of the network. The

key result is that chatting can dramatically decrease loss in reproduction fidelity

even when intersensor communication is at very low rate. We also solve the rate
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allocation problem when communication links have heterogeneous costs and provide

a detailed example to demonstrate the theoretical and practical gains from chatting.

This example for the maximum computation gives insight on the gap between chatting

and distributed networks, and how to optimize the intersensor communication.

There are great opportunities to leverage chatting in many systems where commu-

nication between nearby nodes may be much cheaper than long-range communication.

Thus, rather than insisting that the encodings be conditionally independent given the

measurements, low-rate communication among neighboring nodes can exploit depen-

dencies efficiently between measurements, and account for the goals at the fusion

center.

Chapter 6 – Quantization for Expected Relative Error

In a separate problem formulation, we study quantization for expected relative error

(ERE), a distortion measure that holds great engineering and scientific significance

but has not gained much attention in the source coding community. We provide fun-

damental results on quantizer design and performance for ERE and draw connections

to standards in the speech coding literature. Moreover, we introduce new applica-

tions for this theory, including coding for wireless channels and for human perception.

The ERE measure is a type of nondifference distortion measures; this class has been

most prominently used in the context of perceptual coding for media applications,

e.g. speech. We discuss the relationship between these frameworks and functional

scalar quantization in both the univariate and multivariate settings.

Chapter 7 – Understanding Psychophysical Scales

The results from optimizing coding for expected relative error are similar to obser-

vations in psychophysical experiments on human perception. This chapter aims to

strengthen the applicability of statistical signal processing in the neuroscienfic lit-

erature by explaining a celebrated phenomenon called the Weber–Fechner law as a

Bayesian optimization under communication limitations in neural channels. We study

two models based on the analyses developed earlier in the thesis to understand the
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optimality of human perception and provide falsifiable hypotheses for a wide range of

stimuli. Testing the theory on real-world auditory data provided some evidence that

our model is consistent with human perception.

Chapter 8 – Conclusion

We conclude with a survey of the main ideas in the thesis and a prognosis of the

future directions of DFSQ theory. In particular, the notion of chatting has promise

in influencing novel multimodal sensing methodologies and network architectures.
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Chapter 2

Background

The main aim of the thesis is to study efficient techniques for lossy compression in a

network. Abstractly, lossy compression is the design of an output (reproduction) space

that represents an input (source) space with good fidelity under resource limitations.

When the limitations include transmission or storage, the source may be transformed

into a binary representation; this is commonly referred to as source coding. When

the input space is continuous-valued, a fundamental element of a lossy compression

scheme is a quantizer.

Quantization has two complementary asymptotic theories [127]. The more well-

known theory addresses performance when long blocks of data are compressed to-

gether, with length increasing without bound while holding the per-entry resource al-

location fixed. This yields the rate–distortion theory initiated by Shannon [162, 164]

and developed comprehensively by Gallager [47] and Berger [11]. Increasing block

length yields space-filling gains and other advantages [105], so rate–distortion theory

provides ultimate bounds which are not achievable with finite blocks. The “other”

asymptotic theory, pioneered by Bennett [10], makes approximations that introduce

errors that become negligible as the the size of the output space increases without

bound while holding the block length fixed. The goal of this high-resolution the-

ory is to allow quantizer analysis and design to be done with elementary calculus.

This theory is especially useful in the design of scalar quantizers. Rates as low as

4 bits per sample are generally sufficient for high-resolution theory to yield good

23



designs [59, 127], and it has been argued that high-resolution theory has been more

impactful than rate–distortion theory on practical source coding.

In this chapter, we formalize the model for lossy compression and introduce the

notation that will be used in the thesis. We also summarize existing work in quan-

tization theory and information theory, focusing on results that pertain to networks

or computations. Except for specific situations that will be highlighted or when the

context is clear, capital letters are used to indicate scalar random variables, e.g. X.

We denote an N -dimensional vector as xN
1 and use xi to denote the ith scalar entry of

the vector. When talking about a function, e.g. f(x), we drop the arguments for con-

venience unless necessary in the discussion. We employ the notation ‖f‖p for p ≥ 1

to denote the Lp norm (
∫∞

−∞
|f(x)|p dx)1/p. A set of consecutive integers {a, . . . , b}

is denoted [a : b]. Finally, we express asymptotic growth rates with O-notation, as

commonly used in mathematics and engineering [23].

2.1 Quantization

We consider a type of quantization that is a deterministic mapping from the real

space to a finite set of known points called the codebook C. For example, we can

compress a vector of continuous-valued observations or signal samples XL
1 to a set

of K points C , {ck}Kk=1 ⊂ R
L. This mapping, denoted Q

(L)
K satisfies Q

(L)
K (x) = ck

if x ∈ Pk, where the cells {Pk}Lk=1 form a partition P of RL. The case with L = 1

is known as scalar quantization; otherwise it is called vector quantization. In this

thesis, we will focus mainly on the design of scalar quantizers and drop the notation

L when appropriate.

A scalar quantizer is called regular if the partition cells are intervals containing

the corresponding codewords; the generalization to vector quantization is that parti-

tion cells containing the corresponding codewords are convex. In general, this does

not need to be the case and irregular quantizers can oftentimes yield improved per-

formance in a network setting at the cost of being difficult to analyze and design.

We will mostly consider regular scalar quantizers and assume the codebook entries
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are indexed from smallest to largest. Denoting Pk = (pk−1, pk] for each k implies

p0 < c1 ≤ p1 < c2 ≤ · · · < cK ≤ pK , with p0 = −∞ and pK = ∞. We define the

granular region as (p1, pK−1] and its complement (−∞, p1]∪(pK−1,∞) as the overload

region.

Performance analysis of quantizers is generally studied in a Bayesian framework,

where the L-dimensional input source follows a probabilistic model that is assumed

to be memoryless in time,1 i.e. when a joint density fXL
1
exists and is known. We

define a distortion function as d : X × Y → [0,∞), corresponding to the goodness of

a reconstruction in the space of Y of a signal in the space of X . The goal of com-

pression is to have a low expected per-scalar distortion D = L−1 E[d(XL
1 , Q

(L)
K (XL

1 ))].

Uniform or linear quantization, where partition cells in the granular region have equal

size and shape, is commonly used in practice and has interesting asymptotic prop-

erties [6, 10, 61, 72, 131]. However, nonuniform quantization can provide significant

improvement in distortion. There is a wide body of literature that describes how

to design the codebooks and partitions; comprehensive surveys of these works have

been compiled [54,60,66]. For a given K, exact optimality in quantization is difficult

to achieve but iterative methods that exploit nearest-neighbor encoding and centroid

reconstruction conditions, i.e. Lloyd–Max algorithms, are the best known tools for

quantizer design [21, 98, 104, 117]. More recently, generalized approximate message

passing can be used to design optimal irregular quantizers [82].

In this thesis, we consider a class of scalar quantizers that are easy to specify

and have desirable asymptotic properties (also see [52]). As illustrated in Figure 2-1,

this class uses the companding method to generate nonuniform quantizers from a

uniform one, where the scalar source is transformed using a nondecreasing and smooth

compressor function c : R → (0, 1), then quantized using a uniform quantizer with

K equidistant levels on (0, 1), and finally passed through the expander function c−1.

Compressor functions are defined such that limx→−∞ c(x) = 0 and limx→∞ c(x) = 1.

It is then convenient to define a point density function as λ(x) = c′(x). Because of

1The memoryless assumption is implicit for quantizers that do not have memory since correlation
across time cannot be exploited. Later, we will discuss briefly how to design vector quantizers to
account for memory.
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Figure 2-1: A block diagram for companding as a constructive method for nonuniform
scalar quantization. Companders are defined by the codebook size K and the point
density function λ, which is the derivative of the compressor function c. The notation
QK,U is used to describe the canonical uniform quantizer with K partitions in (0, 1).

the limiting conditions on c, there is a one-to-one correspondence between λ and c,

and hence a quantizer of the form shown in Figure 2-1 can be uniquely specified using

a point density function and codebook size. We denote such a quantizer QK,λ. By

virtue of this definition, the integral of the point density function over any quantizer

cell is 1/K: ∫ pk+1

pk

λ(x) dx =
1

K
, k ∈ [1 : K]. (2.1)

In practice, scalar quantization is rarely performed by an explicit companding

operation. A slight modification that avoids repeated computation of c−1 derives

partition boundaries from the compressor function by applying the compressor c and

comparing to threshold values (multiples of 1/K) to determine the partition cell Pk,

but then obtains ck from a precomputed table. This modification allows the choice of C
to be an additional degree of freedom in the quantizer, and different codeword designs

will have different statistical properties. For example, the centroid reconstruction

ck = E[X|X ∈ Pk] (2.2)

yields the best mean squared error (MSE) and decorrelates the output random vari-

able and the quantization error, i.e. E[QK,λ(X)(X −QK,λ(X))] = 0. A much simpler

choice for non-extremal codewords,

ck =
pk−1 + pk

2
, k ∈ [2 : K − 1], (2.3)

is known as midpoint reconstruction.2 Here, the extremal reconstruction values are

2Note that midpoint reconstruction is the centroid for a uniform source
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Figure 2-2: A sample source density fX and point density function λ, with corre-
sponding codebook designed via (2.3). This choice of λ follows (2.7), which turns out
to be the optimal design of a quantizer without additional coding.

fixed to be c1 = p1 and cK = pK−1. Midpoint reconstruction is suboptimal in MSE

relative to centroid reconstruction, but it has the simplicity of depending only on λ

and K—not on the source density. Particular quantizer-source pairs may also have

the nice property of the input and quantization error becoming uncorrelated as K

becomes large [113]. A simple model employed in the signal processing community

that accounts for the decaying correlation is the additive noise model, where the

quantization error is modeled as uniform noise (see, e.g. [137, 192]). However, this is

generally not true without the use of subtractive dithering [3, 67].

2.2 High-Resolution Scalar Quantization

It is difficult to express the performance of a quantizer for a particular choice of K.

Fortunately, the distortion can be well-approximated by a simple expression as K

becomes large in the companding model, which can then be used to optimize λ. This

asymptotic decoupling of K and λ forms the basis of high-resolution quantization.

We first present results for the ubiquitous MSE distortion on a memoryless scalar
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source X, which is defined as

Dmse(K,λ) = E[|X −QK,λ(X)|2], (2.4)

where the expectation is with respect to the source density fX . Under the addi-

tional assumption that fX is continuous (or simply measurable) with tails that decay

sufficiently fast,

Dmse(K,λ) ≃ 1

12K2
E[λ−2(X)], (2.5)

where ≃ indicates that the ratio of the two expressions approaches one as K in-

creases [10, 141]. More rigorously, the ≃ notation says

lim
K→∞

K2Dmse(K,λ) =
1

12
E[λ−2(X)].

The key insight is that the MSE of a scalar quantizer can be approximated by a simple

relationship between the source distribution, point density and codebook size, and

this relation becomes more precise with increasing K. Moreover, quantizers designed

according to the companding model are asymptotically optimal, meaning that the

quantizer optimized over λ has distortion that approaches the performance of the

best QK found by any means [17,19,99]:

inf
QK

E
[
|X −QK(X)|2

]
≃ inf

λ

1

12K2
E[λ−2(X)].

Experimentally, the distortion resulting from using companding quantizers specified

by small K can be predicted by the asymptotic analysis, as demonstrated later in the

thesis.

Although the previous discussion was on MSE, similar performance results have

been rigorized for difference distortion measures, a class where d(x, y) = ρ(x − y)

under certain mild conditions on ρ [56, 198]. For example, the rth-power absolute

error (RAE) distortion measure

Drae = E[|x−Q(x)|r]
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Figure 2-3: A block diagram for source coding as a means for communicating lossy
compression representations. The scalar case is shown, but the generalization to vec-
tor sources is natural. The lossy encoder is a quantization mapping with output
corresponding to the index of the codeword output. The lossless encoder then maps
the index to a string of bits that may not have the same length. The source cod-
ing model allows for comparison between the distortion and communication rate in
different schemes.

has an attractive optimal asymptotic distortion form satisfying

Drae(K,λ) ≃ 1

(1 + r)2rKr
E[λ−r(X)],

extending the MSE measure nicely. Other distortion measures are discussed later in

the chapter.

Since the dependence on K and λ is separated in the limit, calculus techniques can

be used to optimize companders using the distortion equation [104, 141]. However,

when the quantized values are to be communicated or stored, it is natural to map

each codeword to a string of bits and consider the trade-off between distortion and

communication rate R, defined to be the expected number of bits per sample. More

formally, source coding employs the structure in Figure 2-3, comprising a codebook

C with corresponding index set I, partition P , binary codebook J , lossy encoder

α : RL → I, lossless encoder ξ : I → J , and lossless decoder β : J → C. In scalar

quantization (L = 1), there are two methods in designing J that are of interest: fixed-

rate and entropy-constrained quantization. We will discuss both in detail below.

2.2.1 Fixed-Rate Quantization

In the simpler case, J is simply the binary expansion of the index set and the com-

munication rate is R = ⌈log2(K)⌉, corresponding to the length of the binary represen-

tation of the maximum index. We call this fixed-rate or codebook-constrained quanti-
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zation. Assuming a K where the ceiling operation can be ignored, the distortion-rate

trade-off can be written as

Dmse,fr(R, λ) ≃ 1

12
E
[
λ−2(X)

]
2−2R. (2.6)

The best choice of λ has been solved in several ways, but the most elegant proof

uses Hölder’s inequality [63], which says, for measurable functions v and w and con-

stants p and q satisfying 1 ≤ p, q ≤ ∞ and 1 = 1/p+ 1/q,

‖vw‖1 ≤ ‖v‖p ‖w‖q,

where equality holds if v and w are linearly dependent. Setting

v(x) = (fX(x)λ
−2(x))1/3 and w(x) = λ2/3(x),

we have the following:

E[λ−2(X)] =

∫
fX(x)λ

−2(x) dx

=

(∫
fX(x)λ

−2(x) dx

)(∫
λ(x) dx

)2

≥
(∫ (

fX(x)λ
−2(x)

)1/3
λ2/3(x) dx

)3

=

(∫
f
1/3
X (x) dx

)3

.

Using the equality condition, the lower bound is met with point density

λ∗
mse,fr(x) ∝ f

1/3
X (x), (2.7)

and the resulting optimal distortion satisfies

D∗
mse,fr(R) ≃ 1

12
‖fX‖1/3 2−2R. (2.8)
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Recall that the point density must integrate to one, which provides the scaling term

in (2.7). An example for point density optimization is shown in Figure 2-2.

2.2.2 Entropy-Constrained Quantization

Exploiting the probabilistic nature of the quantizer output, the codeword indices

can be coded to produce bit strings of different lengths based on probabilities of

occurrence. This is referred to as variable-rate quantization and is clearly more general

than fixed-rate quantization. If the decoding latency is allowed to be large, one can

employ block entropy coding and the communication rate approaches H(QK,λ(X)),

which has the following asymptotic form:

H(QK,λ(X)) ≃ h(X) + logK + E[log λ(X)],

where the proof is given in [120, Section II-C].3 This asymptotic limit, called entropy-

constrained quantization, yields a distortion–rate trade-off with λ:

Dmse,ec(R, λ) ≃ 1

12
E
[
λ−2(X)

]
22h(X)22E[log λ(X)]2−2R. (2.9)

The constant term dependent on λ can be bounded below using Jensen’s inequal-

ity [63]:

E
[
λ−2(X)

]
22E[log λ(X)] = 2log E[λ

−2(X)]22E[log λ(X)]

≥ 2E[log λ
−2(X)]22E[log λ(X)]

= 1,

with equality if λ(X) is a constant. Hence, the resulting optimal quantizer has a con-

stant point density λ∗
mse,ec(x) on the support of the source density, which remarkably

3Like in most works on source coding, the log function is base 2. When considering the differential
entropy, it is customary to express the base as e, which we indicate using ln. We restrict to expressing
performance in bits rather than nats and will make the proper conversions when necessary.
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corresponds to uniform quantization. The optimal asymptotic distortion satisfies

D∗
mse,ec(R) ≃ 1

12
2−2(R−h(X)). (2.10)

Note that block entropy coding suggests that the sources are transmitted in blocks

even though the quantization is scalar. Hence, (2.10) is an asymptotic result and

serves as a lower bound on practical entropy coders with finite block lengths that

match the complexity restrictions of a system.

In general, the optimal entropy-constrained quantizer (at a finite rate) for a distri-

bution with unbounded support can have an infinite number of codewords [69]. The

compander model used in this thesis cannot generate all such quantizers. A common

alternative is to allow the codomain of c to be R rather than (0, 1), resulting in a

point density that cannot be normalized [56, 66]. To avoid parallel developments for

normalized and unnormalized point densities, we restrict our attention to quantizers

that have a finite number of codewords K at any finite rate R. This may preclude

exact optimality, but it does not change the asymptotic behavior as K and R increase

without bound.4 Specifically, the contribution to overall distortion from the overload

region is made negligible as K and R increase, so the distinction between having

finitely- or infinitely-many codewords becomes unimportant.

2.3 Quantization for Computation

The above discussion briefly mentions alternatives to MSE. Extending the classes of

distortion measures is particularly pertinent in media compression, where nondiffer-

ence distortion measures can be more perceptually meaningful [78,129]. Many works

on the design of efficient quantizers use high resolution; we discuss these results in

more detail in Section 2.4. Similar needs for larger classes of distortion measures exist

in the detection and estimation literature, where high-resolution has been used to de-

4The restriction of finite codewords places the practical quantizers designed using this thesis in the
class of variable-rate rather than true entropy-constrained quantizers. We will label the quantizers
as entropy-constrained to preserve the meaning of the asymptotic nature of the result.
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Figure 2-4: A distributed computation network, where each of N spatially-separated
sources generate a scalar Xn. The scalars are encoded and communicated over rate-
limited links to a central decoder, where Encoder n is allowed transmission rate Rn.
The decoder computes an estimate of the function g(Xn

1 ) = g(X1, . . . , Xn) from the

received data using ĝ(X̂n
1 ).

termine parameters of interest from noisy data [9,68,147]. More recently, companding

quantizers have been used to solve distributed estimation problems [111].

This thesis is predominately interested in exploring lossy compression in a network

setting. In this application, it is customary to think about sensors or agents that

collect local information and try to influence a fusion center or central decision-

maker. Generally, the fusion center cares about a function of the sensors’ observations

that may be nonlinear. Although this problem can be framed as multidimensional

companding using a nondifference distortion measure, it is illuminating as its own

framework. In a paper that provides the foundation for the thesis, Misra, Goyal and

Varshney devised the distributed functional scalar quantization (DFSQ) model [120],

which will be described in this section.

In a DFSQ model, sensors employ scalar quantization to acquire and compress

information, and communicate directly to the fusion center, which performs a recon-

struction using ĝ on the quantized data to approximate a desired computation g,

Here, nonuniform quantizers optimized for g often perform much better than uniform

quantization or nonuniform quantizers that do not account for g. In [120], distortion

performance and quantizer design are discussed for the distributed setting shown in

Figure 2-4, where g is a scalar-valued function. For DFSQ, the cost of interest is
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functional MSE (fMSE):

Dfmse(K
N
1 , λN

1 ) = E

[∣∣∣g(XN
1 )− ĝ(QKN

1 ,λN
1
(XN

1 ))
∣∣∣
2
]
, (2.11)

where ĝ is chosen to be the joint centroid (JC) reconstruction

ĝjc(x
N
1 ) = E

[
g(XN

1 )
∣∣∣QKN

1 ,λN
1
(XN

1 ) = QKN
1 ,λN

1
(xN

1 )
]
, (2.12)

and QKN
1 ,λN

1
is scalar quantization performed on a vector such that

QKN
1 ,λN

1
(xN

1 ) = (Qλ1,K1(x1), . . . , QλN ,KN
(xN)) .

Note the complexity of computing ĝjc: it requires integrating over an N -dimensional

partition cell with knowledge of the joint source density fXN
1
.

Before understanding how a quantizer affects fMSE, it is convenient to define how

a computation affects distortion locally at each sensor:

Definition 2.1. The univariate functional sensitivity profile of a function g is defined

as

γ(x) = |g′(x)|.

The nth functional sensitivity profile of a multivariate function g is defined as

γn(x) =
(
E
[
|gn(XN

1 )|2
∣∣Xn = x

])1/2
, (2.13)

where gn(x) is the partial derivative of g with respect to its nth argument evaluated

at the point x.

Given the functional sensitivity profile, the main result of [120] says

Dfmse(K
N
1 , λN

1 ) ≃
N∑

n=1

1

12K2
n

E

[(
γn(Xn)

λn(Xn)

)2
]
, (2.14)

provided the following conditions are satisfied:

34



MF1. The function g is Lipschitz continuous and twice differentiable in every

argument except possibly on a set of Jordan measure zero.

MF2. The source pdf fXN
1
is continuous, bounded, and supported on [0, 1]N .

MF3. The function g and point densities λn allow E[(γn(Xn)/λn(Xn))
2] to be

defined and finite for all n.

Following the same recipes to optimize over λN
1 as for MSE in Section 2.2, the

relationship between distortion and communication rate is found. In both the fixed-

rate and entropy-constrained settings, the functional sensitivity profile acts to shift

quantization points to where they can reduce the distortion in the computation. For

fixed rate, the minimum high-resolution distortion is asymptotically achieved by

λ∗
n,fmse,fr(x) ∝ (γn(x)fXn

(x))1/3 , (2.15)

where fXn
is the marginal distribution of Xn. This leads to a distortion that satisfies

D∗
fmse,fr(R

N
1 ) ≃

N∑

n=1

1

12
‖γ2

nfXn
‖1/32−2Rn . (2.16)

If rate allocation (see Section 2.4) can be employed and we define Rtot =
∑

nRn, then

D∗
fmse,fr(Rtot) ≃

N

12

(
N∏

n=1

‖γ2
nfXn

‖1/3
)1/N

2−2Rtot/N . (2.17)

In the entropy-constrained setting, the optimizing point density is asymptotically

λ∗
n,fmse,ec(x) ∝ γn(x), (2.18)

leading to fMSE that satisfies

D∗
fmse,ec(R

N
1 ) ≃

N∑

n=1

1

12
22h(Xn)+2E[log γn(Xn)]2−2Rn . (2.19)
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Similarly to fixed-rate, using rate allocation provides a cleaner form:

D∗
fmse,ec(Rtot) ≃

N

12

(
N∏

n=1

22h(Xn)+2E[log γn(Xn)]

)1/N

2−2Rtot/N . (2.20)

Notice unnormalized point densities are not required here since the sources are as-

sumed to have bounded support.

In the distributed setting where sources are correlated, there is another type of

coding that can yield a better distortion–rate trade-off than the methods we have

considered. If coding length is allowed to be long, then the correlation at the quantizer

outputs can be exploited via Slepian–Wolf coding (see Section 2.5). It is customary

to consider the sum-rate constraint in this setting, which yields an optimal trade-off

that asymptotically satisfies

D∗
fmse,sw(Rtot) ≃

N

12

(
22h(X

N
1 )

N∏

n=1

22E[log γn(Xn)]

)1/N

2−2Rtot/N . (2.21)

The main usefulness of DFSQ is asymptotically precise characterization of the

performance of scalar quantizers in distributed networks for varying coding complexi-

ties. In addition, DFSQ theory yields tractable quantizer design using the companding

model for a wide range of source joint densities and computations. Despite the sim-

ilar setups, the necessary conditions in [120], [102] and [111] are not equivalent, and

cumulatively provide a compelling story on using high-resolution analysis to studying

lossy compression in distributed settings.

Beyond the foundational analysis on asymptotic distortion and quantizer de-

sign, [120] also provide insight on how irregular quantizers can fit into this model. It

turns out under reasonable conditions, optimal quantizers for DFSQ tend to be reg-

ular. Additionally, they introduce concepts such as don’t-care intervals and chatting,

which will be described in greater detail in Section 5.2.
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2.4 Vector Quantization

As a bridge between high-resolution scalar quantization and rate–distortion theories,

we summarize some key results in vector quantization. Since the focus of this thesis

is two extremal cases, i.e. fixed L with increasing K and increasing L and fixed K/L,

our coverage will be brief. We reemphasize that excellent and comprehensive reviews

of vector quantization are readily available [54, 60, 66].

The pioneer of high-resolution vector quantization is undoubtedly Zador, who ar-

gued that the best L-dimensional fixed-rate quantizer has distortion–rate performance

governed by

D
(L)
fr (R) ≃ bfr,L‖f‖L/(L+2)2

−2R,

and the best L-dimensional entropy-constrained quantizer has distortion–rate perfor-

mance satisfying

D(L)
ec (R) ≃ bvr,L2

2hL(X)2−2R,

where hL is the dimension-normalized differential entropy of the source and bfr,L and

bec,L are constants that depend on the source density [204,205]. These arguments were

later formalized in the fixed-rate [17] and entropy-constrained settings [65]. Work by

Gersho on block quantization popularized the use of lattice vector quantization as a

way to realize optimality using high-resolution analysis [53].

Although many structures have been proposed, the two dominant methods for

vector quantizers are predictive coding and transform coding, both of which exploit

redundancy in real-world signals with linear processing followed by scalar quantiza-

tion [66, Section II-B]. Predictive coding exploits the auto-regressive nature of many

speech and image signals using sliding-block codes and have influenced many modern

standards [54,79]. Meanwhile, transform coding uses orthogonal transforms to decor-

relate a block of scalars [58,71], and is a staple in modern compression algorithms [58].

There are preliminary investigations into DFSQ theory applied to transform coding,

but the results are not rigorous [119].

The model of interest in the work is a distributed system comprising N com-

37



panding scalar quantizers, which is a strict subclass of N -dimensional companding

vector quantizers. Although the concept of point densities extend fully to vector

quantizers, companding does not and there are several works that discuss design of

compressor function in the multidimensional setting [123, 167]. Beyond compand-

ing models, network quantization has been studied using iterative descent methods

for a variety of network topologies [43, 153, 154]. Other relevant and current work

on network quantization include distributed transform coding to exploit correlations

and network topologies [51, 88, 165] and achievable systems that have good scaling

properties through reuse of quantization indices [109].

The fMSE distortion measure which dominates discussion of this thesis is strongly

related to a class of nondifference distortion measures called locally quadratic, which

are predominantly studied in context of predictive coders or lattice quantizers. The

earliest work in this field were for speech coding and were known as Itakura–Saito [74]

or input-weighted quadratic distortion measures. These investigations were on itera-

tive methods exploiting the necessary nearest-neighbor and centroid conditions, and

provide algorithmic results on construction of optimal quantizers [18, 64, 98]. Later,

locally quadratic distortion measures were studied using high-resolution theory both

in fixed-rate [50, 97] and entropy-constrained [102] settings for vector quantizers.

Finally, we conclude this section with some discussion on rate or bit allocation,

which was briefly mentioned in Section 2.3. Rate allocation is the problem of opti-

mizing the total resource constraint over a block of observations, e.g. transform co-

efficients in transform coding or sensors in a distributed network. When the system

allows for this flexibility across measurements, rate allocation optimizes coding over

heterogeneous sources and lead to better performance. Solutions to rate allocation

employ Lagrangian optimization or integer programming on high-resolution approxi-

mations to distortion, as in (2.5) [54,71,161]; we delay formalizing the mathematical

framework until Chapter 5.
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2.5 Rate–Distortion Theory

While our main aims are to understand companding quantizers for fMSE, it is useful

to study how the compression performance compares to the fundamental limits when

complexity and block length are not constrained. We briefly summarize some key

results in rate–distortion theory that are important in the thesis. Several classic

texts cover rate–distortion theory with varying degrees of rigor [11, 27, 28,34,47].

We begin by carefully defining the rate–distortion function for a memoryless source

X ∈ X given a distortion measure d, where we recall the average per-letter distortion

between two vectors xL
1 and x̂L

1 is

d(xL
1 , x̂

L
1 ) =

1

L

L∑

i=1

d(xi, x̂i).

Then, we can define a lossy source code as follows:

Definition 2.2. A (2LR, L) lossy source code consists of:

• a codebook C = {x̂L
1 (1), x̂

L
1 (2), . . . , x̂

L
1 (2

⌊LR⌋)};
• an encoder that assigns to each sequence xL

1 ∈ X L an index m(xL
1 ) ∈ [1 : 2⌊LR⌋];

• a decoder that assigns to each index m ∈ [1 : 2⌊LR⌋] an reproduction codeword

x̂L
1 ∈ C.

Definition 2.3. The distortion associated with the code is defined as E[d(XL
1 , X̂

L
1 )].

A rate–distortion pair (R,D) is achievable if there exists a sequence of (2LR, L) codes

with

limsup
L→∞

E[d(XL
1 , X̂

L
1 )] ≤ D.

Definition 2.4. The Shannon rate–distortion function r(D) is the infimum of rates

R such that (R,D) is achievable. Similarly, the Shannon distortion–rate function

δ(R) is the infimum of distortions D such that (R,D) is achievable.5

5In information theory texts, the rate–distortion and distortion–rate functions are simply de-
noted R(D) and D(R), and the use of r(D) and δ(R) have been used to indicate the operational
rate–distortion and operational distortion-rate functions [66]. Because this thesis is dominated by
performance results for achievable companding quantizers, we try to prevent overloading the meaning
of D and R, which led to this choice of notation.
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Using an achievability argument based of joint typicality encoding and converse

employing Fano’s inequality, the Shannon rate–distortion function for a memoryless

source and a distortion measure d (satisfying d(x, x̂) = 0 only if x = x̂) is

r(D) = min
p(x̂|x) : E[d(XL

1 ,X̂L
1 )]≤D

I(X; X̂), (2.22)

for D ≥ Dmin = minx̂(x) E[d(X
L
1 , X̂

L
1 )], where I is the mutual information between

the source and its reproduction. For the Hamming error measure, we can recover

the optimal coding rate for lossless coding of a discrete memoryless source using the

above result; it is simply r(0) = H(X), where H is Shannon entropy. In the finite-

alphabet case, r(D) is nonincreasing, convex and continuous in D and the Shannon

distortion–rate function δ(R) is easily determined.

2.5.1 Multiterminal Shannon Theory

Distributed or multiterminal source coding has received considerable attention over

the past few decades due to the emergence of networks and because of the mathemat-

ical beauty of the results. Because it is studied under the same topology as DFSQ

(Figure 2-4), multiterminal source coding provides a benchmark for comparison with

this thesis.

We begin by summarizing the Slepian–Wolf theorem, which says the achievable

rate region R∗ for distributed lossless source coding of a 2-DMS (X1, X2) (Figure 2-5)

is the set of rate pairs (R1, R2) such that

R1 > H(X1|X2),

R2 > H(X2|X1),

R1 +R2 > H(X1, X2). (2.23)

Achievability proofs typically employ random binning followed by joint-typicality de-

coding and can easily be extended to N sources [26]. What is remarkable is that, in

this setting, distributed coding matches the outer bound for joint encoding, mean-
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Figure 2-5: The multiterminal source coding problem, where each of several correlated
memoryless sources are coded separately into a messageMi with Ri. The decoder then
determines the reconstructions by jointly decoding all messages. The figure shown
only has two sources, corresponding to the 2-DMS Slepian–Wolf problem. However,
the multiterminal source coding problem generalizes to arbitrary number of sources.

ing communication between encoders cannot improve the asymptotic communication

rate. However, the ability for encoders to communicate can improve the error expo-

nents associated with the large-blocklength analysis [28].

Practical Slepian-Wolf (SW) coding usually involves designing codes that approach

one of the two kinks in the curve. By symmetry, the other kink can also be approached

and any point on the line between them is found by time sharing. The kink corre-

sponds to R1 + R2 = H(X2) + H(X1|X2) = H(X1, X2), which is the problem of

compressing X1 with side information X2 at the decoder. This is is mathematically

equivalent to a “correlation channel” in the channel coding literature. Hence, linear

channel codes such as coset codes and syndromes can be used [194, 208]. This ap-

proach is often referred to as asymmetric coding, as compared to symmetric coding,

which approaches the line between the two kinks directly. More recently SW cod-

ing has been reinvigorated by the application of capacity-achieving channel-coding

techniques [150, 197]. Moreover, there has been a flurry of results for universal SW

coding [20, 33, 49, 116, 136], many based on the methods in [28]. These new schemes

show promise, but their applicability in real technologies are limited by the need for

long block lengths and high computational resources at the decoder.

Assume now that the decoder wishes to reconstruct approximations of the sources

with bounded error with respect to a distortion measure, corresponding to multiter-

minal lossy source coding. The rate region is not solved, and the most general results

are the Berger–Tung inner and outer bounds [182]. In more restrictive situations, the
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rate region is known:

• Under a difference distortion measure when the desired distortion is small [207].

• In the quadratic Gaussian CEO problem, where each node observes noisy ver-

sions of the Gaussian source and distortion measure is MSE [134, 135, 149, 188]

(the more general CEO problem was introduced in [14]). A similar model was

proposed earlier in [62].

• For Gaussian sources and MSE distortion [190] (also see [133]).

• Under the logarithmic loss distortion measure [25].

When the sources are continuous-valued, lossy source coding is usually modeled as

quantization followed by lossless source coding, matching the model used in [43]; we

shall adopt this model in our proposal as well. Generally speaking, few have studied

the effect of side information at the encoder since it does not reduce the Shannon

distortion–rate. However, there have been investigations on coded side information

at the decoder. In the lossless setting, this problem has been studied in [2] and more

recently in [112].

Another influential lossy source coding framework is Wyner–Ziv coding, in when

only one source is to be reconstructed while the other serves as side information [195,

196]. The key result, the Wyner–Ziv theorem, says the rate–distortion function of X

with side information Y available noncausally at the decoder is

rWZ(D) = min(I(X;U)− I(Y ;U)) = min I(X;U |Y ),

where the minimum is over all p(u|x) and functions x̂(u, y) with |U| ≤ |Y| + 1 such

that E[d(XL
1 , X̂

L
1 )] ≤ D. Visualizing p(u|x) as a “test channel” is a common way to

visualize the problem. The decoder then is the minimum-error estimator.

Unlike the Slepian–Wolf case, distributed encoding generally performs worse than

joint encoding. However, this is still a positive result because the gap is very small

under mild conditions [206] and the side information is not useful when sent only

to the encoder. When the side information gives insight on the distortion measure

used at the decoder, encoder-side information can aid compression [115]. Wyner–Ziv
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coding has received considerable attention for video coding [1, 152,183].

2.5.2 Rate–Distortion Theory for Small Distortion

In general, the rate–distortion function is difficult to characterize, but the Shannon

lower bound (SLB) is a useful bounding tool when d is a difference distortion measure,

i.e. d(x, x̂) = ρ(x− x̂) [164]. For MSE distortion, the SLB says

r(D) ≥ h(X)− 1

2
log(2πeD), (2.24)

where h is the differential entropy. In the scalar case, it has been shown that this

bound becomes tight as D becomes small [11, 100, 103]. In the multiterminal setting

with N encoders, the SLB on sum rate is also shown to be tight for difference dis-

tortion measures when D is small, achieved through lattice quantization followed by

Slepian–Wolf coding [207].

There are also low-distortion analysis for nondifference distortion measures using

the SLB, more specifically input-weighted locally quadratic distortion measures [101]:

d(xN
1 , x̂

N
1 ) = (xN

1 − x̂N
1 )

T M(xN
1 ) (x

N
1 − x̂N

1 ) +O(‖xN
1 − x̂N

1 ‖3),

where we clarify that the input is N -dimensional but may be coded in blocks of

length L. We will focus on a specific subclass called the weighted mean-squared error

(W-MSE) criterion, which is related to fMSE:

d(xN
1 , x̂

N
1 ) =

∥∥W (xN
1 )(x

N
1 − x̂N

1 )
∥∥2 , (2.25)

where W is the source-dependent weighting matrix. Using a similar approach to the

SLB, Linder and Zamir show that, in the joint-encoder case for W-MSE distortion,

lim
D→0

(
r(D) +

N

2
log(2πeD/N)

)
= h(XN

1 ) + E[log |W (XN
1 )|]. (2.26)

Recall again that the achievable strategy employs coding of blocks of length L of the
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N -dimensional source.

The behavior of the rate–distortion function in the small-distortion regime is par-

ticularly relevant to this thesis because it allows comparison with high-resolution

scalar quantization. We will use these results to determine the fMSE rate–distortion

function, and subsequently the rate loss from using DFSQ theory in Chapter 4.

2.5.3 Other Related Problems

There are other works in rate–distortion theory that relate to this thesis. Here, we

briefly summarize a subset of relevant ideas.

Finite blocklength analysis

Recent work to generalize the asymptotic nature of Shannon theory [146] has led

to characterization of the rate–distortion function at finite blocklengths [73, 92]. In

general, this analysis technique is meaningful for block lengths as low as 100, but is

unsuitable for regimes traditionally considered in high-resolution theory. One inter-

esting result is that the rate region of the Slepian–Wolf setup is no longer tight with

the outer bound of joint encoding [178].

Remote sources

Most commonly, Shannon-theoretic analyses assume a node makes a perfect measure-

ment of a source and all loss is due to compression. The concept of remote sources

was introduced to allow for noisy information collection, and provides interesting

trade-offs between communication and estimation [11, 193]. Remote sources have

been integrated into the multiterminal source coding literature as well [42, 200,207].

Coding for computing

A central theme of the thesis is caring about computations on source realizations. In

Shannon theory, this problem has mostly be considered for discrete-alphabet sources.

In the lossless case and a general computation g, the problem has been approached
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through classification of functions by [70]. The use of graph entropy [91] can also aid

in coding for computing [32, 41, 140]. For the lossy case, computing a function of a

source using a helper extends the Wyner–Ziv framework [42, 199]. Here, it is useful

to think about the computation as an instance of a remote source.

Interactive source coding

Consider a different network situation in which a pair of nodes communicate to learn

each other’s data. The communication is done in rounds and the objective is to

find a relationship between distortion and the rates of each round. This has been

studied in detail both in lossless and lossy situations [85, 138, 139]. Extensions of

using interaction for computation were recently proposed in [106,107]. To the best of

our knowledge, high-resolution techniques have never been fruitfully applied to this

problem.
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Chapter 3

DFSQ Simplified

We have seen in Section 2.3 that distributed functional scalar quantization (DFSQ)

theory provides optimality conditions and predicts performance of data acquisition

systems in which a computation on acquired data is desired. In this chapter, we ad-

dress two limitations of previous works: prohibitively expensive decoder design and a

restriction to source distributions with bounded support. We show that a much sim-

pler decoder has equivalent asymptotic performance to the conditional expectation

estimator studied previously, thus reducing decoder design complexity. The simpler

decoder has the feature of decoupled communication and computation blocks. More-

over, we extend the DFSQ framework with the simpler decoder to source distributions

with unbounded support.

We begin in Section 3.1 by motivating this chapter. In Sections 3.2 and 3.3, we

give distortion analysis and optimal quantizer design results. Finally, we provide

examples to demonstrate convergence in Section 3.4 and conclude in Section 3.5.

3.1 Motivation

The central goal of this chapter is to develop a more practical method upon the the-

oretical foundations of [120]. Specifically, we provide new insight on how a simple

decoder can be used in lieu of the optimal one in (2.12). Although the conditional ex-

pectations in the joint centroid (JC) conditions are offline computations, they may be
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extremely difficult to describe analytically and are computationally infeasible for large

N and K. Instead, we construct a decoder that is much more intuitive and practical;

it simply applies the desired function g explicitly on the quantized measurements.

Remarkably, the same asymptotic performance is obtained with the simpler decoder,

so the optimization of quantizer point density is unchanged. To accommodate this

change, a different set of conditions is required of g, λN
1 , and fXN

1
.

Additionally, we generalize the theory to infinite-support source variables and

vector-valued computations, which expands the space of problems that DFSQ pro-

vides guarantees. To allow the generalized class of problems, we derive new conditions

on the tail behavior of the source densities and computations that allow the distor-

tion to be stably computed. In Appendix 3.E, we also consider applying the simpler

decoder for sources over finite support using relaxed conditions.

Moreover, through simulation results we demonstrate that performance at mod-

erate coding rates is well predicted by the asymptotic analysis. The similarity in

distortion behavior of JC reconstruction (2.12) and a much simpler decoder demon-

strates the convergence of midpoint and centroid reconstructions in this framework.

Later in this chapter, we provide some simulation and discussion on this point.

The analysis presented here uses different assumptions on the source distributions

and function than [120]—neither is uniformly more or less restrictive. Unlike in [120],

we are able to allow the source variables to have infinite support. In fact, the func-

tional setting allows us to generalize the classes of distributions whose reconstruction

performance can be accurately predicted using high-resolution quantization theory.

Both analyses contain rather technical conditions, and together they suggest a rather

general applicability of DFSQ theory.

3.2 Univariate Functional Quantization

We first discuss the quantization of a scalar random variable X by QK,λ to approxi-

mate g(X). As mentioned, the decoder will apply g to the quantizer output QK,λ(X)

rather than compute the joint centroid condition like in [120]. We find the dependence
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of fMSE on λ and then optimize with respect to λ to minimize fMSE.

Consider the following conditions on the source density fX , point density λ of a

companding quantizer, and computation of interest g:

UF1′. The source pdf fX is continuous and positive on R.

UF2′. The point density λ is continuous and positive on R.

UF3′. The function g is continuous on R with everywhere-defined derivatives g′

and g′′.

UF4′. For m = 0, 1, 2,

fX(x)|g′′(x)|m|g′(x)|2−m/λ2+m(x)

is integrable over R.

UF5′. fX , g and λ satisfy the tail condition

lim
y→∞

∫∞

y
|g(x)− g(y)|2fX(x) dx
(∫∞

y
λ(x) dx

)2 = 0,

and the corresponding condition for y → −∞.

UF6′. Define s as the derivative of the expander function c−1, meaning s(c(x)) =

1/λ(x). There exists some B > 0 such that s(c(x)) is decreasing for x < −B, s is

increasing for x > B, and the tails of s satisfy

∫ c(−B)

−∞

s2+m(c(x)/2) |g′′(x)|m |g′(x)|2−m fX(x) dx < ∞
∫ ∞

c(B)

s2+m((c(x) + 1)/2) |g′′(x)|m |g′(x)|2−m fX(x) dx < ∞

for m = 0, 1, 2.

The main result of this section is on the fMSE induced by a quantizer QK,λ under

these conditions:

Theorem 3.1. Assume fX , g, and λ satisfy Conditions UF1′–UF6′. Then the fMSE

Dfmse(K,λ) = E
[
|g(X)− g(QK,λ(X))|2

]
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satisfies the following limit:

lim
K→∞

K2Dfmse(K,λ) =
1

12
E

[(
γ(X)

λ(X)

)2
]
. (3.1)

Proof. See Appendix 3.A.

3.2.1 Remarks

1. The fMSE in (3.1) is the same as in (2.14). We emphasize that the theorem

shows that this fMSE is obtained by simply applying g to the quantized variables

rather than using the optimal decoder (2.12). Further analysis on this point is given

in Section 3.2.3.

2. One key contribution of this theorem is the additional tail condition for infinite-

support source densities, which effectively limits the distortion contribution in the

overload region. This generalizes the class of probability densities for which quanti-

zation distortion can be analyzed using high-resolution approximations [17, 19,99].

3. The tail conditions in UF5′ imply the overload contributions to distortion be-

come negligible as K becomes large, which is natural for well-behaved sources, com-

putations and compressor functions. This is used to ensure Taylor’s theorem can be

successfully applied to bound fMSE. The tail conditions in UF6′ do not have sim-

ple interpretations but are necessary to employ the dominated convergence theorems

used in the proof of Theorem 3.1 [99]. Both conditions are satisfied in many problems

of interest.

4. When the source distribution has finite support, the tail conditions are no

longer necessary and UF4′ can be simplified. We provide the proof of this case in

Appendix 3.E.

5. When g is monotonic, the performance in (3.1) is as good as quantizing and

communicating g(X) [120, Lemma 5]. Otherwise, the use of a regular quantizer results

in a distortion penalty, as illustrated in Example 3.1 of Section 3.4.

6. For linear computations, the functional sensitivity profile is flat, meaning the

optimal quantizer is the same as in the MSE-optimized case. Hence, functional theory
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will lead to new quantizer designs only when the computation is nonlinear.

7. Although we have assumed fX , g and λ are “nice” in the sense that they are

continuous and positive, the proof of Theorem 3.1 could allow fX to be discontinuous

or nondifferentiable at a finite number of points, provided the tail conditions still hold

and a minor adjustment is made on how partition boundaries are chosen. Rather than

elaborating further, we refer the reader to a similar extension in [120, Section III-F].

A similar argument can also be made for g having a finite number of discontinuities

in its first and second derivatives.

8. For the high-resolution assumptions to hold, the point density should be posi-

tive where the source distribution is positive. However, a consequence of Theorem 3.1

is that there is no distortion contribution from regions where the functional sensitiv-

ity profile is zero, meaning the point density can be zero there. The coding of such

“don’t-care” intervals must be handled with care, as discussed in [120, Section VII].

3.2.2 Asymptotically Optimal Quantizer Sequences

Since the fMSE of Theorem 3.1 matches (2.14), the optimizing quantizers are the

same. Using the recipe of Section 2.2, we can show the optimal point density for

fixed-rate quantization is asymptotically

λ∗
fmse,fr(x) =

(γ2(x)fX(x))
1/3

∫∞

−∞
(γ2(t)fX(t))

1/3 dt
(3.2)

over the entire support of X, resulting in distortion

D∗
fmse,fr(R) ≃ 1

12
‖γ2fX‖1/3 2−2R. (3.3)

Meanwhile, optimization in the entropy-constrained case yields

λ∗
fmse,ec(x) =

γ(x)∫∞

−∞
γ(t) dt

(3.4)
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over the entire support of X, resulting in distortion

D∗
fmse,ec(R) ≃ 1

12
22h(X)+2E[log γ(X)] 2−2R. (3.5)

Observe that while minimization of the distortion-rate expressions provides “opti-

mal” companding quantizers, the distortion-rate expressions themselves are restricted

to quantizer point density functions that satisfy UF4′–UF6′. Some of these condi-

tions may be verified quite easily: for instance, UF4′ for m = 0 is equivalent to the

asymptotic distortion expression being finite. Additionally, if the distribution and

functional sensitivities satisfy certain properties—e.g. if the sensitivities possess a

positive lower bound over the distribution’s support—these conditions may be auto-

matically satisfied. In general, the conditions must be checked on a case-by-case basis

for the asymptotic analysis to rigorously hold. As demonstrated in Example 3.5 of

Section 3.4, design based on the asymptotic analysis can be sensible even when the

technical requirements are not satisfied.

Further care is needed in the entropy-constrained setting. Many computations

yield γ that is not integrable over R, making (3.4) invalid; for example, a linear com-

putation leads to constant γ. When the source has finite support, the integral in

the denominator of (3.4) can be reduced to one on that finite support, again yield-

ing a valid, optimal normalized point density. Otherwise, one must use an unnor-

malized point density to represent the asymptotically-optimal companding quantizer

sequence. We leave this generalization as future work.

3.2.3 Negligible Suboptimality of Simple Decoder

Recall that the decoder analyzed in this work is the computation g applied to midpoint

reconstruction as formulated in (2.3). One may do better by applying g after finding

the conditional MMSE estimate of X (using knowledge of the source distribution

only) and would do best with the fMMSE estimator (2.12) (incorporating knowledge

of the function as well). The codeword placements of the three decoders are visualized

through an example in Figure 3-1a. The asymptotic match of the performance of the
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Figure 3-1: (a) Codeword placement under simple, MMSE, and fMMSE decoders.
The simple decoder performs midpoint reconstruction followed by the application of
the computation g. The MMSE decoder applies g to the conditional expectation of
X within the cell. Finally, the fMMSE decoder determines (2.12) for the cell. In this
example, the source distribution is exponential and the computation is concave. (b)
Performance loss due to the suboptimal codeword placement with respect to rate. We
can see that relative excess fMSE decreases linearly with rate and hence the fMSE of
the resulting quantizers are asymptotically equivalent.

simple decoder to the optimal estimator (2.12) is a main contribution of this work.

The simple decoder is suboptimal because it does not consider the source distri-

bution at all, or equivalently assumes the distribution is uniform and the functional

sensitivity profile is constant over the cell. High-resolution analysis typically ap-

proximates the source distribution as uniform over small cells [66], and the proof of

Theorem 3.1 uses the fact that the sensitivity is approximately flat over very small

regions as well. Hence, the performance gap between the simple decoder and the

fMMSE estimator becomes negligible in the high-resolution regime.

To illuminate the rate of convergence, we study the performance gap as a func-

tion of quantization cell width, which is dependent on the communication rate (Fig-

ure 3-1b). Through experimental observation, we see the relative excess fMSE (de-

fined as (Ddec −Dopt)/Dopt) appears exponential in rate, meaning

Dsimple

Dopt

≈ 1 + c1e
−c2R

for some constants c1 and c2. The speed at which the performance gap shrinks

contributes greatly to why the high-resolution theory is successful even at low com-

munication rates.
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3.3 Multivariate Functional Quantization

We now describe the main result of the chapter for the scenario shown in Figure 2-4,

where N random scalars XN
1 are individually quantized and a scalar computation

g(X̂N
1 ) is performed. We will use a codebook size parameter κ and fractional alloca-

tions αN
1 such that every αn > 0 and

∑
n αn = 1; the codebook size for quantizer n

is then Kn = ⌊αnκ⌋. Since we are concerned with an asymptotic result, the use of κ

ensures all codebooks grow at the same rate.

Assume the following conditions on the multivariate joint density, computation

and quantizers:

MF1′. The joint pdf fXN
1
is continuous and positive on R

N .

MF2′. For every n ∈ [1 : N ], the point density λn is continuous and positive on

R.

MF3′. The multivariate function g is continuous and twice differentiable in every

argument over RN ; that is, the first partial derivative gi = ∂g/∂xi and second partial

derivative gi,j = ∂2g/∂xj ∂xi are well-defined for every i, j ∈ [1 : N ].

MF4′. For any n ∈ [1 : N ],

fXn
(xn) |gn(xN

1 )|2/λ2
n(xn) (3.6)

is integrable over R. Moreover, for any i, j, n ∈ [1 : N ],

fXN
1
(xN

1 )
|gn(xN

1 )| |gi,j(xN
1 )|

λi(xi)λj(xj)λn(xn)
(3.7)

is integrable over RN , and, for i, j,m, n ∈ [1 : N ],

fXN
1
(xN

1 )
|gi,j(xN

1 )| |gm,n(x
N
1 )|

λi(xi)λj(xj)λm(xm)λn(xn)
(3.8)

is integrable over RN .
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MF5′. For i, j ∈ [1 : N ],

E[(Xi −Qλi,Ki
(Xi))(Xj −Qλj ,Kj

(Xj))]√
Di Dj

→ 0

as κ → ∞, where Dn = E[|Xn −Qλn,Kn
(Xn)|2].

MF6′. We adopt the notation x\n for x
N
1 with the nth element removed; the inverse

operator x̃(xn, x\n) outputs a length-N vector with xn inserted as the nth element.

Then for every index n, the following holds for every x\n:

lim
y→∞

∫∞

y
|g(x̃(x, x\n))− g(x̃(y, x\n))|2fXN

1
(x̃(x, x\n)) dx

(∫∞

y
λn(x) dx

)2 = 0.

An analogous condition holds for the corresponding negative-valued tails.

MF7′. Define sn as the derivative of the expander function c−1
n , meaning

sn(cn(x)) = 1/λn(x).

There exists some B > 0 such that sn(c(x)) is decreasing for x < −B, sn is increasing

for x > B, and the tails of sn satisfy

∫ cn(−B)

−∞

s2n(cn(x)/2) γ
2
n(x) fXn

(x) dx < ∞,

∫ ∞

cn(B)

s2n((cn(x) + 1)/2) γ2
n(x) fXn

(x) dx < ∞,

for all n ∈ [1 : N ]. This condition is a generalization of UF6′ for m = 0 applied

to (3.6). Effectively, it bounds the tail contributions of an integral with the integrand

being a modified version of (3.6). We also require similar conditions for (3.7) and (3.8),

which are analogous to UF6′ for m = 1 and m = 2 respectively. We omit the exact

form here for clarity of presentation.

Recalling QKN
1 ,λN

1
and λN

1 represent a set of N quantizers and point densities

respectively, we present a theorem similar to Theorem 3.1:

Theorem 3.2. Assume fXN
1
, g, and λN

1 satisfy conditions MF1′–MF7′. Also assume
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a fractional allocation αN
1 such that every αn > 0 and

∑
n αn = 1, meaning a set of

quantizers QKN
1 ,λN

1
will have Kn = ⌊αnκ⌋ for some total allocation κ. Then the fMSE

Dfmse(K
N
1 , λN

1 ) = E
[
|g(XN

1 )− g(QKN
1 ,λN

1
(XN

1 ))|2
]

satisfies the following limit:

lim
κ→∞

κ2Dfmse(K
N
1 , λN

1 ) =
N∑

n=1

1

12α2
n

E

[(
γn(Xn)

λn(Xn)

)2
]
. (3.9)

Proof. See Appendix 3.B.

3.3.1 Remarks

1. Like in the univariate case, the simple decoder has performance that is asymp-

totically equivalent to the more complicated optimal decoder (2.12).

2. Here, the computation cannot generally be performed before quantization be-

cause encoders are distributed. The exception is when the computation is separable,

meaning it can be decomposed into a linear combination of computations on individ-

ual scalars. As a result, for each n the partial derivative of g depends only on Xn and

the functional sensitivity profile simplifies to the univariate case, as demonstrated in

Example 3.2 of Section 3.4.

3. The strict requirements of MF1′ and MF3′ could potentially be loosened. How-

ever, simple modification of individual quantizers like in the univariate case is insuffi-

cient since discontinuities may lie on a manifold that is not aligned with the partition

boundaries of the Cartesian product of N scalar quantizers. As a result, the error

from using a planar approximation through Taylor’s theorem may decay at the same

rate as in (3.9), which would invalidate Theorem 3.2. However, based on experimental

observations, such as in Example 3.5 of Section 3.4, we believe that when these dis-

continuities exist on a manifold of Jordan measure zero their error may be accounted

for. Techniques similar to those in the proofs from [120] could potentially be useful

in showing this rigorously.
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4. Condition MF5′ is known as the asymptotic whiteness property (AWP). For

uniform quantization with midpoint reconstruction and nonuniform quantization with

centroid reconstruction, it is shown in [80, 189] that the quantization error for each

cell converges to a uniform density sufficiently fast such that the correlation of the

quantization error components vanishes faster than the distortion under mild regu-

larity conditions. We leave the AWP as a condition, but mention that establishing it

under general conditions for companding quantizers with midpoint reconstruction is

an interesting open problem. The solution may rely on extending Theorem 1 of [189]

to hold after the expansion step of the compander. To prove the convergence of

the quantization error correlation to zero, it may be necessary to consider midpoint

reconstruction both before and after expansion using techniques developed in [113].

5. When the joint source density has finite support, the tail conditions are no

longer necessary. The exact proof parallels the discussion in Appendix 3.E.

3.3.2 Asymptotically Optimal Quantizer Sequences

As in the univariate case, the optimal quantizers match those in previous DFSQ work

since the distortion equations are the same. Using Hölder’s inequality, the optimal

point density for fixed-rate quantization for each source n (communicated with rate

Rn) is asymptotically

λ∗
n,fmse,fr(x) =

(γ2
n(x)fXn

(x))
1/3

∫∞

−∞
(γ2

n(t)fXn
(t))1/3 dt

(3.10)

over the support of Xn, with fMSE

D∗
fmse,fr(R

N
1 ) ≃

1

12

N∑

n=1

‖γ2
nfXn

‖1/3 2−2Rn . (3.11)

Similarly, the best point density for the entropy-constrained case is asymptotically

λ∗
n,fmse,ec(x) =

γn(x)∫∞

−∞
γn(t) dt

(3.12)
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over the support of Xn, leading to a fMSE of

D∗
fmse,ec(R

N
1 ) ≃

1

12

N∑

n=1

22h(Xn)+2E[log γ(Xn)] 2−2Rn . (3.13)

We present performance while leaving the fractional allocation αN
1 as a parameter.

Given a total communication rate constraint R, we can also optimize αN
1 . Rather than

repeat the results here, we point to similar work in [120, Lemma 4].

As in the univariate case, this optimization arrives with the caveat that conditions

MF4′–MF7′ must be satisfied by the resulting point density functions. In general this

must be verified in a case-by-case basis, but as noted in Section 3.2.2, in practice the

analysis can be useful even when the requirements are not satisfied.

3.3.3 Vector-Valued Functions

In Theorem 3.2, we assumed the computation g is scalar-valued. For completeness,

we now consider vector-valued functions, where the output of g is a vector in R
M .

Here, the distortion measure is a weighted fMSE:

Dfmse(K
N
1 , λN

1 , β
M
1 ) =

M∑

m=1

βm E
[
|g(m)(XN

1 )− g(m)(QKN
1 ,λN

1
(XN

1 ))|2
]
,

where βM
1 is a set of scalar weights and g(m) is the mth entry of the output of g.

Through a natural extension of the proof of Theorem 3.2, we can find the limit of

the weighted fMSE assuming each entry of the vector-valued function satisfies MF1′–

MF7′.

Corollary 3.1. The weighted fMSE of a source fXN
1
, computation g, set of scalar

quantizers QKN
1 ,λN

1
, and fractional allocation αN

1 satisfies the following limit:

lim
κ→∞

κ2Dfmse(K
N
1 , λN

1 , β
M
1 ) =

N∑

n=1

1

12α2
n

E

[(
γn(Xn, β

M
1 )

λn(Xn)

)2
]
, (3.14)
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where the combined functional sensitivity profile is

γn(x, β
M
1 ) =

(
M∑

m=1

βm E
[
|g(m)

n (XN
1 )|2

∣∣Xn = x
]
)1/2

.

The point densities given in (3.10) and (3.12) are again optimal under this new

definition of γn.

3.4 Examples

In this section, we present examples for both univariate and multivariate functional

quantization using asymptotic expressions and empirical results from sequences of real

quantizers. The empirical results are encouraging since the convergence to asymptotic

limits is fast, usually when the quantizer rate is about 4 bits per source variable. This

is because the Taylor remainder term in the distortion calculation decays with an extra

κ factor, which is exponential in the rate.

3.4.1 Examples for Univariate Functional Quantization

Below we present an example of functional quantization in the univariate case. The

theoretical results follow directly from Section 3.2.

Example 3.1. Assume X ∼ N (0, 1) and g(x) = x2, yielding a functional sensitivity

profile γ(x) = 2|x|. We consider uniform quantizers, optimal “ordinary” quantizers

(quantizers optimized for distortion of the source variable rather than the computa-

tion) given in Section 2.2, and optimal functional quantizers given in Section 3.2.2, for

a range of rates. The point densities of these quantizers, the source density fX , and

computation g satisfy UF1′–UF6′ and hence we use Theorem 3.1 to find asymptotic

distortion performance. We also design practical quantizers for a range of R and

find the empirical fMSE through Monte Carlo simulations. In the fixed-rate case,

theoretical and empirical performance are shown (Figure 3-2a).

The distortion-minimizing uniform quantizer has a granular region that depends
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on R, which was explored in [72]. Here, we simply perform a brute-force search to

find the best granular region and the corresponding distortion. Surprisingly, this

choice of the uniform quantizer performs better over moderate rate regions than the

MSE-optimized quantizer. This is because the computation is less meaningful where

the source density is most likely and the MSE-optimized quantizer places most of

its codewords. Hence, one lesson from DFSQ is that using standard high-resolution

theory may yield worse performance than a naive approach for some computations.

Meanwhile, the functional quantizer optimizes for the computation and gives an ad-

ditional 3 dB gain over the optimal ordinary quantizer. There is still a loss in using

regular quantizers due to the computation being non-monotonic. In fact, if the com-

putation can be performed prior to quantization, we gain an extra bit for encoding the

magnitude and thus 6 dB of performance. This illustrates Remark 2 of Section 3.2.1.

In the fixed-rate case, the empirical performance approaches the distortion limit

described by Theorem 3.1. The convergence is fast and the asymptotic results predict

practical quantizer performance at rates as low as 4 bits/sample.

3.4.2 Examples for Multivariate Functional Quantization

We next provide four examples that follow from the theory of Section 3.3.

Example 3.2. Let N sources be iid standard normal random variables and the com-

putation be g(xN
1 ) = ‖xN

1 ‖22. Since the computation is separable, the functional

sensitivity profile of each source is γn(x) = 2|x|, and the quantizers are the same as

in Example 3.1. The distortion is also the same, except now scaled by N .

Example 3.3. We now consider a more interesting extension of Example 3.2 where

the sources are correlated and the computation is g(xN
1 ) = ‖xN

1 ‖2. Because the norm
is not squared, the computation is no longer separable. For two jointly Gaussian

random variables distributed N (0, 1), a correlation coefficient of ρ implies that

X2 = ρX1 +
√

1− ρ2N,
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Figure 3-2: Empirical and theoretical performance for the ordinary and functional
quantizers for: (a) a scalar Gaussian source and g(x) = x2; (b) jointly Gaussian
sources with correlation coefficient 0.5 and g(x1, x2) =

√
x2
1 + x2

2; (c) exponential
sources with parameter λ = 1 and g(x1, x2) = x1/(1 + x2); and (d) N = 10 expo-
nential sources and g(xN

1 ) = min(xN
1 ). Note that we also include empirical results for

uniform quantizers that have different granular regions depending on the quantiza-
tion rate and the case when the computation is performed before quantization in (a),
labeled “Encoder.” Theoretical performance is determined using Theorem 3.2 and
are represented by solid lines. Experimental validation is determined by designing
real quantizers using the compander model and running Monte Carlo simulations; the
resulting fMSE is represented by markers. To emphasize the gap between the results
and to illustrate convergence to the high-resolution approximation, we normalize the
plots by multiplying fMSE by 22R.
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where N is standard normal and independent of X1. The functional sensitivity profile

then becomes

γ2
1(x) =

(
E[|g1(X1, X2)|2 |X1 = x]

)1/2

= E

[
X2

1

X2
1 +X2

2

∣∣∣∣X1 = x

]

= EN

[
x2

x2 + (ρx+
√
1− ρ2N)2

]

In Figure 3-2b, we demonstrate the convergence of the distortion from sequences of

companding quantizers to the asymptotic behavior for ρ = 0.5. Similar results can

be obtained for other choices of ρ.

Example 3.4. Consider two iid exponential sourcesX1 andX2 with parameter λ = 1;

we wish to compute g(x1, x2) = x1/(a+ x2), where we let a = 1. Using (2.13), the

functional sensitivity profiles are

γ1(x) =

∫ ∞

0

e−x2 · (1 + x2)
−2 dx2 ≈ 0.635

and γ2(x) = (1 + x)−2/
√
3. In Figure 3-2c, we experimentally verify that sequences

of real quantizers approach the predicted distortion–rate trade-off.

Example 3.5. Let N sources be iid exponential with parameter λ = 1 and the com-

putation be g(xN
1 ) = min(xN

1 ). In this case, Condition MF3′ is not satisfied since

there exists N(N − 1)/2 two-dimensional planes where the derivative is not defined.

However, as discussed in the remarks on Theorem 3.2, we strongly suspect we can

disregard the distortion contributions from these surfaces. The overall performance,

ignoring the violation of condition MF3′, may be analyzed using the functional sen-

sitivity profile:

γn(x) =
(
E[|gn(XN

1 )|2 |Xn = x]
)1/2

=
(
Pr{min(XN

1 ) = Xn |Xn = x}
)1/2

= (e−λx)(N−1)/2,
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where the third line follows from the cdf of exponential random variables.

In Figure 3-2d, we experimentally verify that the asymptotic predictions are pre-

cise. This serves as evidence that MF3′ may be loosened.

3.5 Conclusions

In this work, we have extended distributed functional scalar quantization to a general

class of finite- and infinite-support distributions, and demonstrated that a simple de-

coder, performing the computation directly on the quantized measurements, achieves

asymptotically equivalent performance to the fMMSE decoder. Although there are

some technical restrictions on the source distributions and computations to ensure

the high-resolution approximations are legitimate, the main goal of the chapter is to

show that DFSQ theory is widely applicable to distributed acquisition systems with-

out requiring a complicated decoder. Furthermore, the asymptotic results give good

approximations for the performance at moderate quantization rates.

DFSQ has immediate implications in how sensors in acquisition networks collect

and compress data when the designer knows the computation to follow. Using both

theory and examples, we demonstrate that knowledge of the computation may change

the quantization mapping and improve fMSE. Because the setup is very general, there

is potential for impact in areas of signal acquisition where quantization is traditionally

considered as a black box. Examples include multi-modal imaging technologies such as

3D imaging and parallel MRI. This theory can also be useful in collecting information

for applications in machine learning and data mining. In these fields, large amounts

of data are collected but the measure of interest is usually some nonlinear, low-

dimensional quantity. DFSQ provides insight on how data should be collected to

provide more accurate results when the resources for acquiring and storing information

are limited.
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3.A Proof of Theorem 3.1

Taylor’s theorem states that a function g that is n+1 times continuously differentiable

on a closed interval [a, x] takes the form

g(x) = g(a) +

(
n∑

i=1

g(i)(a)

i!
(x− a)i

)
+Rn(x, a),

with a Taylor remainder term

Rn(x, a) =
g(n+1)(ξ)

(n+ 1)!
(x− a)n+1

for some ξ ∈ [a, x]. More specific to our framework, for any x ∈ [ck, pk), the first-order

remainder is bounded as

|R1(x, ck)| ≤
1

2
max

ξ∈[ck,pk]
|g′′(ξ)| (pk − ck)

2. (3.15)

We will denote the length of the partition corresponding to the kth codeword as

Ik = pk − pk−1 and let I(x) = Ik if x ∈ Pk. Moreover, we define g̃ as a piecewise-

constant upper bound to the second derivative of g over the partition of QK,λ:

g̃(x) = sup
t∈Pk

|g′′(t)| if x ∈ Pk, k ∈ [1 : K] (3.16)

Since ck is at the midpoint between pk and pk−1, we can rewrite the Taylor remainder

term as

|R1(x, ck)| ≤
1

8
g̃(x)I2(x). (3.17)

Consider expansion of Dfmse(K,λ) by total expectation:

Dfmse(K,λ) =
K−1∑

k=0

∫ pk+1

pk

|g(x)− g(ck)|2fX(x) dx.

We would like to eliminate the first and last components of the sum because the

unbounded interval of integration would cause problems with the Taylor expansion
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employed later. The last component is

∫ ∞

pK−1

|g(x)− g(pK−1)|2fX(x) dx, (3.18)

where we have used cK = pK−1. By Condition UF5′, this is asymptotically negligible

in comparison to (∫ ∞

pK−1

λ(x) dx

)2

=
1

K2
.

Thus (3.18) does not contribute to limK→∞ K2Dfmse(K,λ). We can similarly eliminate

the first term, yielding

Dfmse(K,λ) ≃
K−2∑

k=1

∫ pk+1

pk

|g(x)− g(ck)|2fX(x) dx, (3.19)

where we recall ≃ indicates that the ratio of the two expressions approaches one

as K increases. Effectively, UF5′ promises that the tail of the source distribution

is decaying fast enough that we can ignore the distortion contributions outside the

extremal codewords.

Assuming UF3′, further expansion of (3.19) using Taylor’s theorem yields:

K2Dfmse(K,λ) ≃ K2

K−2∑

k=1

∫ pk+1

pk

|g′(ck)(x− ck) +R1(x, ck)|2fX(x) dx

≤ K2

K−2∑

k=1

∫ pk+1

pk

|g′(ck)|2 |x− ck|2fX(x) dx
︸ ︷︷ ︸

A

(3.20)

+K2

K−2∑

k=1

2

∫ pk+1

pk

|R1(x, ck)| |g′(ck)| |x− cK |fX(x) dx
︸ ︷︷ ︸

B

(3.21)

+K2

K−2∑

k=1

∫ pk+1

pk

R1(x, ck)
2fX(x) dx

︸ ︷︷ ︸
C

. (3.22)

Of the three terms, only termA has a meaningful contribution, which has the following

65



asymptotic form:

lim
K→∞

K2

K−2∑

k=1

∫ pk+1

pk

|g′(ck)|2 |x− ck|2 fX(x) dx

(a)
= lim

K→∞
K2

∫ pK−1

p1

|g′(x)|2 |x−QK,λ(x)|2 fX(x) dx

(b)
= lim

K→∞
K2

∫

R

|g′(x)|2 |x−QK,λ(x)|2 fX(x) dx

(c)
=

1

12

∫

R

(
g′(x)

λ(x)

)2

fX(x) dx, (3.23)

where (a) follows from the definition of QK,λ; (b) from p1 → −∞ and pK−1 → ∞;

and (c) from an extension of the proof by Linder [99], which is given in Theorem 3.3

in Appendix 3.C. Conditions UF2′, UF4′ and UF6′ for m = 0 are used here. Noting

that γ(x) = |g′(x)| gives (3.1).

The higher-order error terms become negligible with increasingK using the bound

reviewed in (3.15):

lim
K→∞

K2

K−2∑

k=1

∫ pk+1

pk

|R1(x, ck)| |g′(ck)| |x− cK | fX(x) dx

(a)
= lim

K→∞

K2

4

∫ pK−1

p1

|g̃(x)| I2(x) |g′(x)| |x−QK,λ(x)| fX(x) dx

(b)
= lim

K→∞

K2

4

∫

R

|g̃(x)|2 I2(x) |g′(x)| |x−QK,λ(x)| fX(x) dx

(c)
= lim

K→∞

1

4K

∫

R

|g̃(x)|2 |g′(x)|
λ3(x)

fX(x) dx

(d)
= 0, (3.24)

where (a) follows from bounding R1(x, ck) using (3.17); (b) from p1 → −∞ and

pK−1 → ∞; (c) from a similar extension of Theorem 3.3 (see Appendix 3.D), using

UF2′ and UF6′ for m = 1; and (d) from UF4′ for m = 1. Compared to (3.23), there

is an extra 1/K factor arising from the second-order Taylor error, which drives term

B to zero. A similar analysis can be used to show that expansion term C scales as

1/K2 with growing codebook size and is therefore also negligible. Here, conditions
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UF4′ and UF6′ for m = 2 are needed.

3.B Proof of Theorem 3.2

We parallel the proof of Theorem 3.1 using Taylor expansion and bounding the distor-

tion contributions of each granular cell. By the first-order version of the multivariate

Taylor’s theorem, a function that is twice continuously differentiable on a closed ball

containing aN1 takes the form

g(xN
1 ) = g(aN1 ) +

N∑

n=1

[
gn(a

N
1 )(xn − an)

]
+R1(x

N
1 , a

N
1 ),

where we recall that gn(x
N
1 ) is the partial derivative of g with respect to the nth

argument evaluated at the point xN
1 . The remainder term is bounded by

∣∣R1(x
N
1 , a

N
1 )
∣∣ ≤

N∑

i=1

N∑

j=1

|xi − ai| |xj − aj| |gi,j(xN
1 )|, (3.25)

where gi,j is the second-order partial derivation with respect to xi first and then xj

evaluated at xN
1 .

Let TN be an indexing of the cells in the Cartesian product of N scalar quantizers,

excluding the overload regions. By total expectation, we find the distortion of each

partition cell and sum their contributions. By Condition MF5′, the distortion from

overload cells become negligible with increasing κ and can be ignored. Using Taylor’s

theorem and MF4′, the scaled total distortion becomes

κ2Dfmse(K
N
1 , λN

1 ) ≤ A+ 2B + C, (3.26)
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where

A = κ2
∑

t∈TN

∫

xN
1 ∈t

N∑

i=1

N∑

j=1

|gi
(
(ct)

N
1

)
| |gj

(
(ct)

N
1

)
| |xi − ct,i| |xj − ct,j| fXN

1
(xN

1 ) dx
N
1 ,

B = κ2
∑

t∈TN

∫

xN
1 ∈t

N∑

n=1

|gn
(
(ct)

N
1

)
| |xn − ct,n| |R1

(
xN
1 , (ct)

N
1

)
| fXN

1
(xN

1 ) dx
N
1 ,

C = κ2
∑

t∈TN

∫

xN
1 ∈t

R2
1

(
xN
1 , (ct)

N
1

)
fXN

1
(xN

1 ) dx
N
1 .

Let us consider the summands of A where i = j:

∑

t∈TN

N∑

n=1

∫

xN
1 ∈t

|gn
(
(cs)

N
1

)
|2 |xn − ct,n|2fXN

1
(xN

1 ) dx
N
1 . (3.27)

We note that these distortion contributions are equivalent to those in the univariate

case and can apply the derivations in Theorem 3.1. Using Conditions MF2′, MF3′

and MF7′, (3.27) approaches the integral expression

N∑

n=1

1

12α2
n

E

[(
gn (Xn)

λn(Xn)

)2
]
=

N∑

n=1

1

12α2
n

E

[(
γn(Xn)

λn(Xn)

)2
]
,

where the expectation on the left-hand side is with respect to the joint density fXN
1
.

Using the definition of functional sensitivity profile in (2.13), we get the right-hand

side, where the expectation is only with respect to Xn.

We now consider the remaining summands of A where i 6= j, corresponding to the

correlation between quantization errors in the granular region. Under the asymptotic

whiteness property MF5′, the distortion contributions from these terms decay faster

than in the terms in (3.27) in the granular region; therefore, they do not contribute

to the asymptotic distortion. In Remark 3 of Section 3.3.1, we discuss generalizing

to discontinuous densities and computations. Some care is needed so that this does

not violate the validity of the asymptotic whiteness property.

We will now parallel the results of Appendix 3.A to show the higher-order error

terms B and C are negligible with large κ. We denote the length of the partition
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corresponding to the kth codeword of the nth quantizer as In,k and let In(x) = In,k

if x ∈ Pn,k. Moreover, we define g̃i,j as a piecewise-constant upper bound to the

second-order partial derivative of g over the partition of QK,λ:

g̃i,j(x
N
1 ) = sup

x̂N
1 ∈t

|gi,j(x̂N
1 )| if xN

1 ∈ t,

where t is an N -dimensional cell in TN . We can then bound (3.25):

∣∣R1(x
N
1 , a

N
1 )
∣∣ ≤ 1

4

N∑

i=1

N∑

j=1

Ij(xi)Ii(xj)g̃i,j(x
N
1 ). (3.28)

We now consider B:

lim
κ→∞

κ2
∑

t∈TN

∫

xN
1 ∈t

N∑

n=1

|gn
(
(ct)

N
1

)
| |xn − ct,n| |R1

(
xN
1 , (ct)

N
1

)
| fXN

1
(xN

1 ) dx
N
1 ,

(a)

≤ lim
κ→∞

κ2

4

∫

RN

(
N∑

n=1

|gn(xN
1 )| |xn −QKn,λn

(xn)|
)

·
(

N∑

i=1

N∑

j=1

Ii(xi) Ij(xj) g̃i,j(x
N
1 )

)
fXN

1
(xN

1 ) dx
N
1 ,

= lim
κ→∞

κ2

4

∫

RN

(
N∑

n=1

N∑

i=1

N∑

j=1

|gn(xN
1 )| |xn −QKn,λn

(xn)|

· Ii(xi) Ij(xj) g̃i,j(x
N
1 )
)
fXN

1
(xN

1 ) dx
N
1 ,

(b)
= lim

κ→∞

1

4καiαjαn

N∑

n=1

N∑

i=1

N∑

j=1

∫

RN

|gn(xN
1 )| |gi,j(xN

1 )|
λi(xi)λj(xj)λn(xn)

fXN
1
(xN

1 ) dx
N
1 ,

= 0,

where (a) follows from bounding R1(x
N
1 , ct) using (3.28) and the fact that the limits of

integration converge to R
N ; and (b) from a generalization of the proof by Linder [99],

which relies on the dominated convergence theorem to show how interval lengths

can converge to the reciprocal of the point density. For this case, there is an extra

1/κ factor which drives B to zero, using conditions MF4′ and MF7′. Note that for

general vector quantizers, a companding function may not exist. However, the simple
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structure arising from a Cartesian product ofN scalar quantizers is nicely represented,

which allows Linder’s method to be adequate.

Remainder term C is negligible in a similar manner (vanishing with 1/κ2), which

proves the theorem.

3.C Quantization for Weighted Distortion

In this section, we prove a modest extension to Linder’s rigorous results [99] on the

distortion of companding quantizers on sources with infinite support. The addition

here is a weighting function w inside the integral of the MSE distortion:

∫

R

|x−QK,λ(x)|2w(x) fX(x) dx.

Linder’s result for MSE depends heavily on the dominated convergence theorem and

its generalization. We will follow a similar strategy, except on a “weighted” proba-

bility density that is not required to integrate to one.

Recall that a scalar companding quantizer QK,λ is specified by the codebook size

K and point density λ, where λ is the derivative of the compressor function c. In

this section, we will be explicit that we are considering a sequence of quantizers

indexed by K that are constructed using the companding model. The partition

points of QK,λ are defined as pk,K = c−1(k/K) and the codewords are determined

using midpoint reconstruction, ck,K = (pk−1,K + pk,K)/2, except for the extremal

codewords. We additionally define the derivative of the expander function c−1 as

s, where s(c(x)) = 1/λ(x), and the interval that is mapped to codeword ck,K as

Ik,K = [pk−1,K , pk,K). We let µ denote the Lebesgue measure.

We impose the following conditions on fX , w, and λ:

LC1. The point density λ is continuous and positive on R.

LC2. fX(x)w(x)/λ
2(x) is Lebesgue integrable over R.

LC3. There exists some B > 0 such that λ(x) is increasing for x < −B and is

decreasing for x > B.
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LC4. The inverse of λ, s, satisfies

∫ B

−∞

s2(c(x)/2)w(x) fX(x) dx < ∞,

∫ ∞

−B

s2((c(x) + 1)/2)w(x) fX(x) dx < ∞.

Before stating the main result, we define several sequences of functions that will

be needed in the proof.

Definition 3.1. Consider a function h that is continuous, positive and integrable.

The piecewise constant and truncated approximation to h over the partition induced

by quantizer QK,λ is defined as

h̃K(x) =





1
AK(h)µ(Ik,K)

∫
Ik,K

h(t) dt, for x ∈ Ik,K , k ∈ [2 : (K − 1)];

0, otherwise,

where

AK(h) =

∫ pK−1,K

p1,K
h(x) dx

∫∞

−∞
h(x) dx

.

Using the Lebesgue differentiation theorem, h̃K → h as K → ∞ a.e. with respect

to µ.

Definition 3.2. We define as an approximation to s a function sK : (0, 1) → (0,∞):

sK(y) =





supt∈[ k−1
K

, k
K
) s(t), for y ∈ Ik,K , k ∈ [2 : (K − 1)];

s(y), otherwise.

The approximation sK is the piecewise-constant function that most tightly upper

bounds s on the granular region. We note that sK → s as K → ∞ by the continuity

of s, which follows from LC1. Notice a slight modification in the definition of sK from

that in [99], due to the different placement of codewords in the extremal quantization

cells.
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Definition 3.3. We define as an approximation to s a function ŝK : (0, 1) → (0,∞):

ŝK(y) =





Kµ(Ik,K), for y ∈ Ik,K , k = [2 : (K − 1)];

0 otherwise.

Intuitively, ŝK is a piecewise-constant approximation of s with points of disconti-

nuity determined by the partition PK .

We now introduce some lemmas that we will combine to prove the theorem. First,

we relate the distortion integrals with respect to s and sK :

Lemma 3.1. The integral with respect to sK converges to the integral with respect to

s in the following manner:

lim
K→∞

∫

R

s2K(c(x))w(x) fX(x) dx =

∫

R

s2(c(x))w(x) fX(x) dx.

Proof. The change of variables y = c(x) yields an alternative form for the LHS

integral: ∫

R

s2K(c(x))w(x) fX(x) dx =

∫ 1

0

s2K(y)w(c
−1(y)) p(y) dy,

where p(y) = fX(c
−1(y)) / λ(c−1(y)).

Note that LC3 implies that there exists some ε = c(B) such that s(y) is decreasing

on y ∈ (0, ε). Using the inequality (k + 1)/(2K) < k/K and the definition of sK , we

can see s(y/2) ≥ sK(y) for all y ∈ (0, ε). Using the continuity of s and LC4, we can

use the Lebesgue Dominated Convergence Theorem [159, Section 4.4] and sK → s as

K → ∞ to show

lim
K→∞

∫ ε

0

s2K(y)w(c
−1(y)) p(y) dy =

∫ ε

0

s2(y)w(c−1(y)) p(y) dy. (3.29)

Similarly, we can parallel the above proof for y ∈ (1− ε, 1) to show

lim
K→∞

∫ 1

1−ε

s2K(y)w(c
−1(y)) p(y) dy =

∫ 1

1−ε

s2(y)w(c−1(y)) p(y) dy. (3.30)
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Because s is bounded on [ε, 1− ε] by LC1,

lim
K→∞

∫ 1−ε

ε

s2K(y) γ
2(c−1(y)) p(y) dy =

∫ 1−ε

ε

s2(y) γ2(c−1(y)) p(y) dy. (3.31)

Combining (3.29)–(3.31) proves the lemma.

Next we relate quantization error and sK :

Lemma 3.2. For large K and x ∈ Ik,K, k ∈ [1 : K],

K2|x−QK,λ(x)| ≤ K2µ2(Ik,K) ≤ s2K(c(x)).

Proof. The left inequality is trivial. By the mean-value theorem of differentiation,

there exists some vk ∈ Ik,K such that

s(c(vk)) =
c−1(k/K)− c−1((k − 1)/K)

k/K − (k − 1)/K
= Kµ(Ik,K).

Using the definition of sK yields the right inequality for K large enough such that

Condition LC3 ensures s is monotonic in the extremal partitions.

Finally, we introduce a lemma that relates the truncated source to the integrable

form of the distortion:

Lemma 3.3. The following limit holds:

lim
K→∞

K2

∫

R

|x−QK,λ(x)|2 h̃K(x) dx =
1

12

∫

R

h(x)

λ2(x)
dx.

Proof. We can show that

K2

∫

R

|x−QK,λ(x)|2 h̃K(x) dx = K2

K−1∑

k=2

1

12
µ(Ik,K)

3 1

AK(h)µ(Ik,K)

∫

Ik,K

h(x) dx

=
1

12AK(h)

∫

R

ŝ2K(c(x))h(x) dx,

where the first line comes from variance of uniform noise on an interval and the

definition of h̃K , and the second line comes from the definition of ŝK .
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From Lemma 3.2, we find sK(y) dominates ŝK(y), i.e. ŝK(y) ≤ sK(y) for y ∈ (0, 1).

Using Lemma 3.1, we see s2K(c(x))h(x) is Lebesgue integrable. Combining the General

Dominated Convergence Theorem [159, Section 4.4] and the fact that ŝK → s as

K → ∞ for all y ∈ (0, 1),

lim
K→∞

1

12AK(h)

∫

R

ŝ2K(c(x))h(x) dx =
1

12

∫

R

s2(c(x))h(x) dx

=
1

12

∫

R

h(x)

λ2(x)
dx,

where we use LC2 to ensure the existence of the right-hand side.

We now prove the main theorem:

Theorem 3.3. Suppose the source density fX , weighting function w, and point den-

sity λ satisfy Conditions LC1–4. Then

lim
K→∞

K2

∫

R

|x−QK,λ(x)|2 w(x) fX(x) dx =
1

12

∫

R

w(x)

λ2(x)
fX(x) dx.

Proof. Let h(x) = w(x)fX(x). We want to show that

lim
K→∞

K2

∫

R

|x−QK,λ(x)|2 h(x) dx = lim
K→∞

K2

∫

R

|x−QK,λ(x)|2 h̃K(x) dx. (3.32)

To prove (3.32), we note

K2

∫

R

|x−QK,λ(x)|2 |h(x)− h̃K(x)| dx ≤
∫

R

s2K(c(x)) |h(x)− h̃K(x)| dx

≤
(
1 +

1

AK(h)

)∫

R

sK(c(x))
2 h(x) dx

≤ 3

∫

R

sK(c(x))
2 h(x) dx,

where the last inequality holds only for large K since AK(h) approaches one from

above. We also recall h̃K → h as K → ∞ a.e. with respect to µ. Hence, we can again

employ the General Lebesgue Dominated Convergence Theorem, this time using the

fact |h(x)− h̃K(x)| ≤ f(x), along with Lemma 3.1 to show (3.32).
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To complete the proof of the theorem, we combine Lemma 3.3 and (3.32).

3.D Generalizing Theorem 3.3

We also need a Linder-style proof to bound the higher-order distortion terms (3.21)

and (3.22). Here, we provide only a brief sketch on how to extend Theorem 3.3.

Consider the integral

K2

∫

R

I2(x)w(x) |x−QK,λ(x)| fX(x) dx, (3.33)

where I(x) = µ(Ik,K) if x ∈ Ik,K . We can rewrite (3.33) as

∫

R

ŝ2K(c(x))w(x) |x−QK,λ(x)| fX(x) dx ≤ 1

K

∫

R

s3K(x)w(x) fX(x) dx,

where the first line uses the definition of ŝK and the second uses Lemma 3.2. Ensuring

that the right-hand side is integrable is sufficient to show that (3.33) becomes negli-

gible as K becomes large. The success of convergence with K depends on a condition

analogous to LC4.

3.E Sources over Finite Support

In [120], DFSQ results are given for quantization of sources over finite support using

joint centroid reconstruction. In the above analysis, we rigorously demonstrated

how similar performance is achieved by a simpler decoder over sources with infinite

support. In this appendix, we briefly argue that a similar technique can be used to

bound the distortion of sources over finite support using the simpler decoder. We

still use Taylor’s theorem, but no longer require tail conditions. As a result, we need

fewer conditions and can derive a proof that does not rely on Lebesgue integration.

We will only show the univariate case here, but the multivariate case follows easily.

The proof is specific to sources that lie on the unit cube [0, 1]N , but we note that

sources on more general spaces can be generalized easily.
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Assume a companding quantizer with point density λ defined on [0, 1]. Consider

the following conditions on the computation g and the density fX of the source:

UF1′′. The source pdf fX is continuous and positive on [0, 1].

UF2′′. The point density λ is continuous and positive on [0, 1].

UF3′′. The function g is continuous on [0, 1] with both |g′| and |g′′| defined and

bounded by a finite constant Cu,K .

UF4′′. fX(x)|g′(x)|m/λ2(x) is Riemann integrable over [0, 1] for m = 0, 1, 2.

The fMSE induced by a quantizer QK,λ under these conditions is bounded as follows:

Theorem 3.4. Assume fX , g, and λ satisfy conditions UF1′′–UF4′′. Then the fMSE

Dfmse(K,λ) = E
[
|g(X)− g(QK,λ(X))|2

]

satisfies the following limit:

lim
K→∞

K2Dfmse(K,λ) =
1

12
E

[(
γ(X)

λ(X)

)2
]
.

Proof. Here, we require the first mean-value theorem for integrals, which states that

for a continuous function r : [a, b] → R and integrable function s : [a, b] → [0,∞)

that does not change sign, there exists a value x ∈ [a, b] such that

∫ b

a

r(t)s(t) dt = r(x)

∫ b

a

s(t) dt. (3.34)

For the case of the companding quantizers, combining this with (2.1) means

1

K
=

∫ pk+1

pk

λ(x) dx = λ(yk)(pk+1 − pk) = λ(yk)∆k (3.35)

for some yk ∈ (pk, pk+1], where we have defined the kth quantizer cell length ∆k =

pk+1 − pk. The relationship between K, λ, and ∆k is central to this proof.

Like the proof of Theorem 3.1, we consider the expansion of Dfmse(K,λ) by total
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expectation:

Dfmse(K,λ) =
K−1∑

k=0

∫ pk+1

pk

|g(x)− g(ck)|2fX(x) dx, (3.36)

where we let p0 = 0 and pK = 1 since the support of the source is [0, 1]. Further

expansion of (3.36) using Taylor’s theorem yields:

K2Dfmse(K,λ) = K2

K−1∑

k=0

∫ pk+1

pk

|g′(ck)(x− ck) +R1(x, ck)|2fX(x) dx

≤ K2

K−1∑

k=0

∫ pk+1

pk

|g′(ck)|2 |x− ck|2fX(x) dx
︸ ︷︷ ︸

A

+K2

K−1∑

k=0

2

∫ pk+1

pk

|R1(x, ck)| |g′(ck)| |x− cK |fX(x) dx
︸ ︷︷ ︸

B

+K2

K−1∑

k=0

∫ pk+1

pk

R1(x, ck)
2fX(x) dx

︸ ︷︷ ︸
C

.

Of the three expressions, only term A is meaningful to overall distortion for large

K and has the following asymptotic form:

K2

K−1∑

k=0

∫ pk+1

pk

|g′(ck)|2 |x− ck|2fX(x) dx
(a)
= K2

K−1∑

k=0

|g′(ck)|2fX(vk)
∫ pk+1

pk

|x− ck|2 dx

(b)
= K2

K−1∑

k=0

|g′(ck)|2fX(vk)
∆3

k

12

(c)
=

1

12

K−1∑

k=0

fX(vk)

( |g′(ck)|2
λ2(yk)

)
∆k

(d)−→ 1

12

∫ 1

0

(
g′(x)

λ(x)

)2

fX(x) dx,

where (a) arises from using (3.34), where vk is some point in the kth quantizer cell;

(b) is evaluation of the integral, recalling (2.3); (c) follows from (3.35); and (d) holds

as K → ∞ by the convergence of Riemann rectangles to the integral (assumption

UF4′′)
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The higher-order error terms are negligible using the bound reviewed in (3.15).

We show that term B goes to zero and just mention that a similar analysis will bound

term C:

K2

K−1∑

k=0

2

∫ pk+1

pk

|R1(x, ck)| |g′(ck)| |x− cK |fX(x) dx

(a)

≤ K2∆
K−1∑

k=0

Cu,K∆k|g′(ck)|
∫ pk+1

pk

|x− ck|fX(x) dx

(b)
= K2∆

K−1∑

k=0

Cu,K∆k|g′(ck)|fX(vk)
∆2

k

4

(c)
= Cu∆

K−2∑

k=1

fX(vk)
|g′(ck)|
λ2(yk)

∆k

(d)−→ 0,

where (a) follows from bounding R1(x, ck) using (3.15) and by defining ∆ as the

longest quantizer interval length; (b) arises from using (3.34); (c) follows from (3.35);

and (d) holds as K → ∞ by the convergence of Riemann rectangles to the integral

(assumption UF3′) and the vanishing of ∆. Hence, the distortion contribution be-

comes negligible as K increases. Note that expansion term C will scale with ∆
2
with

growing codebook size and becomes negligible faster.
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Chapter 4

Performance Loss of DFSQ

Distributed functional scalar quantization (DFSQ) was proposed as a framework to

characterize the performance of lossy compression in a distributed setting for when

a computation is desired at the fusion center, addressing practical concerns such as

code block length, buffer size and decoder complexity. This is useful for goals such as

parameter estimation, coding for perception, and information extraction, which are

common applications for distributed systems. In general, high-resolution quantization

theory is useful in determining closed-form performance expressions for a wide range

of source models and fidelity criteria in situations where the Shannon rate–distortion

function (2.22) is difficult to compute.

Having formed a rigorous foundation for DFSQ theory from Chapters 2 and 3, we

now try to understand the performance gap between this achievable scheme and the

fundamental limits of compression using large-blocklength analysis. Our hope is to

demonstrate that this gap is small, which solidifies the usefulness of DFSQ. The fast

convergence of the performance of scalar quantizers at finite rates to the low-distortion

asymptotic underlies the importance of this theory to real-world applications, a point

highlighted by Berger and Gibson in their survey of lossy source coding [12]. In a

network scenario, the importance of constraints to block length and coding complexity

is magnified due to resource limitations in practical implementations.

We begin with some motivation why the performance gap between DFSQ and the

rate–distortion outer bound is expected to be small in Section 4.1. We then provide
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the main results in Section 4.2 and 4.3. Finally, we conclude the chapter in Section 4.4

with some suggestions for future work.

4.1 Motivation

We begin by reviewing a well-known result from lossy source coding of memoryless

Gaussian sources. Consider a discrete-time continuous-valued source X ∼ N (0, 1).

Using the high-resolution analysis, the distortion–rate trade-off from applying an op-

timal nonuniform fixed-rate scalar quantizer (FRSQ) on this source is asymptotically

D∗
mse,fr(R) ≃ π

√
3

2
2−2R

using (2.8). When entropy-constrained scalar quantization (ECSQ) is used on the

same source, the distortion is asymptotically

D∗
mse,ec(R) ≃ πe

6
2−2R

using the analogue of (2.10) with unnormalized point densities [56, 57]. Finally, the

fundamental limit for a Gaussian source is

δ(R) = 2−2R

for any choice of R (note this is asymptotic in the block length L, not rate R).1

Hence, the performance of ECSQ is simply 1.53 dB more or 0.255 bits/sample less

than the optimal coding strategy for high rate, or large R. The loss from FRSQ is

more, and the performance gap for both settings is well-approximated by a constant

as R increases.

It turns out that the 0.255 bits/sample rate gap is true for most sources when the

rate is large due to the tightness of the Shannon lower bound in the low-distortion limit

1A Gaussian source is a rare instance where the Shannon distortion–rate function has a clean
form.
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(see Section 2.5.2). This specifies the gap between scalar quantization with lossless

entropy coding, which is easy to implement in practice, and vector quantization with

lossy entropy coding, which is the fundamental limit. In this chapter, we establish

similar Shannon-theoretic rate–distortion results for fMSE and determine the rate

loss that would be incurred by using the simple implementation of DFSQ for small

distortion. We find the gap is small under many scenarios.

4.2 Rate–Distortion Behavior of Distributed Sys-

tems for W-MSE

We first analyze the rate–distortion behavior under the W-MSE measure (2.25):

d(xN
1 , x̂

N
1 ) =

∥∥W (xN
1 )(x

N
1 − x̂N

1 )
∥∥2 .

We consider the setting where N scalar sources are separately encoded in an archi-

tecture similar to Figure 2-5. Note that this is different from the the setup of [101],

which used joint coding of an N -dimensional source. In this new setting, we restrict

attention to a subclass of the distortion measure where the input-dependent weighting

matrix W is nonnegative and diagonal, such that the nth diagonal entry of W de-

pends only on Xn. The eventual result of this section, Theorem 4.1, will then provide

the bridge between prior work on nondifference distortion measures and fMSE.

We impose the following regularity conditions on the joint density of XN
1 and the

input-weighted matrix W :

WC1. W (xL
1 ) is strictly nonnegative for all inputs xL

1 and equal to zero at most

on a set of Jordan measure zero.

WC2. W (xN
1 ) is diagonal and the nth diagonal entry, denoted wn(x

N
1 ), depends

only on xn.

WC3. W (xN
1 ) is piecewise continuously differentiable with respect to xN

1 .

WC4. XN
1 have finite differential entropy and second moment.
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WC5. For all n ∈ [1 : N ],

E
[
logwn(X

N
1 )
]
< ∞.

WC6.

E
[{

tr(W−1(XN
1 ))
}3]

< ∞.

Then the minimum sum rate of the achievable rate region is characterized asymptot-

ically by the following theorem:

Theorem 4.1. Consider N correlated sources that are encoded separately and an

allowed W-MSE distortion D. If the joint source density fXN
1

and input-dependent

weighting matrix W satisfy Conditions WC1–WC6, then the minimum sum rate rsum

of the achievable rate region under the W-MSE distortion satisfies:

lim
D→0

(
rsum(D) +

N

2
log(2πeD/N)

)
= h(XN

1 ) +
N∑

n=1

E[logwn(Xn)], (4.1)

Proof. The outer bound follows directly from (2.26), which requires Conditions WC3–

WC6 hold [101].2 We now devise an achievability scheme and sketch out a proof to

confirm that the outer bound becomes tight in the low-distortion limit. We emphasize

that the encoders of the N sources are separate and can use long blocks in this setup.

Let us define monotonic scalar functions g̃n satisfying g̃′n(x) = wn(x). Since wn(x)

is nonnegative, g̃n always exists and is unique up to a constant offset. Moreover,

since wn(x) is positive except on a set of Jordan measure zero (Condition WC1), g̃n

is strictly increasing.

Consider a set of transformed sources {Yn}Nn=1, defined as Yn = g̃n(Xn). In general,

the set {Yn}Nn=1 is correlated if {Xn}Nn=1 is correlated. We now solve a modified

problem, which is to determine an achievable rate region for distributed compression

of Y N
1 under the MSE fidelity criterion. Using the direct-coding proof of Zamir and

2Conditions WC5 and WC6 are hard to intuitively explain but are necessary for the proofs
in [101].
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Berger [207, Theorem 2], we see that the sum rate can asymptotically achieve

R(DN
1 ) . h(Y N

1 )− 1

2

N∑

n=1

log(2πeDn) + ε(DN
1 ),

where Dn is the allowable distortion between Yn and Ŷn, and ε(DN
1 ) → 0 as DN

1 → 0.

The notation . indicates the ratio of the left and right expressions is asymptotically

less than one as D decreases.

Using Taylor’s theorem to expand g̃i around Xi, we can approximate the MSE of

compressing Yn as:

Dn(Yn, Ŷn) = E[|Yn − Ŷn|2]

= E[|g̃n(Xn)− g̃n(X̂n)|2]

≈ E[|g̃′n(Xn)|2(Xn − X̂n)
2].

We see that this becomes equivalent to the fidelity requirements of the W-MSE distor-

tion as the distortion decreases. Setting Dn = D/N for every n yields the achievable

sum rate

Rsum(D) . h(Y N
1 )− N

2
log(2πeD/N) + ε(DN

1 ).

In general, if Y N
1 = u(XN

1 ), then

h(Y N
1 ) ≤ h(XN

1 ) + E[log |∂u/∂XN
1 |]

with equality if and only if u is bijective [11]. Since each g̃i is strictly increasing

and hence invertible, the equality holds for this choice of u and we can rewrite the

asymptotic achievable rate as

Rsum(D) . h(XN
1 )− L

2
log(2πeD/N) +

N∑

n=1

E[logwn(Xn)] + ε(DN
1 ).

This matches the outer bound as D becomes small, providing a tight characterization

of the sum rate
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Presented here is only the sum-rate characterization of the rate–distortion region.

As in all multiterminal source coding problems, we must also bound all individual

rates as well as the sums of all subsets of rates. We do not present these calculations

here because they do not contribute understanding to sum rate, but they are easily

found following the same analysis.

The achievability scheme of transforming the source before applying Slepian–Wolf

coding is highly reminiscent of companding quantizers. Hence, one nice interpretation

is that fine nonuniform quantization followed by block coding can achieve the optimal

sum rate in a distributed setting for the W-MSE distortion with diagonal weighting

matrices, provided that the target distortions for all sources are small.

4.3 Rate Loss of DFSQ

We recall the fidelity criterion of interest is fMSE as defined in (2.11) and the perfor-

mance of nonuniform scalar quantizers is given in (2.17), (2.20) and (2.21). In this

section, we will understand the achievable rate region with respect to fMSE using

Theorem 4.1 and compare the sum rate to the DFSQ results; this determines the rate

loss from using scalar quantizers.

We require the following conditions on the source density fXN
1

and computation

g, recalling gn(x) denotes the partial derivative of g with respect to its nth argument

evaluated at the point x.

FC1. For all n ∈ [1 : N ], gn(x
N
1 ) is nonzero except on a set of Jordan measure

zero.

FC2. g(xN
1 ) is twice differentiable with respect to xN

1 .

FC3. XN
1 have finite differential entropy and second moment.

FC4. For all n ∈ [1 : N ],

E[log(|gn(XN
1 )|2)] < ∞.
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FC5.

E



{

N∑

n=1

∣∣g−2
n (XN

1 )
∣∣
}3

 < ∞.

Then the fMSE rate–distortion function is characterized by the following theorem

Theorem 4.2. Consider N correlated sources that are encoded separately and an

allowed fMSE distortion D. If the joint source density fXN
1
and computation g satisfy

Conditions FC1–FC5, then the minimum sum rate rsum of the rate–distortion region

under the fMSE satisfies:

lim
D→0

(
rsum(D) +

N

2
log(2πeD/N)

)
= h(XN

1 ) +
N∑

n=1

E[log γn(Xn)],

where γn is defined in (2.13).

Proof. In the first step of the proof sketch, we demonstrate that the fMSE can be

approximated with a W-MSE distortion in the small-distortion regime. Using Taylor’s

theorem, we rewrite fMSE as:

E[|g(XN
1 )− g(X̂N

1 )|2] = E

[∣∣∣
N∑

n=1

gn(X
N
1 )(Xn − X̂n) +R1(Xn − X̂n)

∣∣∣
2
]
,

where R1(x) is a remainder term of order O(|x − x̂|2). As the distortion decreases,

the terms in the product that contain R1 decay quickly and become negligible in the

small-distortion limit (see [176]). Moreover, all terms containing (Xi − X̂i)(Xj − X̂j)

for i 6= j also become negligible as quantization errors become white in the high-

resolution limit [189]. Hence, the resulting fMSE distortion can be simplified to

E[|g(XN
1 )− g(X̂N

1 )|2] ≈
N∑

n=1

E
[
|gn(XN

1 )|2(Xn − X̂n)
2
]

=
N∑

n=1

E
[
γ2
n(Xn)(Xn − X̂n)

2
]
,

where the relative error in the approximation can be made arbitrarily small with

increasing codebook size. We see that this distortion corresponds to the diagonal
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W-MSE distortion studied in Section 4.2. In particular, the nth diagonal entry of

the weighting matrix W is γ2
n(Xn), ensuring it is nonnegative. Conditions FC1–FC4

then satisfy the sufficient conditions for Theorem 4.1, thereby giving the minimum

sum rate of the achievable rate region.

We can now determine the gap between the minimum sum rate using nonuniform

scalar quantization followed by Slepian–Wolf coding (SWSQ), as described in (2.21),

and the optimum solution shown in Theorem 4.2:

Corollary 4.1. The sum rate from using optimal nonuniform scalar quantization

followed by Slepian–Wolf coding becomes exactly (N/2) log(πe/6) bits worse than the

sum rate rsum of the fMSE rate–distortion function in the limit of small distortion.

This corresponds to a rate loss of 0.255 bits/sample, which matches the well-known

result in the point-to-point setting.

We can also bound the rate loss of ECSQ:

Corollary 4.2. The sum rate from using optimal nonuniform scalar quantization

followed by entropy coding becomes exactly

(N/2) log(πe/6) + I(X1; . . . ;XN ) bits,

worse than the sum rate rsum of the fMSE rate–distortion function in the limit of

small distortion, where I(X1; . . . ;XN) denotes the multivariate mutual information,

or the multiinformation [171].

We can similarly derive a rate gap for FRSQ, but the closed-form expression is

less intuitive because of dependencies on the source and computation.

4.3.1 Remarks

1. Conditions FC1–FC4 and MF1–MF3 are not the most general that can be

derived. In particular, it is possible to generalize the results to infinite-support den-

sities provided the differential entropy is finite. The precise conditions will parallel

the analysis in Chapter 3.
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2. The results in this section match existing results when the problem is con-

strained in certain ways. For example, when sources are independent, the problem

reduces to the point-to-point SLB with a scalar W-MSE distortion that is a function

of the functional sensitivity profile. When the computation is linear, i.e. the func-

tional sensitivity profile is flat, the model reduces to the case studied by Zamir and

Berger [207]. When L = 1, the result is the scalar W-MSE result [101].

3. Although the gap between DFSQ and the rate–distortion function can be small

when the correlation between the quantized observations is coded properly, the mul-

tiinformation gap can be quite large. Proper classification of this gap between ECSQ

and SWSQ helps motivate engineering choices when designing sensor networks.

4. In (2.17), (2.20) and (2.21), the optimal sum rate is achieved using bit allo-

cation. For a given distortion, there usually exists a unique point in the achievable

region where the sum rate is minimized, meaning this is unique set of rates that will

achieve the rate gap. This is in comparison to the Slepian–Wolf result, where the

minimum sum rate can be achieved by many sets of rates.

4.4 Future Work

In this chapter we have characterized the sum-rate gap between coded scalar quan-

tization and the achievable rate region when the fidelity criterion is fMSE. This

result is especially encouraging in the distributed setting because it demonstrates

that simple compression structures are efficient, even with strict latency constraints

and power considerations. This bridge between Shannon source coding theory and

high-resolution quantization theory can impact compression design for general net-

work architectures and fidelity criteria. In particular, it motivates the need to design

efficient entropy codes and Slepian–Wolf codes on top of scalar-quantizer outputs.

It may also be useful to compare DFSQ to other known achievable results that

use coding over long blocks for specific models where the analysis is tractable, e.g.

quadratic Gaussian [201]. Additionally, it is interesting to consider extensions to

remote sources [42].
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In Chapter 5, we demonstrate how intersensor interaction can change the design

principles in distributed networks operating in the small blocklength regime [174,

175]. One exciting line of research is to determine the rate-loss bounds for this

generalization, building off rate–distortion results in [86]. Such “chatting” networks

greatly expand the possibilities of network topologies, especially when the cost of

communicating a bit may vary in the network.
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Chapter 5

Chatting Networks

One interesting message in Misra et al. [120] is that a small amount of interaction

between two quantizers in the DFSQ framework can yield substantial gains. This

small technical result has influenced the work in this chapter, which explores how

“chatting” can affect the compression of a large network. The results here have im-

plications in the design of sensors in networks when there are opportunities to leverage

different communication protocols that may have varying costs of communication and

bandwidth constraints. It also combats the optimistic intuition of the Slepian–Wolf

theorem in practical settings where the result does not hold. We summarize the

key motivations of this work in Section 5.1 and introduce some preliminaries in Sec-

tion 5.2. In Sections 5.3 and 5.4, we describe the problem model and provide the

main performance results respectively. We then expand on joint optimization of het-

erogeneous systems in Section 5.5 and provide a detailed example to provide intuition

of our contributions in Section 5.6.

Parts of this work were discussed in [174] and [175].

5.1 Motivation

A longstanding consideration in distributed compression systems is whether sensors

wishing to convey information to a fusion center should communicate with each other

to improve efficiency. Architectures that only allow communication between indi-
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vidual sensors and the fusion center simplify the network’s communication protocol

and decrease sensor responsibilities. Moreover, information theoretic results such as

the Slepian–Wolf theorem (2.23) demonstrate distributed compression can perform

as well as joint compression for lossless communication of correlated information

sources [168]. Although this surprising and beautiful result does not extend fully,

comparable results for lossy coding show that the rate loss from separate encoding

can be small using Berger–Tung coding (see, e.g., [206]), again suggesting communi-

cation between sensors has little or no utility.

Although it is tempting to use results from information theory to justify sim-

ple communication topologies, it is important to note the Slepian–Wolf result relies

on coding over long blocks; in the finite-blocklength regime, the optimality of dis-

tributed encoding does not hold [178]. Moreover, investigations on lossy extensions

of the Slepian–Wolf theorem usually focus on compression fidelity of the source am-

plitudes rather than more general computations that are of interest in practical sensor

networks, where separation may be suboptimal.

This chapter examines the use of communication among sensors when the block

length is one, a regime where intersensor collaboration, or chatting, can greatly de-

crease the aggregate communication from sensors to the fusion center to meet a

distortion criterion as compared to a strictly distributed network. This is especially

true when the fusion center’s objective is to compute a function of the sources with

high fidelity rather than determine the sources themselves. We analyze these net-

works using the distributed functional scalar quantization (DFSQ) framework, as

introduced in Section 2.3. In our problem model (Figure 1-1), N correlated but

memoryless continuous-valued, discrete-time stochastic processes produce scalar re-

alizations XN
1 (t) = (X1(t), . . . , XN (t)) for t ∈ Z. For each t, realizations of these

sources are scalar quantized by sensors and transmitted to a fusion center at rates

RN
1 . To aid this communication, sensors can collaborate with each other via a side

channel that is unobservable to the fusion center.

The side channel facilitating intersensor communication has practical implications.

In typical communication systems, the transmission power needed for reliable com-
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munication increases superlinearly with distance and bandwidth [181]. Hence, it is

much cheaper to design short and low-rate links between sensors than reliable and

high-rate links to a fusion center. Moreover, milder transmission requirements provide

more flexibility in determining the transmission media or communication modalities

employed, which can allow intersensor communication to be orthogonal to the main

network. One such example is cognitive radio, a paradigm where the wireless spec-

trum can have secondary users that communicate only when the primary users are

silent [203]. This means secondary users have less priority and hence lower reliability

and rate, which is adequate for intersensor communication.

The main contributions of this work are to precisely characterize the distortion

performance of a distributed network when chatting is allowed and to identify the

optimal quantizer design for each sensor. We show that collaboration can have signif-

icant impact on performance; in some cases, it can dramatically reduce distortion even

when the chatting has extremely low rate. We also give necessary conditions on the

chatting topology and protocol for successful decodability in the DFSQ framework,

thus providing insight into the architecture design for chatting networks. Finally, we

recognize that intersensor communication can occur on low-cost channels and solve

the rate allocation problem in networks with heterogeneous links and different costs

of transmission.

5.2 Preliminaries

5.2.1 Prior Work

The notion of collaborating sensors or agents has been explored in the information

theory, distributed estimation and social learning communities. We will provide a

cursory summary of some of these works that have inspired the chapter.

Beyond the celebrated Slepian–Wolf result, there are several interesting formu-

lations of chatting. Kaspi and Berger provided inner bounds for the rate region of

a two-encoder problem where one encoder can send information for the other us-
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ing compress-and-forward techniques [86]. Recently, this bound has been generalized

in [160], but the exact rate region is still unknown except in special cases. Chatting is

related to source coding problems such as interaction [106,107], omniscience [130] and

data exchange [24]. However, these settings are more naturally suited for discrete-

alphabet sources and existing results rely on large-blocklength analysis. There is

also an interesting relationship between chatting and specific subclasses of multidi-

mensional companding quantizers [102] where the vector quantizers are Cartesian

products of scalar partitions.

The structure of chatting also arises in the context of distributed detection and

estimation, especially for consensus and gossip problems. Here, multiple rounds of

interactions have been studied in the presence of quantization and noise [5,38,83,84,

126,202]. More recently, new models incorporate quantization or noise in estimation

parameters for group or sequential decision-making [155,156,184].

5.2.2 Chatting in DFSQ

In [120, Section VIII], chatting is introduced in the setting where one sensor sends

exactly one bit to another sensor (see Figure 5-2a). Under fixed-rate quantization, this

collaboration can at most decrease the distortion by a factor of four using a property

of L1/3 quasi-norms.1 Because using that bit to send additional information to the

fusion center would decrease distortion by exactly a factor of four, this is considered

a negative result. Here, there is an implicit assumption that links have equal cost per

bit and the network wishes to optimize a total cost budget. In the entropy-constrained

setting, chatting may be useful even when links have equal costs. One example was

given to demonstrate a single bit of chatting can decrease the distortion arbitrarily

close to zero by changing model parameters; more generally, the benefit of chatting

varies depending on the source joint distribution and decoder computation.

In previous work, there is no systematic theory on performance and quantizer

design of chatting. Moreover, collaboration in larger networks was still an open

1Lp as defined in Chapter 2 does not satisfy the triangle inequality for 0 < p < 1. Hence it is a
quasi-norm rather than a norm.
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problem. We extend previous results and provide a more complete discussion on how

a chatting channel affects a distributed quantization network. A sample result is that

chatting can be beneficial in the fixed-rate setting if the cost of communicating a bit

to another sensor is lower than the cost of communicating a bit to the fusion center.

5.2.3 Don’t-Care Intervals in DFSQ

When the computation induces the functional sensitivity profile to be zero on some

subintervals of the support, the high-resolution assumptions are violated and the

asymptotic distortion performance may not be described by (2.14). This issue is

addressed by carefully coding when the source is in such a “don’t-care” interval [120,

Section VII] and then applying high-resolution theory to the remaining support. This

consideration is particularly relevant because chatting among sensors can often induce

the functional sensitivity profile to be zero, and proper coding can lead to greatly

improved performance.

Consider Λn don’t-care intervals in γn and let An be the event that the source

realization xn is not in the union of them. In the fixed-rate setting, one codeword

is allocated to each don’t-care interval, and the remaining Kn − Λn codewords are

used to form reconstruction points in the nonzero intervals of the scalar quantizer.

There is a small degradation in performance from the loss corresponding to Λn, but

this quickly becomes negligible as Kn increases. In the entropy-constrained case, the

additional flexibility in coding allows for the encoder to split its message and reduce

cost. The first part is an indicator variable revealing whether the source is in a don’t-

care interval and can be coded at rate IA , HB(Pr(An)), where HB is the binary

entropy function. The actual reconstruction message is only sent if event An occurs,

and its rate is amplified to (Rn − IA)/Pr(An) to meet the average rate constraint.

The multiplicative factor 1/Pr(An) is called the rate amplification.
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5.3 Problem Model

We begin by defining the capabilities and restrictions of the sensors and fusion cen-

ter in Figure 1-1, recalling that the N sensors observe realizations from correlated

and memoryless sources. The quantizer at each sensor is scalar, meaning its output

depends on the current observation. In this model, we assume that the quantizer’s

mapping can also be affected by information it receives from other sensors via the

chatting channel, but that information is limited to their current observations as

well. Because there is no intertemporal communication, we remove the time index

and model the sources as being drawn from a joint distribution fXN
1

at each t. We

first describe the notation used to model the chatting channel, then summarize what

each sensor is allowed to communicate and finally conclude the section with a simple

example.

We model the chatting channel in Figure 1-1 as a directed graph Gc = (V , E),
where the set of nodes V is the set of all sensors and E ⊆ V × V is the set of

noiseless, directed chatting links (Figure 5-1). If (i, n) ∈ E , then for each source

realization, Sensor i sends to Sensor n a chatting message Mi→n with codebook size

Ki→n. The parent and children sets of a sensor n ∈ V are denoted Np(n) and Nc(n)

respectively; when (i, n) ∈ E , i is a parent of n and n is a child of i. The set of

all chatting messages is M c = {Mi→n}(i,n)∈E and the set of corresponding codebook

sizes is Kc = {Ki→n}(i,n)∈E . Modeling the chatting channel as a graph becomes

useful later when we analyze the topology of intersensor collaboration for successful

communication with the fusion center.

The chatting messages are communicated in sequential order according to a sched-

ule that the sensors and the fusion center know in advance; the set of chatting mes-

sages M c can therefore also be thought of as a sequence. This communication occurs

quickly in that all chatting is completed before the next discrete time instant, at which

point new realizations of XN
1 are measured. We assume that each chatting link can

support one message per source realization and an outgoing chatting message from

Sensor n can only depend on Xn and the chatting messages received from the sensor’s
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Figure 5-1: A stylized example of the communication and chatting links between
sensors (S) and the fusion center (FC). Only the gray lines, corresponding to chatting
links, are included in the edge set of Gc.

parent set Np(n). After chatting is complete, Sensor n compresses its observation Xn

into a message Mn using a codebook dependent on the information gathered from

chatting messages, which is then noiselessly communicated to the fusion center. In

the most general setting, both the codebook mapping and size, i.e. communication

rate, may depend on incoming chatting messages. The fusion center then estimates

the computation g(XN
1 ) using MN

1 but not M c. While the above treatment of the

chatting channel is very general, the final assumption that the fusion center cannot

observe chatting messages directly restricts the type of communication can occur.

In the next section, we will discuss in greater detail what type of communication

schedules are allowed to optimize compression performance.

We now present a simple example based on a two-sensor network shown in Fig-

ure 5-2a. Here, the computation of interest is Y = max(X1, X2) and two sensors

compress iid uniform random variables X1 and X2 using fixed-rate scalar quantizers.

Näıvely, one may predict that the best scalar quantizer should be uniform using (2.5).

However, larger amplitudes are more likely to be meaningful for the max computation

and the best fixed-rate scalar quantizer is found using (2.15); the quantizer mapping
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(b) Distributed (c) Chatting (d) Joint encoding

Figure 5-2: A two-sensor network demonstrating chatting. In this example, Sensor 1
communicates some information about its realization to Sensor 2 with some chatting
rate Rc, as illustrated in (a). The quantizer mappings for the (b) distributed, (c)
chatting, and (d) joint-encoding cases are shown.

is shown in Figure 5-2b. If the chatting channel has very high rate, then Sensor

2 can effectively compute and compress Y and achieve joint-encoding performance,

as shown in Figure 5-2d. The chatting described in this chapter falls between the

distributed and joint-encoding scenarios; the main regime of interest is when the

chatting channel has low rate, e.g. 2 bits/sample in Figure 5-2c. We will revisit this

example in a more general setting later in the chapter and show how rate allocation,

and chatting codebook optimization affects compression performance. Note that the

example uses independent sources for simplicity, but the same analysis can account

for correlated sources. The correlation will influence the functional sensitivity profile,

which alters the shape of the companding quantizers.
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5.4 Performance and Design of Chatting Networks

With the chatting model explicit, we present performance of QKN
1 ,λN

1
in the fixed-rate

and entropy-constrained settings. We then show how to optimize λN
1 given KN

1 and

Kc to minimize fMSE. We first analyze the network assuming the chatting graph is

acyclic. Later, we will show this condition on the graph is sufficient for the fusion

center to successfully infer the codebook used by each sensor and hence recover the

quantized values from messages MN
1 . The graph structure provides the schedule of

transmission on the chatting channel, i.e. a sensor transmits its chatting messages to

its children only when it receives its parents’ chatting messages.

Before studying fMSE, we need to extend the definition of the functional sensitivity

profile.

Definition 5.1. Let Np(n) ⊆ V be the set of parents of Sensor n in the graph Gc

induced by chatting. The nth conditional functional sensitivity profile, or conditional

sensitivity for short, of computation g given all chatting messages M c is

γn|Mc(x|m) =
(
E
[
|gn(XN

1 )|2
∣∣Xn = x,Mi→n = mi→n for all i ∈ Np(n)

])1/2
.

Notice only messages from parent sensors are relevant to γn|Mc . Intuitively, chat-

ting messages reveal information about the parent sensors’ quantized values and re-

shape the functional sensitivity profile appropriately. Depending on the encoding of

chatting messages, this may induce don’t-care intervals in the conditional sensitivity

(where γn|Mc = 0).

The distortion’s dependence on the number of codeword points and the conditional

sensitivity is given in the following theorem:

Theorem 5.1. Given the source distribution fXN
1
, computation g, and point densities

λN
1 (M

c) satisfying conditions MF1–3 for every possible realization of M c, the asymp-

totic distortion of the conditional expectation decoder (2.12) given codeword allocation
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KN
1 and Kc is

Dfmse(K
N
1 , Kc, λN

1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
1

12K2
n(m)

γ2
n|Mc(Xn|m)

λ2
n|Mc(Xn|m)

∣∣∣∣∣ M
c = m

]]
.

Proof. Extend the proof of [120, Theorem 17] using the Law of Total Expectation.

Note that the chatting codebook is assumed fixed and known to all sensors and the

fusion center in this formulation.

Compared to the DFSQ result, the performance of a chatting network can be sub-

stantially more difficult to compute since the conditional sensitivity may be different

with each realization of M c and affects the choice of the point density and codebook

size. However, Sensor n’s dependence on M c is through a subset of messages from

its parent nodes. In Section 5.6, we will see how structured architectures lead to

tractable computations of fMSE. Following the techniques in Chapter 3, the theorem

can be expanded to account for infinite-support distributions and a simpler decoder.

Some effort is necessary to justify the use of normalized point densities in the infinite-

support case, especially in the entropy-constrained setting, but high-resolution theory

applies in this case as well.

5.4.1 Don’t-Care Intervals

We have already alluded to the fact that chatting can induce don’t-care intervals in

the conditional sensitivity of certain sensors. In this case, we must properly code

for these intervals to ensure the high-resolution assumptions hold, as discussed in

Section 5.2.

For fixed-rate coding where Rn = log(Kn), this means shifting one codeword to

the interior of each don’t-care interval and applying standard high-resolution analysis

over the union of all intervals where γn(x) > 0. The resulting distortion of a chatting

network is then given as:

Corollary 5.1. Assume the source distribution fXN
1
, computation g, and point den-

sities λN
1 (M

c) satisfying conditions MF1–3 for every possible realization of M c, with
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the additional requirement that λn(x |m) = 0 whenever γn|Mc(x |m) = 0. Let Λn(m)

be the number of don’t-care intervals in the conditional sensitivity of Sensor n when

M c = m. The asymptotic distortion of such a chatting network where communication

links use fixed-rate coding is

Dfmse(R
N
1 , K

c, λN
1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
1

12(K ′
n)

2

γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

∣∣∣∣∣ M
c = m

]]
,

where K ′
n = 2Rn − Λn(m).

In the entropy-constrained setting where Rn = H(X̂n), we must code first the

event An(m) that the source is not in a don’t-care interval given the chatting messages,

and then code the source realization only if An occurs. The resulting distortion of a

chatting network is:

Corollary 5.2. Assume the source distribution fXN
1
, computation g, and point den-

sities λN
1 (M

c) satisfying conditions MF1–3 for every possible realization of M c, with

the additional requirement that λn(x |m) = 0 whenever γn|Mc(x |m) = 0. Let An(m)

be the event that Xn is not in a don’t-care interval given M c = m. The asymptotic

distortion of such a chatting network where communication links use entropy coding

is

Dfmse(R
N
1 , K

c, λN
1 ) ≃ EMc

[
N∑

n=1

EXn|Mc

[
Pr(An(m))

12
22h(Xn|An(m))+2E[log λn(Xn)|An(m)]

·
γ2
n|Mc(Xn |m)

λ2
n|Mc(Xn |m)

2−2(Rn(m)−HB(An(m)))/P (An(m))

∣∣∣∣∣ M
c = m

]]
.

We will use both corollaries in optimizing the design of λN
1 (M

c) in the remainder

of the chapter.

5.4.2 Fixed-Rate Quantization Design

We mirror the method used to determine (2.15) in the DFSQ setup but now allow the

sensor to choose from a set of codebooks depending on the incoming messages from
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parent sensors. The mapping between chatting messages and codebooks is known

to the decoder of the fusion center, and each codebook corresponds to the optimal

quantizer for a given conditional sensitivity induced by the incoming message. Let

Zn(M
c) be the union of the don’t-care intervals of a particular conditional sensitivity.

Then using Corollary 5.1, the asymptotically optimal point density for fixed-rate

quantization satisfies

λ∗
n,fmse,fr,chat(x |m) ∝





(
γn|Mc(x |m)fXn|Mc(x |m)

)1/3

x /∈ Zn(m) and fXn|Mc(x |m) > 0;

0, otherwise.

(5.1)

Recall that the point density is the derivative of the compressor function c(x)

in the compander model. Hence, codewords are placed at the solutions to c(x) =

(k − 1)/(K − L) for k ∈ [1 : (K − L)]. In addition, one codeword must be placed in

each of the L don’t-care interval.

5.4.3 Entropy-Constrained Quantization Design

Using Corollary 5.2, the asymptotically optimal point density when entropy coding

is combined with scalar quantization has the form

λ∗
n,fmse,ec,chat(x |m) ∝





γn|Mc(x |m), x /∈ Zn(m) and fXn|Mc(x |m) > 0;

0, otherwise.
(5.2)

Note that rate amplification can arise through chatting, and this can allow distortion

terms to decay at rates faster than 2−2Rn . However, there is also a penalty from proper

coding of don’t-care intervals, corresponding to HB(P (An)). This loss is negligible in

the high-resolution regime but may become important for moderate rates.

5.4.4 Conditions on Chatting Graph

We have observed that chatting can influence optimal design of scalar quantizers

through the conditional sensitivity, and that sensors will vary their quantization code-
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books depending on the incoming chatting messages from parent sensors. Under the

assumption that the fusion center does not have access to M c, success of compression

is contingent on the fusion center identifying the codebook employed by every sensor

from the messages MN
1 .

Definition 5.2. A chatting network is codebook identifiable if the fusion center can

determine the codebooks of QKN
1 ,λN

1
using the messages it receives from each sensor.

That is, it can determine Cn(M c) from MN
1 for each time instant.

We have argued that a chatting network can successfully communicate its com-

pressed observations if it is codebook identifiable. The following are sufficient condi-

tions on the chatting graph Gc and messages M c such that the network is codebook

identifiable:

C1. The chatting graph Gc is a directed acyclic graph (DAG).

C2. The causality in the chatting schedule matches Gc, meaning for every n,

Sensor n sends its chatting message after it receives messages from from all parent

sensors.

C3. The quantizer at Sensor n is a function of the source joint distribution and

all incoming chatting messages from parent sensors in Np(n).

C4. At any discrete time, the chatting message transmitted by Sensor n is a

function of Mn and incoming chatting messages from parent sensors in Np(n).

The sufficiency of these conditions can be seen by construction. Because Gc is a

DAG, there is at least one sensor which is a head node and does not have incoming

chatting messages. Therefore, the chatting messages of these sensors are known to

the decoder by condition C4. The remaining codebooks and chatting messages can

be recovered by the decoder by C3 and C4 provided C2 holds.

When each sensor’s quantizer is regular and encoder only operates on the quan-

tized values X̂n, matching the DFSQ setup, the chatting message can only influence

the choice of codebook. In this setting, the above conditions become necessary as

well. Alternatively, if sensors can locally fuse messages from parents with their own

observation, there may exist other conditions for a network to be codebook identifi-
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able.

We now revisit the example at the end of Section 5.3 and see the the graph is

a DAG. Assuming the system requires that C3 and C4 hold, having an additional

chatting link from Sensor 2 to Sensor 1 is not useful. This illuminates an important

design decision in intersensor communication. When there is flexibility in the design

of chatting channels we can restrict the topology to ones that form DAGs. Choosing

between different graphs is beyond the scope of the thesis but is of future interest.

5.5 Rate Allocation in Chatting Networks

A consequence of chatting is that certain sensors can exploit their neighbors’ acquisi-

tions to refine their own. Moreover, a sensor can potentially use this side information

to adjust its communication rate in addition to changing its quantization if the net-

work is codebook identifiable. These features of chatting networks suggest intelligent

rate allocation across sensors can yield significant performance gains. In addition, a

strong motivation for intersensor interaction is that sensors may be geographically

closer to each other than a fusion center and hence require less transmit power, or

can employ low-rate orthogonal channels that do not interfere with the main com-

munication network. As a result, the cost of communicating a bit may vary in a

network.

This section explores proper rate allocation to minimize the total cost of trans-

mission in a chatting network, allowing asymmetry of the information content at

each sensor and heterogeneity of the communication links. Consider the distributed

network in Figure 1-1. The cost per bit of the communication link and the resource

allocation between Sensor n and the fusion center are denoted by αn and bn respec-

tively, leading to a communication rate of Rn = bn/αn from Sensor n to the fusion

center. Similarly, for a chatting link between Sensors i and n, the cost per bit and

resource allocation are denoted by αi→n and bi→n respectively, corresponding to a

chatting rate of Ri→n = bi→n/αi→n. Consistent with previous notation, we denote

the set of costs per chatting bit, resource allocations on chatting links, and chatting
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rates by αc = {αi→n}(i,n)∈E , bc = {bi→n}(i,n)∈E , and Rc = {Ri→n}(i,n)∈E .

Given a total resource budget C, how should the rates be allocated among these

links? For simplicity, assume all chatting links employ fixed-rate quantization; this

implies that Kn = 2Rn for all n ∈ [1 : N ] and Ki→n = 2Ri→n for all (i, n) ∈ E . The

distortion–cost trade-off is then expressed as

D(C) = inf
bN1 ,bc,λN

1 :
∑N

n=1 bn+
∑

(i,n)∈E bi→n=C

Dfmse

(
KN

1 , Kc, λN
1

)
. (5.3)

In general, this optimization is extremely difficult to describe analytically since

the distortion contribution of each sensor is dependent in a nontrivial way on the

conditional sensitivity, which in turn is dependent on the design of the chatting mes-

sages. However, the relationship between bN1 and the overall system distortion is much

simpler, as described in Theorem 5.1. Hence, once the chatting allocations bc is fixed,

the optimal bN1 is easily determined using extensions of traditional rate allocation

techniques described in Appendix 5.A. In particular, the optimal bN1 can be found by

applying Lemmas 5.2 and 5.3 with a total cost constraint

C ′ = C −
∑

(i,n)∈E

bi→n.

A brute-force search over bc then provides the best allocation, but this procedure

is computationally expensive. More realistically, network constraints may limit the

maximum chatting rate, which greatly reduces the search space.

In Figure 5-3, we show optimal communication rates for the network described

in Section 5.6. We delay description of the specific network properties and aim only

to illustrate how the cost allocations bn(m) may change depending with sensors or

chatting messages. Under fixed-rate coding, bn varies depending on the chatting

graph. In the entropy-constrained setting, the allocation can also vary with the

chatting messages, except for Sensor 1. This increased flexibility allows for a wider

range of rates, as well as improved performance in many situations.
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Figure 5-3: Cost allocation for a maximum computation network, as described in
Section 5.6. In this case, N = 10, C = 5N , Rc = 3, αc = 0, and αn = 1. In the fixed-
rate setting (a), the sensors are allowed to have different communication rates but
cannot adjust the rate with the received chatting message. In the entropy-constrained
setting (b), each sensor except sensor 1 receives chatting messages and can adjust its
communication rate appropriately.

5.6 Maximum Computation

The results in the previous sections hold generally, and we now build some intuition

about chatting by extending the example of Section 5.3. The choice of this computa-

tion is not arbitrary; we will show that it allows for a particular chatting architecture

that makes it convenient to study large networks. Moreover, this network reveals

some surprising insights into the behavior of chatting. The source variables are as-

sumed to independent so that performance gains come from chatting rather than from

the dependence that is traditionally exploited in distributed source coding; one could

additionally exploit correlations. While this chapter restricts its attention solely to

the maximum computation, more examples are discussed in [174].

5.6.1 Problem Model

We consider a network where the fusion center aims to reproduce the maximum of

N sources, where each Xn is independent and uniformly distributed on [0, 1]. The

sensors measuring these sources are allowed to chat in a serial chain, meaning each
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sensor has at most one parent and one child (see Figure 5-4). Initially, we will consider

the simplest such network with the following assumptions:

1. The chatting is serial, implying a sequence of chatting messages {M(n−1)→n}Nn=2.

2. Each chatting link is identical and has rate Rc, codebook size Kc = 2Rc and

cost αc.

3. The communication links between sensors and the fusion center are allowed to

have different rates. For simplicity, we assume them to be homogeneous and

normalize the cost to be αn = 1.

4. The outgoing chatting message at Sensor 1 is the index of a uniformly quantized

version of its observation with Kc levels.

5. For n > 1, the chatting message from Sensor n is the maximum of the index of

Sensor n’s own uniformly quantized observation and the chatting message from

its parent.

Under this architecture, the chatting messages effectively correspond to a uni-

formly quantized observation of the maximum of all ancestor nodes:

M(n−1)→n = I(QKc,U(max(Xn−1
1 ))), (5.4)

where I is the index of the quantization codeword and can takes values [1 : Kc]. The

simplicity of the chatting message here arises from the permutation-invariance of the

maximum function. We will exploit this structure to provide precise characterizations

of system performance.

5.6.2 Quantizer Design

Using (2.13), we find the max function has functional sensitivity profile γ2
n(x) = xN−1

for all n. Without chatting, each sensor’s quantizer would be the same with a point

density that is a function of the source distribution and functional sensitivity profile.

Moreover, since the cost per bit of transmitting to the fusion center is the same, the

solution of the resource allocation problem assigns equal weight to each link. Hence,
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Figure 5-4: A fusion center wishes to determine the maximum of N iid uniform
sources and receives messages Mn from each sensor n at rate Rn. The sensors are
allowed to chat serially down the network using messages M(n−1)→n at rate Rc.

minimizing (2.16) yields the optimal fixed-rate distortion–cost trade-off:

Dmax,fr(C) ≃ N

12

(
3

N + 2

)3

2C/N .

Similarly, the minimum of (2.19) leads to the optimal entropy-constrained distortion–

cost trade-off

Dmax,ec(C) ≃ N

12
e−N+12C/N .

These high-resolution expressions provide scaling laws on how the distortion relates

to the number of sensors. They require the total cost C increase linearly with N to

hold.

With chatting, we first need to determine the conditional sensitivity, which is

given below for uniform sources:

Proposition 5.1. Given Kc = 2Rc, the conditional sensitivity corresponding to a

received chatting message M(n−1)→n = k is

γ2
n |M(n−1)→n

(x | k) =





0, x < k−1
Kc

;

(Kcx)n−1−(k−1)n−1

kn−1−(k−1)n−1 xN−n, k−1
Kc

≤ x < k
Kc

;

xN−n, x ≥ k
Kc

.
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Proof. Assuming iid uniform sources on the support [0, 1], the functional sensitivity

profile of each sensor in the maximum computation network in Figure 5-4 without

chatting is

γ2
n(x) = E[|gn(XN

1 )|2 |Xn = x]

= Pr
(
min(XN

1 ) = Xn |Xn = x
)

= Pr(X1 < x) · · ·Pr(Xn−1 < x) Pr(Xn+1 < x) · · ·Pr(XN < x)

= xN−1.

When the chatting graph is a serial chain, Sensor n has some lossy version of

the information collected by its ancestor sensors. For the max function, chatting

reduces the support of the estimate of max(Xn−1
1 ) by Sensor n. Hence, the message

M(n−1)→n reveals the max of the ancestor sensors is in the range [sl, su]. This side

information forms three distinct intervals in the conditional sensitivity. First, in the

interval x < sl, Xn is assuredly less than max(Xn−1
1 ) and the conditional sensitivity

is zero since the information at Sensor n is irrelevant at the fusion center. Second,

if x > su, Xn is greater than max(Xn−1
1 ) and the sensitivity should only depend on

the number of descendant sensors, leading to a sensitivity of xN−n. Finally, when

sl ≤ x < su, Sensor n must take into consideration both ancestors and descendants,

yielding conditional sensitivity

Pr
(
min(XN

1 ) = Xn

∣∣Xn = x,max(Xn−1
1 ) ∈ [sl, su]

)

= Pr
(
max(Xn−1

1 ) < x
∣∣max(Xn−1

1 ) ∈ [sl, su]
)
Pr
(
max(XN

n+1) < x
)

=
xn−1 − sn−1

l

sn−1
u − sn−1

l

xN−n.

More specific to the case when messages correspond to uniform quantization, we define

Kc = 2Rc and denote each received message M(n−1)→n as kn. Setting sl = (kn − 1)/Kc

and su = kn/Kc yields Proposition 5.1.

We have already noted the incident chatting message of Sensor n is a uniformly
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quantized observation of Yn = max(Xn−1
1 ), where fY (y) = (n− 1)yn−2. Hence,

Pr
(
M(n−1)→n = k

)
=

(
k

Kc

)n−1

−
(
k − 1

Kc

)n−1

. (5.5)

Below, we give distortion asymptotics for the serial chatting network under both

fixed-rate and entropy-constrained quantization.

Fixed-rate case

From Theorem 5.1, the asymptotic total fMSE distortion is

N∑

n=1

βn2
−2Rn ,

where βn = 1
12
‖γ2

n|Mc‖1/3. Because Sensor 1 has no incoming chatting messages, its

conditional sensitivity is γ2
1(x) = xN−1 and the resulting distortion constant is

β1 =
1

12

(
3

N + 2

)3

.

For other sensors, the distortion contribution is

βn =
1

12

Kc∑

k=1

Pr
(
M(n−1)→n = k

) ∥∥γ2
n |M(n−1)→n=k

∥∥
1/3

.

For Sensor n with n > 1, all incoming messages besides k = 1 induce a don’t-care

interval, so one of the 2Rn codewords is placed exactly at (k − 1)/K.

We study the trade-off between chatting rate Rc and fMSE for several choices of

N and αc using optimal cost allocation as determined by Lemma 5.2. In Figure 5-5a,

we observe that increasing the chatting rate yields improvements in fMSE. As the

number of sensors increases, this improvement becomes more pronounced. However,

this is contingent on the chatting cost αc being low. As discussed in Section 5.2,

chatting can lead to worse system performance if the cost of chatting is on the same

order as the cost of communication given a total resource budget, as demonstrated by
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Figure 5-5c. Although the main results of this work are asymptotic, we have asserted

the distortion equations are reasonable at finite rates. To demonstrate this, we design

real quantizers under the same cost constraint and demonstrate that the resulting

performance is comparable to high-resolution approximations of Theorem 5.1. This is

observed in Figs. 5-5a and c, which shows the asymptotic prediction of the distortion–

rate trade-off is accurate even at 4 bits/sample.

Entropy-constrained case

Generally, the total distortion in the entropy-constrained case is

N∑

n=1

E
[
βn,k2

−2Rn,k
∣∣M(n−1)→n = k

]
,

noting each sensor is allowed to vary its communication rate with the chatting mes-

sages it receives. Like in the fixed-rate setting, an incoming message k will induce a

don’t-care interval of [0, (k − 1)/K] in the conditional sensitivity. If An,k is the event

that Xn is not in a don’t-care interval when receiving message k, then

βn,k =
1

12
Pr
(
M(n−1)→n = k

)
2
2h(Xn|An,k)+2E[log γn |M(n−1)→n

(Xn|k)]

and Rn,k = (Rn −HB(Pr(An,k)))/Pr(An,k).

Like in the fixed-rate setting, we study the relationship between the chatting rate

Rc and fMSE, this time using the probabilistic allocation optimization of Lemma 5.3

in Appendix 5.A. Due to the extra flexibility of allowing a sensor to vary its com-

munication to the fusion center with the chatting messages it receives, we observe

that increasing the chatting rate can improve performance more dramatically than

in the fixed-rate case (see Figure 5-5b). Surprisingly, chatting can also lead to infe-

rior performance for some combinations of Rc and N , even when αc is small. This

phenomenon will be discussed in greater detail below. In Figure 5-5d, we compare

different choices of αc to see how performance changes with the chatting rate. Unlike

for fixed rate, in the entropy-constrained setting, chatting can be useful even when
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Figure 5-5: Performance of the maximum computation network in both the fixed-rate
(left plots) and entropy-constrained (right plots) settings. Plots (a) and (b) illustrate
the trade-off between fMSE and chatting rate for choices of N assuming total cost
C = 4N and αc = 0.01. Plots (c) and (d) illustrate the trade-off between fMSE and
chatting rate for choices of αc assuming N = 4 sensors and total cost C = 4N . In
all cases, the cost of communication is αn = 1. For the fixed-rate setting, we validate
the distortion through simulated runs on real quantizers designed using (5.1). We
observe that high-resolution theory predicts actual performance at rates as low as 4
bits/sample, as shown by crosses in the fixed-rate plots.

its cost is close to the cost of communication to the fusion center.

5.6.3 Generalizing the Chatting Messages

We have considered the case where a chatting message is the uniform quantization

of the maximum of all ancestor nodes, as shown in (5.4). Although simple, this

coding of chatting messages is not optimal. Here, we generalize chatting messages to

understand how the performance can change with this design choice.

We begin by considering the same network under the restriction that the chatting

rate is Rc = 1, but allow the single partition boundary p1 to vary rather than setting it

to 1/2. Currently, we keep the coding consistent for every sensor such that a chatting
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message k = 1 implies max(Xn−1
1 ) ∈ [0, p1] and k = 2 means max(Xn−1

1 ) ∈ (p1, 1].

Distortions for a range of N and p1 are shown in Figure 5-6.

From these performance results, we see that the choice of p1 should increase with

the size of the network, but precise characterization of the best p1 is difficult because of

the complicated effect the conditional sensitivity has on both the distortion constants

and rate allocation. We can recover some of the results of Figure 5-5 by considering

p1 = 1/2. It is now evident that this choice of p1 can be very suboptimal, especially

as N becomes large. In fact, we observe that for certain choices of the partition with

entropy coding, the distortion with chatting can be larger than from a traditional

distributed network even though the chatting cost is zero. This unintuitive fact arises

because the system’s reliance on the conditional sensitivity is fixed, and the benefits

of a don’t-care interval are mitigated by creating a more unfavorable conditional

sensitivity. We emphasize that this phenomenon disappears as the rate becomes very

large.

Since the flexibility in the choice of the chatting encoder’s partitions can lead

to improved performance when Rc = 1, we can expect even more gains when the

chatting rate is increased. However, the only method for optimizing the choice of

partition boundaries developed currently involve brute-force search using the condi-

tional sensitivity derived in the proof of Proposition 5.1. Another extension that leads

to improved performance is to allow chatting encoders to employ different partitions.

This more general framework yields strictly improved results, but some of the special

structure of the serial chatting network is lost as the chatting message is no longer

necessarily the maximum of all ancestor sensors. The added complexity of either of

these extensions make their performances difficult to quantify.

5.6.4 Optimizing a Chatting Network

So far, we have formulated a framework allowing low-rate collaboration between sen-

sors in a distributed network. We have introduced several methods to optimize such

a network, including nonuniform quantization, rate allocation, and design of chatting

messages. Here, we combine these ingredients and see how each one impacts fMSE.
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Figure 5-6: Distortion improvement compared to no chatting in the maximum com-
putation network for the fixed-rate (left plot) and entropy-constrained (right plot)
settings when varying the partition boundary p1. We assume chatting is free, i.e.,
αc = 0, but the chatting rate is limited to one bit.

We will continue working with the maximum computation network from Figure 5-4

assuming Rc = 1, αc = 0, N = 5 and C = 5N . We further assume the coding of

chatting messages is the same for every sensor on the serial chain. We will then

consider the following scenarios:

1. A chatting network with Rn = 5 for all n and chatting designed by (5.4).

2. A chatting network with rate allocation and chatting designed by (5.4).

3. A chatting network with rate allocation and optimization over chatting mes-

sages.

We compare the fMSE of each scenario to the performance of the distributed

network without chatting (Rc = 0). In the results of Figure 5-7, we see that the

simple chatting network with a chatting codebook described in (5.5) provides mean-

ingful performance boost, while additional optimizations such as rate allocation and

more general chatting codebooks do not add appreciable benefits. The opposite is

true in the entropy-constrained setting, where the addition of the chatting channel is

only meaningful when rate allocation and chatting codebook optimizations are con-

sidered. However, the potential gains from chatting in the entropy-coded setting is

much greater; in the example presented, a 20 dB improvement in fMSE can be seen.

We highlight that the current results restrict the communication in the fixed-rate set-

ting to employ fixed-rate quantization. Allowing for entropy-coding on the chatting
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Figure 5-7: Distortion improvement for Scenarios 1–3 over a distributed network
without chatting. Both rate allocation (RA) and chatting message optimization (CM)
are considered.

channel may lead to even greater compression gain at the expense of increased system

complexity.

5.7 Conclusions

In this chapter, we explored how intersensor communication—termed chatting—can

improve approximation of a function of sensed data in a distributed network con-

strained to scalar quantization. We have motivated chatting from two directions:

providing an analysis technique for distortion performance when block-length limita-

tions make Shannon theory too optimistic, and illustrating the potential gains over

simplistic practical designs. There are many opportunities to leverage heterogeneous

network design to aid information acquisition using the tools of high-resolution theory,

and we provide precise characterizations of distortion performance, quantizer design,

and cost allocation to optimize distributed networks. Many challenges remain in ana-

lyzing chatting networks. Some future directions that are meaningful include a more

systematic understanding of how to design chatting messages and applications where

chatting may be feasible and beneficial.

One can consider “sensors” being distributed in time rather than space, with the

decoder computing a function of samples from a random process. Connections of this

formulation to structured vector quantizers are of independent interest.
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5.A Rate Allocation for Distributed Networks

Consider the distributed network in Figure 1-1 without the chatting channel. The cost

per bit of the communication link and the cost allocation between Sensor n and the

fusion center is denoted by αn and bn respectively, leading to a communication rate

of Rn = bn/αn. Below, we solve the cost allocation problem under the assumption

that companding quantizers are used and noninteger rates are allowed.

Lemma 5.1. The optimal solution to

D(C) = min∑
bn=C,bn≥0

N∑

n=1

βn2
−2bn/αn (5.6)

has cost allocation

b∗n = max

(
0,

1

2
log

βn/αn

β̃

)
, (5.7)

where β̃ is chosen such that
∑

b∗n = C.

Proof. This lemma extends the result from [161] or can be derived directly from the

KKT conditions.

Each βn is calculated using only the functional sensitivity profile γn and marginal

source pdf fXn
. Although Lemma 5.1 is always true, we emphasize that its effective-

ness in predicting the proper cost allocation in a distributed network is only rigorously

shown for high cost (i.e. high rate) due to its dependence on (2.14). However, it can

be experimentally verified that costs corresponding to moderate communication rates

still yield near-optimal allocations.

When the solution of Lemma 5.1 is positive, a closed-form expression exists:

Lemma 5.2. Assuming each b∗n in (5.7) is positive, it can be expressed as

b∗n =
αn

α̃
C +

αn

2
log

βn/αn(∏
j (βj/αj)

αj

)1/∑αi
.

Proof. The proof uses Lagrangian optimization.
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If Sensor n is allowed to vary the communication rate depending on the side

information Msi,n it receives, further gains can be enjoyed. This situation is natural

in chatting networks, where the side information is the low-rate messages passed

by neighboring sensors. Here, we introduce probabilistic cost allocation, yielding a

distortion–cost trade-off

D(C) = min∑
E[bn(Msi,n)]=C
bn(m)≥0

N∑

n=1

E
[
βn(Msi,n)2

−2bn(Msi,n)/αn
]
, (5.8)

where the expectation is taken with respect to Msi,n. Each link will have a cost allo-

cation bn(m) for every possible message m while satisfying an average cost constraint.

An analogous result to Lemma 5.1 can be derived; for the situation where the optimal

allocation is positive, it can again be expressed in closed form:

Lemma 5.3. Assume the side information Msi,n received at Sensor n is m ∈ Mn and

the cost per bit of the communication link may vary with m. Assuming each allocation

b∗n(m) in the solution to (5.8) is positive, it can be expressed as

b∗n(m) =
αn(m)

α̃
C +

αn(m)

2
log

βn(m)/αn(m)
∏

j

∏
l

(
(βj(l)/αj(l))

αj(l)/α̃
) ,

where α̃ =
∑

n

∑
m fMsi,n

(m)αn(m).

Here, we extended previous known rate allocation results [54, 161] to account

for heterogeneity in distributed networks. Although these results do not account

for chatting, we see in Section 5.5 that they become important tools in optimizing

performance in such networks.
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Chapter 6

Quantization for Relative Error

While the previous chapters explored quantizer performance in networks, the remain-

der of the thesis is focused on quantization of scalar sources for perceptually relevant

distortion measures. In particular, the emphasis is on relative error, which is defined

as

dre(x, x̂) =
(x− x̂)2

x2
. (6.1)

Relative error is rarely discussed in the source coding literature but is prominently

used in a variety of scientific and engineering contexts, such as coding of speech.

The theoretical results of this chapter will then provide the foundation for applying

Bayesian quantization theory to understand psychophysical laws for human percep-

tion in Chapter 7.

Although we use techniques developed for DFSQ, the motivation of this work is

perceptual coding, which also inspired fundamental results on vector quantization

for nondifference distortion measures. We begin with discussion on the usefulness of

the new theory in Section 6.1 and then describe the main results in Section 6.2. We

provide experimental validation in Section 6.3 and generalize the results in Section 6.4.

We conclude with some applications that can benefit from this analysis in Section 6.5.

Portions of this work has been published in [173].
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6.1 Motivation

In this chapter, we extend methods developed in DFSQ theory to optimize quan-

tizers for a subclass of nondifference distortion measures, with strong emphasis on

relative error. Though it may seen trivial to highlight relative error when general-

izations are known, we believe that neglect of this distortion measure in the source

coding community and its importance to many fields make it worthy of analysis.

For example, relative error is often used explicitly in the engineering literature for

numerical analysis and fidelity of floating-point representations (e.g. [90]). It is also

prominently featured in relating fidelity in many of the physical and social sciences.

Finally, it serves as a heuristic justification for using logarithmic quantization, which

is so ubiquitous in the compression and circuits literature that it is often simply

known as the companding quantizer [35, 54, 125]. Using a logarithmic compressor

function before quantization has been used a variety of speech coding standards to

reduce the dynamic range. Most prominently, it is used in international standards

on telephony compression under the names µ-law and A-law companding [75]. It was

also an important component of the SIGSALY secure speech system innovated by

Clark et al. during World War II.

Here, we formalize this justification by showing logarithmic companding is indeed

optimal if expected relative error is the measure of interest and the quantization is

entropy constrained. We also demonstrate that this does not hold in the fixed-rate

setting, but that optimal quantizers can be very similar depending on the source

distribution. Moreover, we present some new applications where relative error may

be useful in analyzing signal acquisition.

Relative error falls under a class of nondifference distortion measures called input-

weighted quadratic or Itakura–Saito [74], which has been studied using high-resolution

theory both in fixed-rate [97] and entropy-constrained [102] settings. Iterative meth-

ods exploiting the necessary nearest-neighbor and centroid conditions provide algo-

rithmic results on construction of optimal quantizers [18,98]. Of particular note, Gray
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and Karnin determined Lloyd-like conditions for the vector generalization of (6.1):

d(xN
1 , x̂

N
1 ) =

‖xN
1 − x̂N

1 ‖2
‖xN

1 ‖2
,

which they called “short term sample quantization-noise-to-signal ratio” [64].

6.2 Optimal Quantization Design

The primary goal of this section is to use DFSQ theory to find asymptotic distortion

results for a class of nondifference distortion measures that take the form

dnd(x, x̂) = n(x) (m(x)−m(x̂))2 ,

where m is Lipschitz continuous and twice differentiable, and n is non-negative,

bounded and piecewise smooth. This is related to Trushkin’s distortion measure,

where the distortion d(x, x̂) has the form ρ(x, x̂ − x) [180] and must satisfy certain

regularity conditions.

Using high-resolution analysis, we have the following theorem:

Theorem 6.1. Consider a memoryless source X with probability density fX that is

smooth on a compact subinterval of (0,∞) and zero elsewhere. The source is quantized

using a nonuniform scalar quantizer QK,λ constructed using the compander model and

specified by λ and K. Assuming the smoothness conditions of m and n are met, the

relative error between the output of the quantizer and the source satisfies

Dnd(K,λ) ≃ 1

12K2
E
[
γ2(X)/λ−2(X)

]
,

where γ(x) = |
√
n(x)m′(x)|.

Proof. This theorem can be proven by emulating the steps for the derivation of (2.4)

(see, e.g., [66]) with the new cost. Presented here is an informal and intuitive argu-

ment based on ideas used in DFSQ. The full rigorous proof follows the arguments in

Chapter 3.
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To compute expected cost for the quantized signal, we use the total expectation

theorem to separate the error terms for the quantization cells and use Taylor expansion

to rewrite the difference term as

m(x)−m(ck) = m′(ck)(x− ck) +O(|x− ck|2)

for x ∈ Pk. The residual terms are inconsequential in the limit of large K and the

distortion becomes

Dfmse(K,λ) =
K∑

k=1

E
[
n(X) (m(X)−m(ck))

2 | X ∈ Pk

]
P(X ∈ Pk)

(a)≈
K∑

k=1

E
[
n(X) (m′(ck)(X − ck))

2 | X ∈ Pk

]
P(X ∈ Pk)

(b)≈
K∑

k=1

E
[
n(ck) (m

′(ck)(X − ck))
2 | X ∈ Pk

]
P(X ∈ Pk)

(c)≈ 1

12

K∑

k=1

(√
n(ck)m

′(ck)

Kλ(ck)

)2

P(X ∈ Pk)

(d)≈ 1

12K2
E
[
γ2(X)/λ2(X)

]
,

where (a) follows from Taylor expansion; (b) holds when K is large and n is bounded

and smooth; (c) uses the high-resolution approximation of length(Pi) ≈ (Kλ(ci))
−1;

and (d) follows from setting γ(x) = |
√
n(x)m′(x)| and using the standard high-

resolution technique of approximating the expectation using a Riemann sum.

We now consider expected relative error from scalar quantization, which takes the

form

Dere(K,λ) = E

[ |X −QK,λ(X)|2
X2

]
. (6.2)

Relative error corresponds to the squared error scaled by the squared magnitude of the

input, making the result invariant to scale. First, we find the distortion performance

of a quantizer QK,λ is now simple using Theorem 6.1.

Corollary 6.1. Consider a memoryless source X with probability density fX that
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is smooth on a compact subinterval of (0,∞) and zero elsewhere. The source is

quantized using a nonuniform scalar quantizer constructed using the compander model

and specified by λ and K. The relative error between the output of the quantizer and

the source satisfies

Dere(K,λ) ≃ 1

12K2
E
[
X−2λ−2(X)

]
.

Proof. For relative error, m(x) = x and n(x) = x−2. As a result, γ(x) = 1/x,

which can be combined with Theorem 6.1 to yield the result. Moreover, since this

expression matches (2.14), we can easily find the optimal point densities using the

recipes prescribed in Section 2.3.

The restriction to memoryless random variables is unnecessary if the quantizer is

scalar.

Corollary 6.2. The result of Corollary 6.1 applies also for stationary discrete-time

random processes with distribution fX . If intersample preprocessing is not allowed,

the best scalar quantizer for a stationary random process is the same as if the source

was memoryless and had the same marginal density.

With an understanding of the distortion performance with respect to K, we can

now consider the source coding problem with scalar quantizers.

Corollary 6.3. For a given source probability density fX with support contained in

[a, b] with 0 < a < b < ∞, the optimal point density for fixed-rate quantization is

λ∗
ere,fr(x) =

x−2/3f
1/3
X (x)

∫ b

a
t−2/3f

1/3
X (t) dt

, if x ∈ [a, b]; and 0 otherwise.

Corollary 6.4. For a given source probability density fX with support contained in

[a, b] with 0 < a < b < ∞, the optimal point density for variable-rate quantization is

λ∗
ere,ec(x) =

1/x
∫ b

a
1/t dt

, if x ∈ [a, b]; and 0 otherwise.

The entropy-constrained case is particularly interesting because the equivalent

compander is c(x) = ln(x), meaning the codewords are uniform on a logarithmic
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scale over the support of the source. As for the MSE-optimized quantizer, λ∗
ere,ec(x)

does not depend on the source distribution except in that it spans the same support.

In general, the fixed-rate quantizer will not be logarithmic except when fX(x) ∝ 1/x

over the support.

6.3 Numerical Results

As expected, if the true cost is ERE, using λ∗
ere is better than λ∗

mse. In fact, the

improvements can be substantial if the source has support that spans several orders

of magnitude. However, the measure is ill-posed if the support includes zero, so we

currently restrict our attention to sources that take strictly positive values. We loosen

this restriction in Section 6.4.

For example, consider X uniformly distributed on [a, b] for 0 < a < b < ∞.

Using (2.7), the fixed-rate quantizer designed for MSE is asymptotically

λ∗
mse,fr(x) = 1/(b− a), if x ∈ [a, b]; and 0 otherwise.

Using Corollary 6.3, the fixed-rate quantizer designed for relative error is asymptoti-

cally

λ∗
ere,fr(x) = x−2/3/3(b1/3 − a1/3), if x ∈ [a, b]; and 0 otherwise.

Applying Corollary 6.1 to both point densities then yields the performance. In par-

ticular, the best relative error for the uniform distribution is

D∗
ere,fr(R) ≃ 27

12
· b

1/3 − a1/3

b− a
2−2R.

Letting (a, b) = (1, 10), the optimal relative-error quantizer yields a 2.4 dB improve-

ment over the MSE quantizer. Meanwhile, (a, b) = (1, 1000) leads to a performance

improvement of 17 dB. We can see this can be arbitrarily large depending on the

support of X.
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x
1 1000

Uniform

ERE−FR

ERE−EC

Figure 6-1: Codebooks for fixed-rate and variable-rate quantizers optimized for rela-
tive error using a source uniformly distributed on [1, 1000], as well as for a uniform
quantizer, which would be optimal if the cost was MSE. The relative-error quantizers
have finer quantization for smaller magnitude since the scaled error will be greater.
The two variable-rate quantizers only depend on the support of the source, not its
distribution.

In the entropy-constrained case, quantizers optimized for both MSE and ERE

only depend on the support of the source, and the codewords are uniformly placed

on linear and logarithmic scales respectively. Again, we can find the distortion using

Corollary 6.1, with the best possible performance for this source being

D∗
ere,ec(R) ≃ (b− a)2

12
2−2(R−C),

where C = 1/ ln(2) − (b log2 b − a log2 a)/(b− a). Letting a = 1 and b = 10 or 1000,

using λ∗
ere,ec(x) will yield an additional performance gain of 1.1 and 4.3 dB respectively

over using λ∗
ere,fr(x). These gains are for any rate since all quantizers considered have

the same 2−2R decay.

Figure 6-1 shows how the codebooks of the respective types of quantization differ

and Figure 6-2 demonstrates the performance trends as the length of the support

changes.

6.4 Generalizing ERE

One major limitation of expected relative error is that it is not well-defined when

the support of fX includes zero because the error can grow without bound when

X is very small. To combat this problem, we introduce generalized expected relative

error (gERE) as a way to balance worst-case and expected relative error. Generalized
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Figure 6-2: Performance results of the fixed- and variable-rate quantizers with a
uniform source X ∼ U(1, b). The plots provide trends in terms of (a) relative error in
dB for R = 6; and (b) performance gain over the uniform quantizer. The performance
gain does not depend on rate.

expected relative error, parametrized by ε, is defined as

Dgere(K,λ, ε) = E

[ |X −QK,λ(X)|2
X2 + ε

]
. (6.3)

Using the definition of γ in Theorem 6.1, we can find the distortion–rate perfor-

mance of a scalar quantizer:

Proposition 6.1. For a memoryless source X with probability density fX that is

smooth on a compact subinterval of (0,∞) and zero elsewhere, the gERE distortion

from applying a companding quantizer QK,λ satisfies

Dgere(K,λ, ε) ≃ 1

12K2
E
[
λ−2(X)/(X2 + ε)

]
.

The functional sensitivity profile is

γgere(x, ε) = |
√
n(x, ε)m′(x)| = 1√

x2 + ε
.

With γgere(x, ε), we can find the asymptotically optimal point densities and the

corresponding distortions. An interesting result arises for entropy-constrained quan-
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ε = 0.001

ε = 0.01

ε = 0.1

Figure 6-3: Codebooks for variable-rate quantization optimized for generalized rel-
ative error when the source has support on [−1, 1].

tization, where λ∗
gere,ec(x, ε) ∝ γgere(x, ε) yields

c∗gere(x, ε) ∝ sinh−1(x/
√
ε).

The effect of ε is demonstrated in Figure 6-3.

We may also generalize the squared error to

Drere(K,λ, r) = E

[ |X −QK,λ(X)|r
Xr

]
, (6.4)

defined as the rth-power expected relative error (rERE).

Proposition 6.2. For a memoryless source X with probability density fX that is

smooth on a compact subinterval of (0,∞) and zero elsewhere, the rERE distortion

from applying a companding quantizer QK,λ satisfies

Drere(K,λ, r) ≃ 1

(r + 1)2rKr
E[X−rλ−r(X)].

This result suggests that when entropy coding is allowed, the optimal compressor

function is logarithmic regardless of r.

6.5 Applications of ERE

We now discuss some applications where the relative error measure may lead to bet-

ter performance results. In the quantization literature, relative error is usually a

justification for using logarithmic companding in perceptual coding. In this work,
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we formalize this intuition and show logarithmic companding is indeed optimal for

entropy-constrained quantization using the expected relative error fidelity criterion.

We also find that this is not necessarily true for fixed-rate quantization, but the

optimal quantizer may have a mapping that is similar depending on the source distri-

bution. In practice, certain parameters for µ-law and A-law companding perform well

for speech, and it may be of interest to compare these quantizers to ones optimized

for relative error under a realistic speech prior.

Beyond perceptual coding, ERE may have broader implications in biological sys-

tems. As a precursor to the fields of psychology and neuroscience, Ernst Weber and

Gustav Fechner at different times argued that human perception is logarithmically

proportional to many physical stimuli. Examples may be found in touch, vision [166],

hearing [124], and numerical cognition [29]. However, the Weber–Fechner law is de-

rived using a differential equation for which there is little neuroscientific evidence.

An alternative approach to understanding this phenomenon is to model it as a data

acquisition and compression problem. In the next chapter, we tackle this relationship

in greater detail.

There are also many engineering applications that perform signal acquisition and

may benefit for considering ERE when gain control may be difficult to perform and the

signal can have large variations. An example of this is wireless communications with

fading channels [181]. If the channel gain is known, the distortion due to quantization

can be greatly reduced if the gain is inverted before the ADC. However, when channel

state information is not known, designing the quantizer using a relative error metric

can yield better results than using a quantizer optimized for squared error.
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Chapter 7

Understanding Psychophysical

Scales

Scientific inquiries on quantitative relationships between external stimuli and human

perception exist under the umbrella of psychophysics [55]. These concepts then mo-

tivate lossy compression algorithms that have enormous engineering impact. The

results of Chapter 6 and previous work on perceptual coding [97,102] provide a theo-

retical foundation for practical algorithms with respect to distortion measures which

mimic human perception [78]. In this chapter, we attempt to close the loop by us-

ing source coding to develop falsifiable hypotheses on why psychophysical scales are

shaped as such. Specifically, we posit two lossy compression models that argue exper-

imental observations in perception are consistent with the sensory being optimal for

information acquisition. We begin by motivating the work in Section 7.1. We then

introduce two models for human perception in Sections 7.2 and 7.3. To validate the

model, we present several theoretical and empirical examples in Section 7.4 and end

with a discussion in Section 7.5.

Portions of this work has been published in [177] and [185]. Recently, there has

been some follow-up work in the neuroscientific community [144].
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7.1 Motivation

Psychophysical scales relate stimulus intensity to perceptual intensity and are cen-

tral to understanding how the external world is internally represented. For example,

the logarithmic scale described by the Weber–Fechner law is consistent with obser-

vations in audition, vision, haptics and numerosity [29, 40, 124, 166]. Alternatives to

the Weber–Fechner scaling have also been proposed, e.g. a power law [46, 169, 170].

Although there is some debate over the validity of various psychophysical laws for

different perceptual modalities [93], many researchers suggest the psychophysical pre-

dictions of these models are essentially equivalent [29, 108].

A psychophysical scale is described by an increasing function C such that P =

C(S), where S and P are random variables corresponding to stimulus and perceptual

intensities respectively. The Weber–Fechner law specifies C as P ∝ ln(S/s0), where

s0 is the threshold below which a stimulus is not perceived (making P a nonnegative

quantity). Thus under the Weber–Fechner law, a multiplicative increase in stimulus

intensity leads to an additive increase in perceived intensity.

Several principles have been advanced to explain psychophysical scales, but these

are formulated purely at the implementational or algorithmic levels [114] without con-

sideration of computational purpose. In particular, arguments based on the physical

chemistry of sensory receptors [22] and based on the informational properties of indi-

vidual neurons [108] also yielded the Weber–Fechner law, but these arguments did not

consider perceptual fidelity. On the other hand, Fechner solved a differential equa-

tion inspired by Weber’s ‘just noticeable difference’ (JND) experimental procedure,

yielding a logarithmic scale, but did not relate it to neurobiology [40].

Instead, we propose that psychophysical scales arise at the computational level

as optimizations under neurobiological constraints (at the implementational and al-

gorithmic levels). Two threads of theoretical work in neuroscience have emerged

that attempt to connect physical properties and constraints of the nervous system

to psychological and behavioral properties. The first argues that the physical sub-

strate of perception in the nervous system is algorithmically well-matched to the
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statistical properties of the natural environment [132] and that therefore operation

of the brain is probabilistically efficient, i.e. Bayes-optimal [45, 77, 89]. The second

thread argues that internally, brains have remarkable biophysical efficiency when per-

forming information and communication tasks [95] and therefore achieve information

theoretically-optimal signal transmission [15]. In both threads, design principles gov-

erning the nervous system are said to be similar to those in optimized electronic

information systems.

Building on these neurobiological insights and therefore adopting the view of

optimal information processing and transmission, this chapter provides a mathe-

matical framework for understanding psychophysical scales as Bayes-optimal and

information-theoretically optimal representations of time-sampled continuous-valued

stimuli. Specifically, for statistical distributions that correspond to natural stimuli,

the Weber–Fechner law and related scales minimize the expected relative error (ERE)

of representing the stimulus intensity under two models, each motivated by informa-

tional limitations. In the first model, each representation of a stimulus takes one of a

finite set of values which all have equal communication cost, commonly referred to as

fixed-rate quantization in this thesis. We also discuss an analog information system

that has asymptotically equivalent behavior. The second model extends the first by

allowing for compressed representations, i.e. elements of the set have varying commu-

nication cost, and may be more suitable when neural storage or communication has

high cost. This is known in the thesis as entropy-constrained quantization.

In measuring quantization error for stimuli that span orders of magnitude, we

have already argued in Chapter 6 that ERE, is a suitable measure of accuracy. In

this context, we define ERE as

Dere(K,C ′) = E

[
|S − Ŝ|2

S2

]
, (7.1)

where Ŝ is the perceived stimulus intensity given a true stimulus intensity S. As a

preamble to the current discussion, we have already seen that the compressor struc-

tures optimized for ERE often look logarithmic, and are exactly logarithmic when
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optimal coding after quantization.

Another quantization model was recently proposed to show that the spacing of

quantization cells are logarithmically spaced when minimizing minimizing worst-case

relative error [148]. This result is compelling because it does not assume finiteness

of representations or any probabilistic model. However, worst-case quantizers gen-

erally perform poorly because they do not leverage information about the stimulus

distribution and thus have lower information transmission rates. Moreover, while it

is intuitive that a worst-case relative error criterion yields a logarithmic scaling, we

will show that the logarithmic scaling arises in a Bayesian formulation only when

the stimulus distribution takes a certain form or when the quantized values are com-

pressed. Hence, the theory presented here is more biologically plausible and provides

meaningful insights regarding how the brain might exploit the distributions of natural

stimuli.

One may wonder if relative error, either expected or worst-case, has psychological

significance. Before making the worst-case assumption, Portugal and Svaiter moti-

vated their work by noting that relative error is prominent in numerical analysis and

physics, and hence has significant value in computations that may occur at a cognitive

level [148] . Meanwhile, [173] formalized the use of ERE for compression of audio and

video, benefiting from decades of psychophysical studies for the purpose of matching

data compression to perceptual processes in the brain [78]. Often, perception appears

to be sensitive to ratios between stimulus intensities rather than absolute stimulus

intensities—the outputs of many perceptual processes appear to be independent of

scale—hence relative error is the natural fidelity criterion. The quantization models

proposed here can be generalized to account for other distortion measures, and we will

briefly discuss how to experimentally test the validity of error criterion assumptions.
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7.2 A Bayes-Optimal Model for Limited Percep-

tion

We begin by formulating the first quantization model for perception. Like in earlier

work, we abstract away neural circuitry and underlying communication mechanisms

at the implementation level. By considering cognitive responses to stimuli, we show

that perception fits naturally into a quantization framework.

Recall the psychophysical scale is denoted P = C(S). Since perception lies on a

subjective scale, we normalize the minimal and maximal perceptual intensities to be

zero and one respectively without loss of generality. For natural stimuli, the space of S

is continuous. In most psychophysical studies, the space of P is assumed to have such

fine resolution that it can be approximated as continuous. However, assuming that

perception is limited, the brain only distinguishes a discrete set of levels. Abstractly,

this means that a range of P is mapped to a single representative point P̂ (Figure 7-1).

Although many (possibly probabilistic) mappings are possible, a uniform quantizer

has many desirable properties such as simplicity of design (set of thresholds) and

stability of output. We denote this discrete mapping QK,U , leading to P̂ = QK,U(P ),

with output space the set of percepts PK , {P̂} and K = |PK |. We call PK the

perception dictionary. Using the invertible function C, the equivalent representative

stimulus intensities are Ŝ = C−1(P̂ ).

Since the spacings between elements in the perception dictionary, called perceptual

uncertainty, are equidistant and fixed by K, the only flexibility in this model is C.

We have seen this construction before—it is precisely the companding model for

nonuniform quantization shown in Figure 2-1. Sticking to our previous notation, the

Bayesian optimization is

argmin
C(s)

Dere(K,C ′). (7.2)

For a given stimulus pdf fS, what choice of C minimizes the ERE between S and

Ŝ? How does the size of the set of P̂ affect this choice? Using the theory developed

previously, we can answer these questions precisely. In particular, we use the high-
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(a)

P

S

C(s)

(b)

Figure 7-1: (a) Block diagram of the quantization model for perception, which
is strongly influenced by the companding model (Figure 2-1). Stimulus intensity S
is transformed by a nonlinear scaling C, resulting in perceptual intensity P . Since
biological constraints limit perception, only a discrete set of K levels PK are distin-
guishable. The corresponding discrete stimulus set has elements Ŝ = C−1(P̂ ). (b)
The discrete mapping induced by quantization. On the vertical axis, quantization
reduces the real line to a discrete set of points (indicated by crosses) called the per-
ception dictionary. Because the scaling C is invertible, the quantization of perception
also induces quantization in the stimulus intensity on the horizontal axis (indicated
by circles). As a result of quantization, any two stimulus intensities in the gray region
are indistinguishable.
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resolution result in Corollary 6.3 to argue that as K becomes large for a random

stimulus S bounded as 0 < s0 ≤ S ≤ s1 < ∞, the relationship between C and fS

satisfies
dC(s)

ds
∝ s−2/3f

1/3
S (s) for s ∈ [s0, s1], (7.3)

with constraints C(s0) = 0 and C(s1) = 1. Although (7.3) is an asymptotic results, we

can show that the derivative of C does not charge much with the size of K assuming

it is large enough.

Next, we address how the size of the perception dictionary affects ERE. If the set

{P̂} has K equally-spaced elements between zero and one, then

P̂k =
k − 1/2

K
, k ∈ [1 : K].

The equivalent stimulus representation is simply Ŝk = C−1(P̂k). As K increases,

so does the resolution of perception, leading to a more accurate approximation of

stimulus intensity and reducing the squared error factor in ERE. Using Corollary 6.1,

ERE falls at the rate of K2.

It turns out C is heavily dependent on fS and less dependent on K. Moreover, C

is also explicitly dependent on the error measure to be minimized, which is ERE in

this analysis. Indeed, the optimal scale C(s), stimulus pdf fS(s), and error measure

are intertwined under quantization theory such that knowledge of any two can predict

the third.

That the psychophysical scale C adapts to the statistical properties of the stim-

ulus pdf fS implies that C should change when fS changes. Such plasticity would

allow individuals to adapt to long-term changes in their perceptual environment. For

example, this phenomenon has been observed for perception of sound intensity in

individuals after long-term use of auditory prostheses that modify fS [143,179].

We briefly mention an analog model for limited perception; a more formal discus-

sion is given in Appendix 7.A. This analog model leads to the same expression for the

psychophysical scale that minimizes ERE, making the conclusions we draw from (7.3)

not contingent on discretization in the encoding of stimuli. Suppose that rather than
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Figure 7-2: Block diagram of an analog model for perception that provides equivalent
asymptotic results as the model in Figure 7-1. Stimulus intensity S is transformed by
a nonlinear scaling C, resulting in perceptual intensity P . Biological constraints are
modeled by limiting the range of C to [0, 1] and by including additive noise η that is
independent of S.

quantization, zero-mean additive noise corrupts P , leading to P̂ (Figure 7-2). If this

additive noise is independent of the stimulus intensity and has variance of the same

order as the perceptual uncertainty, then the Bayes-optimal C has the same form

as (7.3) in the limit of high signal-to-noise ratio (SNR). Note that the notion of SNR

here is at the cognitive level, which may be high even when the SNRs of single neurons

are substantially lower.

7.3 A Bayes-Optimal Model for Limited Percep-

tion with Coding

We now formulate the second quantization model, motivated by stimuli for which psy-

chophysical scales are not affected by sensing mechanisms or communication channels

from sensory systems. One such example is numerosity, which has been shown to fol-

low the Weber–Fechner law [29,128]; some recent studies of Amazonian tribes suggest

that our instinctive number line is logarithmic [30, 145]. As an abstract sensation,

numerosity is of particular interest since it does not suffer from physical limitations

like resolution or saturation.1 Note that small numbers may be qualitatively different

in how they are perceived [96]. Since numbers can be observed directly with very

fine precision, why should numerical perception suffer from the indistinguishability

1We must be careful to distinguish the perception of distinct objects and the vocalization of
these quantities. This difference has been studied by Izard and Dehaene [76], who employ a simple
quantization model.
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Figure 7-3: Block diagram of the quantization model with coding. An entropy coder
(EC) is used to code quantized values P̂ and is then stored into memory. Later, the
perception is fetched from memory, decoded using an entropy decoder (ED). The EC
and ED steps include no noise, and no information is lost in these steps.

of quantization?

The reason may be coding. In the previous model, the quantized values were

not represented more efficiently through coding. However, representing more likely

values in the perception dictionary with compact representations leads to reduced

overall information transmission or storage at the expense of increased computa-

tional complexity and delay. Entropy gives the fundamental limits of compressibility

through coding [27]. Efficient entropy-based codes have been suggested for transmis-

sion of sensory information [37, 48], for short-term memory [16], and in the context

of learning [8], where compressed representations may help meet memory capacity

constraints [186].

In variable-rate quantization, values from the discrete set P (or equivalently, the

set {Ŝ}) are entropy-coded based on the probabilities of occurrence of the entries in

the set (Figure 7-3). As the result of coding, the best choice of C is no longer the

same as in the previous model. The Bayesian optimization is now

argmin
C(s)

Dere(K,C ′) such that H(Ŝ) < R, (7.4)

where R is the communication/storage rate and H is the entropy function. For a
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random stimulus S bounded as 0 < s0 ≤ S ≤ s1 < ∞, the optimal scale for ERE has

the property
dC(s)

ds
∝ 1/s for s ∈ [s0, s1], (7.5)

with additional normalization constraints C(s0) = 0 and C(s1) = 1 (see Corol-

lary 6.4). Unlike in (7.3), there is no dependence on the pdf fS in (7.5). The scaling

that satisfies the above conditions is

C(s) =
ln(s/s0)

ln(s1/s0)
if s ∈ [s0, s1], (7.6)

for any pdf fS. In fact, the scale is only dependent on the endpoint values of the

distribution. For unbounded random variables, an analogous result holds under mild

conditions on the decay of the tail of the pdf. Hence, quantization followed by efficient

coding leads naturally to the logarithmic relationship in the Weber–Fechner law. This

holds for all well-behaved stimulus distributions and the resolution can be tuned easily

by the level of compression.

We suggest that coding is an essential part of perceiving numbers, which need not

have distributions of a particular form. Furthermore, since the optimal psychophysical

scales for entropy-coded representations do not depend on the statistical properties

of the source, there is task-independence and constancy [48].

7.4 Examples

In this section, we connect the proposed Bayesian quantization models to the Weber–

Fechner law. This relationship is clear in the second model since the logarithmic scale

is optimal for all stimulus distributions, as shown in (7.6). However, in the first model,

the optimized scale depends explicitly on the stimulus distribution through (7.3).

It is not obvious that the Weber–Fechner law will be realized using the first model.

However, the sensations corresponding to many natural phenomena have statistical

distributions that obey a power law over a range of intensities that are of behavioral

interest [87,110,158,209], and we will demonstrate that such distributions do yield a
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logarithmic scale. As a case study, we present empirical evidence that the computed

scalings of natural sounds are well approximated by the Weber–Fechner law.

7.4.1 Power-Law Stimulus Distributions

We begin by developing psychophysical scales for the Pareto distribution. Given

parameters α > 0 and s0 > 0, the Pareto pdf is

fS(s) =
α

s0

(
s

s0

)−α−1

if s ≥ s0; and 0 otherwise, (7.7)

where s0 corresponds to the lowest perceivable stimulus intensity. The pdf decays

with an exponent of −(α + 1) and intensity is not upper-bounded, i.e. there is no

upper threshold to perception.

Using (7.3), the derivative of C is

dC(s)

ds
=

α

3s0

(
s

s0

)−α/3−1

if s ≥ s0; and 0 otherwise.

The psychophysical scale that results from the above expression and satisfies the

boundary conditions is

C(s) = 1−
(

s

s0

)−α/3

if s ≥ s0 . (7.8)

In general, the psychophysical scales generated by (7.8) are concave on a loga-

rithmic scale and hence are inconsistent with the Weber–Fechner law. However, a

bounded pdf is more practical because there are usually lower and upper limits to

what is perceivable. With parameters α, s0 and s1, the bounded power-law distribu-

tion is

fS(s) ∝ s−α−1 if s ∈ [s0, s1]; and 0 otherwise,

normalized to have unit integral. Here, s0 and s1 are the lower and upper thresholds

of perception, yielding a more psychophysically reasonable model. Note that α is no

longer restricted to be positive as opposed to in (7.7). Repeating the same analysis

137



as above, the derivative of C is

dC(s)

ds
∝ s−α/3−1 if s ∈ [s0, s1]; and 0 otherwise. (7.9)

For the special case of α = 0, or equivalently an exponent of −1 in the decay of the

pdf, (7.9) simplifies to

C(s) =
ln(s/s0)

ln(s1/s0)
if s ∈ [s0, s1],

which is precisely the Weber–Fechner law. For other choices of α, the scaling is

C(s) =
s−α/3 − s

−α/3
0

s
−α/3
1 − s

−α/3
0

if s ∈ [s0, s1] ,

providing a generalization to logarithmic scaling accounting for a large class of scales.

Figure 7-4 demonstrates how three choices of α affect the Bayes-optimal C.

Thus, there is an intimate match between the Weber–Fechner law and a bounded

power-law distribution. Indeed, such a distribution with α = 0 matches precisely with

logarithmic scaling. However, other exponents yield minor deviations which may also

be observed experimentally.

7.4.2 Natural Sounds

The above results predict experimentally falsifiable psychophysical scales based on

power-law stimulus distributions. In general, while natural stimuli may not be easily

identified as exactly power-law distributed, many are approximately power-law over

relevant ranges. One such example is the intensity of speech, which is often modeled

as Gaussian-distributed on a dB scale (lognormal). Indeed, lognormal and power-

law distributions are often empirically indistinguishable [122]. We test datasets of

animal vocalizations and human speech and find the optimal psychophysical scale

to be well-approximated by a logarithmic relationship where the intensity is most

probable.
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Figure 7-4: Sample scaling C for bounded power-law densities with three choices
for α. Perception intensity on the vertical axis is normalized to lie between 0 and 1,
corresponding to the smallest and largest perceivable stimulus intensities, respectively.
Logarithmic scaling results when α = 0.

Animal vocalizations and human speech comprise complex harmonic and transient

components that convey behaviorally-relevant meaning. For example, many animals

vocalize to convey information related to mating rituals, predator warnings, or the

locations of food sources. The individuals that best process these sounds may be

those that are most likely to survive and reproduce. In this way, the auditory system

may have evolved to optimally process natural sounds like vocalizations in order to

efficiently extract relevant acoustic cues. One such cue is the perceived intensity of a

sound, or its loudness. In particular, the normal human ear perceives sound intensities

with roughly 1 dB JND across nearly the entire range of perceivable levels [39],

with only slight variation near the extremes, which is consistent with the logarithmic

relationship in the Weber–Fechner law [44,187].

To test our model, we employ two datasets comprising animal vocalizations and

human speech sounds. The animal vocalization data (DS1) includes 55 rain forest

mammals (33 minutes) taken from commercially available CDs [36]. The human

speech data (DS2) corresponds to a male speaker reciting a corpus of 280 English
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Figure 7-5: Empirical distribution of stimulus intensities (blue dashed line, left axis)
and corresponding psychophysical scaling function, based on (7.3) (green solid line,
right axis) for (a) mammalian vocalizations (DS1) and (b) human speech (DS2). The
near linearity of the scaling functions in log scale indicates an approximation to the
Weber–Fechner law.

sentences (8 minutes) [191].

Silence intervals, defined as intervals of 50 ms in which the signal did not exceed

10% of the maximum magnitude of the recording, were removed from the recordings.

The resulting sound files were broken into successive intervals of 100 ms, and the

root mean square (rms) was computed for each interval. The empirical sound level

distributions of the rms values were used to compute C(s).

For both DS1 and DS2, the predicted psychophysical scales are well-approximated

by a straight line where the intensity is most probable (Figure 7-5); since the hor-

izontal axis is logarithmic, this indicates a logarithmic relationship. Moreover, the

deviation from a logarithmic scaling is most prominent at the extremes of the stimulus

pdf, where experimental studies also demonstrate breakdown of the Weber–Fechner

law [4, 118].

We also varied several parameters that affect the empirical distribution. These

parameters included the thresholds and interval lengths used to calculate the silence

intervals, lengths of the interval over which the rms values were computed, and his-

togram bin widths. To account for gain control mechanisms, we also used an rms gain

parameter to horizontally shift the empirical distribution. We found that the scales

induced by these parameter changes did not vary greatly and had similar goodness-
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Table 7.1: Goodness-of-fit of linear regression of C(s) over the “most likely” range
of the empirical distribution using DS1. We vary the parameters that affect the
empirical distribution and find that the model is robust to these changes. Using the
parameters set in the left columns of the table, a linear regression is performed over
a range that covers the desired percentage of the empirical pdf around the median
and the goodness-of-fit (R2) value is found. We see that the R2 is close to one,
especially where the stimulus intensity is most probable. As a point of comparison on
the shape of the curves, we also present R2 results for the erf function, a well-known
sigmoid function that is closely related to the Gaussian distribution function. The erf
is close to linear around its median but becomes more nonlinear as more of its range
is considered, much like the empirical C(s). The scaling law is more linear than the
erf in all regimes.

Parameters Distribution Coverage

Silence Silence RMS RMS Histogram
Threshold Length Length Gain Bins 50% 90% 100%

0.1 50 ms 100 ms 1 100 0.9998 0.9988 0.9635
0.01 50 ms 100 ms 1 100 0.9991 0.9921 0.9744
0.3 50 ms 100 ms 1 100 0.9995 0.9970 0.9658
0.1 25 ms 100 ms 1 100 0.9996 0.9988 0.9699
0.1 100 ms 100 ms 1 100 0.9998 0.9992 0.9641
0.1 50 ms 50 ms 1 100 0.9996 0.9987 0.9569
0.1 50 ms 200 ms 1 100 0.9999 0.9989 0.9629
0.1 50 ms 100 ms 103 100 0.9998 0.9988 0.9635
0.1 50 ms 100 ms 10−3 100 0.9998 0.9988 0.9635
0.1 50 ms 100 ms 1 250 0.9998 0.9988 0.9590
0.1 50 ms 100 ms 1 1000 0.9997 0.9987 0.9438

Erf function 0.9960 0.9867 0.9114

of-fit characteristics on a linear regression (Table 7.1).

To summarize, sound intensity perception scales determined from animal vocaliza-

tion data and our optimality principles are consistent with the basic Weber–Fechner

law.

7.5 Discussion

Through quantization frameworks for perception, we have determined that scaling

laws observed in psychophysical studies are Bayes-optimal for expected relative error.

Sensations that are measured by sensory mechanisms in the periphery and ones that
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are abstract are both considered. Although they have different costs, both situa-

tions have optimized scalings that include the Weber–Fechner law. Moreover, other

scaling laws may be consistent under the first model, and this theory provides an

experimentally testable hypothesis for them.

7.5.1 Key Assumptions

There are several assumptions that anchor this framework. The first and most fun-

damental assumption is that the acquisition of information in the stimulus is Bayes-

optimal at a computational level [114]. This is well-motivated since numerous studies

suggest that there exist neural mechanisms for adaptation to the stimulus distribution

as well as numerous feedback and feedforward channels [94, 191].

The second assumption is that perception is algorithmically discrete and the map-

ping is simply a deterministic function of the stimulus intensity, as illustrated in Fig-

ure 1. This framework is inspired by engineering systems and information-theoretic

results on Bayes-optimal data acquisition. Although it is debatable whether this type

of discretization occurs in individual neurons, quantization is plausible at the cog-

nitive level. Moreover, we have described how equivalent asymptotic scalings occur

with an analog coding scheme. In the context of this framework, the adaptation

mechanisms discussed above better estimate the distribution shape and thresholds to

precisely predict C(s).

A third assumption is that the accuracy measure to minimize is ERE. We have

motivated this choice through related research in numerical computation and percep-

tual coding, as well as the general perceptual principle of scale-invariance. However,

ERE may be too simple to fully capture the goals of information acquisition and

may provide only a crude first-order approximation. Using Proposition 6.2, we see

that the psychophysical implications of this framework are robust within a large class

of error criteria. More generally, the true cost may be a combination of several er-

ror measures weighted differently depending on behavioral context. In this case, our

framework is still useful since the error measure, stimulus distribution and optimizing

psychophysical scale are interrelated such that the observation of any two predicts
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the third. Therefore one can predict the error measure optimized by the system using

the experimentally observed stimulus distribution and psychophysical scale.

Finally, although the analysis and optimality results presented apply to any stim-

ulus signal that is stationary in time (see Corollary 6.2), the scalar system model does

not exploit the memory or correlation in time of natural stimuli. Our system model

takes acquisition to be independent across intensity samples. Indeed, one could code

over blocks of samples or apply a causal filter to improve compression, which may

change the optimal choice of C(s) [66]. However, such coding will increase signal

acquisition delay. For external stimuli such as sound or vision, speed of perception

may be more important than improved compression. For this reason, the models

presented here are psychologically reasonable under latency constraints.

7.5.2 Applicability of Theory

We have show that the Weber–Fechner law arises as the Bayes-optimal mapping in

two quantization frameworks. In the first model, when stimulus intensity is simply

discretized, Weber–Fechner is intimately tied to stimulus distributions that decay as

power-law functions. In the second, when discrete percepts are coded, the Weber–

Fechner law becomes more general and is optimal for all statistical distributions.

These results are dependent on several assumptions which are well-supported by neu-

roscientific and information scientific principles. This work points out at least three

psychophysical ideas: the importance of stimulus statistics in interpreting scaling

laws, the necessity of adaptation to stimulus distributions in neural circuitry, and the

possibility of information-theoretically optimal acquisition structures at a cognitive

level.

7.5.3 Future Directions

An interesting question is whether either of the two quantization models proposed

here can be applied to the stimulus class of the other. For example, can coding

occur for stimuli sensed by the periphery? Alternatively, many numerical quantities,
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such as salaries or populations have been proposed to approximately follow Pareto

distributions. Could numerosity scaling laws be logarithmic without the need for

coding? We feel affirmative answers to these questions are less plausible than what

is proposed here but they remain topics of worthwhile exploration.

We have argued that the framework provides falsifiable hypotheses for understand-

ing psychophysical laws. It is therefore interesting to consider the scenarios where the

Weber–Fechner law does not hold. One such scenario is vision, where the perception

of contrast follows the Weber–Fechner law for high luminance, but that relationship

breaks down in low light [142, 157]. It is of interest to study if the theory presented

here can predict this breakdown and match the observed scaling for night vision.

7.A Mathematical Methods for Analog Model

In Section 7.2, we introduced a quantization model (QM) and determined the psy-

chophysical scale that minimizes ERE for a given stimulus distribution. Here, we

summarize an analog model (AM) based on suppression of additive noise and relate

the optimization of the scale in the two models. The proofs for the results in QM have

already been discussed in the thesis. We will focus solely on AM here ( Figure 7-2).

Consider the error arising from AM when η is bounded noise independent of

the stimulus and has variance σ2(η). The noisy stimulus intensities take the form

Ŝ = C−1(C(S) + η). Because C(s) is continuous and strictly monotonic (hence

differentiable), we use Taylor’s theorem to describe Ŝ through a linear approximation.

Taylor’s theorem states a function g(x) that is n+1 times continuously differentiable

on a closed interval [a, x] takes the form

g(x) = g(a) +

{
n∑

k=1

g(k)(a)

k!
(x− a)k

}
+Rn(x, a),

with a Taylor remainder term

Rn(x, a) =
g(n+1)(ξ)

(n+ 1)!
(x− a)n+1
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for some ξ ∈ [a, x]. Therefore, Ŝ ≈ W (C(S)) + W ′(C(S))η for small η, where

W (s) = C−1(s). By the definition of W , W (C(s)) = s and W ′(C(s)) = 1/C ′(s), so

we can simplify the above equation to Ŝ ≈ S + η/λ(S).

Using (6.2) while noting the expectation is taken with respect to both S and η,

the ERE in the AM is

ERE ≈ E[S−2λ−2(S)] σ2(η),

with approximation error corresponding to the first-order Taylor remainder term.

Since the remainder decays as η2 while the ERE decays as η, we can be more math-

ematically precise about the behavior of the ERE.

Theorem 7.1. Consider a stimulus intensity S following a stationary random process

with probability density fS that is smooth and positive on R (or a compact interval).

The intensity is scaled through function C and then perturbed by independent additive

noise η that is bounded and has variance σ2(η). The expected relative error between

the stimulus and its noisy version satisfies

lim
σ2(η)→0

ERE · σ2(η) = E[S−2λ−2(S)]. (7.10)

Noting that the right-hand sides of (7.10) and the distortion result in Corollary 6.1

match, the choice of point density λ that minimizes ERE is the same for both. Hence,

QM and AM have equivalent asymptotic psychophysical scales.
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Chapter 8

Conclusion

With the advent of effective distributed storage and cloud computing systems, along

with the proliferation of sensor networks, digital cameras and monitoring systems,

data has been growing at a fast rate. This changing paradigm leads to shifts in

the meaning of information in source coding contexts. Rather than consuming data

sequentially and entirely, like in a video stream, more applications desire fidelity in

statistics or other nonlinear low-dimensional mappings of the data. The information

is now application-defined and domain-specific. Moreover, as networks grow and the

nodes become diverse, ignorance to system parameters such as power consumption,

synchronicity and latency at the source coding layer can lead to extremely suboptimal

designs.

As the applications of distributed systems have multiplied and become more var-

ied, many techniques that have been previously successful in bounding the perfor-

mance of compression for point-to-point systems are no longer sufficient in analyzing

network problems. Not only do many such methods, e.g. Shannon theory, become

intractable quickly with the size and complexity of the network, but they can lead to

misleading design principles. Hence, there is an opportunity for new mathematical

frameworks and tools to understand information acquisition and compression in a

network.

The main contribution of this thesis is the study of compression taking advantage

of domain-specific knowledge, such as accounting for the functional demands of mod-
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ern systems so that knowledge of the overall goals can be pushed into the acquisition

block. One such framework is distributed functional scalar quantization (DFSQ),

which was introduced in Chapter 2. We extended the space of problems for which

DFSQ theory is meaningful in Chapter 3 and used the high-resolution asymptotic to

provide insight into the behavior of the system when sensors are allowed to collab-

orate in Chapter 5. We also studied Shannon-theoretic formulations of distributed

source coding in Chapter 4 and provided fundamental limits when a computation is

desired at the fusion center in the regime where the allowed distortion is small.

A secondary goal of the thesis was to use source coding theory to help explain

neuroscientific phenomena such as human perception. In Chapter 7, we borrowed

theory developed in Chapter 6 to understand psychophysical laws as being Bayes-

optimal for expected relative error under communication limitations in neural chan-

nels. Consequently, we argue that human perception is informationally efficient for

signal acquisition.

We believe this thesis has promoted several general ideas that can spur further

research:

1. The use of high-resolution quantization theory to study source coding problems

that better represents real-world systems and provide sharp and meaningful

performance guarantees that are analyzable.

2. The utility of intersensor collaboration to alleviate communication loads in a

network, taking advantage of heterogeneous channels that may exist.

3. The brain is optimal in a Bayesian sense, and can robustly exploit the distribu-

tions of stimuli to better acquire and process information.

Below, we highlight particular problems where investigations may yield important

contributions.

High-resolution quantization theory

Although high-resolution quantization theory (HRQT) has traditionally received less

attention from the source coding community than the large-blocklength asymptotic,

the needs of practical systems may lead to renewed interest. DFSQ is one promis-
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ing model to study networks using HRQT, but there still remains many interesting

problems to be considered. Of particular interest are generalization of existing re-

sults to vector quantizers or scalar quantizers with memory. We have discussed that

transform and predictive coding are predominant in applications and standards, but

folding in a functional aspect is nontrivial. Further extensions in this direction may

have high impact in applications where temporal correlation is strong, e.g. video or

speech. Another interesting network is the cascade network, where sensors pass infor-

mation to each other in serial. This setting was recently explored in [121], but more

general formulations are still unexplored.

Applying DFSQ to real-world systems

A goal of the thesis is to influence design of compression protocols for sensor networks.

We have highlighted the constructive nature of the results and fast convergence of

finite-rate quantizers to the high-resolution prediction. However, precise character-

ization of the suboptimality of the high-resolution estimate for finite codebook size

is still unknown. It is of great interest to understand the loss from companding de-

signs to what is achieved using iterative methods such as the Lloyd–Max algorithm.

Even if precise bounds may be difficult to develop, computational studies may still be

useful. One possible type of analysis is to start with quantizers proposed by HRQT

and quantifying how different the quantizers become after running Lloyd–Max. Ex-

tensions to the network setting can then be devised by combining the DFSQ results

with [43].

Another direction of future work is on the design of analog-to-digital converters

(ADCs) to incorporate companding directly. In practice, ADC design is primarily

focused on making the quantizer as linear as possible while getting the fastest sam-

pling rate possible. If the eventual goal of the application is nonuniform quantizers,

tunable ADCs may have high value. This is especially true in low-power sensors.
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Neuroscientific inquiry

In the thesis, we present a simple Bayesian model that is harmonious with psy-

chophysical behavior. This adds to the body of work that suggests that humans

brains are very effective at processing, communicating and acquiring information.

The relationship between neuroscience and information theory has a long and rich

history [13, 31, 81], but it is uncertain whether the theory is explanatory, especially

since ingredients such as long block lengths and maximum-likelihood estimation are

infeasible.1 We believe that quantization theory has the potential of being more use-

ful in neuroscience because its asymptotics are simpler to satisfy or approximate, and

because the regularity conditions it requires match real-world signals well.

1The danger of imposing mathematical beauty to problems where they may not exist was elo-
quently discussed by Shannon himself [163].
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