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Abstract—Choosing among alternatives is a basic decision
problem faced by people in all aspects of life, whether indi-
vidually or collectively. Results in cognitive science suggest that
people perform approximately Bayes-optimal decision making
but that cognitive limitations require the coarse categorization
of ensembles of problems rather than the application of optimal
decision rules on a problem-by-problem basis. These observations
motivate the development of a mathematical theory for Bayesian
hypothesis testing with quantized prior information.

This paper reviews recent results in minimum Bayes risk
quantizer design and its economic implications. In the context
of individual decision making, the theory explains differentials
in false alarm and missed detection error rates for majority
and minority subpopulations without appealing to a taste for
discrimination. In group decision making by majority vote,
quantizer design becomes a strategic form game. Nash equilibria
are guaranteed to exist but often are not Pareto optimal. The
analysis reveals precise senses in which a team of agents performs
best when it is diverse and shares common goals. Finally, the
implications of the theory for crowdsourcing are discussed.

I. INTRODUCTION

Decision making under risk is one of the most basic actions
taken by people, either individually or collectively. Decisions
include the choice of whether or not to make a job offer to an
applicant [1], [2], whether or not to accept a job offer [3], [4],
whether or not a software project is in good health [5], whether
or not a rule is being violated [6], and whether or not to enter a
contest. Such choice can be cast as mathematically equivalent
to detecting a signal in noise. Many economic analyses of
choice use the decision rule that maximizes expected utility,
the likelihood ratio test (LRT). The key parameter of the LRT
is the threshold. When an optimal strategy is employed, it is
a function of the prior probabilities of the choices as well as
the costs of various outcomes [7].

Note that LRTs are not only optimal detection rules and
convenient mathematically, but psychology experiments sug-
gest that human decision makers also employ them [8], [9].
Psychology experiments also suggest that humans are able
to use prior probabilities in decision rules when available in
natural formats [10].

If several decision problems with differing prior probabili-
ties are to be solved, then the optimal strategy is to also set
thresholds differently each time. Examples of such scenarios
include foul calls by sports referees and arrests by police offi-
cers, as each player or citizen has a different prior probability

of committing a foul or crime. Now consider a decision maker
or committee of decision makers that categorizes population
members according to prior probability, e.g. a police officer
using categories like law-abiding, delinquent, criminal, and
nefarious in the decision to arrest a citizen instead of using
the citizen’s precise individual prior probability of committing
a crime.

There are two motivations for considering decision mak-
ers who categorize according to prior probabilities: limited
cognitive ability and limited training, both forms of bounded
rationality. Using a different threshold for different decisions
puts much strain on a human decision maker; when decision
makers make decisions on members of a population, infor-
mation processing constraints lead to categorical and coarse
thinking [11]–[13]. If the prior probabilities are learned by
the decision maker from a finite number of noisy samples,
then categorization helps prevent the statistical phenomenon
of overfitting [14], which people try to avoid [15], [16].

In this summary paper, we review a model of decision
making under uncertainty that incorporates population catego-
rization (and consequently limited threshold precision), math-
ematized using quantization theory [17]. Further connections
to the literature and details on categorical decision making
by individuals are provided in [18], [19] and on categorical
decision making by groups/committees are provided in [20],
[21]. The discussion on crowdsourcing that appears at the end
of this paper does not appear elsewhere.

First we consider a single decision maker, aiming to un-
derstand the bias based on race, the so-called racial profiling
that has been observed in several decision-making scenarios
of the type described, including foul calls by National Bas-
ketball Association (NBA) referees, arrests for minor offences
by police, searches of stopped vehicles by police, and jury
decisions [6], [22]–[24]. Our model provides an explanation
that does not invoke invidious motive by the decision maker.
To reach this information-based explanation for discrimination,
rather than a taste-based, statistical, or implicit one [25]–[27],
we require a few ingredients in addition to limited precision
in the LRT threshold. These additional ingredients arise from
social structure [28] and social cognition [29]. The influence
of social structure on categorical decision making yields a
characterization of social welfare loss using a new concept
called the price of segregation.



Next we consider a committee of decision makers that
combine local decisions through majority vote [30], a form
of distributed detection [31]. Our aim is to determine proper-
ties of optimal groups of categorical decision makers. When
individual members of groups have different costs and benefits
for global actions [32], so-called preference heterogeneity [33],
both local decision making and local quantizer design become
strategic form games [34]. By determining Nash equilib-
rium strategies, we find that there is deviation from Pareto
optimality, and so optimal groups should have preference
homogeneity. For the case of identical costs and benefits,
the team-theoretic setting [35], [36], we further show that
limiting to identical quantizers among agents leads to loss
in performance. Diversity is beneficial. Thus decision making
teams with diversity of training but aligned objectives perform
better than other decision making groups.

Finally, we close with some comments on how coarse
thinking may affect crowdsourcing competitions, aiming to
explain the empirical fact that competitors typically expend
cumulative resources in excess of the cumulative prize purse
[37]–[39].

II. INDIVIDUAL DECISION MAKING

In this section, we develop a model of LRT decision making
in which the prior probabilities that go into the threshold are
optimally quantized. The model is further extended to have
separate optimal quantizers for different subpopulations of
objects.

A. Bayes Risk and Likelihood Ratio Test Detection Rule

Consider the signal detection scenario in which a decision
maker uses a noisy observation Y to determine whether an
object (e.g. player in the officiating context) is in state h0 or
state h1. State h0 corresponds to a null hypothesis such as
no foul committed, whereas h1 corresponds to an alternative
hypothesis such as foul committed. Noisy observations on
whether or not a foul was committed are modeled by the
likelihood functions fY |H(y|h0) and fY |H(y|h1). The object
has prior probability p0 of being in state h0 and p1 = 1− p0
of being in state h1, that is p0 = Pr[H = h0] and p1 =
Pr[H = h1]. In a population of objects, each object may
have a different prior probability. That is, different players
may have different prior propensities of committing a foul.
The population is modeled by a probability density function
fP0(p0) supported on the unit interval; this is a probability
distribution on probabilities.

The detection rule ĥ(y) of the decision maker is the follow-
ing LRT:

fY |H(y|h1)

fY |H(y|h0)

ĥ(y)=h1

R
ĥ(y)=h0

c10a

c01(1− a)
, (1)

where cij is the non-negative cost of deciding hj when the
true state is hi; we assume correct decisions incur no cost.
The parameter a weights the decision rule so as to allow the

incorporation of prior beliefs. There are two types of errors,
with the following probabilities:

pI
E = Pr[ĥ(Y ) = h1|H = h0],

pII
E = Pr[ĥ(Y ) = h0|H = h1].

The Bayes risk, the performance of the decision rule, may be
expressed in terms of those error probabilities as:

J(p0, a) = c10p0p
I
E(a) + c01(1− p0)p

II
E(a). (2)

If the parameter a is set so a = p0, then the decision rule (1)
is the Bayes optimal decision rule, i.e., it minimizes (2).

In (2), the dependence of the Bayes risk and error prob-
abilities on p0 and a has been explicitly noted. The error
probabilities depend on a through ĥ(·), given in (1).

B. Quantized Prior

The choice a = p0 in the LRT (1) is the fully rational one.
An essential piece of our model, however, is that the decision
maker is bounded to be a coarse thinker and must use the same
prior belief parameter a for different objects. Thus the decision
maker only has access to the object’s category label when
making decisions about that object. Categorization of objects
(in the prior probability space) is modeled as a quantizer for
the population distribution fP0(p0). A K-point quantizer of
fP0(p0) partitions the interval [0, 1] into K regions R1, R2,
. . . , RK . For each of these quantization regions Rk, there
is a representation point ak to which elements are mapped.
This value ak may be thought of as the prior probability for a
prototype member of the kth category. For regular quantizers,
the regions are subintervals R1 = [0, b1], R2 = (b1, b2], . . . ,
RK = (bK−1, 1] and the representation points ak are in Rk. A
quantizer is a nonlinear function qK(·) such that qK(p0) = ak
for p0 ∈ Rk.

When constrained, the decision maker uses the prior belief
parameter a = qK(p0) in the likelihood ratio test (1). There
are many different possible quantization functions or catego-
rizations of objects; following the notion of costly rationality
[40], qK(·) should be optimal in terms of decision-making
performance. We require that qK(·) (for fixed K) minimize
D = E[J(P0, qK(P0)) − J(P0, P0)], where the expectation
is with respect to fP0(p0). As such, the quantization fidelity
criterion is the difference between the quantized Bayes risk
and the optimal unquantized Bayes risk. This criterion is an
expectation of a novel quantization distortion function termed
Bayes risk error.

Definition 1. Let Bayes risk error d(p0, a) be the difference
between the Bayes risk functions J(p0, a) and J(p0, p0):

d(p0, a) = J(p0, a)− J(p0, p0). (3)

C. Optimal Categorization

In general the design of an optimal quantizer does not
have a closed-form solution. Nevertheless, nearest neighbor,
centroid, and zero probability of boundary conditions can be
developed for mean Bayes risk error (MBRE) minimizing
quantizer design; these lead to a Lloyd-Max algorithm to



design a locally optimal quantizer for fP0(p0) [18]. There are
also quantizer design algorithms for discrete-valued fP0(p0)
based on dynamic programming that find the globally optimal
solution [41, Section 4.2.3].

D. Separate Quantizers for Different Subpopulations

Now consider the situation where the decision maker must
deal with subpopulations that are distinguished according to
a socially observable part of identity like race [42]. For ease
of connection to empirical studies, we restrict to two groups
and use ‘black’ and ‘white’ to denote them. The rational
coarse-thinking decision maker should ignore the dimension
of race altogether and simply partition along the p0 dimension
[43, Theorem 8.4.2], but social cognition constraints [44]–[46]
prevent the decision maker from doing so.

Automaticity of racial categorization results in two quan-
tizers designed separately for the two populations. The total
quota on representation points, Kt, is split into some number
of points for whites and some number for blacks, denoted
Kt = Kw+Kb. The separate quantizers may then be denoted
qKw(·) and qKb

(·).
We can extend the definition of MBRE to two subpopula-

tions as:

D(2) = mw

mw+mb
E[J(P0, qKw(P0))] (4)

+ mb

mw+mb
E[J(P0, qKb

(P0))]− E[J(P0)],

where mw and mb are the number of whites and blacks
relevant to the decision maker in both social and economic
life (which are cognitively intertwined [47]). The goal is
to minimize this extended MBRE by finding the optimal
quantizers qKw

(·) and qKb
(·) and the optimal allocation of

representation points Kw and Kb.
The model we propose assumes that the two populations

are identical. Thus qKw(·) and qKb
(·) should be designed as

discussed in Section II-C. The problem reduces to the straight-
forward minimization of MBRE over all Kt − 1 possible
allocations of Kw and Kb. If mw is larger than mb, it is better
to allocate more representation points to whites whereas if mb

is larger than mw, it is better to allocate more representation
points to blacks.

In this section, we have proposed a Bayesian likelihood ratio
test that incorporates prior probability quantization to model
human decision making. The model has been further extended
for decision making on distinct racial populations through
separate quantization functions to incorporate social cognition
factors. The next section quantitatively and qualitatively shows
one implication of this model; further implications are given
in [19].

III. PRICE OF SEGREGATION

Due to social segregation and the racial isolation it in-
duces, there is greater intra-population interaction than inter-
population interaction. Whites interact more with whites
whereas blacks interact more with blacks.

In the mathematical model, one would expect the
mw/(mw + mb) of a white decision maker to be greater

than the mw/(mw + mb) of a black decision maker. Due
to optimal representation point allocations and the fact that
Bayes risk performance does not get worse when the number
of quantization levels K is increased [18], a white decision
maker would perform worse than a black decision maker when
dealing with blacks and a black decision maker would perform
worse than a white decision maker when dealing with whites,
judging quality by expected Bayes risk. Under appropriate
values of decision maker preferences, c01 and c10, the decision
making model generates the in-race bias or out-of-race bias
that has been observed empirically [6], [22]–[24].

Decision makers of different races exhibit different biases
because they have different Kw and Kb allocations due to
different mw/(mw + mb) ratios. This ratio is not the actual
fraction of whites whose actions are assessed by the decision
maker, but is determined in part by the decision maker’s
segregated social life. If decision makers of all races have a
bias that matches the true white fraction, then the phenomenon
of racial bias would actually achieve optimal social welfare.
Different decision-making biases by different decision makers,
however, cannot simultaneously be societally optimal.

Our model fixes limitations of human information process-
ing, automaticity of racial classification, and intertwining of
social and economic life. Social segregation causes mismatch
between social and economic lives and is therefore the root
cause of non-optimal racial bias. In analogy with notions of
welfare loss in economic theory, a price of segregation is
defined here as a way to measure the deleterious effect of
segregation.

Let πtrue be the fraction of whites in the economic decision-
making setting. A particular decision maker that leads a
segregated life, on the other hand, will have a white ratio
πseg = mw/(mw +mb). The MBRE, from the perspective of
society, under the true white fraction is

D(2)(πtrue) = πtrueE[J(P0, qKw(πtrue)(P0))]

+ (1− πtrue)E[J(P0, qKb(πtrue)(P0))]− E[J(P0, P0)]

whereas the MBRE, from the perspective of society, under the
segregated white fraction is

D(2)(πseg) = πtrueE[J(P0, qKw(πseg)(P0))]

+ (1− πtrue)E[J(P0, qKb(πseg)(P0))]− E[J(P0, P0)].

The difference between these two is the price of segregation:

Π = D(2)(πtrue)−D(2)(πseg). (5)

The price of segregation Π depends strongly on the discontinu-
ous, integer-valued Kw(·) function, and is also discontinuous.
The price of segregation is a non-decreasing function of the
level of segregation mismatch |πtrue − πseg|. An example of
the price of segregation for a particular society and several
different values of πtrue is shown in Figure 1. Notice that
if the level of mismatch is small, there may be no price of
segregation, similar to how entire regions in the probability
simplex have the same optimal Huffman code [48].
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Fig. 1. The price of segregation Π as a function of the level of segregation
mismatch πtrue − πseg for several values of πtrue. The distribution of the
prior probability is beta(5,2), the measurements are observed through additive
white Gaussian noise with unit signal to noise ratio, the Bayes costs are
c10 = c01 = 1, and Kt = 7.

The model predicts that greater homogeneity of social inter-
action among people would mitigate the price of segregation
by driving the πseg for all decision makers closer to πtrue.
This draws a connection to intergroup contact theory [49],
[50]. One branch of contact theory suggests that contact
reduces prejudice since it allows individuals the chance to
see previously unnoticed similarities and counter-stereotypic
characteristics and behaviors in one another [50], [51], a
conclusion similar to model predictions.

Unexpectedly, social interaction is not linear in the overall
ratio of subgroup populations [52], perhaps due to structural
reasons [28], so a policy directive to mitigate the price of
segregation would be difficult to formulate.

IV. GROUP DECISION MAKING

Section II developed a mathematical model of an individual
memory-constrained decision maker. Here we consider a group
of such decision makers, which make local decisions and com-
bine them using majority vote. The basic problem formulation
is depicted in Figure 2 for the case of three decision making
agents (assumed throughout this section).

A. Bayes Risk and Quantized Priors

For each i, Agent i (marked Di) observes Yi satisfying
likelihood function fYi|H and sends a local decision ĥi ∈
{h0, h1} to a fusion center. The observations are assumed
to be conditionally independent given H . A fusion center
determines ĥ ∈ {h0, h1} by majority rule.

Agent i has local error probabilities

pI
E,i = Pr(ĥi(Yi) = h1|H = h0), and

pII
E,i = Pr(ĥi(Yi) = h0|H = h1).

p
0 q

K
(1)

q
K
(2)

q
K
(3)

a
1

a
2

a
3

H

D
1

D
2

D
3

f
Y|H

f
Y|H

f
Y|H

ĥ
3

ĥ
2

ĥ
1

ĥ

Y
1

Y
2

Y
3

Fig. 2. A schematic diagram depicting the group decision making problem
(for three agents). The environment generates a Bernoulli signal H using prior
probability p0, which is quantized by three separate quantizers; the results ai
are used by local agents Di. Each agent also has access to H corrupted by
noise and all agents’ Bayes costs c

(i)
10 and c

(i)
01 . The fusion center determines

ĥ from the local decisions ĥi.

Since global errors occur exactly when the majority of agents
make local errors, global error probabilities can be expressed
in terms of the local error probabilities:

pI
E = Pr(Ĥ = h1|H = h0) (6)

= pI
E,1p

I
E,2 + pI

E,2p
I
E,3 + pI

E,3p
I
E,1 − 2pI

E,1p
I
E,2p

I
E,3,

pII
E = Pr(Ĥ = h0|H = h1) (7)

= pII
E,1p

II
E,2 + pII

E,2p
II
E,3 + pII

E,3p
II
E,1 − 2pII

E,1p
II
E,2p

II
E,3.

All error probabilities depend on p0 and on the ĥi(·), which
are all assumed to take the form of threshold tests with real-
valued thresholds.

When p0 is known, the goal of Agent i is to minimize the
expected value of the ith Bayes risk

J̃i = c
(i)
10 p0p

I
E + c

(i)
01 (1− p0)p

II
E , (8)

where c(i)10 and c
(i)
01 are the Bayes costs for Agent i. Through the

definitions of pI
E and pII

E , it is clear that J̃i is the conditional
mean of the Bayes cost given P0 = p0.

As depicted in Figure 2, Agent i quantizes p0 to ai =

q
(i)
K (p0) due to information-processing limitations. Thus,

Agent i makes decisions to minimize ith perceived Bayes risk

J̄i = c
(i)
10 aip

I
E + c

(i)
01 (1− ai)p

II
E . (9)

The decision threshold, and consequently pI
E,i and pII

E,i, of
each agent is determined based on {J̄i, i = 1, 2, 3}. However,
the true Bayes risk is J̃i, where pI

E and pII
E in (8) are affected

by the perceived Bayes risks. We define MBR for the quantizer
q
(i)
K of fP0(p0):

E[J̃i] =

∫ 1

0

[c
(i)
10 p0p

I
E(ai) + c

(i)
01 (1− p0)p

II
E(ai)]fP0(p0)dp0.

(10)
The MBR of an agent differs from that of other agents,
but depends on the quantizers of all agents. Thus designing
quantizers is a strategic form game. Later we will find Nash
equilibrium quantizer designs, but first we discuss a game-
theoretic formulation of decision-making itself.

In the sequel, assume that observation noise is additive white
Gaussian.



TABLE I
GAME I: DECISION RULES

• The set of players I = {1, 2, 3}.
• The set of available strategies Si = R, which is a set of possible

decision thresholds si for Agent i.
• The payoff function ui = −J̄i,∀i ∈ I, which is the negative

perceived Bayes risk.

TABLE II
GAME II: QUANTIZER FOR PRIORS

• The set of players I = {1, 2, 3}.
• The strategy of Agent i ∈ I is quantizer representation points and

cell boundaries si = (a1,i, . . . , aK,i, b1,i, . . . , bK−1,i).
• The payoff function of Agent i ∈ I is vi = −E[J̃i], the negative

mean Bayes risk.

B. Equilibrium Detection Rules

Agents have heterogeneous preferences, thereby restricting
collaboration. However game theory provides useful methods
to analyze agents’ decision-making strategies under compe-
tition [34]. It is straightforward to describe the decision-
making problem in strategic form, Game I, with players
I, strategies (Si)i∈I for choosing decision thresholds, and
payoffs (ui)i∈I [34]. Several properties can be proven [21];
proofs are omitted here.

Theorem 1. Dominant strategies do not exist in Game I.

In addition to the lack of existence of dominant strategies,
the only dominated strategies for any agent are si = ∞ and
si = −∞. Therefore, Game I is not solvable by iterative dom-
inance. Each agent’s decision rule depends on other agents’
rules. Thus, we consider Nash equilibrium strategies.

Theorem 2. A pure Nash equilibrium always exists in Game I.

As detailed in [21], a Nash equilibrium decision-making
strategy for each agent can be computed directly. Due to
conflict, however, a computed Nash equilibrium is not Pareto
optimal. As shown in Figure 3, the operating point of the Nash
equilibrium is located in the interior of the operating region.
The agents can improve their performance by changing their
decision rules (true beyond the example). Since agents have
different Bayes costs, however, they cannot agree on how to
improve decision rules, incurring a penalty of discord.

Just as we had assumed the individual decision maker uses
LRT decision making, we now assume that the group of agents
adopt threshold-based Nash equilibrium decision rules.

C. Equilibrium Categorization

Quantizer design is also a strategic form game, Game II.
There are 2K−1 degrees of freedom in a strategy when agents
use K-point quantizers: K for representation points {ak,i}Kk=1

and K − 1 for cell boundaries {bk,i}K−1
k=1 .

Theorem 3. Game II does not always have a dominant
strategy.
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Fig. 3. The penalty of discord for three agents whose Bayes costs are
c
(1)
10 = 1, c

(1)
01 = 4, c(2)10 = 4, c

(2)
01 = 1, (c(3)10 = 4, and c

(3)
01 ) = 4, for

ai = 0.5, and Gaussian observation noise with unit signal to noise ratio.

Since there need not exist a dominant strategy, we con-
sider Nash equilibria. Finding equilibrium strategies has high
computational complexity for K ≥ 2 because each variable
depends on some others.

Moreover, the dependency varies with quantizer partition
structure. By partition structure, we mean how cells in the
quantizer of Agent i overlap with the cells in the quantizer of
Agent j. To find the best set of quantizers, we need to find
the equilibrium set of quantizers for each possible partition
structure and choose the best one. The number of partition
structures is given by De Bruijn’s s(3,K − 1):

(3(K − 1))!

((K − 1)!)3
∼ 1

2

√
3

27K−1

π(K − 1)
.

Although equilibrium quantizer design is computationally dif-
ficult, it can be carried out.

If the quantizers have the same partitions, then each partition
is independent of other partitions and the only remaining
dependency is among agents. Suppose all quantizers have the
same partition, with fixed boundaries

0 = b0 < b1 < b2 < · · · < bK−1 < bK = 1.

The problem of designing quantizers reduces to the problem
of choosing representation points.

Alternatively for common partitions, equilibrium decision
rules of agents within each partition can be determined,
thereby directly controlling decision making. Interestingly,
the Nash equilibrium of the latter is exactly the single-agent
centroid condition [21]. That is, each agent locally optimizes
quantization after coordinated partition regions are imposed.

In this section, we have described a completely novel quan-
tizer design game. We have also argued that group decision
making suffers from a penalty of discord under heterogenous
preferences.



V. HOMOGENOUS PREFERENCES

In the previous section, we had seen that there is inherently a
penalty of discord when agents have differing preferences. We
had also seen that some level of coordination can strongly sim-
plify equilibrium strategies. In this section, we consider what
happens when the group of memory-limited decision makers
has homogenous preferences, i.e. they are a team in the sense
of Marschak and Radner [35], [36] with identical Bayes costs
c01 and c10. This setting (with unbounded decision makers)
has been studied as distributed detection in engineering [31]
and has also been studied in economics and political science
[30] to understand juries, committees, and elections.

Although the problem is identical as before, considering the
team-theoretic limit of the game-theoretic formulation leads to
some further insights.

A. Detection Rules

For notational simplicity, consider the decision rule for
Agent 1 in a setting with three agents. The optimal decision
for Agent 1 minimizes Bayes risk (9) with i = 1. Suppose that
Agents 2 and 3 have some fixed decision rules. By rewriting
(6) and (7), we have

pI
E =

(
pI
E,2 + pI

E,3 − 2pI
E,2p

I
E,3

)
pI
E,1 + pI

E,2p
I
E,3

, A11p
I
E,1 +A12,

pII
E =

(
pII
E,2 + pII

E,3 − 2pII
E,2p

II
E,3

)
pII
E,1 + pII

E,2p
II
E,3

, B11p
II
E,1 +B12,

where A11, A12, B11, and B12 are nonnegative quantities that
do not depend on the decision rule of Agent 1. The optimal
decision rule ĥ1(y1) for Agent 1 can be expressed as an LRT

fY1|H(y1|h1)

fY1|H(y1|h0)

ĥ1(y1)=h1

R
ĥ1(y1)=h0

c10p0A11

c01(1− p0)B11
, η1,

which is similar to the optimal decision rule for a single agent.
Under the Gaussian observation model, Agent 1 has optimal

decision rule

y1

ĥ1(y1)=h1

R
ĥ1(y1)=h0

h1 − h0

2
+

σ2

h1 − h0
ln η1 , λ1. (11)

The optimal decision rules of Agents 2 and 3 are analogous,
with thresholds λ2 and λ3. Note that (pI

E,1, p
II
E,1), (p

I
E,2, p

II
E,2),

and (pI
E,3, p

II
E,3), depend directly on λ1, λ2, and λ3, respec-

tively. The optimal value of λ1 in (11) is a function of λ2 and
λ3 through η1 (hence A11 and B11), and similarly for λ2 and
λ3. Thus, the λi cannot be optimized independently.

B. Bayes Risk and Quantized Priors

As depicted in Figure 2, the decision rule of Agent i is
based on a quantized version of the prior probability. Thus,
Agent i makes decisions to minimize perceived Bayes risk J̄i,
(9) with common Bayes costs c01 and c10.

The agent’s decision rule, and consequently pI
E,i and pII

E,i,
are determined based on J̄i. The (true) MBR with decision

rules impacted by quantization of the prior probability is E[J̃ ],
(10) with common Bayes costs c01 and c10, which is the
appropriate fidelity criterion for quantizer design.

C. Optimal Categorization for Identical Agents

Suppose that all agents use the same quantizer. This causes
all perceived Bayes risks to be equal to

J̄ = c10ap
I
E + c01(1− a)pII

E .

We further assume that all decision rules are identical, which
has long been conjectured to be optimal in the distributed
detection literature [53]. In the Gaussian observation model,
identical decision rules correspond to all λi thresholds taking
one common value λ. Identical decision rules imply that all
local probabilities of error are equal.

Now consider any odd number of agents using the decision
rule

yi

ĥi(yi)=h1

R
ĥi(yi)=h0

λ (12)

for some λ. With this rule, ĥi(yi) = h1 implies ĥj(yj) = h1

for any j such that yj > yi. Likewise, ĥi(yi) = h0 implies
ĥj(yj) = h0 for any j such that yj < yi. Thus, comparing
the median yi to λ determines the majority-rule decision.
Moreover, the performance of the collaborating group is the
same as that of a single agent with observation likelihood
function fY |H determined by the median of the group’s
observations.

Theorem 4. Suppose 2n+1 agents make decisions using the
rule (12) for some λ, where the observation of Agent i is Yi =
H + Wi. The collaborative performance by majority rule is
equal to the performance of a single agent using rule (12) with
observation Y = H + V , where V = median({Wi}2n+1

i=1 ).

The distribution of V can be derived from the distribution
of {Wi} using the theory of order statistics [54].

Fact 1. Suppose {Wi}2n+1
i=1 are i.i.d. N (0, 1) and V =

median({Wi}). Then

√
nV −→ N (0, π

2 ) as n → ∞.

On the other hand, letting M be the mean of the {Wi},

√
nM −→ N (0, 1) as n → ∞.

The ratio between the two asymptotic variances, 2/π,
quantifies the loss in using majority voting rather than full
measurement fusion for large committees; the loss is less for
smaller committees [20].

The equivalence theorem, Theorem 4, implies that optimiza-
tion of the quantizer in the multi-agent model can be converted
to the optimization problem for a single agent discussed in
Section II-C.



D. Optimal Categorization for Diverse Agents

Now remove the restriction that agents use the same quan-
tizer. Differently quantized prior probabilities make the agents’
perceived Bayes risks differ even though the agents have the
same Bayes costs. In this section, we limit attention to three
agents and an equal number of levels K for each agent’s
quantizer.

Since we assume that the agents do not have access to
the true prior p0, the decision rule is optimized based on the
quantized prior probabilities ai. One collaborative way is to
minimize the perceived Bayes risk averaged over the three
agents, which we call the perceived common risk:

J̄C =
1

3
(J̄1 + J̄2 + J̄3)

=
1

3
c10(a1 + a2 + a3)p

I
E +

1

3
c01(3− a1 − a2 − a3)p

II
E .

As it turns out, it is possible to show a performance equiv-
alence between three agents using quantizers (q

(1)
K , q

(2)
K , q

(3)
K )

and three agents using a shared quantizer qS . The equivalence
enables the optimization of (q

(1)
K , q

(2)
K , q

(3)
K ) and shows that

when these quantizers are different, the performance achieved
is commensurate with having finer quantizers [20].

Theorem 5. Consider three quantizers (q
(1)
K , q

(2)
K , q

(3)
K ) and

another quantizer q
(S)
3K−2. Agents that use (q

(1)
K , q

(2)
K , q

(3)
K )

and those that use (q
(S)
3K−2, q

(S)
3K−2, q

(S)
3K−2) achieve the same

performance for any p0 if
∪3

i=1 Bi = BS and q
(S)
3K−2(p0) =

1
3

∑3
i=1 q

(i)
K (p0), where B1, B2, B3, and BS are the sets of

cell boundaries of q(1)K , q(2)K , q(3)K , and q
(S)
3K−2, respectively.

Recall that the optimization of q(S) to be shared by three
identical agents can done as in Section V-C.

Given Theorem 5, agents with diverse K-level quantizers
(q(1), q(2), q(3)) cannot perform better than the identical agents
using q(S). A mapping described in [20] from the optimized
q(S) to (q(1), q(2), q(3)), leads to the design of optimal diverse
quantizers.

The fact that diverse quantizers with K levels perform just
as well as identical quantizers with 3K−2 levels demonstrates
that there is a significant value of diversity. An example is
shown in Figure 4.

In summary, decision making by committees of memory-
constrained agents achieves the best performance when the
penalty of discord is avoided, but the value of diversity is
earned.

VI. CROWDSOURCING CONTESTS

There has been growing interest in harnessing the wisdom
of crowds, beyond simple information aggregation through
voting, as described in the previous sections. Indeed crowd-
sourcing contests with prizes are an emerging business trend,
whether to design pieces of software code, t-shirts, or car
components [55]. There has also been a resurgence in philan-
thropic/governmental prizes for meeting technological goals,
such as the deployment of suborbital spacecraft [38].
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Fig. 4. The value of diversity is the difference between mismatched Bayes
risk for optimal performance under identical K-level quantizers and mis-
matched Bayes risk for optimal performance under diverse K-level quantizers,
whose reproduction and boundary points are shown below the plot. The setting
here is Bayes costs c01 = 4, c10 = 1, P0 distributed distributed uniformly
on [0, 1], K = 3, and Gaussian observation noise with unit signal to noise
ratio.

These winner-take-all competitions have the property that
many participants exert effort or expend resources to win the
prize, but the losers’ efforts or expenditures go uncompen-
sated. A simple and natural way to model such competitions
is as auctions, where all players pay the amount of their bids,
but only the participant that bids the highest wins the prize
[56]. These are called all-pay auctions [57].

A. Bidding Rules

Suppose there are n bidders Di in an all-pay auction, i =
1, 2, . . . , n, each submitting a sealed bid ηi for a prize valued
by bidder i at θi. All players forfeit their bids, but the highest
bidder wins the prize.

For each player a bid strategy involves choosing a non-
negative bid value ηi. Choosing a bid value ηi = 0 means the
player has decided not to compete in the auction.

When there is complete information, the payoff to bidder i
is

Ji(η1, . . . , ηn) =


−ηi, if there is j such that ηj > ηi,
θi
m − ηi, if i in m− 1-way tie for win,
θi − ηi, if ηi > ηj for all j ̸= i.

(13)
One can interpret the θi as though each competitor has some
prior ability to convert an entry into a prize. Players with
higher θ can be thought of as stronger players. To see this,
suppose the utility to player i of winning a prize of Z by
putting forth effort ηi is u∗

i = Ui(Z)− αiηi, where αi is the



TABLE III
GAME III: BIDDING RULES

• The set of players I = {1, 2, . . . , n}.
• The strategy of Competitor i ∈ I is a bid ηi ∈ R+.
• The payoff function of Competitor i ∈ I is Ji, (13).

marginal cost of effort to player i. Since behavior is invariant
to affine transformations, the utility function can be rewritten
as ui = u∗

i /αi = θi−ηi, where θi = Ui(Z)/αi. So differences
in the θi may be due to differences in the abilities of players.

The all-pay auction game is given as Game III. Nash
equilibrium strategies for the all-pay auction with complete
information depend strongly on the strict ordering of player
prior strengths θ [57]. Without going into full detail, let us
briefly describe the Nash equilibria (assuming n > 2):

C1 With identical strengths (θ1 = θ2 = · · · = θn), there ex-
ists a unique symmetric equilibrium and a continuum of
asymmetric equilibria. In any equilibrium, the expected
sum of bids is θ1, and the expected payoff to each player
is zero. The same result carries over to the case when
there are several players that are tied for strongest, and
other weaker players; the weaker players do not actively
bid and the strongest players behave as if the weaker
players do not exist.

C2 When there is a strongest player, a second strongest
player, and other players, i.e. θ1 > θ2 > θ3 ≥ · · · ≥ θn,
then there is a unique equilibrium, where only the two
strongest players actively bid. The strongest player earns
payoff J1 = θ1−θ2, whereas other players earn payoffs
of zero.

C3 With strengths θ1 > θ2 = · · · = θm ≥ θm+1 · · · ≥
θn, there exists a continuum of Nash equilibria. In any
equilibrium, players m+1 through n do not actively bid.
In any equlibrium, the strongest player earns expected
payoff J1 = θ1 − θ2 and all other players earn payoff
zero. Different equilibria yield different expected sums
of bids, all less than 2θ2.

Note in particular that in the all-pay auction with identical
strengths, the equilibrium strategies result in the sum of
the expected bids equalling the value of the prize, so-called
full dissipation of the rent.1 Indeed, for any all-pay auction
with complete information in equilibrium, there should be no
overdissipation.

Just as we had assumed the individual decision maker uses
LRT decision making and group of agents adopt threshold-
based Nash equilibrium decision rules, we now assume that
competitors in all-pay auctions use Nash equilibrium strategies
from the all-pay auction with complete information [57].

1People are said to be seeking rents when trying to obtain benefits for
themselves through the political arena. Lobbying for privileges is costly and
these expenditures, therefore, dissipate some of the gains to the beneficiaries
and cause inefficiency.

B. Quantized Competitive Knowledge

We relax the assumption of complete information in all-
pay auctions as follows. Suppose players are drawn from
a population of players, with strength distribution fΘ(θ).
Now due to information processing limitations, player i only
has access to a quantized version of his/her own strength
q
(i)
K (θi) and quantized versions of the other players’ strengths
q
(i)
K (θj), j ̸= i. Not knowing oneself or one’s competitors

completely has been noted in a study of X PRIZE competi-
tors: “many teams have imagined unrealistic chances of their
winning while their projects are not competitive enough” [58,
p. 32].

Each player makes decisions on whether to actively bid
and how much to bid through the Nash equilibrium strategy
described above, yielding the random variable realization
Hi = ηi. The utility earned is Ji

(
q
(i)
K (θ1), . . . , q

(i)
K (θn)

)
.

It remains to optimize quantizer design to optimize player
categorization. It is clear, however, that categorization of
players will condense a possible total ordering of competitor
strength into a perceived partial order of strengths. Perhaps
this would shift the bidding behavior of a player from a Nash
equilibria strategy C2 or C3 into strategy C1, where everyone
competes aggressively.

C. Overbidding

Many experimental studies of all-pay auctions have found
that participants tend to bid more aggressively than in Nash
equilibrium [37]. This also holds in much larger real-world
competitions. For example in the Orteig Prize won by Charles
Lindbergh, competitors spent a cumulative $400,000 for a
prize of $25,000; in the Ansari X PRIZE, competitors spent
a cumulative $100 million for a prize of $10 million [38].
Moreover, the cost of rent seeking in India has been estimated
on the order of 30–45 percent of GNP [39]. This qualitatively
opposes the adverse selection effect due to information asym-
metry that eliminates markets for lemons [59].

One might wonder whether there is an informational expla-
nation for why there is so much overspending. Can bounded
rationality and in particular, categorical thinking by competi-
tors explain this phenomenon? It remains to show categorical
decision-making can do so, but shifting bidding strategies due
to changes in perceived competition is a possible mechanism
to do so.

If the putative mechanism stands, it raises the question
of how overspending can be quantitavely cast as a cost of
competitive ignorance. Note that although political economists
see overspending as social welfare loss [39], philanthropic
prize designers see it as a primary benefit of competitions,
terming it leverage [38].

VII. CONCLUSION

Categorical thinking is a new form of bounded rationality
that is based on an understanding of human cognition. In
this paper, we have summarized recent work on categorical
decision making by individuals and by groups, explaining



some puzzling empirical phenomena and characterizing opti-
mal decision-making teams [18]–[21]. We have also suggested
a further economic setting—crowdsourcing contests—where
categorical thinking may explain empirically observed phe-
nomenon.

As part of the development, we have introduced several
quantitative measures of social welfare loss/gain:

• price of segregation,
• penalty of discord,
• value of diversity, and
• cost of competitive ignorance.
Our application of quantization theory to modeling human

behavior and in conjunction with game theory is completely
novel. Given the rise of behavioral economics, perhaps the
time is ripe for further information-theoretic models and
analyses to inform an understanding of markets, firms, and
civic life.
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