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Abstract—In this paper, Bayesian hypothesis testing is investi-
gated when the prior probabilities of the hypotheses, taken as a
random vector, are quantized. Nearest neighbor and centroid con-
ditions are derived using mean Bayes risk error (MBRE) as a dis-
tortion measure for quantization. A high-resolution approximation
to the distortion-rate function is also obtained. Human decision
making in segregated populations is studied assuming Bayesian hy-
pothesis testing with quantized priors.

Index Terms—Bayesian hypothesis testing, Bayes risk error, cat-
egorization, classification, detection, quantization.

I. INTRODUCTION

C ONSIDER a hypothesis testing scenario in which an ob-
ject is to be observed to determine which one of states,

, it is in. The object has prior probability of
being in state , i.e., , and prior prob-
ability vector , with ,
which is known to the decision maker. -ary hypothesis testing
with known prior probabilities calls for the Bayesian formula-
tion to the problem, for which the optimal decision rule mini-
mizes Bayes risk [2].

Now consider the situation when there is a population of ob-
jects, each with its own prior probability vector drawn from the
distribution supported on the -dimensional prob-
ability simplex. If the prior probability vector of each object
were known perfectly to the decision maker before observation
and hypothesis testing, then the scenario would be no different
than that of standard Bayesian hypothesis testing. However, we
consider the case in which the decision maker is constrained
and can only work with at most different prior probability
vectors. Such a constraint is motivated by scenarios where the
decision maker has finite memory or limited information pro-
cessing resources. Hence, when there are more than objects
in the population, the decision maker must first map the true
prior probability vector of the object being observed to one of
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the available vectors and then proceed to perform the optimal
Bayesian hypothesis test, treating that vector as the prior prob-
abilities of the object.

Although not the only such constrained scenario, one ex-
ample is that of human decision making. One particular setting
is a referee deciding whether a player has committed a foul using
his or her noisy observation as well as prior experience. Players
commit fouls at different rates; some players are dirtier or more
aggressive than others. It is this rate that is the prior probability
for the “foul committed” state. Hence, over the population of
players, there is a distribution of prior probabilities. If the ref-
eree tunes the prior probability to the particular player on whose
action the decision is to be made, decision-making performance
is improved.

Human decision makers, however, are limited in their infor-
mation processing capacity and can only carry around seven,
plus or minus two, categories without getting confused [3]. Con-
sequently, the referee is limited and categorizes players into a
small number of dirtiness levels, with associated representative
prior probabilities, exactly the scenario described above.

In this paper, the design of the mapping from prior proba-
bility vectors in the population to one of representative prob-
ability vectors is approached as a quantization problem. Mean
Bayes risk error (MBRE) is defined as a fidelity criterion for the
quantization of and conditions are derived for a minimum
MBRE quantizer. Some examples of MBRE-optimal quantizers
are given along with their performance in the low-rate quantiza-
tion regime. Distortion-rate functions are given for the high-rate
quantization regime. Certain human decision-making tasks, as
mentioned above, may be modeled by quantized prior hypoth-
esis testing due to certain suboptimalities in human informa-
tion processing. Human decision making is analyzed in detail
for segregated populations, revealing a mathematical model of
social discrimination.

Previous work that combines detection and quantization
looks at the quantization of observed data, not prior probabili-
ties, and also only approximates the Bayes risk function instead
of working with it directly, e.g., [4]–[6] and references cited in
[6]. In such work, there is a communication constraint between
the sensor and the decision maker, but the decision maker has
unconstrained processing capability. Our work deals with the
opposite case, where there is no communication constraint be-
tween the sensor and the decision maker, however the decision
maker is constrained.

A brief look at imperfect priors appears in [7, Sec. 2.E], but
optimal quantization is not considered. In [8] and [9], it is shown
that small deviations from the true prior yield small deviations
in the Bayes risk. We are not aware of any previous work that
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has looked at quantization, clustering, or categorization of prior
probabilities.

In the remainder of this paper, we focus on binary hypothesis
testing, . Section II defines the Bayes risk error distortion
and gives some of its properties. Section III discusses low-rate
quantization and Section IV discusses high-rate quantization.
Some examples with a Gaussian measurement model are given
in Section V. Section VI considers the implications on human
decision making and Section VII provides a summary and di-
rections for future work.

II. BAYES RISK ERROR

In the binary Bayesian hypothesis testing problem for a given
object, there are two hypotheses and with prior probabili-
ties and , a noisy
observation , and likelihoods and .
Note that we consider a one-shot measurement , rather than
a set of independent, noisy measurements. A function is
designed that uniquely maps every possible to either or
in such a way that the function is optimal with respect to Bayes
risk , an expectation over the nonnegative
cost function . This gives the following specification
for :

(1)

where the expectation is over both and . It may be shown
that the optimal decision rule is the likelihood ratio test

(2)

where .
There are two types of errors, with the following probabili-

ties:

Bayes risk may be expressed in terms of those error probabilities
as

(3)

It is often of interest to assign no cost to correct decisions, i.e.,
, which we assume in the remainder of this paper.

In this case, the Bayes risk simplifies to

(4)

In (4), the dependence of the Bayes risk and error probabilities
on has been explicitly noted. The error probabilities depend
on through , given in (2). The function is zero at
the points and and is positive-valued, strictly
concave, and continuous in the interval [2], [10], [11].

In the case when the true prior probability is , but is
designed according to (2) using some other value substituted
for , there is a mismatch, and the mismatched Bayes risk is

(5)

is a linear function of with slope
and intercept . Note that

is tangent to at and that .
Definition 1: Let Bayes risk error be the difference

between the mismatched Bayes risk function and the
Bayes risk function

(6)

We now give properties of as a function of and as
a function of .

Theorem 1: The Bayes risk error is nonnegative and
only equal to zero when . As a function of , it
is continuous and strictly convex for all .

Proof: Because is a continuous and strictly concave
function, and lines are tangent to ,

for all and , with equality when . Conse-
quently, is nonnegative and only equal to zero when

. Moreover, is continuous and strictly convex in
for all because it is the difference of a continuous

linear function and a continuous strictly concave function.
Theorem 2: For any deterministic likelihood ratio test , as

a function of for all , the Bayes risk error
has exactly one stationary point, which is a minimum.

Proof: Consider the parameterized curve
traced out as is varied; this is a flipped version of the re-
ceiver operating characteristic (ROC). The flipped ROC is
a strictly convex function for deterministic likelihood ratio
tests. At its endpoints, it takes values when

and when [2], and there-
fore, has average slope . By the mean value theorem and
strict convexity, there exists a unique point on the flipped
ROC at which . To the left of that point,

, and to the right of that point,
.

For deterministic likelihood ratio tests,
and for all and positive con-
stants and [2]. Therefore, if , i.e.,

, then
and . In the same manner, if

, then .
Combining the above, we find that the function

has exactly one stationary point in , which occurs
when the slope of the flipped ROC is . Denote this sta-
tionary point as . For , and
the slope of is negative; for ,

and the slope of is
positive. Therefore, is a minimum.

As a function of , the Bayes risk error is of the form
. Hence, it also has exactly one sta-

tionary point , which is a minimum.
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As seen in Section III, the above properties of are
useful to establish that the Lloyd–Max conditions are not only
necessary, but also sufficient for quantizer local optimality.

The third derivative of with respect to is

(7)

when the constituent derivatives exist. As seen in Section IV,
when the third derivative exists and is continuous, is
locally quadratic, which is useful to develop high-rate quantiza-
tion theory for Bayes risk error fidelity [12].

III. LOW-RATE QUANTIZATION

The conditions necessary for the optimality of a quantizer for
under Bayes risk error distortion are now derived. A

-point quantizer partitions the interval into regions
, , . For each of these quantization regions
, there is a representation point to which the elements

are mapped. For regular quantizers, the regions are subinter-
vals

and the representation points are in .1 A quan-
tizer can be viewed as a nonlinear function such that

for . For a given , we would like to
find the quantizer that minimizes the MBRE

(8)

There is no closed-form solution, but an optimal quantizer must
satisfy the nearest neighbor condition, the centroid condition,
and the zero probability of boundary condition [13]. The nearest
neighbor and centroid conditions are developed for MBRE in
Sections III-A and III-B. When is absolutely contin-
uous, the zero probability of boundary condition is always sat-
isfied.

A. Nearest Neighbor Condition

With the representation points fixed, an expres-
sion for the interval boundaries is derived. Given any

, if , then Bayes
risk error is minimized if is represented by , and if

, then Bayes risk error is minimized if
is represented by . The boundary point

is the abscissa of the point at which the lines and
intersect. The idea is illustrated graphically in

Fig. 1.
By manipulating the slopes and intercepts of and

, the point of intersection is found to be

(9)

1Due to the strict convexity of ��� � �� in � for all � shown in Theorem 1,
quantizers that satisfy the necessary conditions for MBRE optimality are reg-
ular; see [13, Lemma 6.2.1]. Therefore, only regular quantizers are considered.

Fig. 1. Intersection of the lines ���� � � �, tangent to ��� � at � , and
���� � � �, tangent to ��� � at � , is the optimal interval boundary.

B. Centroid Condition

With the quantization regions fixed, the MBRE is to be min-
imized over the . Here, the MBRE is expressed as the sum
of integrals over quantization regions

(10)

Because the regions are fixed, the minimization may be per-
formed for each interval separately.

Let us define and
, which are conditional means. Then

(11)

Because has exactly one stationary point,
which is a minimum (cf. Theorem 2), (11) is uniquely mini-
mized by setting its derivative equal to zero. Thus, is the so-
lution to

(12)

Commonly, differentiation of the two error probabilities is
tractable; they are themselves integrals of the likelihood func-
tions and the differentiation is with respect to some function of
the limits of integration.

C. Lloyd–Max Algorithm

Alternating between the nearest neighbor and centroid condi-
tions, the iterative Lloyd–Max algorithm can be applied to find
minimum MBRE quantizers [13]. The algorithm is widely used
because of its simplicity, effectiveness, and convergence prop-
erties [14].

In [15], it is shown that the conditions necessary for opti-
mality of the quantizer are also sufficient conditions for local op-
timality2 if the following hold. The first condition is that
must be positive and continuous in . The second condition
is that must be finite for all . The first
and second conditions are met by common distributions such as
the beta distribution [16].

2By local optimality, it is meant that �� � and �� � minimize the objective
function (8) among feasible representation and boundary points near them.
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The third condition is that the distortion function
must satisfy some properties. It must be zero only for ,
continuous in for all , and convex in ; the first two of these
hold as discussed in Theorem 1. The third, convexity in , does
not hold for Bayes risk error in general, but the convexity of

in is only used by [15] to show that a unique min-
imum exists. As shown in Theorem 2, has a unique sta-
tionary point that is a minimum. Therefore, the analysis of [15]
applies to Bayes risk error distortion. Thus, if satisfies
the first and second conditions, then the algorithm is guaranteed
to converge to a local optimum. The algorithm may be run many
times with different initializations to find the global optimum.

Further conditions on and are given in [15]
for there to be a unique locally optimal quantizer, i.e., the global
optimum. If these further conditions for unique local optimality
hold, then the algorithm is guaranteed to find the globally min-
imum MBRE quantizer.

In many practical situations, the distribution is not
available, but data drawn from it is available. The optimal de-
sign of quantizers from data is NP-hard [17], [18]. However,
the Lloyd–Max algorithm and its close cousin -means can be
used on data with the Bayes risk error fidelity criterion. In fact,
as the size of the data set increases, the sequence of quantizers
designed from data converges to the quantizer designed from

[19], [20]. (Conditions on the distortion function given
in [20] except convexity in are met by the Bayes risk error,
but in a similar way to the sufficiency of the Lloyd–Max con-
ditions, the unique minimum property of the Bayes risk error is
enough.)

D. Monotonic Convergence in

Let denote the
MBRE for an optimal -point quantizer. We show that
monotonically converges as increases. The MBRE-optimal

-point quantizer is the solution to the following problem:

minimize

such that

(13)

Let us add the additional constraint to (13), forcing
and degeneracy of the th quantization region. The

optimization problem for the -point quantizer (13) with the
additional constraint is equivalent to the optimization problem
for the -point quantizer. Thus, the -point design
problem and the -point design problem have the same objec-
tive function, but the -point problem has an additional
constraint. Therefore, .

Because , .
Because the sequence is nonincreasing and bounded
from below, it converges. MBRE cannot get worse when more
quantization levels are employed. In typical settings, as in
Section V, performance always improves with an increase in
the number of quantization levels.

IV. HIGH-RATE QUANTIZATION

Let us apply high-rate quantization theory [14] to the study of
minimum MBRE quantization. The distortion function for the
MBRE criterion has a positive second derivative in (due to
strict convexity) and for many families of likelihood functions,
it has a continuous third derivative; see (7). Thus, it is locally
quadratic in the sense of Li et al. [12] and in a manner similar to
many perceptual, nondifference distortion functions, the high-
rate quantization theory is well developed.

At high rate, i.e., large, if we let

(14)

then is approximated by the following second-order
Taylor expansion:

(15)

Assuming that is sufficiently smooth and substituting
(15) into the objective of (13), the MBRE is approximated by

(16)

The MBRE is greater than and approximately equal to the fol-
lowing lower bound, derived in [12] by relationships involving
normalized moments of inertia of intervals and by Hölder’s
inequality:

(17)

where the optimal quantizer point density is

(18)

Integrating a quantizer point density over an interval yields the
fraction of the that are in that interval. Substituting (18)
into (17) yields

(19)

V. EXAMPLES

As an example, let us consider the following scalar signal and
measurement model:

(20)

where and (a known, deterministic quantity),
and is a zero-mean, Gaussian random variable with variance

. The likelihoods are

(21)
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The two error probabilities are

(22)

where

Finding the centroid condition, the derivatives of the error prob-
abilities are

(23)

(24)

By substituting these derivatives into (12) and simplifying, the
following expression is obtained for the representation points:

(25)

For high-rate analysis, the second derivatives of the error
probabilities are needed. They are

(26)

and

(27)

By inspection, we note that the third derivatives are continuous.
Substituting the first derivatives (23) and (24) and second deriva-
tives(26) and (27) into (14), an expression for can be ob-
tained.

Examples with different distributions are presented
below. All of the examples use scalar signals with additive
Gaussian noise, , (20). As a point of reference, a

Fig. 2. MBRE for uniformly distributed � and Bayes costs � � � � �

plotted on a logarithmic scale as a function of the number of quantization levels
�; the solid line with circle markers is the MBRE-optimal quantizer and the
dotted line with asterisk markers is the MAE-optimal uniform quantizer.

comparison is made to quantizers designed under mean abso-
lute error (MAE) [21], i.e., , an objective
that does not account for hypothesis testing.3

In the high-rate comparisons, the optimal point density for
MAE [23]

is substituted into the high-rate distortion approximation for the
MBRE criterion (17). Taking , there is a constant
gap between the rates using the MBRE point density and the
MAE point density for all distortion values. This difference is

The closer the ratio inside the logarithm is to one, the closer the
MBRE- and MAE-optimal quantizers are.

A. Uniformly Distributed

We first look at the setting in which all prior probabilities are
equally likely. The MBRE of the MBRE-optimal quantizer and
a quantizer designed to minimize MAE with respect to
are plotted in Fig. 2. (The optimal MAE quantizer for the
uniform distribution is the uniform quantizer.) The plot shows
MBRE as a function of ; the solid line with circle markers is
the MBRE-optimal quantizer and the dotted line with asterisk
markers is the MAE-optimal quantizer. , the high-rate ap-
proximation to the distortion-rate function, is plotted in Fig. 3.

The performance of both quantizers is similar, but the MBRE-
optimal quantizer always performs better or equally. For

, the two quantizers are identical, as seen in Fig. 4(a) and (b).

3As shown by Kassam [21], minimizing the MAE criterion also minimizes the
absolute distance between the cumulative distribution function of the source and
the induced cumulative distribution function of the quantized output. Because
the induced distribution from quantization is used as the population prior distri-
bution for hypothesis testing, requiring this induced distribution to be close to
the true unquantized distribution is reasonable. If distance between probability
distributions is to be minimized according to the Kullback–Leibler discrimi-
nation between the true and induced distributions (which is defined in terms
of likelihood ratios), an application of Pinsker’s inequality shows that a small
absolute difference is requisite [22]. Although a reasonable criterion, MAE is
suboptimal for hypothesis testing performance as seen in the examples.
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Fig. 3. High-rate approximation of distortion-rate function � for uniformly
distributed � and Bayes costs � � � � �; the solid line is the MBRE-
optimal quantizer and the dotted line is the MAE-optimal uniform quantizer.

Fig. 4. Quantizers for uniformly distributed � and Bayes costs � � � �
�. ���� � � �� �� is plotted for (a)� � �, (b)� � �, (c)� � �, and (d)� �
�; the markers, circle and asterisk for the MBRE-optimal and MAE-optimal
quantizers, respectively, are the representation points �	 �. The gray line is the
unquantized Bayes risk ��� �.

The plots in Fig. 4 show as solid and dotted lines
for the MBRE- and MAE-optimal quantizers, respectively; the
markers are the representation points. The gray line is , the
Bayes risk with unquantized prior probabilities. For ,
the representation points for the MBRE-optimal quantizer are
closer to than the uniform quantizer. This is because
the area under the point density function shown in Fig. 5
is concentrated in the center. Each increment of is associated
with a large reduction in Bayes risk. There is a very large per-
formance improvement from to .

In Figs. 6–9, similar plots to those above are given for the case
when the Bayes costs and are unequal. The unequal costs
skew the Bayes risk function, and consequently, the representa-
tion point locations and point density function. The difference
in performance between the MBRE-optimal and MAE-optimal
quantizers is greater in this example because the MAE-criterion
cannot incorporate the Bayes costs, which factor into MBRE
calculation.

Fig. 5. Optimal MBRE point density for uniformly distributed � and Bayes
costs � � � � �.

Fig. 6. MBRE for uniformly distributed � and Bayes costs � � �� � � �
plotted on a logarithmic scale as a function of the number of quantization levels
�; the solid line with circle markers is the MBRE-optimal quantizer and the
dotted line with asterisk markers is the MAE-optimal uniform quantizer.

Fig. 7. High-rate approximation of distortion-rate function � for uniformly
distributed � and Bayes costs � � �, � � �; the solid line is the MBRE-
optimal quantizer and the dotted line is the MAE-optimal uniform quantizer.

B. Beta Distributed

Now, we look at a nonuniform distribution for , in partic-
ular, the Beta(5,2) distribution. The probability density func-
tion is shown in Fig. 10. The MBRE of the MBRE-optimal
and MAE-optimal quantizers are in Fig. 11. Here, there are also
large improvements in performance with an increase in . The
high-rate approximation to the distortion-rate function for this
example is given in Fig. 12.

The representation points are most densely distributed
where , plotted in Fig. 13, has mass. In particular, more
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Fig. 8. Quantizers for uniformly distributed � and Bayes costs � � �,
� � �. ���� � � �� �� is plotted for (a) � � �, (b) � � �, (c) � � �,
and (d) � � �; the markers, circle and asterisk for the MBRE-optimal and
MAE-optimal quantizers, respectively, are the representation points �� �. The
gray line is the unquantized Bayes risk ��� �.

Fig. 9. Optimal MBRE point density for uniformly distributed � and Bayes
costs � � �, � � �.

Fig. 10. Probability density function 	 �� � for the Beta(5,2) distribution.

representation points are in the right half of the domain than in
the left, as seen in Fig. 14.

VI. IMPLICATIONS ON HUMAN DECISION MAKING

In the previous sections, we formulated the minimum MBRE
quantization problem and discussed how to find the optimal
MBRE quantizer. Having established the mathematical foun-
dations of hypothesis testing with quantized priors, we may

Fig. 11. MBRE for Beta(5,2) distributed � and Bayes costs � � � � �
plotted on a logarithmic scale as a function of the number of quantization levels
�; the solid line with circle markers is the MBRE-optimal quantizer and the
dotted line with asterisk markers is the MAE-optimal uniform quantizer.

Fig. 12. High-rate approximation of distortion-rate function 
 for Beta(5,2)
distributed � and Bayes costs � � � � �; the solid line is the MBRE-
optimal quantizer and the dotted line is the MAE-optimal uniform quantizer.

Fig. 13. Optimal MBRE point density for Beta(5,2) distributed � and Bayes
costs � � � � �.

explore the implications of such resource-constrained decision
making on human affairs.

Let us consider the particular setting for human decision
making mentioned in Section I: a referee determining whether
a player has committed a foul using both his or her noisy ob-
servation and prior experience. The fraction of plays in which a
player commits a foul is that player’s prior probability for .
Over the population of players, there is a distribution of prior
probabilities. Also, as mentioned in Section I, human decision
makers categorize into a small number of categories due to
limitations in information processing capacity [3]. Decisions by
humans may be modeled via quantization of the distribution of
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Fig. 14. Quantizers for Beta(5,2) distributed � and Bayes costs � � � �
�. ���� � � �� �� is plotted for (a)� � �, (b)� � �, (c)� � �, and (d)� �
�; the markers, circle and asterisk for the MBRE-optimal and MAE-optimal
quantizers, respectively, are the representation points �� �. The gray line is the
unquantized Bayes risk ��� �.

prior probabilities and the use of the quantization level centroid
of the category in which a player falls as the prior probability
when performing hypothesis testing on that player’s action.

Therefore, a referee will do a better job with more categories
rather than fewer. A police officer confronting an individual
with whom he or she has prior experience will make a better
decision if he or she has the mental categories “probably vio-
lent,” “possibly violent or nonviolent,” and “probably nonvio-
lent,” versus just “violent” and “nonviolent.” Similarly, a doctor
will have a smaller probability of error when interpreting a blood
test if he or she knows the prior probability of the test turning
out positive for many categorizations of patients rather than just
one for the entire population at large. Additional examples could
be given for a variety of decision-making tasks. Implications of
this sort are not surprising. However, when one additional com-
ponent is added to the decision-making scenario, some fairly
interesting implications arise. Next, we look at the case when
the quantization of two distinct populations is done separately.

We discuss mathematically unavoidable consequences of
quantized prior hypothesis testing when quantizing the prior
probability for a minority population and the prior probability
for a majority population separately, while taking identical
prior probability distributions of the two populations .
Although majority and minority populations can be defined
along any socially observable dimension, such as gender or
age [24], for ease of exposition, we use race, and more specif-
ically, use “white” and “black” to denote the two populations.
Although there is some debate in the social cognition literature
[25], it is thought that race and gender categorization is essen-
tially automatic, particularly, when a human actor lacks the
motivation, time, or cognitive capacity to think deeply.

We can extend the definition of MBRE to two populations as

(28)

where is the number of whites encountered, is the number
of blacks encountered, is the number of points in the quan-
tizer for whites, and is the number of points in the quantizer
for blacks.4 To find the optimal allocation of the total quota of
representation points , we minimize for all

possible allocations and choose the best one; more so-
phisticated algorithms developed for bit allocation to subbands
in transform coding may also be used [27].

Fryer and Jackson have previously suggested that it is better
to allocate more representation points to the majority popula-
tion than to the minority population [28]. With two separate
scalar quantizers, but a single size constraint, optimizing
over and yields the same result. Due to the mono-
tonicity result in Section III-D, the MBRE for members of the
minority group is greater than that for the majority group.

Assuming white decision makers have and black de-
cision makers have , analysis of quantized prior Bayesian
hypothesis testing predicts that there should be own-race bias
in decision making. This prediction is in fact born out experi-
mentally. A large body of literature in face recognition shows
exactly the predicted own race bias effect, observed colloqui-
ally as “they [other-race persons] all look alike.” In particular,
both parts of the Bayes risk and increase when trying to
recognize members of the opposite population [29]. Verification
of own race bias in face recognition is due to laboratory exper-
imentation, however similar effects have also been observed in
natural experiments through econometric studies.

It has been found that the addition of police officers of a given
race is associated with an increase in the number of arrests of sus-
pects of a different race but has little impact on same-race arrests.
The effect is more pronounced for minor offenses where the prior
probability presumably plays a bigger role than the measurement
[30].Therearesimilarown-racebiaseffects in thedecisionbypo-
lice to search a vehicle during a traffic stop [31], in the decision of
human resource professionals to not hire [32], and in the decision
of National Basketball Association (NBA) referees to call a foul
[33]. The rate of searching, the rate of not hiring, and the rate of
foul calling are all greater when the decision-maker is of a dif-
ferent race than the driver, applicant, and player, respectively. A
major difficulty in interpreting these econometric studies, how-
ever, is that the ground truth is not known. Higher rates may be
explained by either greater or smaller .

Because ground truth is lacking in econometric studies, it is
not clear how to interpret a finding that white referees call more
fouls on black players and that black referees call more fouls
on white players. This phenomenon cannot simply be explained
by a larger probability of decision error. The Bayes risk must be
teased apart into its constituent parts and the Bayes costs must be
examined in detail. The measurable quantity in an econometrics
study is the probability that a foul is called

(29)

4One might assume that 	 and 
 are simply the number of whites and blacks
in the general population, however these numbers should actually be based on
the social interaction pattern of the decision maker. Due to segregation in social
interaction, see, e.g., [26] and references therein, there is greater intrapopula-
tion interaction than interpopulation interaction. The decision maker has more
training data from intrapopulation interaction.
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Looking at the average performance of a white referee over the
populations of black and white players, we compare the ex-
pected foul rates on whites and blacks

(30)

If this discrimination quantity is greater than zero, then the
white referee is calling more fouls on blacks. If is less than
zero, then the referee is calling more fouls on whites. The
expression may be written as

(31)

The dependence of on and is explicit on the left-hand
side of (31) and is implicit in the error probabilities on the right-
hand side. The value of also depends on the unquantized prior
distribution , the measurement model, and the quantizer.

If the prior distribution and the measurement model are fixed,
and the MBRE-optimal quantizer used, we find that the regions in
the plane where a white referee would call more fouls on
blacks and where a white referee would call more fouls on whites
are half-planes. For the uniform prior , the dividing line
between the two regions is exactly . For the Beta(5,2)
prior, the dividing line is , where .

Using the division of the plane into two parts, we can
now interpret the econometric findings in the NBA referee study
[33] and related results [30]–[32]. The NBA race bias observa-
tionscanbegenerated fromthequantizedpriorhypothesis testing
modelonly if theBayes riskerrorhascosts forauniform
priororcosts foraBeta(5,2)prior.ThechoiceofBayes
costs with greater than implies that a referee can tolerate
more instances of calling fouls on plays that are not fouls rather
than the opposite. This assignment of costs has been called the
precautionary principle in some contexts. Very simply, the pre-
cautionary principle states “better safe than sorry.”

Taken together, the hypothesis testing with quantized priors
model, the phenomenon of racial segregation [26], and the re-
sults from econometric studies [30]–[33] suggest that referees,
police officers, and human resources professionals all follow the
precautionary principle.

VII. CONCLUSION AND FUTURE WORK

We have looked at Bayesian hypothesis testing when there
is a distribution of prior probabilities, but the decision maker
may only use a quantized version of the true prior probability in
designing a decision rule. Considering the problem of finding
the optimal quantizer for this purpose, we have defined a new
fidelity criterion based on the Bayes risk function. For this crite-
rion, MBRE, we have determined the conditions that an optimal
quantizer satisfies and worked through a high-rate approxima-
tion to the distortion. -ary hypothesis testing with
requires vector quantization rather than scalar quantization, but
determining the Lloyd–Max conditions and high-rate theory is
no different conceptually due to the geometry of the Bayes risk
function and mismatched Bayes risk function. For the -ary
hypothesis testing case, a multivariate distribution such as the

-dimensional Dirichlet distribution [16] is needed for .
Previous, though significantly different, work on quantization
for hypothesis testing was unable to directly minimize the Bayes
risk, as was accomplished in this work.

The mathematical theory of quantized prior hypothesis
testing formulated here leads to a generative model of dis-
criminative behavior when combined with theories of social
cognition and empirical facts about social segregation. This
biased decision making arises despite having identical dis-
tributions for different populations and despite no malicious
intent on the part of the decision maker. We also discussed
how the choice of Bayes costs affects detection probabilities;
in particular, the precautionary principle leads to a higher
detection probability for the opposite race, whereas a more
optimistic view leads to a higher detection probability for the
own race. Such a phenomenon of pessimistic or optimistic atti-
tude fundamentally altering the nature of discrimination seems
not to have been described before. Discrimination on the basis
of race, gender, and other socially observable characteristics
has been a troublesome social problem, but appears to be a
permanent artifact of the automaticity of classification and the
finite human capacity for information processing.

There are many avenues along which to extend this work,
such as dealing with decentralized detection and classification
(with possible implications on jury decisions and elections),
which may become game theoretic; consideration of additional
noise before or after quantization of the prior probabilities; or
the development of successively refinable quantizers (for deci-
sion makers that possess a memory hierarchy). One can also
consider a restricted class of quantizers rather than considering
optimal quantization. Such restriction may model further cogni-
tive constraints on human decision makers. In particular, Fryer
and Jackson have suggested a heuristic algorithm for quantizer
design based on splitting groups [28], which is a rediscovery of
the tree-structured vector quantizer (TSVQ) design algorithm
given in [34, Fig. 20]. Beyond [34], there has been much recent
development in the theory of TSVQ performance and recursive
partitioning, which may prove useful.

For the quantizer with , an alternative to the MBRE-
optimal representation point

is the min–max hypothesis testing representation point

which is only equivalent in special cases. A distribution on
the prior probabilities is needed to specify , but not to
specify . One may consider extending the min–max
idea to . This would involve an approach related to
-entropy [35, Sec. 6.1.2], and finding a cover for the unit

simplex by sets of the form , where
all in map to and is the same for all .

The general theme of machine learning for the explicit pur-
pose of hypothesis testing, within which this work falls, is re-
ceiving increasing attention; framing the hypothesis testing sce-
nario discussed here in terms of probabilistic graphical models
of categorization, e.g., the latent Dirichlet allocation model [36]
and the hierarchical Dirichlet process mixture model [37], may
prove insightful as well.
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