
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 2, FEBRUARY 2011 587

On the Estimation of Nonrandom Signal Coefficients
From Jittered Samples
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Abstract—This paper examines the problem of estimating the
parameters of a bandlimited signal from samples corrupted by
random jitter (timing noise) and additive, independent identically
distributed (i.i.d.) Gaussian noise, where the signal lies in the span
of a finite basis. For the presented classical estimation problem, the
Cramér–Rao lower bound (CRB) is computed, and an Expecta-
tion-Maximization (EM) algorithm approximating the maximum
likelihood (ML) estimator is developed. Simulations are performed
to study the convergence properties of the EM algorithm and com-
pare the performance both against the CRB and a basic linear esti-
mator. These simulations demonstrate that by postprocessing the
jittered samples with the proposed EM algorithm, greater jitter
can be tolerated, potentially reducing on-chip ADC power con-
sumption substantially.

Index Terms—Analog-to-digital converters, Cramér–Rao
bound, EM algorithm, jitter, maximum likelihood estimator,
sampling, timing noise.

I. INTRODUCTION

A N analog-to-digital converter (ADC) processes a real
signal to generate a sequence of observations (sam-

ples) at times :

(1)

where is the sampling prefilter and is an additive noise
term that lumps together quantization, thermal noise, and other
effects. For standard sampling applications, it is assumed that
the sample times are uniformly spaced by some period (

, ), where the period is small enough that the total
bandwidth of is less than the sampling rate .
Jitter , also known as timing noise, perturbs the sample
times:

(2)

This paper focuses on the mitigation of random jitter in a non-
Bayesian estimation framework. A simplified block diagram for
the overall system is illustrated in Fig. 1.

The generally accepted practice is to design clocks with low
enough phase noise that the effect of jitter is negligible. The
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Fig. 1. Abstract block diagram of an ADC with off-chip postprocessing. The
signal ���� is filtered by the sampling prefilter ���� and sampled at time � .
These samples are corrupted by additive noise � to yield � . The postpro-
cessor estimates the parameters � of ���� using the vector of � samples �
from the ADC.

maximum allowable jitter is set such that the effect of jitter on
a sinusoid of maximum frequency and maximum amplitude is
at most one-half the least significant bit level [1]. While making
jitter negligible obviates the mitigation of jitter, this may not
be possible or desirable from an overall system design perspec-
tive, because requiring jitter to have a negligible effect may man-
date high power consumption in the clock circuitry. (A model
relating jitter and power is given below.) Technological trends
suggest that eventually it will be worthwhile to allow nontrivial
jitter and compensate through digital postprocessing: the dig-
ital portions of mixed-signal systems like sensors and wireless
transceivers continue to shrink, so the analog portions of such
systems, including the ADC and its clock generator, dominate
the size and power consumption of these chips. The ability to use
more power-efficient analog circuitry would enable substantial
new capabilities in diverse applications like implantable med-
ical devices and remote sensors. One motivation of our study is
to contribute to understanding the trade-off between accuracy
in analog circuitry versus complexity of off-chip digital post-
processing of samples.

The power consumed by a typical ADC design is approxi-
mately proportional to the desired accuracy and sampling rate
[2], so lower-power circuitry would produce clock signals with
more jitter. Specifically, it is shown in [3] that

Power Speed Accuracy rms (3)

Furthermore, the analyses in [4] and [5] suggest that in the
large-jitter domain, every doubling of the standard deviation
of the jitter reduces the effective number of bits ENOB

accuracy rms by one. Thus, precompensating for the
expected jitter in the design requires increasing the power con-
sumption of the ADC by a factor of four for every doubling of
the jitter standard deviation (e.g., by adding an additional level
of comparators). In this paper, we instead propose block post-
processing the jittered samples using classical estimation tech-
niques off-chip. In addition to mitigating random jitter, this work
may also be adapted to compensate for frequency modulated
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and spread-spectrum clocks, which produce lower EMI and ra-
diation [6]. Note that this block postprocessing method is in-
tended to be performed off-chip, where power consumption of
an implementation of the algorithm is not important.

A. Problem Formulation

While more sophisticated signal models may be more appro-
priate for some applications, we concern ourselves with a signal
that lies in the span of a finite basis , with basis func-
tions. We further restrict the basis to be uniform shifts of a single
smooth bandlimited function :

(4)

Denote the unknown weighting parameters ; there are of
them. The signal then equals

(5)

Without loss of generality, assume that equals the critical sam-
pling period of , and assume this period is unity. In this
work, the signal parameters are unknown determin-
istic quantities.

While there are many possible choices of , when in need
of a specific example in this work, we choose the sinc inter-
polating function . This basis satisfies

, for all . In general, we choose
to be appropriate for the class of input signals we wish to

sample; we choose the sinc function because bandlimitedness is
a common assumption in the context of signal processing. It is
sufficient, but not necessary, in this work that be analytic
and bounded.

When sampling the signal , we will assume that the
sampling prefilter is an ideal anti-aliasing filter with bandwidth

, so for appropriately bandlimited
inputs. The signal’s critical sampling period is assumed to
be one, but to accommodate oversampling by a factor of
into our model, the ideal sample times are spaced time
units apart. We acquire jittered samples with additive noise,

, at this rate:

(6)

In this paper, we assume that the jitter and additive noise are
independent identically distributed (i.i.d.) zero-mean Gaussian,
with known variances equal to and , respectively. We
assume that these variances can be measured reasonably ac-
curately through in-factory calibration, although we expect
the variances to vary naturally over time due to environmental
effects.

Combining the signal and observation models yields

(7)

This relationship can be expressed as a semilinear system of
equations:

(8)

where , ,
, and . For

notational convenience, denote the th (zero-indexed) row of
by .

To keep notation compact, denote the probability density
function (pdf) of by , the pdf of parameterized by the
nonrandom vector by , and the pdf of conditioned
on the random variable by . The pdf is made explicit
using subscripts only when necessary to avoid ambiguity. Ex-
pectations are written similarly. Also, denote the -dimensional
multivariate normal distribution by

(9)

The primary objective of classical (non-Bayesian) estimation
is to derive an estimator that minimizes a desired cost function

of unknown nonrandom parameters . One such cost
function is the mean-square error (MSE):

(10)

where is the expectation with respect to , is the esti-
mate of the unknown parameters based on the samples , and
the observations are implicitly a function of . However, ex-
cept in certain cases, computing the estimate that minimizes this
cost function, which is called the minimum MSE (MMSE) esti-
mator, is impossible without prior knowledge about . Instead,
it is essential to derive an estimator that relies only on the obser-
vation model and the actual observations . One such estimator
is the maximum likelihood (ML) estimator, which maximizes
the likelihood function . The likelihood func-
tion corresponding to the signal parameter observation model in
(8) is

(11)

Using the assumptions that the jitter and additive noise are i.i.d.,
and the fact that the th row of only depends on one ,
the multivariate normal distributions in (11) are separable over

. Thus, is also separable, with ,
and the likelihood function is the product of univariate
integrals

(12)
Given the likelihood function, parameters , , and , MSE
cost function, and observations , the goal of this work is to use
ML estimation to tolerate more jitter when estimating . Thus,
the bulk of this paper is concerned with the evaluation of this
likelihood function and the problem of maximizing it.

B. Related Work

The problem of mitigating jitter has been investigated since
the early days of signal processing. The effects of jitter on the
statistics of samples of a deterministic (nonrandom) bandlimited
signal are briefly discussed in [7]; this work also is concerned
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with stochastic signals and proposes an optimal linear recon-
struction filter for the stochastic case. Much more work on an-
alyzing the error and reconstructing stochastic signals from jit-
tered samples can be found in [8] and [9]. However, the analysis
of jittered samples of deterministic signals appears to be much
more limited in the early literature.

When the sample times are irregularly spaced, but known,
the problem greatly simplifies. Efficient techniques, as well
as a mention of prior work, can be found in [10]. When the
sample times are unknown, but belong to a known finite set,
the jitter mitigation problem becomes a combinatorial one; [11]
describes geometric and algebraic solutions to this problem
of reconstructing discrete-time signals. Two block-based re-
construction methods for this finite location-set problem are
described in [12].

However, when the set is infinitely large, or when the jitter is
described by a continuous random distribution as seen here, a
different approach is necessary. One contribution of this work
is an Expectation-Maximization (EM) algorithm; in a similar
context, [13] develops a similar EM algorithm for the related
problem of mitigating unknown phase offsets between compo-
nent ADCs in a time-interleaved ADC system. Some of the re-
sults summarized in this paper are described in greater detail in
[14], which also provides further background material.

C. Outline

In Section II, numerical integration using Gauss quadrature
and iteration using the EM algorithm are discussed. Section III
presents and derives the Cramér–Rao lower bound (CRB) on
the MSE for this estimation problem. Sections IV and V derive
linear and ML estimators for the jitter mitigation problem; sim-
ulations comparing these estimators are discussed in Section VI.
In conclusion, the results and contributions are summarized, and
future research directions are introduced.

II. BACKGROUND

Except for certain limited choices for , the expression for
the likelihood function in (12) has no closed form; however,
various techniques exist to approximate it. One such powerful
and general technique is that of quadrature, which refers to the
method of approximating an integral with a finite weighted sum-
mation. The trapezoidal and Simpson’s rules are elementary ex-
amples of quadrature. In particular, due to the normal distribu-
tion assumption on the jitter , Gauss–Hermite quadrature is a
natural choice of quadrature rule. Gauss–Legendre quadrature
and Romberg’s method are also discussed below.

Computational problems also occur when deriving the ML
estimator, due to the nonconcave and high-dimensional nature
of the likelihood function. One local approximation technique
called the EM algorithm can be used to locate local maxima in
a computationally feasible manner. The EM algorithm is also
reviewed in this section.

A. Numerical Integration

Consider approximating the integral using
the summation , where and are fixed
abscissas (sampling locations) and weights. This type of
approximation is known generally as quadrature. When the

abscissas are uniformly spaced, the summation is known as
interpolatory quadrature; the trapezoidal and Simpson’s rules,
as well as Romberg’s method [15], are of this type. Gauss
quadrature seeks greater accuracy for a given number of
function evaluations by allowing the abscissas to be spaced
nonuniformly. An appropriate choice of abscissas and weights
(called a rule) can be precomputed for a choice of and

using a variety of methods, including a very efficient eigen-
value-based method derived in [16]. Orthogonal polynomials
satisfy a three-term recursive relationship, which is used to form
a tri-diagonal matrix, whose eigenvalues are the abscissas, and
whose eigenvectors yield the weights. The eigendecomposition
of a tri-diagonal matrix is very efficient, so quadrature rules are
very inexpensive to compute, even for very large . Quadrature
is particularly attractive when is smooth and has bounded
derivatives. This method can be applied to multivariate inte-
gration as well, although in the absence of separability, the
complexity scales exponentially with the number of variables.

One weighting function of particular interest in this work is
the pdf of the normal distribution. For a standard normal dis-
tribution, the associated form of quadrature is known as Gauss-
Hermite quadrature, since the abscissas and weights derive from
Hermite polynomials. Using elementary changes of variables,
this method can be generalized to normal distributions with ar-
bitrary mean and variance :

(13)

where and are the weights and abscissas for Gauss-Her-
mite quadrature with a standard normal weighting function. As
mentioned in [17], the approximation error for Gauss-Hermite
quadrature is bounded by the function’s derivatives:

(14)

As long as is sufficiently smooth, the term in the de-
nominator dominates the above expression for large , and the
approximation error goes to zero superexponentially fast. While
general conditions for convergence are difficult to isolate for ar-
bitrary , a sufficient condition for convergence mentioned
in [17] is that

for some (15)

Many other Gauss quadrature rules exist; one simple rule also
considered is called Gauss–Legendre quadrature and is defined
for integrating over a finite interval , with the weighting
function :

(16)

The abscissas and weights for Gauss–Legendre quadrature can
be computed using the eigenvalue-based method mentioned
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Fig. 2. The quadrature approximation to ��� ��� is computed for a fixed, but
randomly chosen, � on a dense grid of � and is compared against a histogram
of 100 000 samples � generated using (7). Two cases are shown to illustrate the
approximation quality of (a) Gauss–Legendre quadrature and (b) Gauss–Her-
mite quadrature; the worst-case � is chosen for each of these approximations.
Note: the choice of � � ��� is used instead of � � ��� because Romberg’s
method evaluates the function � � � 	 � times for � iterations. (a) � � ��,
� � 
, � � �	��, � � �	�, � � ���, � � �. (b) � � ��, � � 
,
� � �	��, � � �	��, � � ���, � � 
.

above. Gauss–Legendre quadrature and other rules defined over
a finite interval, including interpolatory quadrature methods like
Simpson’s rule and Romberg’s method, can be extended to the
infinite support case by remapping the variable of integration:

(17)

When applied to the Gauss–Legendre quadrature rule, the new
rule becomes

(18)

where , and .
To compare the effectiveness of these different quadra-

ture-based methods for numerical integration, Gauss–Hermite
quadrature and Gauss–Legendre quadrature are contrasted
against two more general methods, Simpson’s rule and
Romberg’s method, by comparing each method against the
marginal likelihood function , for a fixed, but randomly
chosen, value of . The marginal likelihood function is calcu-
lated from the empirical distribution of samples generated by
the observation model in (7). As shown in Fig. 2, Gauss–Le-
gendre quadrature approximates the likelihood function well
when is relatively large, but when and are both small,

Gauss–Hermite quadrature is much more effective. However,
other quadrature rules may be more accurate for different
choices of signal basis functions .

B. EM Algorithm

The EM algorithm was introduced in [18]; a classic applica-
tion of this algorithm is ML estimation in the presence of in-
complete data. Consider the problem of maximizing the likeli-
hood function , where depends on some latent random
variables . The observations are described as the incomplete
data. We augment this incomplete data with some subset of la-
tent (hidden) variables to form the complete data. The under-
lying assumption of the EM algorithm is that knowledge of the
complete data makes the ML estimation problem easier to solve.

The EM algorithm consists of repeatedly maximizing the
function

(19)

with respect to the desired parameters ; the maximizing value
becomes , which is used in the next iteration. As long as the
original likelihood function is bounded above, and some other
mild conditions are satisfied, this algorithm is guaranteed to con-
verge to a local maximum of the likelihood function [18].

Much has been written about the convergence rate of EM al-
gorithms. In [19], the rate of convergence of the EM algorithm
is related to the difference in the CRB using the incomplete data
and the CRB using the complete data (incomplete data + latent
variables). The supplemented EM algorithm in [20] also obtains
Fisher information estimates, conditioned on the observations

, which can be used to evaluate the quality of the resulting ap-
proximation to the ML estimate.

Since the likelihood function in (11) is not in general strictly
concave, the presence of many critical points is a potential
problem for any local algorithm. Simulated annealing [21]
and other methods can be combined with the EM algorithm to
improve robustness to getting trapped in local extrema.

III. APPROXIMATING THE CRB

Minimizing the MSE without access to prior information
about the unknown parameters may be impossible in the
general case. However, even in situations when the MMSE
estimator cannot be computed, the Cramér-Rao lower bound
on the minimum achievable MSE by an unbiased estimator
may be straightforward to compute. The , where is
the variable to estimate from observations , is defined to be
the trace of the inverse of the Fisher information matrix ,
which is defined as

(20)

Assuming the likelihood function satisfies the regularity condi-
tion

(21)
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the Fisher information matrix can be expressed in terms of the
Hessian of the log-likelihood:

(22)

(23)

A sufficient condition for the regularity condition in (21) is that
differentiation and integration interchange, since

(24)

By basic analysis, uniform convergence of the integral in the
likelihood function in (11) implies that the above regularity con-
dition holds.

Since the likelihood function is separable, the log-likelihood
function can be expressed as the summation of marginal log-
likelihood functions; i.e.,

(25)

which means that (23) can be rewritten as (again, assuming reg-
ularity conditions are satisfied)

(26)
The marginal pdf can be computed numerically

using quadrature:

(27)

where and are the abscissas and weights for the chosen
quadrature rule. As depicted in Fig. 2, Gauss–Hermite quadra-
ture is a good choice for small , and Gauss–Legendre quadra-

ture is more accurate for larger ( 0.1). For all simulations in
this paper, we use unless otherwise specified.

The derivative of the marginal pdf can be approximated sim-
ilarly:

(28)

Since ,
combining (27) and (28) yields a complicated approximation
to the expression inside the expectation in (26) [see (29) shown
at the bottom of the page]. For convenience, denote the above
approximation .

Now, consider computing the Fisher information matrix from
this approximation:

(30)

To compute this expectation, a numerical method is needed
again. The expectation is with respect to the distribution

, which is approximated in (27) with a Gaussian
mixture, so Monte Carlo sampling is a convenient method
to approximate this expectation. Generating samples
from the Gaussian mixture and
averaging the corresponding function values , the
Fisher information matrix can be computed as

(31)

Once this matrix is computed and inverted, the trace gives the
Cramér–Rao lower bound for that choice of parameter . Due
to matrix inversion, to ensure an accurate CRB estimate, we use

for the quadratures in (29).
How much does the CRB decrease when is assumed given?

Comparing the against the of the jitter-
augmented data will be important later when analyzing the EM
algorithm design. The Fisher information matrix in this case is
equal to

(32)

(29)
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Of course, since

constant (33)

and the Hessian matrix with respect to is

(34)

the jitter-augmented Fisher information matrix is

(35)

where the expectation can be approximated numerically using
quadrature or Monte Carlo approximation. The jitter-augmented

is the trace of the inverse of this matrix. We will
return to the question of the difference of the two CRBs later
in Section VI, after we discuss ML estimation using an EM
algorithm.

IV. LINEAR ESTIMATION

In this paper, an estimator is said to be linear if it is a linear
function of the observations; such an estimator has the form

(36)

where the matrix is fixed.1

For the semilinear observation model in (8), a linear estimator
is unbiased if and only if . Since is a tall
matrix, assuming it has full column rank, one possible linear
unbiased estimator is

(37)

where is the left
pseudoinverse. This estimator is only one such linear unbiased
estimator; more generally, any matrix that lies in the nullspace
of can be added to the pseudoinverse and yield an un-
biased estimator.

The question then remains of how to obtain the best linear
unbiased estimator (BLUE), in the MMSE sense. In the con-
text of a simple linear observation model , with
Gaussian noise , the BLUE is elementary to find (see [22]),
and it is also the ML and efficient minimum variance unbiased
estimator (MVUE). If we choose to be deterministic (no
jitter) in the observation model, the corresponding BLUE/effi-
cient estimator would be

(38)

1Sometimes, affine estimators ����� � ���� are considered to be linear as
well. However, as we will concern ourselves with unbiased estimators, � would
turn out to be necessarily zero.

Fig. 3. The best linear unbiased estimator (BLUE) is computed for different
choices of � (holding � fixed), using (39). In this example, � � �, � � �,
and � � � � ���	.

The performance of this estimator when applied to the proper
(jittered) observation model will be used as one baseline for
MSE improvement for the proposed estimators.

As derived previously in [14], the BLUE for the semilinear
model (8) is

(39)
where the covariance matrix of the data depends on the value
of the parameters:

(40)

The BLUE estimator, in general, is not a valid estimator, since it
depends on the true value of the unknown . Two sufficient con-
ditions for the estimator to be valid are: is a scalar matrix,
in which case, the covariance matrix commutes across multi-
plication, or does not depend on . Since and are
independent for , off-diagonal elements of are zero.
For the covariance matrix to be a scalar matrix that commutes
over matrix multiplication for all , must be equal
for all . However, this equality generally does not hold due to
oversampling. Also, the covariance matrix clearly depends on

when is nonzero for some . When the covari-
ance matrix is a scalar matrix, the BLUE estimator is equal
to .

To conclusively demonstrate that the BLUE is not a valid esti-
mator, theestimator is computedforafixedvalueof andvarying

; the results are showninFig.3.Clearly, since theestimatesof
varydependingon thevalueof used in (39), the estimator is not
valid. Thus, an MSE-optimal linear estimator does not exist for
this problem, and we will utilize the estimator in (37).

V. ML ESTIMATION

Given a semilinear model as in (8), we would not expect
the optimal MMSE estimator to have a linear form. Indeed, as
shown in the previous section, for most signal models and priors
on the jitter, the BLUE does not even exist. To improve upon
linear estimation, and reduce the MSE, we move to maximum
likelihood estimation.
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Consider the problem of maximizing the likelihood function
in (12); since the logarithm is an increasing function, we can
perform the optimization by maximizing the log-likelihood:

(41)

However, since the marginal pdf does not have a closed form,
and neither do its derivatives, performing the necessary opti-
mization is difficult. Numerical techniques may be applied di-
rectly to (41), and various general-purpose methods have been
studied extensively throughout the literature. An iterative joint
maximization method proposed in [23] attempts to approximate
the ML estimate by alternating between maximizing
with respect to and with respect to . One method
that explicitly takes advantage of the special structure in (41) is
the EM algorithm.

A. ML Estimation Using the EM Algorithm

Consider the function in (19). The expression
for is in (33), and summing these together
(without the minus sign) gives

constants

(42)
Expanding and substituting into the expectation in (19) yields

constants (43)

We want to find the value of that maximizes this expres-
sion. Noticing that (43) is quadratic in , the candidate value
satisfies the linear system

(44)

Also, the Hessian matrix is negative-definite, so (43) is strictly
concave, and the candidate point is the unique maximum .
All that remains to specify the EM algorithm is to approximate
the expectations in (44).

Using Bayes’ rule and the separability of both and
, the posterior distribution of the jitter is also separable:

(45)

Thus, the expectations are also separable into univariate expec-
tations:

(46)

(47)

The subscript after the left-side expectation in (47) denotes
the th (zero-indexed) row of the matrix. The distribution

is constant with respect to , and can be evalu-
ated using quadrature, as in (27). Approximating each of the
univariate expectations in (46) and (47) with quadrature yields

(48)

(49)

The complexity of each iteration of this algorithm appears to
be linear in the number of samples, although the rate of con-
vergence (and thus, the number of iterations required) may also
vary with the number of samples, or other factors. The conver-
gence rate, as well as susceptibility to initial conditions (since
the EM algorithm only guarantees local convergence), are the
subject of simulations in this work and in [14].

The EM algorithm for ML estimation is summarized in Al-
gorithm 1.

Algorithm 1: Pseudocode for the EM Algorithm for Computing
ML Estimates for the Unknown Signal Parameters

Require: , , , , , ,

Compute -term quadrature rule (using e.g., the
eigendecomposition method in [16]) for use in below
approximations (use ).

repeat

for to do

Approximate using (27).

Compute using (48).

Approximate using (49).

end for

Solve for using (44) and the above approximations.

until or or

return

VI. SIMULATION RESULTS

The objectives of the simulations presented here are to a) an-
alyze the behavior of the proposed EM algorithm for approxi-
mating the ML estimator, and to b) compare the performance of
this estimator to both the Cramér–Rao bound and that of linear
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Fig. 4. The convergence of the EM algorithm depends on the choice of pa-
rameters � , � , and � , as demonstrated in the above plots. (a) � � ��,
� � ����, � � ���,� varies. (b) � � ��,� � �, � � ���, � varies.
(c) � � ��, � � �, � � ����, � varies.

parameter estimation. The convergence behavior is studied in de-
tail in [14] for periodic bandlimited signals. In this work, ex-
periments to determine convergence behavior and sensitivity to
initial conditions are conducted for the sinc basis signal model
described in Section I. In all experiments, we utilize Matlab to
generate signals with pseudo-random parameters and noise and
apply the algorithms described to the samples of these signals.
For a factor of oversampling, we generate samples.

A. Convergence Analysis

While guaranteed to converge, the EM algorithm would be of
little use if it did not converge quickly. The rate of convergence
of the EM algorithm is studied for several choices of , ,
and , and trends are presented in Fig. 4. The rate of conver-
gence is exponential, and the rate decreases with increasing ,
increasing , and decreasing .

As mentioned in Section II, the rate of convergence of the
EM algorithm is related to the difference between the CRBs of

Fig. 5. The effects of varying initial conditions of the EM algorithm as a func-
tion of (a) oversampling factor, (b) jitter variance, and (c) additive noise variance
are studied by computing the log-likelihoods of the EM algorithm results, for
multiple initial conditions, across 50 trials. The log-likelihood of the EM algo-
rithm results are displayed relative to the result for zero-jitter initialization, so
that the log-likelihood of the result for �� � ���	 � is zero. (a) � � ��,
� � ����, � � ����, and varying � . (b) � � ��, � � 
, � � ����,
and varying � . (c) � � ��,� � 
, � � ����, and varying � .

the complete and the incomplete data. As shown later in Fig. 6,
the difference between the CRBs for the complete data and in-
complete data increases exponentially with . This relationship
coincides with the convergence behavior observed in Fig. 4(b).
Although these experiments evaluated 500 iterations of the EM
algorithm, the results suggest that 100 iterations would suffice
as long as the jitter standard deviation is not too large. Also,

is chosen as a reasonable stopping criterion for change in
and change in log-likelihood between iterations ( and in

Algorithm 1, respectively).

B. Sensitivity to Initial Conditions

The likelihood function described in (11) is generally non-
concave, so maximizing the function via a hill-climbing method
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Fig. 6. The approximate performances of the linear unbiased estimator and
ML estimator (EM algorithm) are plotted in (a) against the ��� ��� and the
complete data ��� ���, as a function of � for � � ��, � � �	, � �
���
, and a fixed random choice of �. The linear and ML estimator biases are
plotted in (b), using the root-mean-squared (RMS) values of the bias vectors.
The bars above and below each data point for the linear and ML estimators in
(a) delineate the 95% confidence intervals for those data points.

like the EM algorithm is only guaranteed to yield a local max-
imum. The ability of the algorithm to converge to the global
maximum depends on the nonconcavity of the likelihood func-
tion. To demonstrate the sensitivity of the EM algorithm, as a
function of , , and , the empirical distribution of the
log-likelihood of the optimal values reached from multiple ini-
tial conditions is evaluated over numerous trials for different
choices of these parameters. In this experiment, the true value
of , the no-jitter linear estimator (38), , and ten random
choices, are used as initial conditions for each trial. As sug-
gested by the spread of the samples shown in Fig. 5, the vari-
ability of the EM algorithm increases with and decreasing

. Even when the EM algorithm appears sensitive to initial
conditions, using the no-jitter linear estimate (38) results in a
relatively small deviation from the best observed log-likelihood
value. In situations when such initialization does fail to produce
consistent results, methods such as the deterministic annealing
EM algorithm described in [24] may improve consistency.

C. Performance of the EM Algorithm

In the first performance experiment, the Cramér–Rao lower
bound is compared to the unbiased linear estimator (37) and the
EM algorithm of the ML estimator to measure the efficiency of
the algorithms. The Cramér–Rao lower bound for the complete
data is also presented for reference. Although computational
difficulties prevent a complete comparison for every possible
value of , carrying out a comparison for a few randomly chosen
values of provide a measure of the quality of the algorithms.

Fig. 7. The MSE performance of the ML estimator (EM algorithm) is com-
pared against both the unbiased linear estimator (37) and the no-jitter BLUE
(38), as a function of � . The bars above and below each data point for the linear
and ML estimators delineate the 95% confidence intervals for those data points.
(a) � � ��,� � �, ���� � � � ��
, � � ���
. (b) � � ��,� � �	,
���� � � � ��
, � � ���
. (c) � � ��, � � �	, ���� � � � ��
,
� � ����.

As the curves in Fig. 6 demonstrate for one such random choice
of , both algorithms are approximately efficient for small ,
but the EM algorithm continues to be efficient for larger values
of than the linear estimator. In addition, the bias shown for
the linear and ML estimators is approximately the same for

; this bias may be due to the small error in the numer-
ical integration. Note how this error becomes larger with .

In Fig. 7, the EM algorithm is compared against two linear
estimators. First, to demonstrate the MSE improvement attain-
able through nonlinear estimation, the EM algorithm is pitted
against the linear unbiased estimator. Since a major motivating
factor for developing these algorithms is to reduce the power
consumption due to clock accuracy, the EM algorithm also can
achieve the same MSE as the linear estimator for a substantially
larger jitter variance, reducing the clock’s power consumption.

When the additive noise dominates the jitter , the
improvement can be expected to be minimal, since the system
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Fig. 8. These graphs show the maximum factor of improvement in jitter tol-
erance, measured by � , achievable by the EM algorithm (relative to linear re-
construction). Holding � fixed, (a) shows the trend in maximum improvement
as � increases, and (b) shows the trend in maximum improvement as � in-
creases while holding � fixed. The jitter standard deviation � corresponding
to this maximum improvement for the ML estimator is plotted on the same axes.
(a) � � ��, � varies, ���� � � � ���, � � ���. (b) � � ��, � � �,
���� � � � ���, � varies.

is nearly linear, and the jitter is statistically insignificant. As the
amount of jitter increases, the density function used in
each iteration of the EM algorithm becomes more nonlinear in

, and the quadrature becomes less accurate for a given number
of terms. Therefore, the EM algorithm generally takes longer
to converge, and the result should be a less accurate approxi-
mation to the true ML estimator. This behavior is observed in
Fig. 7, where the EM algorithm is compared against both the
linear unbiased estimator and the no-jitter linear estimator. The
EM algorithm generally has lower MSE than either linear esti-
mator, and the performance gap is more pronounced for higher
oversampling factor .

To answer the question of how much more jitter can be tol-
erated for the same desired MSE using the EM algorithm, the
maximum proportional increase is plotted as a function of
and in Fig. 8. The maximum proportional increase for a
choice of and is computed by approximating log-log do-
main MSE curves, like those in Fig. 7, with piece-wise linear
curves and interpolating the maximum distance between them
over the range of . The range of is ignored
since the linear and nonlinear reconstructions perform similarly
when the additive noise dominates (as expected). The proportion
of improvement increases linearly as increases. As in-
creases, the level of improvement stays approximately the same
for . However, when increases beyond , the level
of improvement decreases substantially as expected, since the
additive noise dominates, and the optimal estimator is approxi-

mately linear. A maximum improvement factor of two cor-
responds to power savings of up to 75 percent.

VII. CONCLUSION

The results presented in Section VI are very encouraging
from a power-consumption standpoint. A maximum im-
provement of between 1.4 to 2 times the jitter translates to a
two-to-fourfold decrease in power consumption by the clock,
according to (3). To put the magnitude of such an improve-
ment in context, consider the digital baseband processor for
ultra-wideband communication in [25]. This processor incor-
porates an ADC and a PLL, which consume 86 and 45 mW,
respectively, out of a 271 mW budget for the chip. Reducing by
a factor of two the power consumed by the ADC alone would
decrease the total power consumption of the chip by almost
sixteen percent.

While effective, the EM algorithm is computationally ex-
pensive. One benefit of digital postprocessing is that these
algorithms can be performed off-chip, on a computer or other
system with less limited computational resources. For real-time
on-chip applications, Kalman filter-like versions of the EM
algorithm would be more practical; this extension is a topic for
further investigation. Related to real-time processing is devel-
oping streaming algorithms for the infinite-dimensional case,
extending this work for general real-time sampling systems.
Another future direction involves modifying these algorithms
for correlated or periodic jitter.

Sampling jitter mitigation is actually just one application of
these new algorithms. In the frequency domain, jitter maps to
uncertainty in frequency; using algorithms such as these should
produce more reliable Fourier transforms for systems like spec-
trum analyzers. In higher dimensions, timing noise becomes
location jitter in images or video. Greater tolerance of the lo-
cations of pixels in images would allow scanning electron mi-
croscope users to acquire higher resolution images without sac-
rificing MSE. This paper shows that significant improvements
over the best linear postprocessing are possible; thus, further
work may impact these and other applications.
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