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Abstract

Magnetic resonance imaging (MRI) is an increasingly versatile diagnostic tool for a
variety of medical purposes. During a conventional MRI scan, samples are acquired
along a trajectory in the spatial Fourier transform domain (called k-space) and the
image is reconstructed using an inverse discrete Fourier transform. The affordability,
availability, and applications of MRI remain limited by the time required to sam-
ple enough points of k-space for the desired field of view (FOV), resolution, and
signal-to-noise ratio (SNR). GRAPPA, an accelerated parallel imaging method, and
compressed sensing (CS) have been successfully employed to accelerate the acquisi-
tion process by reducing the number of k-space samples required. GRAPPA leverages
the different spatial weightings of each receiver coil to undo the aliasing from the re-
duction in FOV induced by undersampling k-space. However, accelerated parallel
imaging reconstruction methods like GRAPPA amplify the noise present in the data,
reducing the SNR by a factor greater than that due to only the level of undersampling.
Completely separate from accelerated parallel imaging, which capitalizes on observ-
ing data with multiple receivers, CS leverages the sparsity of the object along with
incoherent sampling and nonlinear reconstruction algorithms to recover the image
from fewer samples. In contrast to parallel imaging, CS actually denoises the result,
because noise typically is not sparse. When reconstructing brain images, the discrete
wavelet transform and finite differences are effective in producing an approximately
sparse representation of the image. Because parallel imaging utilizes the multiple re-
ceiver coils and CS takes advantage of the sparsity of the image itself, these methods
are complementary, and a combination of these methods would be expected to enable
further acceleration beyond what is achievable using parallel imaging or CS alone.

This thesis investigates three approaches to leveraging both multiple receiver coils
and image sparsity. The first approach involves an optimization framework for jointly
optimizing the fidelity to the GRAPPA result and the sparsity of the image. This
technique operates in the nullspace of the data observation matrix, preserving the ac-
quired data without resorting to techniques for constrained optimization. While this
framework is presented generally, the effectiveness of the implementation depends on
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the choice of sparsifying transform, sparsity penalty function, and undersampling pat-
tern. The second approach involves modifying the kernel estimation step of GRAPPA
to promote sparsity in the reconstructed image and mitigate the noise amplification
typically encountered with parallel imaging. The third approach involves imposing
a sparsity prior on the coil images and estimating the full k-space from the observa-
tions using Bayesian techniques. This third method is extended to jointly estimate
the GRAPPA kernel weights and the full k-space together. These approaches rep-
resent different frameworks for accelerating MRI imaging beyond current methods.
The results presented suggest that these practical reconstruction and post-processing
methods allow for greater acceleration with conventional Cartesian acquisitions.

Thesis Supervisor: Vivek K. Goyal
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Since its development in the 1970s, magnetic resonance imaging (MRI) has steadily

gained in importance to clinicians and researchers for its ability to produce high qual-

ity images non-invasively without the side effects of ionizing X-ray radiation. MRI

is used extensively to image soft tissue throughout the whole body [22]. Moreover,

magnetic resonance imaging can be used to distinguish gray and white matter in

the brain, observe blood flow, and measure diagnostically valuable quantities such as

cortical thickness [13, 47, 32]. Because of its great versatility, MRI has myriad appli-

cations in both medical research and diagnostic and perioperative clinical imaging.

However, magnetic resonance imaging remains limited by the time required to gen-

erate these images. A typical MRI of a brain can take between five and ten minutes,

during which the subject must remain perfectly still. This requirement is a hardship

for certain populations like young children, the elderly, and patients experiencing

chronic or acute pain. Since many MRI bores are narrow enclosed spaces, subjects

may experience claustrophobia, making remaining motionless more difficult. Because

multiple scans are typical for many applications, sessions commonly extend beyond

one hour in duration, increasing costs and reducing availability of the scanner. In

addition, compromises in image quality such as resolution reduction are necessary for

time-critical applications like functional MRI [71, 6].

MRI acquisition speed is limited by physiological constraints connected to the

effects of spatially varying magnetic fields on the body. A spatially-varying applied
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magnetic field can induce currents in the nervous system; at high enough rates, these

currents can stimulate the nerves, irritating or distressing the subject [40]. As the

fields used to encode the spatial information for Fourier coefficients are spatially vary-

ing, this constraint essentially limits the rate we can collect MRI data. Past efforts

in accelerating MRI have centered upon adjusting the sampling pattern or acquir-

ing multiple samples simultaneously. All these methods have their advantages and

disadvantages. Adjusting the sampling pattern often means reducing resolution, los-

ing phase information, or requiring more complicated reconstruction methods [9, 70].

Fast MRI acquisition techniques also can use multiple echoes to reduce imaging time

while reducing contrast or increasing susceptibility to magnetic field inhomogene-

ity [62, 41, 30].

A different approach for accelerating MRI uses multiple receivers in parallel and

post-processing to recover complete images from fewer samples. Parallel imaging had

already been used effectively to mitigate noise, and now, accelerated parallel imaging

methods also enable faster acquisitions [82, 87, 76, 38]. Whereas conventional re-

ceiver coils have a single channel with spatially uniform sensitivity to magnetization,

parallel receiver coils have multiple channels with different non-uniform magnetic sen-

sitivities [82]. Accelerated parallel imaging reconstruction methods use the different

sensitivities of the coil channels to resolve the ambiguity due to undersampling [76].

Such methods already are popular in commercial scanners, enabling modest levels of

acceleration for many types of imaging, but these methods alone are insufficient for

the high acceleration levels we would like to attain.

Another technique for reconstructing images from undersampled data called com-

pressed sensing (CS) emerged in the signal processing community [18, 16, 20, 27].

Compressed sensing takes advantage of the sparsity or compressibility of an appro-

priate representation or transform of the desired image. While not specific to MRI,

MRI is a widely suitable candidate for CS due to the approximate transform spar-

sity of many MR images and the ability to use nearly arbitrary (random) sampling

patterns [57]. For instance, many MR images have few edges or have simple textures

representable using a small number of wavelet coefficients. CS has enabled successful
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reconstructions of modestly accelerated MRI data [57].

By combining the sparsity models with the accelerated parallel imaging recon-

struction methods already developed, we expect high quality reconstructions from

data collected with even greater undersampling. Linear system inversion techniques

for accelerated parallel imaging reconstruction like SENSE [76] and SPIRiT [59] can be

directly combined with the compressed sensing reconstruction framework. Methods

like SparseSENSE [52] and L1 SPIRiT [56] follow this approach, yielding a sparsity-

promoting regularized reconstruction method that can recover high quality images

from moderate accelerations with random undersampling.

With conventional uniform undersampling, we aim to improve the auto-calibrating

kernel-based interpolation method GRAPPA [38]. As a direct method (not an inver-

sion), this reconstruction approach cannot be directly incorporated into a compressed

sensing framework. Further complicating the combination with sparse models is the

two-step formulation of the GRAPPA method: both the calibration and interpolation

steps influence the reconstruction quality and can introduce noise or artifacts. Also,

while theoretical results concerning compressed sensing rely on a random or pseudo-

random observation matrix, the observations are uniformly spaced, yielding coherent

aliasing that cannot be distinguished based on sparsity alone. In this work, we study

three different approaches to improving GRAPPA using sparsity models: denoising

the reconstructed image, regularizing the calibration step, and estimating the channel

images using Bayesian sparsity models.

We demonstrate that all these approaches successfully extend the GRAPPA ac-

celerated parallel imaging method to higher accelerations by having either greater

spacing between samples, or less calibration data, and yielding high quality images.

The denoising method reduces the noise amplification from both undersampling the

data and the GRAPPA reconstruction process. The improved calibration method

reduces the amount of calibration data needed to produce a quality GRAPPA recon-

struction, mitigating the aliasing and noise that would otherwise result. The joint

estimation method combines these ideas to reconstruct both the GRAPPA kernel

needed for interpolation and the denoised full channel images from the undersampled
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data, enabling reconstructions from highly undersampled data with less calibration

data. Results using real MRI data are presented that portray the effectiveness of

these methods relative to conventional accelerated parallel imaging at high levels of

acceleration. We conclude from these results that significant gains in both image

quality and total acceleration can be made using all three of these methods, enabling

much faster MRI scans with currently employed image acquisition paradigms.

1.1 Outline

Effective combination of accelerated parallel imaging methods with compressed sens-

ing requires an in-depth understanding of the advantages and drawbacks of each.

Keeping in mind the strengths and weaknesses of these methods, we propose three

distinct approaches to combining GRAPPA, a widely-used accelerated parallel imag-

ing method, and image sparsity. We introduce a denoising method that mitigates

noise amplification at moderate levels of acceleration. We also propose a sparsity-

promoting auto-calibration method for GRAPPA that enables significantly greater

acceleration by reducing the amount of calibration data needed. Finally, we con-

sider a Bayesian estimation-theoretic framework for jointly calibrating the GRAPPA

reconstruction method and reconstructing denoised full images from undersampled

data. We conclude this thesis with a discussion of the merits and drawbacks of the

proposed methods and their respective places in practical accelerated imaging.

Background on magnetic resonance imaging is presented in Chapter 2. We begin

with a basic discussion of MR physics, emphasizing the classical aspects leading up to

the signal equation, which describes the connection between the magnetic moments,

fields, and the measured received signal. Connections between the sampling of k-

space and the spatial resolution and field of view of the image are drawn. Methods

for accelerating MRI acquisition, including partial Fourier imaging and fast pulse echo

sequences are described, ending with an introduction to accelerated parallel imaging.

Techniques for combining coil images and measuring coil sensitivities are presented,

and important pre-existing accelerated parallel imaging reconstruction techniques are
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described in detail. The nullspace formulation of SPIRiT is presented as an example

of this constrained optimization method that proves useful later.

In Chapter 3, sparsity models and the compressed sensing framework are de-

scribed in detail. The notions of sparsity, transform sparsity, and compressibility are

developed, and measures of sparsity, including the `0, `1, and `pp measures, are pre-

sented. An introduction to joint and group sparsity and appropriate hybrid measures

follows. Linear and nonlinear methods for sparsity-based denoising are introduced

and extended to the joint sparsity case. Once these preliminaries are complete, the

compressed sensing framework is developed, and key theoretical concepts like the re-

stricted isometry property and mutual coherence are explained. Compressed sensing

is then applied to the problem of reconstructing MRI images from undersampled data,

and major results from the literature are described. Additional time is spent depicting

sampling patterns for compressed sensing MRI used in the literature. This chapter

concludes with a discussion of the literature combining compressed sensing with ex-

isting accelerated parallel imaging reconstruction methods and how these methods

differ from the contributions in this thesis.

As mentioned earlier, three approaches for improving GRAPPA accelerated par-

allel imaging using sparsity models are proposed. The first approach, denoising the

GRAPPA result using sparsity, is described in Chapter 4. Motivating this develop-

ment is the preponderance of noise present in GRAPPA reconstructed images at high

accelerations. The proposed method aims to reduce the noise to a more acceptable

level by adjusting the interpolated (missing) k-space frequencies to promote the joint

transform sparsity of the coil images. A few innovations are made: the nullspace

method is applied to preserve the acquired data while denoising the coil images; the

GRAPPA result is used directly, saving on computation; and the method is developed

with the explicit goal of denoising, not requiring any deviation from conventional uni-

form undersampling. The complete method also considers the contribution of each

voxel in each coil channel to the final combined image, allowing for greater deviation

from the GRAPPA reconstruction in those voxels deemed too noisy or too insignifi-

cant in the combined image.
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A variety of studies are performed on real and simulated data using this denoising

method. Interpreting the choice of sparsity-promoting regularization penalty as im-

posing a prior distribution on the sparse transform coefficients, the empirical cumula-

tive distribution function (cdf) of the combined reference image transform coefficients

is compared to the distributions for a variety of penalty functions, and denoising is

performed using all these penalties to visualize the effects of imposing an appropriate

prior on the denoised image. First performed for the Shepp-Logan phantom, this

experiment is repeated for real MRI data.

Additional experiments depict the impact of continuation scheme parameters and

the tuning parameter on the denoising quality. A series of comparisons are performed

to portray differences in image quality, noise suppression, and contrast/resolution

degradation among the proposed method and existing reconstruction and denoising

methods. The chapter concludes with a depiction of denoising adapted to differ-

ent sampling patterns and a discussion of the advantages and disadvantages of the

proposed method that can be inferred from these experiments.

A second approach utilizes sparsity to regularize the GRAPPA kernel calibra-

tion step. In Chapter 5, this improved calibration method is derived and compared

to un-regularized and conventionally regularized kernel calibration. Using real MRI

reference images, reconstructions are performed using different numbers of ACS cali-

bration data, and the impact of different kinds of regularization is portrayed in these

experiments. Since varying the number of ACS lines can be interpreted as trading

image quality for greater total acceleration, the trade-off curves for these different

calibration methods are plotted, and the improvement in the achievable trade-off

region is significant. This chapter ends with experiments depicting the additional

improvement from post-processing the regularized GRAPPA method with the de-

noising method proposed in the previous chapter. From the improvement visible in

these last experiments, we speculate that additional gains are possible from combining

the calibration and reconstruction/denoising steps when regularizing with sparsity.

We investigate this combination of calibrating the GRAPPA kernel and recon-

structing the full k-space in Chapter 6. We begin by formulating a Bayesian esti-
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mation problem using both the acquired data and the GRAPPA reconstructions as

observations (with different noise models) and treating the joint transform sparsity

as a prior distribution on the full k-space across all the coil channels. After deriving

the posterior-maximizing estimator for this problem, we consider how the estimation

problem changes when the GRAPPA kernel is a variable. The transformed problem

enables joint estimation of both the kernel and the full coil-by-coil k-space from the

acquired data (including ACS lines). This problem is solved by adapting the iterative

algorithms used in previous chapters to compute the denoised full k-space and regu-

larized GRAPPA kernel. Experiments on real data depict significant improvements

in image quality at very high accelerations, even when using relatively little calibra-

tion data. From these experiments, we conclude that this joint estimation method,

by combining the effects of sparsity models on the calibrated kernel and on the full

k-space, enables high quality imaging from even less data than before.

In Chapter 7, we conclude by summarizing the conclusions and contributions made

in these chapters, and we follow this summary by a discussion of the impact on the

field and what future directions may enable even greater improvements in accelerated

MR imaging.
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Chapter 2

Magnetic Resonance Imaging

A thorough understanding of magnetic resonance imaging (MRI) begins with MR

physics, namely the interactions between bulk material and magnetic fields, and the

resulting signal received by nearby coils. These concepts can be employed to acquire

2-D or 3-D images that depict the spatial distribution of magnetically susceptible ma-

terials, including biological tissue. An acquisition executes a specific spatial frequency

domain sampling pattern, the properties of which are connected to the voxel size and

field of view of the reconstructed image. Several approaches for accelerating MRI

within this framework also are described here. Conventional imaging is extended to

parallel imaging using multiple receiver coils; existing techniques for reconstructing

images from accelerated parallel imaging data are explained and compared, including

the GRAPPA method, which is used extensively throughout this thesis.

2.1 MR Physics

The basic classical theory underlying MRI derives from the physics governing the

interaction between particles in a bulk material and an externally applied magnetic

field. These physical laws also govern detection of the magnetization of these particles

and allow us to reconstruct an image of the magnetic properties of the bulk material.

A concise, thorough treatment of these concepts is given in [68]. A summary of

pertinent information from this reference is provided here.
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2.1.1 Magnetic Moments

At a high level, MRI involves exciting particles in the test subject using a combination

of several external magnetic fields and measuring in a nearby receiver coil the resulting

signal generated by those particles. Atoms with an odd number of protons or neutrons

have “spin,” which can be affected by an applied magnetic field. The most prevalent

such particle in the human body is the single-proton hydrogen (1H) atom found in

both water and hydrocarbons, especially lipids. This abundance is fortunate as the

(1H) atom is highly sensitive to applied magnetic fields, so it produces a strong signal

that is relatively easily detected. While it is convenient to think of individual atoms

in isolation, the structure of the molecule or compound containing these magnetically

susceptible atoms impacts the received signal. Since different tissue types contain

different densities of different hydrogen-containing molecules, these signal differences

create contrast between tissue types useful for generating useful images depicting

anatomy or structure.

To consider the effect of a magnetic field on a susceptible particle, it is helpful

to consider the “spin” as a vector quantity, called the magnetic moment. In a bulk

material such as biological tissue, this vector is often expressed in terms of magneti-

zation M, the net magnetic moment per unit volume. The effect of a magnetic field

B on the magnetization is described by the differential equation

dM

dt
= M× γB, (2.1)

where γ is the gyromagnetic ratio of the particle (γ = 2π · 4.2576 · 107 rad/s/T for

the hydrogen atom [7]). In the presence of a sufficiently strong static magnetic field,

such as the main field generated by a permanent or superconducting magnet in an

MRI machine, these spins in equilibrium tend to be oriented in the direction of that

magnetic field. In keeping with convention, we consider the main field to point in

the z-direction of our right-handed 3-D coordinate system. In the context of human

MRI, the main field is oriented parallel to the bore of the MRI system.

When the magnetization is at an angle to the main field, the magnetization vector
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Figure 2.1: While the magnetization M is at an angle to the magnetic field B0k̂, the
derivative of the magnetization dM/dt is perpendicular to M, causing the magneti-
zation vector to precess around the magnetic field.

will precess in the plane normal to that field (called the transverse plane or axial plane)

at the frequency ω = γB; when B is the main field B0k̂, this frequency ω0 = γB0

is called the Larmor frequency. For a main field strength of B0 = 3 T, the Larmor

frequency of a hydrogen atom is ω0 = 127.73 MHz. This precession behavior is

depicted in Figure 2.1.

To simplify later calculations, we often express Equation (2.1) in the reference

frame rotating at the Larmor frequency in the transverse plane. In the rotating

reference frame,
dM

dt
= M× (γB− ω0k̂). (2.2)

When B = B0k̂, we have dM
dt

= 0. Thus, in the rotating reference frame, we can

ignore the contribution of the main field when considering the effects of other external

magnetic fields on the magnetization.

While the spins are precessing, they induce an electromotive force (emf) in a

nearby receiver coil. The observed signal from all the spins can be approximated by

integrating the transverse magnetization over the entire volume. For convenience,

we write the transverse magnetization Mxy as a complex number with the real part

representing the component in the x-direction, and the imaginary part representing
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the component in the y-direction. So Mxy = Mx + jMy. Thus, although the mag-

netization vector is real-valued, our measurements will be complex-valued to capture

both components of the transverse magnetization conveniently. The phase of this

complex-valued quantity contains information about the actual precession frequen-

cies of the spins, which can be used to study chemical structure or composition, main

field inhomogeneity, and (as we will use later) spatial location of the spins.

2.1.2 Relaxation and Excitation

While precessing, these moment vectors also move towards equilibrium in a process

called relaxation. This relaxation occurs in two ways: by losing magnitude in the

transverse plane, which is called transverse or T2 relaxation, and by gaining magnitude

in the main field direction, which is termed longitudinal or T1 relaxation. Both

relaxation processes are modeled by exponential decay with time constants T1 and

T2. Let Mxy(t) be the magnitude of M projected onto the transverse plane at time t;

this magnitude component decays as Mxy(t) = Mxy(0)e−t/T2 . The component of M in

the z-direction Mz(t) decays as Mz(t) = M∞ − (M∞ −Mz(0))e−t/T1 . The magnitude

M∞ describes the equilibrium magnetization magnitude. Note that the relaxation

time constants T1 and T2 are often quite different; for gray matter and white matter

in the brain, T1 � T2, so the magnetization will appear to disappear in the transverse

plane long before it reappears again in the longitudinal direction. Taking relaxation

into account, we modify Equation (2.1):

dM

dt
= M× γB− Mx

T2

ı̂− My

T2

̂− (Mz −M∞)

T1

k̂. (2.3)

The differential system in Equation (2.3) is termed the Bloch equations.

Without some way of perturbing the magnetic moments, the magnetizations would

all decay to and remain at equilibrium, and imaging would not be possible. Fortu-

nately, the cross product in the Bloch equations tells us that at equilibrium, the spins

can be “tipped” into the transverse plane by applying a short radiofrequency (RF)

pulse perpendicular to the main field with frequency equal to ω0. This process of
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exciting the spins requires only a short-duration pulse of much smaller magnitude

than the main field; however, unlike the main field, this pulse deposits energy into

the susceptible particles, heating the tissue. Therefore, care must be taken during

excitation to ensure the rate of heating does not exceed the specific absorption rate

(SAR) limit of the subject. Fortunately, most subjects are capable of dissipating this

heat to avoid tissue damage under normal conditions. Special care must be taken

on subjects with metal present, or with homeostasis imbalance, as these conditions

can increase the dangers of RF heating on the body. We will only use the same RF

excitation pulse that is used in conventional MRI, so heating will not be affected by

the reconstruction methods proposed in this thesis.

2.2 Cartesian MR Imaging

Cartesian MRI refers to acquiring a Cartesian grid of samples of the spatial Fourier

transform of the bulk magnetization. This methodology is very common for acquir-

ing images and volumes displaying local tissue contrast, and many important pulse

sequences implement Cartesian imaging. The key element to Cartesian and other

Fourier sampling methods is the use of spatial gradient fields during the relaxation

of excited spins. As we describe below, the spacing and extent of the Cartesian grid

of samples both affect the acquisition time and the field of view and voxel size of the

resulting image.

2.2.1 Gradient Fields

While the Bloch equations describe how spins can be excited to allow the bulk magne-

tization to be measured, we need to introduce spatial selectivity to identify how that

magnetization is spatially distributed and construct an image (or volume). The ap-

proaches discussed here utilize gradient magnetic fields that vary linearly in amplitude

over space and are parallel (or anti-parallel) to the main field. We parameterize these

fields using the spatial gradient G(t) = [Gx(t), Gy(t), Gz(t)] = ∇x,y,zBz(t). With

this gradient, the component of the net applied field in the z-direction at position
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r = [x, y, z] is Bz(r, t) = (B0 +
∫ t

0
G(τ) · r dτ). The received signal is

y(t) =

∫
r

Mxy(r, t)e
−j2π[k(t)·r+ γ

2π
B0t] dr, (2.4)

where

k(t) =
γ

2π

∫ t

0

G(τ) dτ. (2.5)

Limiting ourselves to time scales t� T1, T2, relaxation is insignificant, and the main

dynamic in Mxy is due to precession, so demodulating by ejω0t yields a constant (in

time) Mxy(r):

y(t) =

∫
r

Mxy(r)e−j2πk(t)·r dr. (2.6)

We observe that Equation (2.6) describes the spatial Fourier transform of Mxy(r) at

spatial frequency k(t). The spatial Fourier transform domain (either 2-D or 3-D)

measured this way is called k-space, and the path traced by k(t) is called the k-space

trajectory. By carefully choosing G(t) and our sample times, we can sample the 2-D

or 3-D spatial Fourier transform at uniformly spaced intervals. These samples are the

discrete Fourier transform (DFT) of the discrete image we seek to acquire.

Note: In addition to exciting spins, the RF excitation pulse can be designed to

select a particular 2-D slice of our image by applying a sinc-like pulse in combination

with a linear gradient. Designing such pulses is a separate topic (see [7]), but it

suffices for our discussion that we can design slice-selective excitation pulses for 2-D

slices of almost any thickness, position, and orientation. The original MRI design

actually used this slice selection approach in all three directions, requiring a separate

excitation and relaxation for every voxel in the acquired volume; however, the speed

of this approach is fundamentally limited by the excitation and relaxation times and

is rarely used.

Conventional 2-D Cartesian MRI consists of repeatedly selecting and exciting a 2-

D slice and sampling lines of k-space while applying gradient fields during relaxation.

Suppose we wish to acquire a slice parallel to the transverse plane. We apply an RF

pulse with a gradient varying linearly in the z-direction to select the slice. Then, we

30



Figure 2.2: RF slice-selective excitation (in z-direction) followed by Cartesian sam-
pling of k-space in kxky-plane using x- and y-gradients. The acquisition is repeated
for different magnitudes of Gy, resulting in the sampling of different phase encode
scan lines, shown in the k-space plot on the right. The samples are taken during the
frequency encoding x-gradient and are marked with the ADC.

apply a gradient varying in the y-direction to shift the k-space trajectory in the ky-

direction. Finally, we demodulate and sample y(t) while applying a gradient linearly

varying in the x-direction. We repeat, changing the amplitude of the gradient varying

in the y-direction to select different lines of k-space. Essentially, we are raster-scanning

k-space. We denote the x-direction the readout or frequency encode direction because

we sample while tracing the k-space trajectory in that direction. We denote the y-

direction the (primary) phase encode direction, and we denote the z-direction the

slice encode direction. This acquisition is depicted in Figure 2.2. This approach can

be extended to 3-D Cartesian imaging by avoiding slice selection and instead exciting

the entire volume and using the gradients varying in both the y- and z-directions to

select the scan line in 3-D k-space. Then, we have two phase-encode directions.

2.2.2 Field of View and Spatial Resolution

In designing a Cartesian MRI acquisition, we need to determine appropriate choices

of the field of view (FOV) and the spatial resolution (i.e. voxel size). To avoid spatial

aliasing artifacts in the image, the FOV should be larger than what we are imaging.

The voxel size should be sufficiently small to resolve the smallest features we are
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Figure 2.3: The sample spacing ∆kx in k-space and the extent kx,max relate to the FOV
FOVx and voxel size ∆x, respectively, of the reconstructed image in the x-direction.
Similarly, ∆ky and ky,max are connected to FOVy and ∆y.

interested in observing. The frequency spacing ∆k between samples in k-space (in

units of inverse distance) is equal to the reciprocal of the FOV: FOV = 1/∆k. The

voxel size ∆ is equal to the reciprocal of the extent of k-space (−kmax to kmax) that

is sampled: ∆ = 1/(2kmax). These parameters are depicted physically in Figure 2.3.

For safety, we cannot arbitrarily increase the magnitude of the gradient fields, so

the total acquisition time for Cartesian imaging is proportional to the number and

length of the scan lines acquired. A larger FOV or smaller voxels in the phase encode

direction necessitates more scan lines, and smaller voxels in the frequency encode

direction increases the length of those scan lines. Assuming that we are not limited

by the sampling rate of our analog-to-digital converter (ADC), we note that the

acquisition time is unaffected by the spacing between samples within a scan line, so

we can achieve arbitrarily large FOV in the frequency encode direction for free. Thus,

we typically choose the frequency encode direction to point in the longest dimension

of our volume to minimize the acquisition time, and we oversample k-space in that

direction to avoid any possibility of aliasing.

Image quality is also affected by signal-to-noise ratio (SNR); when SNR is too low,

tissue contrast and anomalous regions are difficult to distinguish from observation

noise. SNR is roughly proportional to acquisition time, so reducing the acquisition

time is accompanied by a similar reduction in SNR. The degradation in SNR will be

a major concern in reconstructing quality images from accelerated MRI data.
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2.3 Accelerated MR Imaging

Several approaches have become popular for accelerating Cartesian MRI. Keyhole

and partial Fourier imaging reduce the extent of k-space that is sampled and use

side information to recover the missing regions. Keyhole imaging [93] is a time-series

imaging technique used primarily for contrast-enhanced imaging or cardiac imaging,

where multiple volumes are collected, and changes of interest are primarily in the

low spatial frequencies. A full volume is collected initially, but only low-resolution

volumes are collected in subsequent frames, greatly reducing the acquisition time

for each frame and increasing the temporal resolution of the technique. The high

frequency data in these accelerated frames are substituted from the initial frame, as

discussed in [9]. However, keyhole imaging cannot accelerate single-frame imaging

like anatomical MRI without substantially reducing spatial resolution.

On the other hand, partial Fourier imaging can be applied to pretty much any

acquisition. In partial Fourier imaging, only one half of k-space and a small part of the

other half is fully sampled, and complex conjugation or a more sophisticated technique

like homodyne processing [70] is utilized to fill in the remaining frequencies. However,

partial Fourier techniques cause signal loss when the real-valuedness assumption of

the image is violated, which can be caused by a number of factors including chemical

shift, field inhomogeneity, blood flow, and the presence of air (e.g. in the sinuses or

oral and nasal cavities), iron (e.g. in blood), or other materials with substantially

different magnetic susceptibilities. All these variations can introduce valuable phase

information that would be lost by assuming the image is real-valued.

A variety of echo train pulse sequences can be used to yield very fast acquisi-

tions. Echo planar imaging (EPI) [62] and its 3-D analogue echo volumar imaging

(EVI) [63] utilize a train of gradient echoes to acquire a complete slice using only a

single excitation. Other echo train pulse sequences combining gradient and/or spin

echoes like GRASE [30] and RARE [41] also achieve fast imaging, although not nearly

as fast as techniques based on gradient echoes alone, since RF spin echoes require

more time. All these techniques function on the basic premise of acquiring multiple
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(a) Uniform undersampling. (b) Random undersampling.

Figure 2.4: Uniform undersampling results in coherent aliasing, while non-uniform or
random sampling results in incoherent aliasing. Images shown for k-space undersam-
pled by a factor of 4, with zero-filling reconstruction.

scan lines during the same relaxation period. However, the artifacts and distortions

that result from these imaging techniques can make echo train pulse sequences not

an ideal approach for accelerated imaging. Although the acceleration is limited, these

methods are particularly prevalent in several prominent MRI applications, including

functional MRI and clinical and surgical neuroimaging.

Finally, we can increase the spacing between scan lines while maintaining the same

k-space extent. This accelerated imaging approach maintains spatial resolution while

reducing the FOV. When the object is larger than the reduced FOV, aliasing results,

which may make the image unusable. As portrayed in Figure 2.4, uniformly undersam-

pling k-space (keeping the spacing between scan lines equal) yields strongly coherent

artifacts in the image domain, while non-uniformly (or randomly) undersampling k-

space yields incoherent artifacts that appear lower in magnitude but more smeared

throughout the image. As is discussed later, parallel imaging can be employed to

undo coherent aliasing, and compressed sensing can resolve incoherent aliasing.

2.4 Parallel MR Imaging

Parallel MRI [82] was conceived to use multiple receiver coils to improve image quality

by increasing SNR. Averaging P measurements of k-space improves SNR by a factor

of
√
P , assuming equal noise variances and ignoring correlations across the coils.

Instead of a single large receiver coil surrounding the entire FOV, an array of small

coils is used, and ideally, each of these coils senses the magnetizations independently
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Figure 2.5: This 96-channel head array coil prototype has many small coils (metal
rings) around the head enclosure. Each coil has its own data acquisition hardware, so
all the channels can be acquired simultaneously. Commercially available array coils
enable parallel imaging to be used for many MRI applications.

of the others. In reality, these coils are coupled due to the shared effects of the induced

fields of one coil affecting the others, and as an end result, the noise is correlated to a

small degree. Multi-channel receive coil arrays such as the 96-channel head coil [100]

shown in Figure 2.5 are now widely available for a multitude of imaging applications.

To understand how parallel imaging can be useful for accelerated imaging with

reduced-FOV data, we return to the signal equation (Equation (2.6)). With a single

coil, we assume the coil senses the entire field of view uniformly, so that the “receive

field” B−1 is constant. With parallel imaging, the arrays are designed so that the

individual coils have highly non-uniform spatial sensitivities. Denote by Sp(r) the

transverse components of the receive field of the pth coil (that coil’s sensitivity); as

is done with the transverse magnetization, the two components are combined into a

single complex-valued number. Then, the signal yp(t) observed by the pth coil is

yp(t) =

∫
r

Mxy(r)Sp(r)e−j2πk(t)·r dr. (2.7)

For convenience, we drop the transverse magnetization subscript and write M(r) =

Mxy(r). Also, when referring to the magnetization sensed by the pth coil, we use the

notation Mp(r) = M(r)Sp(r).

Each receive channel in the coil array is sampled at the same time, yielding es-

timates at the same k-space frequencies k according to Equation (2.7). The sample
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Figure 2.6: Block diagram of the observation model for an MRI acquisition with a
P -channel parallel receive array coil. The sensed magnetizations M1(r), . . . ,MP (r) all
derive from the object magnetization M(r). The k-space observations y1[k], . . . , yP [k]
are generated simultaneously from these sensed magnetizations.

yp[k] represents the value of k-space at frequency k; these samples are corrupted by

correlated observation noise, which is modeled by additive complex Gaussian noise

np[k]. The noise vector [n1[k], . . . , nP [k]]T has covariance Λ, independent of k. The

observation model for parallel imaging with a P -channel coil is illustrated in in Fig-

ure 2.6. Given sufficiently many samples, the inverse DFT can be used to recover

the noisy discretized samples Mp[r] of the sensed magnetization from yp[k], and any

number of coil combination methods can be used to form a combined image M [r].

2.4.1 Coil Sensitivity Estimation

In the far field (the distance is much greater than the radius of the coil), the magnitude

of the sensitivity is inversely proportional to the square of the distance. In the near

field, the coil can be treated as a series of finite elements, and the Biot-Savart law

can be used to simulate the spatial sensitivity of the coil parameterized by curve C:

B(r) ∝
∫
C

d`× r

‖r‖3
2

, (2.8)

where ` is the tangent vector on the curve, in the direction of the current flow, and

r is the vector from the coil element to the spatial point in question. A simula-

tor for estimating sensitivities of arbitrary coil array geometries can be downloaded

from [53]. Note that neither the Biot-Savart law nor this simulator account for the
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Figure 2.7: Magnitude coil sensitivities for 32-channel head coil array computed from
acquired data using 32-channel array and single-channel body coils.

dynamic loading and cross-talk that occurs across coils. In addition, the sensitivities

are themselves affected by the subject’s magnetization. Thus, sensitivities are best

determined empirically, with the subject in the magnet.

Multiple approaches exist for empirical measurements. One such measurement di-

vides each coil image by the sum-of-squares combined image to yield an estimate of the

sensitivities without any additional data; this measurement is derived from compar-

ing the sum-of-squares combination to the SNR-optimal formula (see Equations (2.9)

and (2.10) below). However, this approach assumes that all the phase information

belongs to the coils, so the result is not suitable for reconstructing complex-valued

images. If a single-coil acquisition is available, the coil sensitivities can be derived

by dividing the coil images by that single-coil image. Since coil sensitivities are usu-

ally slowly-varying at main field strengths up to 3 T, low-resolution acquisitions and

polynomial fitting can be used to improve the robustness of the sensitivity estimation

to noise in the single-coil image and regions with low signal (e.g. near the periph-

ery of the FOV). An example of high-quality magnitude sensitivity maps estimated

from empirical 32-channel and single-channel coil data is shown in Figure 2.7. These

sensitivities depict smooth far field decay and higher-order effects like coil loading.
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2.4.2 Combining Coil Images

One may ask, what is the optimal way to combine data across coils to produce a single

image? The sum-of-squares method [82] is nearly optimal for a magnitude image:

M [r] =
√

M[r]HΛ−1M[r], (2.9)

where M [r] is the combined image magnetization for the voxel at r, M[r] is the column

vector of voxel values [M1[r], . . . ,MP [r]]T at position r across the P coils, and Λ is the

noise covariance matrix (the identity matrix may be used if a noise covariance matrix

has not been measured using a noise-only pre-scan acquisition). If samples Sp[r] of

the coil sensitivities are known, the unity-gain SNR-optimal coil combination [82] is

M [r] = (S[r]HΛ−1S[r])−1S[r]HΛ−1M[r], (2.10)

where S[r] is the vector of coil sensitivities [S1[r], . . . , SP [r]]T at voxel r. The coil

combination in Equation (2.10) preserves the signal gain. The linear combination

that normalizes the noise is

M [r] = (S[r]HΛ−1S[r])−1/2S[r]HΛ−1M[r]. (2.11)

The noise in this linear combination M [r] has unit variance for all r.

2.5 Accelerated Parallel Imaging Reconstruction

Reducing the FOV causes image voxels to alias on top of each other. Parallel imaging

introduces different non-uniform spatial weightings to the aliased voxels in each coil

channel, enabling the aliased voxels to be separated during reconstruction. Acceler-

ated parallel imaging methods such as SENSE [76], SMASH [87], GRAPPA [38], and

SPIRiT [59] leverage the fact that each coil weights the positions that are aliased

together differently to separate the component voxels and un-alias the image. These

parallel imaging methods are described in the following subsections.
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2.5.1 SENSE

Sensitivity encoding (SENSE) constructs and solves a linear system relating the de-

sired un-aliased voxel magnetizations, the coil sensitivities, and the aliased magne-

tizations observed by each coil. For simplicity, consider a one-dimensional example

(SENSE easily generalizes to higher dimensions) where we undersample an object

M [n], for n = 0, 1, . . . , N − 1, by a factor of R (assume R divides N), and suppose

that the number of coils P is at least as large as R. The reduced-FOV image result-

ing from taking the inverse DFT of the k-space samples from coil channel p contains

aliased pixels Mp[n], for n = 0, . . . , N/R−1, each of which is a weighted superposition

of M [nr], where nr = (n − rN/R) mod N for periodic replicates r = 0, . . . , R − 1.

SENSE assumes we have coil sensitivities available, so we can construct the P × R

matrix Sn of sensitivities for all the coils at all the replicate positions nr. For conve-

nience, collect the aliased voxels Mp[n], for p = 1, . . . , P , into vector M
(a)
n , and collect

un-aliased voxels M [nr] for r = 0, . . . , R − 1, into vector M
(na)
n . The resulting linear

system for a single value of n ∈ {0, 1, . . . , N/R− 1} is


M1[n]

...

MP [n]


︸ ︷︷ ︸

M
(a)
n

=


S1[n0] · · · S1[nR−1]

...
...

SP [n0] · · · SP [nR−1]


︸ ︷︷ ︸

Sn


M [n0]

...

M [nR−1]


︸ ︷︷ ︸

M
(na)
n

. (2.12)

SENSE also accounts for the noise in the observations: suppose we have measured

the noise covariance matrix across all the coils Λ using a fast noise-only pre-scan

acquisition (with no RF excitation). Then, SENSE estimates the SNR-optimal un-

aliased voxel magnetizations M̂
(na)
n in a single combined image by computing

M̂(na)
n = (SHn Λ−1Sn)−1SHn Λ−1M(a)

n , (2.13)

for each n = 0, . . . , N/R − 1. Note that if the coil sensitivities were not sufficiently

non-uniform and distinct, the matrix Sn would be rank-deficient, and SENSE would

not be able to resolve aliasing using these sensitivities alone. Errors in the coil sen-
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sitivity estimates will cause SENSE to improperly un-alias the reduced-FOV images,

yielding a combined image with visible aliasing artifacts. To reduce the effect of coil

sensitivity errors on the SENSE reconstruction, JSENSE [103] jointly estimates and

refines the sensitivities and the image, using a low-degree polynomial basis for the

sensitivities. In addition, the noise in the result may be amplified in the combined

un-aliased image; this noise amplification due to the parallel imaging method (as op-

posed to undersampling, which reduces SNR by a factor of
√
R) is called the g-factor.

Analytically, the g-factor g is defined as

g =
SNRfull√
R · SNRredu

, (2.14)

where SNRfull is the SNR of the combined fully-sampled image, and SNRredu is the

SNR of the combined reconstructed image. Due to the spatial inhomogeneity induced

by the coil sensitivities, the noise amplification is expected to vary spatially, so g-

factors are usually computed for each voxel in the full field of view. To reduce noise

amplification and aliasing artifacts, the SENSE method can be regularized using

Tikhonov regularization [90, 54], a sparsity-promoting `1 norm, or a low rank matrix

prior using the nuclear norm [60].

2.5.2 SMASH

SMASH, the SiMultaneous Acquisition of Spatial Harmonics, is an early method for

accelerated parallel imaging that attempts to interpolate the missing frequencies in

reduced-FOV k-space by approximating k-space frequency shifts by linear combina-

tions of acquired data across coils.

Consider a one-dimensional example where a signal M [n] of length N with k-space

y[k] (k = 0, . . . , N − 1) is undersampled by a factor of R. Denote the full-FOV k-

space sample spacing ∆k, so the undersampled k-space yp[k] (k = 0, . . . , N/R − 1)

has spacing R∆k. Then, basic Fourier transform properties tell us that a shift in the

frequency domain is equivalent to multiplying the signal by a complex exponential

in the image domain: e−j2πrn/NM [n]
DFT←−→ y[k + r]. As with SENSE, SMASH also
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Figure 2.8: Real and imaginary parts of SMASH approximations (top) to complex
exponentials (bottom) using a least-squares fit with empirical sensitivities of a 32-
channel head coil receive array.

requires prior knowledge or estimates of the coil sensitivities S1[n], . . . , SP [n]. The

SMASH method consists of finding weights gp,r such that

P∑
p=1

gp,rSp[n] ≈ e−j2πrn/N , (2.15)

for r = 0, . . . , R− 1. Suitable weights can be found using a least-squares fit. Then,

P∑
p=1

gp,ryp[k] =
N−1∑
n=0

P∑
p=1

gp,rM [n]Sp[n]e−j2πRkn/N (2.16)

≈
N−1∑
n=0

M [n]e−j2πrn/Ne−j2πRkn/N (2.17)

=
N−1∑
n=0

M [n]e−j2π(r+Rk)n/N (2.18)

= y[Rk + r]. (2.19)

Then, the combined image estimate M̂ [n] is the inverse DFT of the full inter-

polated k-space. Advantages of SMASH include robustness to errors in the coil

sensitivity estimates and computational efficiency; SMASH only requires R linear

system inversions, while SENSE requires N/R linear system inversions. However,

SMASH is limited by the quality of the approximation in Equation (2.15). At high

accelerations (large R), the slowly varying coil sensitivities are a poor match for high-
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frequency complex exponentials, so the error in the SMASH reconstruction would be

large. This limitation in approximating sensitivities is depicted in Figure 2.8. The

good approximation (a) portrays an approximation that varies from -1 (black) to +1

(white) in a fashion mimicking the slowly varying sinusoid plotted immediately below

the image. The poor approximation (b) is mostly gray in the center of the image,

with limited variation between -1 and +1 only in the periphery, behavior that clearly

contrasts with the higher frequency sinusoid plotted below it. Additionally, the poor

approximation is highly non-uniform in the vertical direction.

2.5.3 GRAPPA

The GRAPPA method is designed to be a more robust extension to the SMASH

method, with several fundamental differences. Instead of relying on coil sensitivity

estimates explicitly, the GRAPPA method relies on a small set of calibration data

called ACS lines that have frequency spacing corresponding to the full field of view;

these lines are used to fit the interpolation weights as is done in the SMASH variant

called AUTO-SMASH [44]. The ACS lines are usually chosen to be at the center

of k-space, or in a region known to have high SNR, to minimize the effect of ob-

servation noise on the fit. Rather than form a single combined image k-space, the

GRAPPA method interpolates the missing frequencies in each coil, yielding P full

FOV coil images that can be combined using any of the parallel imaging coil com-

bination methods described earlier (see Equations (2.9) and (2.10)). Finally, the

GRAPPA method utilizes multiple neighboring acquired k-space data (source) points

to interpolate missing (target) points, yielding an improved reconstruction. Let B

represent the number of source points per coil; the set of source points is usually cho-

sen to be centered around the block of target points (although this is not required).

Mathematically, the interpolation step is

yp[k + r] =
P∑
q=1

B−1∑
b=0

gp,q,r[b]yq[k + (b− dB/2e+ 1)R]. (2.20)
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We call the vectors gp,q,r[b] GRAPPA kernels. When the undersampled data is uni-

formly spaced, the GRAPPA reconstruction can be implemented efficiently using

convolution. Substituting the known values from the ACS lines yACS
p [k] yields the

calibration equations used for computing a least-squares fit of the kernel weights:

yACS
p [k + r] =

P∑
q=1

B−1∑
b=0

gp,q,r[b]y
ACS
q [k + (b− dB/2e+ 1)R]. (2.21)

In the event that the calibration data is noisy, regularization of the least-squares

fit may be required. Regularized calibration will be discussed in detail in Chap-

ter 5. GRAPPA can be extended to two- or three-dimensional subsampling in several

ways [11]. In this work, we leverage the fact that the 3-D acquisition is only subsam-

pled in two phase-encode dimensions, so we inverse Fourier transform the acquisition

in the frequency-encoded direction and process the resulting two-dimensional slices

individually. The two-dimensionally subsampled (by Ry in the y-direction and by Rz

in the z-direction) GRAPPA reconstruction equation is

yp[ky + ry, kz + rz] =
P∑
q=1

By−1∑
by=0

Bz−1∑
bz=0

gp,q,ry ,rz [by, bz]

· yq[ky + (by − dBy/2e+ 1)Ry, kz + (bz − dBz/2e+ 1)Rz]. (2.22)

The two-dimensional By×Bz GRAPPA kernels gp,q,ry ,rz [by, bz] are calibrated for each

slice separately, using the ACS line fits

yACS
p [ky + ry, kz + rz] =

P∑
q=1

By−1∑
by=0

Bz−1∑
bz=0

gp,q,ry ,rz [by, bz]

· yACS
q [ky + (by − dBy/2e+ 1)Ry, kz + (bz − dBz/2e+ 1)Rz]. (2.23)

Due to the larger number of source points in two dimensions, calibration becomes even

more important, and more ACS lines may be required to achieve a reconstruction of

sufficient quality.
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When discussing auto-calibrating methods like GRAPPA, both nominal under-

sampling and total (effective) acceleration are important. Nominal undersampling

considers the only the spacing between regular acquired k-space lines. The total ac-

celeration also includes the calibration data and may be much less than the nominal

undersampling factor. The total acceleration describes the reduction in scan time.

Conventional GRAPPA interpolates missing k-space from uniformly-spaced Carte-

sian accelerated parallel imaging data. GRAPPA can be extended to non-uniform or

non-Cartesian data using multiple kernels or iterative reconstructions. When interpo-

lating missing k-space from non-uniformly undersampled data, the patterns of source

and target points vary from block to block, and different interpolation kernels can

be calibrated for each pattern encountered. Alternatively, an iterative approach to

non-uniform GRAPPA computes the least squares solution that is consistent with the

GRAPPA reconstruction from the “source” points of the full k-space result with the

“target” points of the result and is consistent with the acquired data [58]. GRAPPA

can also be extended to non-Cartesian k-space trajectories using re-gridding, followed

by conventional or non-uniform GRAPPA, or using the hybrid GROG approach [83].

As with other accelerated parallel imaging reconstruction methods, the noise am-

plification can be significant. GRAPPA g-factors can be computed analytically by

considering interpolation as multiplication in the image domain [12]. When an an-

alytical expression for the g-factors does not exist or is computationally expensive,

the multiple replica method, which consists of taking multiple full- and reduced-FOV

acquisitions and averaging the observed noise in the reconstructions, can be used to

estimate g-factors in vivo. However, as tens or hundreds of repetitions may be neces-

sary to yield statistically significant g-factors, the multiple replica method also may

be impractical for human subjects. Alternatively, g-factors can be estimated using

the pseudo multiple replica method, which uses only one set of reduced-FOV data

and performs Monte Carlo simulations with synthetic additive noise to approximate

the multiple replica estimate [81]. Suppose Ŷ is the accelerated parallel imaging re-

constructed k-space from the acquired data D. Then, each Monte Carlo repetition

consists of adding complex Gaussian noise N with covariance Λ to the acquired data
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to form D′ = D + N, performing the accelerated parallel imaging reconstruction on

D′ to form Ŷ′, and finding the difference Ŷ′ − Ŷ. When the reconstruction method

is linear, this difference in the reconstructed k-space is due solely to the added noise,

and the ratio of the standard deviations of the error for each combined image voxel

observed over all the Monte Carlo trials to the standard deviation of the additive

noise measures the total noise amplification. Dividing the noise amplification by
√
R

yields the g-factor estimates for each voxel.

2.5.4 SPIRiT

SPIRiT is an accelerated parallel imaging reconstruction method akin to GRAPPA.

Where the calibrated GRAPPA kernel interpolates missing frequencies in GRAPPA,

SPIRiT uses the calibrated kernel to enforce consistency between every k-space point

(acquired or missing) and all of its neighbors (again, acquired or missing). Rather

than directly interpolate the missing k-space, SPIRiT forms a linear system and finds

the missing k-space that results in a least-squares fit of that system. To describe

SPIRiT mathematically, begin with an arbitrary k-space frequency k in the full-FOV

k-space, and let ξk represent the set of its neighboring frequencies; B is the size of

this set. Then, the SPIRiT kernels gp,q[b] fit the linear system

yp[k] =
P∑
q=1

B−1∑
b=0

gp,q[b]yq[ξk[b]], (2.24)

for all k, p = 0, . . . , P − 1. Notice that unlike GRAPPA, the SPIRiT kernel does

not depend on and makes no assumption about the undersampling pattern. In fact,

SPIRiT has the advantage of being readily applied to arbitrary subsampling of Carte-

sian k-space, and with gridding, non-Cartesian k-space as well. Collecting the full-

FOV k-space (known and unknown) for all coil channels into columns of the matrix Y

(each column represents all the k-space for a single coil channel), and the kernels into

a block convolution matrix G, SPIRiT attempts to solve the least-squares problem

minimize
Y

‖(I−G) vec(Y)‖2
2, (2.25)
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subject to some constraint related to the observations D. The shorthand vec(·) stacks

the columns of a matrix into a single vector. When we wish to denoise the data, we

can solve either the constrained problem

minimize
Y

‖(I−G) vec(Y)‖2
2 s.t. ‖D−KaY‖2

F ≤ ε, (2.26)

or the unconstrained problem

minimize
Y

‖(I−G) vec(Y)‖2
2 + µ‖D−KaY‖2

F . (2.27)

The matrix Ka is a simple subsampling matrix that extracts the acquired data from

all of k-space. The Frobenius norm ‖ · ‖F of a matrix is equivalent to the `2 norm of

the vector of all the elements of that matrix. The parameters ε and µ are determined

according to the variance of the observation noise. Alternatively, we can preserve the

acquired data exactly by constraining the observed k-space with equality:

minimize
Y

‖(I−G) vec(Y)‖2
2 s.t. D = KaY. (2.28)

We can formulate an equivalent unconstrained problem by operating in the nullspace

of the full k-space. Let X be the missing k-space for all the coils, and Kna the

subsampling matrix extracting missing k-space from the full k-space. Then,

minimize
X

‖(I−G) vec(KT
naX + KT

aD)‖2
2, (2.29)

and Y = KT
naX + KT

aD. Although closed-form solutions of all these least-squares

problems exist, we typically resort to iterative methods because the system is too large

for direct inversion. Typically, we avoid storing G in memory and use convolution to

implement the necessary matrix-vector multiplications.
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Chapter 3

Sparsity and Compressed Sensing

An alternative approach to improving image quality is to incorporate prior informa-

tion about the image into the reconstruction. A popular such prior is rooted in the

notion of “sparsity” – that a length N signal can be represented in a basis with only

K nonzero coefficients, where K � N . However, the support, or indexes of those

nonzero coefficients, is not known a priori. An intuitive example of a sparse signal (in

the canonical basis) is the samples of a series of pulses; the sampled signal would have

nonzero values at only a few time indexes. Another common example of sparsity is a

piecewise constant signal, which has only a few nonzero coefficients when represented

with the finite-differences transform basis.

Many signals, including natural images, are not truly sparse, but have only a

few significant coefficients; the others are either zero or of much smaller magnitude.

These signals, called approximately sparse, or compressible, can be represented to

a high degree of accuracy using a small fraction of the signal coefficients, but the

representation is not exact.

In this chapter, we discuss mathematical measures of sparsity used throughout the

literature and provide an overview of both sparsity-regularized denoising and com-

pressed sensing (CS) and relate these frameworks to accelerated MRI and accelerated

parallel imaging reconstruction. Existing methods for combining accelerated parallel

imaging and sparsity are described.
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3.1 Measures of Sparsity

Several measures (we use the term measure in the imprecise non-mathematical way

of comparing a property of two vectors, as opposed to the mathematical notion used

in integration and measure theory) of the sparsity of a signal are possible. The `0

“norm” counts the number of nonzero values of a signal:

‖w‖0 =
N−1∑
n=0

1{w[n]6=0}. (3.1)

This measure does not satisfy the scalability and triangle inequality properties of a

norm, and it is not a convex function of w. Furthermore, it has a jump-discontinuity

at the origin, which means it is not differentiable. Another interesting property of this

measure is it is constant for w[n] 6= 0; a large nonzero coefficient is just as significant

as a small nonzero coefficient.

Several relaxations of the `0 “norm” exist in the literature. The most common

relaxation is the `1 norm

‖w‖1 =
N−1∑
n=0

|w[n]|, (3.2)

which satisfies all the properties of a norm, and is therefore convex. This convex relax-

ation is popular due to the wide variety of efficient techniques for solving `1-regularized

problems, and the global convergence guarantees provided by convexity [10]. A wide

variety of nonconvex relaxations exist as well. The `pp (0 < p < 1) “norms” [23] are

popular:

‖w‖pp =
N−1∑
n=0

|w[n]|p. (3.3)

The unit balls for the `0, `1, and `pp penalty functions are depicted in two dimen-

sions in Figure 3.1. The `0 and `p unit balls are nonconvex, while the `1 unit ball

is convex. Thus, if we were to place a line (or in higher dimensions, a hyperplane)

tangent to the unit ball, the line may intersect the `0 or `p unit balls in multiple

locations, while the line may intersect the `1 norm unit ball in only one place (or

along a single side of the ball, but the intersection forms a single connected set). The
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1

(a) Unit ball ‖w‖0 = 1.

1

(b) Unit ball ‖w‖1 = 1.

1

(c) Unit ball ‖w‖0.5 = 1.

Figure 3.1: Unit balls are shown in two dimensions for the `0, `1, and `p measures.
Note that the two lines that form the two-dimensional unit ball for the `0 “norm”
actually extend to ±∞ and exclude the origin.
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Figure 3.2: The `1 norm is plotted with `pp “norms” for different values of p (0 < p <
1). The `0 “norm” is included for comparison.

`pp penalty functions converge to the `0 “norm” as p→ 0. Graphically, as p decreases,

the measure increases more rapidly to the s(w[n]) = 1 line and increases more slowly

once it has reached that line. Although the `pp measures of sparsity are not convex,

they are monotonic and concave on R+, and convergence guarantees for such func-

tions are possible under certain conditions [91]. The graphs of `pp penalty functions

are compared against that of the `1 norm in Figure 3.2.

The Laplace penalty function ‖w‖L(α), the Welsch penalty function ‖w‖W (α), and
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Figure 3.3: The Cauchy penalty function is plotted for different values of α. The `0

“norm” is included for comparison.

the Cauchy penalty function ‖w‖C(α) also promote sparsity [91, 37, 85, 96, 99]:

‖w‖L(α) =
N−1∑
n=0

1− e−α|w[n]|. (3.4)

‖w‖W (α) =
N−1∑
n=0

1− e−α|w[n]|2 . (3.5)

‖w‖C(α) =
1

log(1 + α)

N−1∑
n=0

log(1 + α|w[n]|2). (3.6)

These nonconvex penalty functions all converge to the `0 “norm” as α → ∞. The

choice of α balances the fidelity to the `0 “norm” with the numerical properties of the

penalty function. In Figure 3.3, the Cauchy penalty function is plotted as a function

of |w[n]| for different values of α. As α increases, the convex region around |w[n]| = 0

shrinks, the function increases more rapidly to the s(w[n]) = 1 line, and the overshoot

decreases.

When we are discussing a general measure of sparsity, we use the notation ‖w‖S.

Note that all these measures of sparsity are separable; i.e.

‖w‖S =
N−1∑
n=0

s(w[n]) (3.7)

for some scalar function s(·).

The concept of sparsity can be extended from real to complex numbers in sev-
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eral ways. One generalization treats the sparsity of the real and imaginary parts

independently:

‖w‖S
∆
=

N−1∑
n=0

s(<{w[n]}) + s(={w[n]}). (3.8)

Another approach measures the sparsity of the magnitude of the complex number:

‖w‖S
∆
=

N−1∑
n=0

s(|w[n]|). (3.9)

This second interpretation of the sparsity of complex numbers implies that both the

real and imaginary parts share the same sparse support to a great degree. These

approaches can be extended to consider sparsity among multiple (real or complex)

vectors; this notion is called group sparsity, joint sparsity, or simultaneous sparsity. If

we treat these P vectors as the columns of a matrix W, we can define a joint sparsity

measure analogous to the first as

‖W‖S,1
∆
=

N−1∑
n=0

s(‖[W1[n], . . . ,WP [n]]‖1), (3.10)

and another measure analogous to the second as

‖W‖S,2
∆
=

N−1∑
n=0

s(‖[W1[n], . . . ,WP [n]]‖2). (3.11)

These joint sparsity penalty functions can be generalized to a generic measure

‖W‖S,q
∆
=

N−1∑
n=0

s(‖[W1[n], . . . ,WP [n]]‖q). (3.12)

Another common such measure uses q = ∞, which forces strict shared sparsity sup-

port across all the vectors. In this work, we mainly focus on the mixed norm with

q = 2.
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3.2 Sparsity-Based Denoising

One valuable use of signal models like sparsity is estimation of the signal from noisy

observations of that signal. When the model is appropriate for the signal, estimation

using this information can improve the quality of the estimates substantially.

Suppose N observations d are made of a sparse signal y of length N using the

full-rank observation matrix Ka, and these observations are corrupted with additive

independent identically distributed (iid) zero-mean complex Gaussian noise n with

variance σ2. Mathematically,

d = Kay + n. (3.13)

Without additional information about the signal, the minimum mean squared error

(MMSE) optimal linear estimator for y is the maximum likelihood (ML) estima-

tor [46], which is also the least-squares solution of Equation (3.13),

ŷ = (KT
aKa)

−1KT
ad. (3.14)

Now, suppose the signal y is known to be zero-mean, approximately sparse, and

uncorrelated with the noise. In particular, let the sparse transform coefficients w =

Ψy. One sparsity-promoting choice of prior is for w to be independent and identically

distributed with p(w[n]) ∝ e−λ|w[n]| for some choice of λ. When w[n] is real,

p(w[n]) =
λ

2
e−λ|w[n]|, (3.15)

and when w[n] is complex,

p(w[n]) =
λ2

2π
e−λ|w[n]|. (3.16)

The linear MMSE estimator is

ŷ = (ΛyKT
a )(KaΛyKT

a + σ2I)−1d, (3.17)

where Λy is the signal covariance matrix. Suppose the forward transform is invertible,
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so Λy = σ2
wΨ−1Ψ−H (recall the w[n]’s are iid). For the real case, the variance is

σ2
w = 2/λ2, and for the complex case, the variance is σ2

w = 6/λ2.

3.2.1 Multiple Measurement Model

This framework can be extended to the multiple measurement vector case

D = KaY + N, (3.18)

where D is the N × P matrix of observations, the columns of Y are jointly sparse

vectors with respect to the sparsifying transform Ψ, and N is a matrix of zero-

mean complex Gaussian additive noise, with independent rows, and each row has

covariance matrix Λ. To cast this problem in the single vector framework, we form

column vectors by stacking the columns of the matrices D, Y, and N:

vec(D) = (IP×P ⊗Ka) vec(Y) + vec(N), (3.19)

where vec(·) is the column vectorization of a matrix, and ⊗ is the Kronecker product.

The matrix of sparse coefficient vectors W = ΨY has independent rows, with

each row distributed according to p(W1[n], . . . ,WP [n]) ∝ e−λ‖[W1[n],...,WP [n]]‖2 . When

W is real,

p(W1[n], . . . ,WP [n]) =
Γ(P/2 + 1)λP

P !πP/2
e−λ‖[W1[n],...,WP [n]]‖2 , (3.20)

where Γ(·) is the Gamma function, and when W is complex,

p(W1[n], . . . ,WP [n]) =
P !λ2P

(2P )!πP
e−λ‖[W1[n],...,WP [n]]‖2 . (3.21)

For a single row, it is easy to show that the sparse coefficients are uncorrelated and

have identical variances σ2
w = (P + 1)/λ2 (real case) or σ2

w = 2(2P + 1)/λ2 (complex

case).

Plugging the observation matrix from Equation (3.19) and the variances into
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Equation (3.17) yields the linear estimator

vec(Ŷ) = ΛY,DΛ−1
D vec(D), (3.22)

where

ΛY,D = σ2
wIP×P ⊗Ψ−1Ψ−HKT

a , (3.23)

and

ΛD = σ2
wIP×P ⊗KaΨ

−1Ψ−HKT
a + Λ⊗ IN×N . (3.24)

Especially in the multiple measurement vector case, the matrix ΛD may be too large

to store or invert directly, but numerical inversion is possible using methods that will

be discussed later.

3.2.2 Regularization with Sparsity

While linear MMSE estimation is possible, the linear estimate typically is not (ap-

proximately) sparse. To yield an (approximately) sparse estimate, we turn to the

maximum a posteriori (MAP) estimator, which maximizes p(y | d). Since d is ob-

served, MAP estimation is equivalent to maximizing the joint distribution

p(y,d) = p(d | y)p(y) (3.25)

∝ exp{−‖d−Kay‖2

2σ2
} exp{−λ‖ΨY‖1}. (3.26)

This problem is most efficiently solved in the log domain:

ŷ = minimize
y

1

2σ2
‖d−Kay‖2

2 + λ‖Ψy‖1. (3.27)

The above formulation is not unlike basis pursuit denoising (BPDN) or the Lasso [89],

and can be solved using any of a wide variety of iterative techniques developed for

either framework [61, 92, 101, 36]. The extension to multiple jointly sparse measure-
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ment vectors is similar:

Ŷ = minimize
Y

1

2
‖ vec(D−KaY)‖2

Λ⊗IN×N
+ λ‖ΨY‖1,2. (3.28)

Methods for approximately solving this type of problem include iteratively reweighted

least squares (IRLS), half-quadratic minimization, and interior point methods for

semi-definite programming [43, 34, 104].

3.3 Compressed Sensing Reconstruction

The denoising problem is presented for a complete set of observations; however, ac-

celerated imaging provides an incomplete set of M observations (or an M ×P matrix

for parallel imaging). One approach to overcoming this limitation is to use some

standard reconstruction technique (like GRAPPA for accelerated parallel imaging)

to form an augmented dataset and denoise the result; this approach is investigated

in Chapter 4. Alternatively, sparsity can be used as prior information to recover the

complete signal. The popular framework for doing this is called compressed sensing

(CS) [18, 16, 20, 27]. The key result of CS is that it is possible to obtain robust

reconstructions of a length-N signal from M < N observations, where M is on the

order of K, the sparsity of the signal. The restricted isometry property and mutual

coherence bound provide sufficient conditions for reconstruction of a sparse signal

from a number of measurements on the order of K logN , drastically reducing the

number of observations required for sparse signals like many MRI images.

3.3.1 The Compressed Sensing Framework

Consider the observation model from Equation (3.13), with the observation vector

d now having length M < N . The matrix Ka is now “fat” and does not have a

left inverse. Thus, the linear MMSE estimator in Equation (3.17) no longer applies.

However, we can still form the MAP estimate, using Equation (3.27) and iterative

solution techniques for BPDN or the Lasso. This MAP estimate yields an approxi-
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mately sparse solution even when the rank of Ka is less than N , and when this matrix

is chosen to satisfy certain properties, this method can be exceptionally effective even

when M � N .

The CS framework has three basic components: the sparsifying transform, the

sampling pattern, and nonlinear reconstruction. We have already presented the re-

construction method – it is the MAP estimator described before. Now, we turn to

the importance of the two other components. The sparsifying transform Ψ defines

a representation of the signal y such that this representation of the desired signal is

approximately sparse. The sparsity of the signal in this domain is connected to the

minimum number of observations needed to reconstruct the signal. If the sparsity

support were known a priori, it is obvious that we only need as many linearly inde-

pendent measurements as there are nonzero sparse coefficients; Ka multiplied by the

appropriate columns of Ψ would be a square full-rank matrix, and the signal y can

be found directly. When we do not know the support, as many as N measurements

would be needed if sparsity were not assumed. However, the use of random obser-

vations with sufficient incoherence means that we only need on the order of K logN

measurements, provided certain conditions on Ka are met [18].

Key to achieving a quality reconstruction from undersampled data is the observa-

tion matrix Ka. Precise conditions are given in the literature [27], but the essential

message is that the choice of matrix should mitigate the possibility that the sparse

signal lies in the nullspace of the matrix. Common examples of observation matrices

for CS include a random matrix with iid Gaussian entries and a randomly chosen

subset of a unitary matrix like a DFT matrix. Conditions like the restricted isometry

property (RIP) [19] and mutual coherence bounds [17] on the observation matrix can

be used to assess the suitability of the matrix for CS as well as its effect on the quality

of the estimated signal. Given a matrix Ka and sparsity level K ≤ N , the RIP defines

a constant δK that satisfies

(1− δK)‖w‖2 ≤ ‖KaΨ
−1w‖2 ≤ (1 + δK)‖w‖2, (3.29)
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for all K-sparse coefficient vectors w. The RIP constants measure how well the

`2 norm is preserved by the observation matrix for the class of K-sparse vectors.

Of course, a true isometry is not possible with M < N , but we could consider an

observation matrix with small RIP constants to be nearly unitary in a sense.

While determining the RIP constants for a matrix is challenging, the mutual

coherence µ(KaΨ
−1) is straightforward to determine:

µ(KaΨ
−1) =

√
N max

i,j
|〈ki, ψ̃j〉|, (3.30)

for rows ki of Ka and columns ψ̃j of Ψ−1 (〈·, ·〉 is the inner product of two vec-

tors). Note that these columns ψ̃j form a sparsifying basis for a signal y: y =∑
j w[j]ψ̃j. The number of measurements sufficient for CS to succeed is proportional

to µ2(KaΨ
−1)K logN [17]. A different approach to performance analysis for CS that

can be extended to a larger class of regularized least-squares estimators relies on the

Replica method to simplify a complex optimization problem into a scalar estimation

problem, enabling precise error and support recovery analysis in a computationally

tractable way [79]. While these theoretical results are useful when the sparsity level

is known, empirical methods like cross validation may be useful to ascertain recon-

struction quality when the image sparsity is unknown [94].

Now, we go back to the optimization problem used for reconstruction. The CS

framework is more general than the MAP estimator in Equation (3.27). If the obser-

vations are exact (no additive noise), we can solve the basis pursuit problem

ŷ = minimize
y

‖Ψy‖1 s.t. d = Kay. (3.31)

When the observations are noisy, we can solve either the unconstrained problem

corresponding to MAP estimation discussed earlier or the constrained optimizations

ŷ = minimize
y

‖Ψy‖1 s.t. ‖d−Kay‖2
2 ≤ ε; (3.32)

ŷ = minimize
y

‖d−Kay‖2
2 s.t. ‖Ψy‖1 ≤ K. (3.33)
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The problem in Equation (3.33) is known as the Lasso [89]. Both of these denoising

CS variants are equivalent to the MAP estimation problem with appropriate choices

of λ. A related problem is the Dantzig selector [21]:

ŷ = minimize
y

‖Ψy‖1 s.t. ‖KT
a (d−Kay)‖∞ ≤ (1 + t−1)σ

√
2 logN, (3.34)

where t > 0 is a scalar parameter connected to the RIP constants of Ka.

3.3.2 Compressed Sensing with Joint Sparsity

Compressed sensing can be extended to capture dependencies between multiple mea-

surement vectors. Joint sparsity, described previously to capture shared support

across all the measurement vectors, has an analogue in CS: distributed compressed

sensing [3]. Using a joint sparsity model and an `1 norm-based reconstruction, results

demonstrated a reduction in the number of observations necessary to reach the same

distortion level for multiple measurement vectors with common sparse support. Alter-

natively, the reduce-and-boost method can be applied to transform the joint sparsity

CS reconstruction problem into a conventional CS reconstruction problem [64].

Similar to joint sparsity, structured group sparsity accounts for knowledge of

shared support across particular subsets of the set of multiple measurement vec-

tors [45]. These subsets may overlap, in which case the component vectors of each

subset have to be weighted carefully. This approach can be employed to leverage

information like persistence across scales in the wavelet transform representation of

natural images [2].

A looser interpretation of joint sparsity, where sparse supports do not necessarily

overlap significantly but have some common degree of sparsity, Bayesian multi-task

compressed sensing has been applied to the joint reconstruction of several different

types of MRI images (e.g. T1- and T2-weighted data) [8]. This hierarchical Bayesian

model shares information across images via a single hyperparameter common to the

sparsity-promoting prior distributions of all the images.
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3.4 Compressed Sensing for MRI

Compressed sensing has been applied previously to magnetic resonance imaging to

enable the reconstruction of high quality images from accelerated acquisitions [57].

Many MR images are compressible in wavelet or finite differences transform domains,

and observations in k-space are incoherent (have low mutual coherence) with respect

to both of these bases. Additionally, random undersampling of k-space is practical

in MRI due to the precise control over the gradient magnetic fields available during

acquisition.

In addition to the commonly used discrete wavelet transform (DWT) and finite

difference transform as sparse domains for natural images, several other sparse trans-

form domains have been found to be favorable to MR images. Overcomplete trans-

forms like the curvelet, contourlet, and shearlet extend the multiresolution idea of

wavelet transforms to incorporate directional information [15, 26, 39]. CS can also

accommodate adaptive and learned dictionaries, learning the sparsifying transform

using training data prior to reconstruction or during reconstruction from the acquired

data [24, 80]. A training set of MR images can be decomposed into small patches,

and a sparse dictionary can be learned using a method like K-SVD [1]. A learned

dictionary captures details particular to MR images more effectively than generic

transforms and preserves those details in the reconstructed image. However, use of

learned dictionaries may be found unacceptable in clinical MRI due to the bias to-

wards features found in the training set, which may not include the abnormalities

present in clinical scans.

A wide variety of k-space subsampling patterns have been investigated in the

context of accelerated MRI. Early work eschewed uniformly random undersampling

for variable-density sampling that samples the center of k-space, where the signal is

concentrated, more densely than the outside [57]. Since mutual incoherence is strongly

influenced by the k-space sampling pattern, it is desirable to choose a sampling pattern

that minimizes the coherence of the sampling pattern. This coherence bound can be

approximated by the sidelobe-to-peak ratio (SPR) of the point spread function (PSF)
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(a) Uniform (deterministic) sampling. (b) Uniform random sampling.

(c) Variable-density random sampling. (d) Poisson disc random sampling.

Figure 3.4: K-space undersampling patterns and their point spread functions.

in the image or sparse transform domain. One downside of random sampling patterns

for GRAPPA-like methods is the large number of interpolation kernels that need to

be calibrated, since the patterns of source and target points in each block of k-space

are so variable. An approach to reducing the number of kernels is to tile the sampling

pattern with a limited set of small randomly generated patches, so there are only a

few different types of blocks that need interpolation kernels [49].

More recent work investigates Poisson disc sampling, which incorporates random-

ness while guaranteeing that samples are not clustered too close and gaps between

samples are not too large, in accelerated parallel MR imaging [56, 77, 95]. Avoid-

ing large gaps is especially useful for parallel imaging reconstruction methods like

GRAPPA, since GRAPPA-like methods have difficulty approximating large frequency

shifts with linear combinations of coil data with slowly varying sensitivities. Poisson

disc sampling guarantees an upper bound on the gap size while producing a PSF

very similar to uniformly distributed random sampling. Combinations of Poisson

disc, variable density sampling, and tiled sampling are also possible [50]. Examples

of these 2-D undersampling patterns, with their image domain PSFs, are shown in

Figure 3.4.
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3.4.1 Compressed Sensing and Parallel Imaging

Recent developments in accelerated MR image reconstruction include various combi-

nations of accelerated parallel imaging methods and sparsity or compressed sensing.

SparseSENSE [55] and CS-SENSE [52] combine CS with the SENSE parallel imag-

ing method. SparseSENSE is a direct extension of the SparseMRI [57] framework to

SENSE reconstruction:

x̂ = minimize
x

‖Ψx‖1 + α‖x‖TV s.t. ‖D−KaF[S1 · x, . . . ,SP · x]‖2
F ≤ ε, (3.35)

where ‖ · ‖TV is a discrete approximation of the total variation measure using finite

differences

‖x‖TV =
N−1∑
n=0

√
|∂xx[n]|2 + |∂yx[n]|2, (3.36)

∂xx[n] is approximated by the first-order backward difference in the x-direction, ∂yx[n]

is approximated by the first-order backward difference in the y-direction, and α and

ε are tuning and noise parameters. CS-SENSE sequentially applies CS to clean up

all the aliased coil images and SENSE to combine the sparsified coil images and

generate a single un-aliased result. The downside of these approaches is that they

still rely on accurate measurements of the coil sensitivities to optimally un-alias the

image. Distributed CS can be used to improve the coil sensitivities’ estimates and

SparseSENSE or CS-SENSE to perform the reconstruction [75].

CS-GRAPPA [31] alternates nonconvex coil-by-coil CS and GRAPPA reconstruc-

tion steps on radially acquired data, re-inserting the gridded acquired data between

each step, and iterating until convergence. This method is similar to the iterative

GRAPPA [58] approach for reconstructing undersampled arbitrary (non-Cartesian)

k-space, with CS incorporated between the steps, and uses GROG to re-grid the ra-

dially sampled data onto Cartesian k-space. Another sequential combination of CS

and accelerated parallel imaging uses a GRAPPA-like reconstruction method to in-

terpolate uniformly undersampled parts of k-space and CS to fill in the remaining

k-space [5]. This iterative combination of GRAPPA and compressed sensing may not
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be as effective as a joint combination of GRAPPA and compressed sensing.

The L1 SPIRiT [56] method regularizes the SPIRiT method for accelerated par-

allel imaging reconstruction with joint sparsity across the coil images. The `1 norm-

regularized version of data-preserving SPIRiT is

minimize
Y

‖(I−G) vec(Y)‖2
2 + λ‖ΨF−1Y‖1,2 s.t. D = KaY. (3.37)

L1 SPIRiT is implemented with Poisson disc (gridded) undersampled k-space and

compares favorably to both SPIRiT and compressed sensing alone in preserving details

and un-aliasing images at high accelerations. A weakness of L1 SPIRiT is the reliance

on non-uniform sampling and compressed sensing to undo aliasing; conventionally

acquired accelerated parallel imaging data with uniformly spaced k-space samples

reconstructed using L1 SPIRiT may have residual aliasing.

The success of previous work in unifying compressed sensing and parallel imaging

does not obviate the goals of this dissertation; instead, successful methods like CS-

SENSE and L1 SPIRiT lend credence to the idea that similar success is possible com-

bining sparsity with GRAPPA. Past developments rely heavily on the non-uniform

undersampling of k-space to achieve greater acceleration; this thesis focuses on the

reconstruction and post-processing of images from conventionally acquired uniformly

spaced undersampled data. By attacking the failure modes of GRAPPA at high ac-

celerations, namely noise amplification and poor kernel calibration, we aim to utilize

sparsity in entirely different ways, enabling reconstructions on par with or superior

to existing methods without modifying the acquisition process.
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Chapter 4

Denoising GRAPPA with Sparsity

Reducing the acquisition time by decreasing the field of view diminishes the SNR by

a factor of
√
R, and accelerated parallel imaging methods like GRAPPA typically in-

troduce additional noise amplification. Taken together, the SNR loss from accelerated

parallel imaging can be significant enough to visibly degrade the resulting combined

image and hide important tissue contrast. An example dataset is undersampled by

different acceleration factors and reconstructed using GRAPPA in Figure 4.1. The

reconstructed image quality degrades significantly as the acceleration factor increases,

to the point of being totally dominated by noise.

To denoise such reconstructed images, we leverage the transform sparsity of the

desired image (in the DWT or finite differences domain) and the unstructured nature

(a) R = 7.0. (b) R = 10.5. (c) R = 13.7. (d) R = 16.3.

Figure 4.1: GRAPPA reconstructions for 2-D uniformly spaced (a) 3 × 3, (b) 4 × 4,
(c) 5 × 5, and (d) 6 × 6 nominal undersampling with increasing total acceleration
factor R and a 32-channel coil at 3 T.
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of the reconstructed noise. Taking the appropriate sparsifying transform concentrates

the signal into a small number of transform coefficients, but leaves the noise spread

out among all the coefficients. Thus, sparsifying the image preserves most of the signal

energy while eliminating most of the noise energy in the reconstruction, effectively

denoising the signal.

The Denoising Sparse Images from GRAPPA using the Nullspace method (DE-

SIGN) effectively denoises the GRAPPA-reconstructed multi-channel k-space while

preserving the acquired data, to minimize the bias on the reconstruction due to im-

posing a sparsity prior. This method regularizes the GRAPPA reconstructed k-space

using the joint sparsity across all the DWTs of the coil images and operates in the

nullspace of the observation matrix that subsamples the full k-space.

In this chapter, we first derive the proposed method and extend the framework

to non-uniform undersampling. The simulations comparing the performance of the

algorithm to that of other parallel imaging reconstruction and denoising techniques

are presented and discussed, and conclusions about the proposed DESIGN method

are discussed.

4.1 Theory

To denoise GRAPPA with sparsity, the objective function consists of two parts: (i) a

least squares term to favor fidelity to the GRAPPA k-space result, and (ii) a measure

‖ ·‖S,2 (see Equation (3.11)) that promotes joint sparsity across the coil images in the

sparse transform domain. Not all k-space points in the GRAPPA result are equally

good representations of the coil images, so we employ the coil combination weights

in Equation (2.10) to weight the reconstruction fidelity in the image domain: we

construct the matrix C such that each column represents the combination weights

for a single coil. Ignoring the effects of accelerated imaging, voxels in a coil with larger

coil combination weights typically have higher SNR, so this approximation penalizes

deviation from the parallel imaging reconstruction more greatly in those locations

with greater SNR. While accelerated parallel imaging amplifies and colors the noise
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in a spatially varying manner, this approximation is useful for denoising coils with

different sensitivity profiles differently. Denote a tuning parameter λ that trades off

these two objectives. We have

Ŷ = minimize
Y

‖C · (F−1(Y −G(D)))‖2
F + λ‖ΨF−1Y‖S,2 s.t. D = KaY. (4.1)

Here, G(D) represents the GRAPPA-reconstructed full k-space using the acquired

data D. While the ideal GRAPPA kernel size may depend on the nominal under-

sampling factor, we fix the kernel to be 3× 3 blocks in size. Several approaches exist

for solving constrained optimization problems [10]. Newton’s method for solving un-

constrained problems can be extended to constrained optimization problems directly.

Alternatively, one can transform the constrained problem into an unconstrained prob-

lem by eliminating the equality constraint, after which any unconstrained optimiza-

tion method can be used. Augmented or penalized Lagrangian methods produce a

series of unconstrained problems that asymptotically approach the constrained prob-

lem [69]. A similar method, Bregman iteration, has been proposed for compressed

sensing and related problems [102]. In this work, we take advantage of the simple

form of the observation matrix Ka to re-express the optimization as an unconstrained

problem operating in the nullspace of Ka. Since Ka is a simple subsampling matrix,

we utilize the nullspace decomposition Y = KT
aD + KT

naX with missing k-space X

and subsampling matrix Kna that extracts the missing frequencies from the full set

of k-space. Then, we rewrite Equation (4.1) as

X̂ = minimize
X

‖C · (F−1KT
na(X−KnaG(D)))‖2

F +λ‖ΨF−1(KT
naX+KT

aD)‖S,2. (4.2)

The full k-space solution is Ŷ = KT
naX̂ + KT

aD. This unconstrained problem can be

solved in several ways depending on the choice of penalty function ‖·‖S,2. The general

approach used here is IRLS, with the reweighting matrix ∆(i) determined according

to half-quadratic minimization. The least-squares problem to be solved in the ith
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Algorithm 1 Algorithm for solving Equation (4.2) using IRLS.

Require: X̂(0), λ, ε, I, tol
1: Set Ŷ(0) ← KT

naX̂
(0) + KT

aD and compute initial objective value f (0) by plugging
in X̂(0) into the objective in Equation (4.2).

2: for i = 1 : I do
3: Compute W(i−1) ← ΨF−1Ŷ(i−1) and set ∆

(i−1)
n,n = 1

w[n]
ds(w)
dw
|w=w[n] for w[n] =

‖[Wn,1, . . . ,Wn,P , ε‖2, for all n = 0, . . . , N − 1.

4: Solve for X̂(i) using Equation (4.3).
5: Fill in the full k-space: Ŷ(i) ← KT

naX̂
(0) + KT

aD.
6: Compute f (i) by plugging in X̂(i) into the objective in Equation (4.2).
7: if f (i−1) − f (i) ≤ tol · f (i−1) then
8: break
9: end if
10: end for
11: return Full k-space result Ŷ(i).

iteration is

X̂(i) ← minimize
X

‖C · (F−1KT
na(X−KnaG(D)))‖2

F

+
λ

2
‖(∆(i−1))1/2ΨF−1(KT

naX + KT
aD)‖2

F . (4.3)

The IRLS algorithm for solving Equation (4.2) is depicted in Algorithm 1. Other

approaches not investigated here include gradient descent/line search methods and

interior point methods [10]. More details about IRLS and related methods can be

found in Appendix A.

The drawback of IRLS and related approaches is the difficulty of solving Equa-

tion (4.3). A typical slice of an MRI volume may have as many as 256× 256 voxels,

meaning that Y has 216 rows. For a 32-channel coil, Y has 221 entries, over a million.

For high accelerations, X has almost as many entries as Y, so we are often solving

large-scale optimization problems with over a million variables. Direct inversion of a

general least-squares problem with n variables is O(n3) complexity, so iterative meth-

ods are used to solve this problem instead. Differentiating the least squares problem

yields the normal equations:

AHAx = AHb. (4.4)
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For this problem, we have x = vec(X),

A =

 diag(vec(C))
√
λ(IP×P ⊗ (∆(i−1))1/2Ψ)

 (IP×P ⊗ F−1KT
na), (4.5)

and

b =

 vec(C · F−1KT
naKnaG(D))

−
√
λ vec((∆(i−1))1/2ΨF−1KT

aD)

 . (4.6)

The conjugate transpose of A is

AH = (IP×P ⊗
1

N
KnaF)

[
diag(vec(C∗))

√
λ(IP×P ⊗ΨH(∆(i−1))1/2)

]
. (4.7)

Since the system of normal equations is always Hermitian symmetric and positive

semidefinite, conjugate gradient (CG) methods are popular for approximately solving

Equation (4.4) using only a small number of iterations (much less than a million).

Since the normal equations also solve the least squares problem Ax = b, the LSQR

method [74, 73] can also be used. However, since these iterative methods are termi-

nated early, the LSMR method [33] is used instead because it guarantees a monotonic

decrease in both the normal residual ‖AH(b−Ax)‖2, like the CG method, and the

least-squares residual ‖b−Ax‖2, like LSQR. These iterative least-squares solvers are

described and compared in Appendix A. These iterative approaches all require only

that we can perform matrix-vector multiplies with A and AH quickly; fortunately,

these matrices are composed of DFTs, DWTs, and diagonal and subsampling matri-

ces, which all can be implemented efficiently (complexity of O(n log n) or O(n)), and

are even parallelizable for implementation on a GPU or multi-threaded CPU.

When greater sparsity is desired, we can combine the implementation defined

above with homotopy continuation, starting with a sparsity-promoting penalty func-

tion ‖ · ‖S,2 that is nearly convex and repeat with a sequence of nonconvex penalty

functions that converge to the `0 “norm” that describes exact sparsity, initializing

each successive problem with the solution to the previous iteration. One must take

care as to not transform the penalty function too quickly, so the solution to the previ-

67



Algorithm 2 Algorithm for using homotopy continuation with the DESIGN denois-
ing method.

Require: X̂(0), α0, αmax, β > 1, I
1: α← α0.
2: for i = 1 : I do
3: Run Algorithm 1 with sα(·) and initial guess X̂(i−1).
4: X̂(i) ← KnaŶ

(i).
5: α← α · β.
6: if α > αmax then
7: break
8: end if
9: end for
10: return Full k-space result Ŷ(i).

ous problem is sufficiently close to the solution to the next problem as to avoid local

convergence issues caused by nonconvexity. The use of concave penalty functions like

the `pp (p < 1) “norm” or the Welsch penalty function can also cause dynamic range

issues due to the sharp slope near zero or the nearly flat behavior away from the

origin. The Cauchy penalty function is a good choice to avoid such issues because its

slope near the origin increases linearly with α, and the function increases logarith-

mically fast away from the origin. The homotopy continuation algorithm is listed in

Algorithm 2.

The DESIGN denoising method can be adapted to non-uniform undersampling of

Cartesian k-space in two primary ways. The direct approach requires adapting the

GRAPPA reconstruction to the non-uniform sampling pattern in question. Since the

GRAPPA reconstruction would only be used once, either direct or iterative GRAPPA

methods for non-uniform sampling can be used. Alternatively, we can introduce the

subsampling matrices Ks and Kt that extract the normal source and target points

used for GRAPPA reconstruction, respectively, from the full k-space estimate Y and

substitute KsY for D inside the GRAPPA fidelity term of Equation (4.1):

Ŷ = minimize
Y

‖C · (F−1(Y−G(KsY)))‖2
F +λ‖ΨF−1Y‖S,2 s.t. D = KaY. (4.8)
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The nullspace formulation for this problem is

X̂ = minimize
X

‖C · (F−1(KT
naX + KT

aD−G(Ks(K
T
naX + KT

aD))))‖2
F

+ λ‖ΨF−1(KT
naX + KT

aD)‖S,2, (4.9)

followed by Ŷ = KT
naX̂ + KT

aD, as before. This formulation is very similar to

L1 SPIRiT, with GRAPPA reconstruction fidelity used in place of the SPIRiT con-

sistency equations. Like L1 SPIRiT, GRAPPA must be applied in each iteration, and

while implementable efficiently using fast Fourier transforms (FFTs), the additional

computational burden is not insignificant. On a positive note, using non-uniform un-

dersampling has the additional benefit of creating incoherent aliasing instead of the

coherent aliasing observed when uniformly spaced undersampling is used, meaning

that sparsity can be used here not only to denoise the GRAPPA result but also to

augment parallel imaging in resolving and separating the aliased copies in the result.

An acknowledged limitation of DESIGN applied to uniformly undersampled k-space

is the total reliance on GRAPPA and parallel imaging to un-alias the coil images;

sparsity does not really help here.

4.2 Simulations and Results

Both simulated and real acquired data are used in evaluation of the DESIGN denoising

method. Simulated data consists of the Shepp-Logan phantom (available through

the MATLAB phantom function) and contrast and resolution phantoms based on

a compressed sensing phantom in the literature [86]. Multi-channel simulated data

is synthesized from these datasets using the Biot-Savart Law-based B1 simulator

available online at [53]. The real data presented was previously acquired using a

Siemens Tim Trio 3 T systems with a Siemens 32-channel head coil array. Two T1-

weighted volumes were acquired using magnetization-prepared rapid gradient echo

(MPRAGE) sequences (256 × 256 × 176 voxels, 1.0 mm isotropic resolution), and a

T2-weighted image was acquired by a turbo spin echo (TSE) sequence (264×256×23
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(a) T1 image #1. (b) T1 image #2. (c) T2 image.

(d) Shepp-Logan phantom. (e) Contrast phantom. (f) Resolution phantom.

Figure 4.2: Ground truth magnitude images of real ((a)-(c)) and synthetic ((d)-(f))
datasets. Inset regions (white rectangles) are used later to show detail.

voxels, 0.75 × 0.78 × 5 mm resolution). These sequences require 4 − 8 minutes to

acquire the complete volumes. In addition, coil noise covariance measurements were

computed from noise-only (no RF excitation) pre-scan acquisitions taken with the

subject in the magnet.

Single slices to be used as examples are extracted from these datasets and cropped

and normalized; combined magnitude images from these slices are retained as ground

truth for the purpose of calculating quantitative and qualitative error metrics. The

ground truth images for all the datasets are shown in Figure 4.2. Undersampled

data is generated in MATLAB from these slices, including blocks of ACS lines to be

used for calibration and in the reconstruction. As with GRAPPA, the reported total

acceleration R includes all the acquired data, even the ACS lines.

Reconstructions are compared both qualitatively and quantitatively. Qualitative

comparisons are made using the magnitude images and difference images between
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the magnitude images of the reconstruction and ground truth. These comparisons

depict relative noise levels, aliasing artifacts, and spatial resolution and blurring.

Quantitative comparisons are made using peak signal-to-noise ratio (PSNR), which

is computed in dB using the formula

PSNR = 20 log10

maxn |ground truth|
RMSE

, (4.10)

where the root mean squared error (RMSE) is defined as

RMSE =

√
1

N

∑
n

||recon. image| − |ground truth||2. (4.11)

While these quantitative measures are useful for comparing noise levels, PSNR or

RMSE are not necessarily representative of image quality, especially where local dis-

tortions are concerned. For instance, a reconstructed image may have high PSNR, but

a local abnormality a couple of pixels wide may be distorted or missing, eliminating

critical information that may be present in another reconstruction. Thus, qualitative

visual comparisons are emphasized throughout.

4.2.1 Penalty Functions and Continuation

We begin by exploring the choice of penalty function, and optionally, continuation,

on the performance of the DESIGN denoising method [96]. Interpreting solving the

DESIGN optimization problem as a form of MAP estimation, the choice of sparsity

penalty function imposes a sort of prior distribution on the magnitude of transform

coefficients of the signal. The `1 norm corresponds to an exponential distribution on

the transform coefficient magnitudes, while the `pp penalty corresponds to an expo-

nential power distribution on the magnitudes. The Cauchy penalty function imposes

a one-sided student-T distribution on the transform coefficient magnitudes (the one-

sided Cauchy distribution is a special case for λ = log(1+α). These penalty functions

and their associated distributions are listed in Table 4.1. The Cauchy penalty func-

tion for smaller λ, the `0 “norm”, and the Welsch penalty function all have density
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Table 4.1: Penalty functions and associated sparsity priors on transform coefficient
magnitudes.

‖w‖S sα(w[n]) p(|w|;λ)

`1 |w[n]| λe−λ|w|

`pp, p < 1 |w[n]|p λ1/p

Γ(1+α)
e−λ|w|

p

Cauchy, λ
log(1+α)

> 1
2

log(1+α|w[n]|2)
log(1+α)

2
√
αΓ(λ/ log(1+α))√

π Γ(λ/ log(1+α)− 1
2

)
(1 + α|w|2)−λ/ log(1+α)

functions that are not integrable; their priors are called improper.

These sparsity priors are compared against the empirical distribution of the trans-

form coefficient magnitudes observed for different datasets. The empirical cumulative

distribution function (cdf) is defined as

F (w) =
1

N

N−1∑
n=0

1{|w[n]|≤w}, w ≥ 0. (4.12)

We compare the empirical cdf to the sparsity prior cdf Fs(w) using the Kolmogorov-

Smirnov (K-S) test, which measures the maximum difference between the two cdf’s:

KS = max
w≥0
|F (w)− Fs(w)|. (4.13)

Because of the discrete nature of empirical distribution functions, it is enough to find

the maximum over all |w[n]| in the empirical dataset transform coefficient vector w:

KS = max
n∈{0,...,N−1}

|F (|w[n]|)− Fs(|w[n]|)|. (4.14)

Note that the endpoints are inconsequential since the cdf’s are always equal at 0

and ∞ by definition. A comparison of cdf’s for the `1, `pp (p < 1), and Cauchy

penalty functions to the sparsity model of the Shepp-Logan phantom is portrayed

in Figure 4.3. Another comparison for real data, T1-weighted image #1 is shown in

Figure 4.4.

From the visual comparisons of sparsity models, the Cauchy penalty appears to

be most appropriate for the simulated Shepp-Logan phantom, and the Cauchy and `pp

penalties are closest to the real T1-weighted data. To test how these penalty functions
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Figure 4.3: Sparsity model cdf’s for the transform coefficient magnitudes of a Shepp-
Logan phantom in the finite differences domain.
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Figure 4.4: Sparsity model cdf’s for the transform coefficient magnitudes of a T1-
weighted real image in the four-level ‘9-7’ DWT domain.

affect the denoising process, the DESIGN denoising method is applied to uniformly

undersampled slices from both datasets using the three `1, `pp, and Cauchy penalty

functions. Since the `pp and Cauchy penalty functions are strongly nonconvex for small

p/large α, homotopy continuation is used to avoid numerical and local convergence

issues.

To ensure proper operation of the simulations involving homotopy continuation

that follow, the effects of the continuation scheme parameters on the reconstruction

quality and number of iterations is studied for the first T1-weighted real dataset.

In particular, the continuation parameter multiplier β and the IRLS convergence

tolerance tol are increased and the effects measured in terms of image quality and

computation time. In this experiment, α0 = 1 and αmax = 104, and the computational

cost is measured by the total number of LSMR iterations.

The effects of varying the continuation parameters are shown in Figure 4.5. The

first reconstruction uses β = 2 to slowly increase the continuation parameter α be-

tween iterations and tol = 0.01 to ensure IRLS convergence between increasing the
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β = 2 β = 10 β = 10
tol = 0.01 tol = 0.01 tol = 0.1

PSNR = 28 dB PSNR = 28 dB PSNR = 28 dB
448 iterations 246 iterations 223 iterations

Figure 4.5: Continuation scheme parameters studied for DESIGN denoising of T1-
weighted image #1 (4 × 4 nominal undersampling: R = 10.5) using the Cauchy
penalty function with four-level ‘9-7’ DWT.

parameter. Increasing β to 10 or tol to 0.1 have negligible effects on image quality,

and increasing β significantly decreases the number of LSMR iterations. Thus, we

use β = 10 and tol = 0.01 for the Cauchy penalty in the following experiments.

The DESIGN denoising reconstructions of the Shepp-Logan phantom depicted

in Figure 4.6 suggest the potential for improvement from using nonconvex penalty

functions. However, the differences in K-S test statistics among these models are

too insignificant to conclude the existence of a trend between the model fit and

image reconstruction quality. While noise is insignificant in all three reconstructions,

the Cauchy penalty function does a much better job of mitigating aliasing of small

features and blurring of edges in the phantom. However, the Shepp-Logan phantom

is admittedly a poor approximation of real MR images, as it is very sparse, has high

contrast, and well-defined edges. The improvement in PSNR is significant, so we ask

if similar gains in reconstructed image quality can be realized for real MRI data.

The reconstructions portrayed in Figure 4.7 suggest that this improvement does

not necessarily carry over to real data. The reconstructed images have approximately

the same noise level, and the PSNR values are nearly identical. The `1 norm does

a better job than the other sparsity penalty functions of preserving the sharpness

of the edges, especially near the center of the image, were contrast is more limited.

The two reconstructions using nonconvex penalty functions appear to be significantly

oversmoothed, suggesting that these nonconvex penalty functions are not appropriate
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Penalty function: `1 `pp (p = 3/4) Cauchy (α = 107)
Parameter λ: 101.6 101.6 101.4

PSNR: 35 dB 35 dB 51 dB
KS test statistic: 0.066 0.066 0.065

Figure 4.6: DESIGN denoising of Shepp-Logan phantom (4 × 4 nominal undersam-
pling: R = 8.7) using `1, `pp, and Cauchy penalty functions with the finite differences
representation.

Penalty function: `1 `pp (p = 10/23) Cauchy (α = 104)
Parameter λ: 100.4 100.6 1

PSNR: 28 dB 28 dB 28 dB
KS test statistic: 0.14 0.065 0.088

Figure 4.7: DESIGN denoising of T1-weighted image (4× 4 nominal undersampling:
R = 10.5) using `1, `pp, and Cauchy penalty functions with the four-level ‘9-7’ DWT.
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Figure 4.8: Trend in the optimal choice of λ as determined by coarse-then-fine param-
eter sweeps for the `1 norm and Cauchy penalty functions, for the T1-weighted image
#1 with four-level ‘9-7’ DWT sparsifying transform. The nominal undersampling
increases from 3× 3 (R = 7.0) to 6× 6 (R = 16.3).

for reconstructing data that is not truly sparse. The model fit as quantified by the K-

S test statistic does not predict this oversmoothing and degradation in image quality.

Whether this holds true for reconstructions using a learned or adaptive dictionary

tailored to this dataset rather than a generic sparsifying transform like the DWT is

not known, but the literature suggests that adaptive dictionary learning with small

image patches is effective at reducing oversmoothing and loss of edge-definition due

to sparsification [80], so nonconvex penalty functions may be more effective when

combined with a dictionary.

4.2.2 Tuning Parameter Selection

The tuning parameter λ balances the fidelity to the GRAPPA solution and the spar-

sity of the result in Equation (4.2). A larger value of λ favors sparsity, while a smaller

value of λ favors the GRAPPA solution. To determine the optimal value of λ, a two-

level parameter sweep is used, a coarse sweep followed by a fine sweep around the

optimal coarse sweep value. The trend in λ as a function of effective acceleration R

is shown in Figure 4.8 for both the `1 and the Cauchy penalty functions. Both trends

are approximated by power-law regressions λ = 2.4 × 10−7R6.9 with R2 = 0.99 and

λ = 4.3 × 10−10R9.4 with R2 = 0.96 for the `1 norm and Cauchy penalty functions,

respectively.
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Algorithm 3 Multi-channel locally adaptive Wiener filter-based denoising algorithm.

Require: Y, S
1: Generate coil images X← F−1Y.
2: Form combined image x using Equation (2.9) or Equation (2.10).
3: Estimate global noise variance σ2 ← median(|wHi|)/0.6745, where wHi are the

high-pass coefficients of the DWT coefficients w = Ψx.
4: for Each voxel [x, y, z] do
5: Get set of voxels ξ in 3× 3× 3 neighborhood.
6: Compute mean µx ← 1

|ξ|
∑|ξ|−1

n=0 ξ[n] and variance σ2
x ← 1

|ξ|
∑|ξ|−1

n=0 |ξ[n]|2−|µx|2.

7: Mean µx ← µxS[x, y, z].
8: Signal covariance Λx ← max{0, σ2

x − σ2}S[x, y, z]S[x, y, z]H .
9: Noise covariance Λ← σ2S[x, y, z]S[x, y, z]H .
10: Denoised voxel across coils is x̂[x, y, z]← Λx(Λx + Λ)−1(x[x, y, z]− µx) + µx.
11: end for
12: return Full k-space result Ŷ ← FX̂.

The optimal choice of λ is thought to vary with the observation noise level and the

sparsity of the image to be reconstructed, so the generality of this optimal choice of

λ to other datasets is limited. Therefore, in the experiments conducted with multiple

datasets, the parameter sweeps for λ are repeated for each dataset.

4.2.3 Performance Comparisons

The performance of the DESIGN denoising method is compared against a conven-

tional multi-channel Wiener filter-based denoising method, multi-channel compressed

sensing [37], and L1 SPIRiT [98, 99]. Because the signal model statistics (mean and

variance) are not known exactly, an adaptive Wiener filter-based approach that forms

local estimates of the signal mean and variance is used [51]. The global noise vari-

ance is estimated using the median absolute deviation method with the same four-

level DWT used as a sparsifying transform [28]. The signal and noise statistics are

measured from the combined image, and multi-channel statistics are formed using

low-resolution coil sensitivity estimates S formed from the ACS lines apodized with

a Blackman window [72]. The multi-channel Wiener filter-based denoising method is

described in Algorithm 3.

Other compared methods include CS and L1 SPIRiT. The nullspace approach
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GRAPPA Wiener CS CS L1 SPIRiT DESIGN DESIGN
(`1) (Cauchy) (`1) (Cauchy)

λ = 10−2.6 λ = 100.4 λ = 1

Figure 4.9: Reconstructed images (top row) and difference images (bottom row) for
DESIGN denoising with `1 and Cauchy penalty functions compared to GRAPPA,
GRAPPA with Wiener filter-based denoising, CS with joint sparsity and both `1 and
Cauchy penalty functions, and L1 SPIRiT for R = 10.5 undersampled T1-weighted
image #1 with four level ‘9-7’ DWT sparsifying transform.

and IRLS are used together to solve the joint sparsity version of basis pursuit. The

parallelized implementation of L1 SPIRiT [66] used for performance comparisons is

available online from [65]. After running preliminary simulations, a 7 × 7 SPIRiT

kernel size is chosen (the SPIRiT kernel size refers to the number of points in full-FOV

k-space). The regularization parameter for the `1 term is determined via coarse-then-

fine parameter sweeps, as is done for the proposed DESIGN denoising method, for

each dataset.

Examples depicting the relative performance of the DESIGN denoising method

are shown for three real datasets in Figures 4.9-4.11. The PSNRs of these recon-

structions are listed for different effective accelerations R (nominal undersampling

increases from 3 × 3 to 6 × 6) in Tables 4.2-4.4 (highest PSNRs in bold). From the

reconstructed images and difference images, it is evident that when the tuning param-

eter λ is chosen correctly, both variants of the DESIGN method effectively denoise

the GRAPPA reconstruction, better than the multi-channel Wiener filter-based de-

noising method. With uniformly spaced undersampling of k-space, the CS methods

and L1 SPIRiT are less effective than they could be with Poisson disc or random
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GRAPPA Wiener CS CS L1 SPIRiT DESIGN DESIGN
(`1) (Cauchy) (`1) (Cauchy)

λ = 10−2.6 λ = 101.6 λ = 102.6

Figure 4.10: Reconstructed images (top row) and difference images (bottom row) for
DESIGN denoising with `1 and Cauchy penalty functions compared to GRAPPA,
GRAPPA with Wiener filter-based denoising, CS with joint sparsity and both `1 and
Cauchy penalty functions, and L1 SPIRiT for R = 10.5 undersampled T1-weighted
image #2 with four level ‘9-7’ DWT sparsifying transform.

GRAPPA Wiener CS CS L1 SPIRiT DESIGN DESIGN
(`1) (Cauchy) (`1) (Cauchy)

λ = 10−2.8 λ = 1 λ = 1

Figure 4.11: Reconstructed images (top row) and difference images (bottom row) for
DESIGN denoising with `1 and Cauchy penalty functions compared to GRAPPA,
GRAPPA with Wiener filter-based denoising, CS with joint sparsity and both `1 and
Cauchy penalty functions, and L1 SPIRiT for R = 14.6 undersampled T2-weighted
image with four level ‘9-7’ DWT sparsifying transform.
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Table 4.2: PSNRs (in dB) of reconstruction methods at different acceleration factors
for T1-weighted image #1.

R
Method 7 8.7 10.5 12 13.7 15.1 16.3

GRAPPA 31.9 30.1 25.9 20.5 13.5 8.9 4.9
Wiener 31.1 30.2 27.9 23.4 15.7 10.9 7.1
CS (`1) 21.9 21.5 21.3 21.2 21.1 20.9 20.9

CS (Cauchy) 21.6 21.4 21.2 21.0 20.9 20.9 20.8
L1 SPIRiT 31.3 30.1 28.3 26.9 25.5 24.6 23.9

DESIGN (`1) 32.1 30.7 28.2 25.5 22.9 21.9 21.2
DESIGN (Cauchy) 32.1 30.8 28.4 25.7 22.7 21.6 21.0

Table 4.3: PSNRs (in dB) of reconstruction methods at different acceleration factors
for T1-weighted image #2.

R
Method 7.0 8.6 10.5 12.1 13.6 14.8 16.1

GRAPPA 33.1 29.5 24.5 18.9 12.5 8.1 4.4
Wiener 34.2 32.2 28.6 22.6 15.2 10.5 6.7
CS (`1) 25.4 25.1 24.9 24.8 24.8 24.7 24.6

CS (Cauchy) 24.8 24.6 24.4 24.3 24.3 24.2 24.2
L1 SPIRiT 34.5 32.5 30.7 29.5 28.4 27.6 27.0

DESIGN (`1) 33.5 30.7 27.6 25.5 25.2 24.9 24.7
DESIGN (Cauchy) 34.2 31.9 29.4 27.0 25.3 24.8 24.6

Table 4.4: PSNRs (in dB) of reconstruction methods at different acceleration factors
for T2-weighted image.

R
Method 7.8 9.9 12.4 14.6 17.1 19.3 21.4

GRAPPA 44.6 40.9 36.9 30.4 25.1 18.9 15.4
Wiener 43.6 41.8 39.5 33.3 27.5 20.7 17.2
CS (`1) 26.1 25.7 25.5 25.3 25.1 24.9 24.8

CS (Cauchy) 25.4 25.0 24.8 24.6 24.5 24.4 24.3
L1 SPIRiT 44.3 40.7 37.2 34.2 32.3 30.6 29.5

DESIGN (`1) 45.0 41.9 38.8 34.5 31.3 28.3 27.1
DESIGN (Cauchy) 45.0 42.1 39.5 35.5 32.5 29.1 27.6
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sampling patterns that have become the norm for CS-based approaches, and the L1

SPIRiT results in Figures 4.10 and 4.11 contain residual aliasing not noticeable in

the other reconstructions. Comparing the `1 and Cauchy penalty function variants of

DESIGN, we observe that the `1 norm version introduces less oversmoothing into the

reconstructed image, preserving edges and contrast better, especially near the center

of the image. Thus, even though the Cauchy version of DESIGN has generally better

PSNR, the `1 version has better image quality.

4.2.4 G-Factors

The reconstructions presented in the performance comparisons in the previous sec-

tion display various types of errors. Noise amplification is a significant problem in

highly accelerated parallel imaging, amplifying random noise to the point of masking

low-contrast or small features. Residual aliasing artifacts may also be prevalent at

high accelerations. Finally, denoising methods can introduce smoothing or blurring

artifacts, reducing contrast and edge-definition and smoothing over small features. To

measure the noise amplification due to the parallel imaging reconstruction method,

we estimate the g-factors for each method using the pseudo multiple replica method.

In the following experiment, we add synthetic complex Gaussian noise with covariance

equal to the measured noise covariance Λ and examine the difference in reconstructed

images before and after noise is added. We average the g-factors over 400 trials.

In Figure 4.12, the g-factors are plotted for each method for the undersampled

image reconstructed in Figure 4.9. These g-factors demonstrate that both DESIGN

denoising methods are fairly effective at mitigating noise amplification, on average

yielding images only a few dB worse noise amplification than aliased images produced

directly from reduced-FOV data. The L1 SPIRiT method is also very effective at

denoising, with an average g-factor of nearly one. The multi-channel Wiener filter

denoising method is not as effective on average as any of these methods, but the

average noise amplification is reduced by almost 4 dB relative to GRAPPA alone.
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15

-10

-35
GRAPPA Wiener CS CS L1 SPIRiT DESIGN DESIGN

(`1) (Cauchy) (`1) (Cauchy)

Avg: 11.2 7.57 -19.5 -20.4 1.22 6.03 5.01
Max: 16.2 14.9 -13.6 -16.5 7.22 11.4 11.8

Figure 4.12: Estimated g-factors (in dB) are plotted for T1-weighted image #1 with
R = 10.5 acceleration factor (4× 4 nominal undersampling).

4.2.5 Oversmoothing Effects

Denoising methods are known to reduce the amount of detail in an image via over-

smoothing. This reduction can be manifested as a loss of spatial resolution, of edge-

definition, or of contrast in low-contrast areas. While these effects may be incon-

sequential in many image or video denoising applications, the loss of resolution or

contrast may affect the utility of such medical images to practitioners. To study the

prevalence of such effects in images processed using DESIGN denoising, we turn to

contrast and resolution phantoms with features designed specifically to observe these

oversmoothing effects and quantify contrast or resolution loss.

We use the synthetic contrast phantom in Figure 4.2 to quantify contrast loss

in each of these denoising/reconstruction methods. This phantom has six rows of

differently sized discs, with contrast between the circles and the background varying

linearly across columns. Enough complex Gaussian noise is added to the reduced-

FOV data to yield a GRAPPA reconstructed image with noise masking the lowest

contrast circles almost completely. Wiener filter-based denoising, `1 norm-based CS,

L1 SPIRiT, and `1 norm-based DESIGN denoising are performed, and their results

in Figure 4.13 indicate which contrast circles were eliminated from the result, and

which were preserved. The Wiener filter was particularly poor at preserving the lowest

contrast circles, while the CS, L1 SPIRiT, and DESIGN denoising methods preserved

all the circles, even the smallest ones, with minimal contrast loss (≈ 2%, where the
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GRAPPA Wiener CS (`1) L1 SPIRiT DESIGN (`1)
λ = 0.01 λ = 10−0.8

Figure 4.13: Synthetic contrast phantom reconstructions using GRAPPA and denois-
ing methods (4 × 4 nominal undersampling: R = 12.1) with a four-level ‘9-7’ DWT
sparsifying transform.

lowest contrast circles initially have 10% contrast). While the discs themselves are

not significantly degraded, the edges around the circles are smoothed, reducing the

edge definition. Although these results for simple features like uniform circles are not

necessarily representative of what occurs in real MR images with complex features

and textures, these results are encouraging.

To measure effective spatial resolution empirically, we reconstruct or denoise an

image using the various methods in question and form blur kernels via deconvolution

between the resulting images and the original. Mathematically, the point spread

function (PSF), or blur kernel, is equal to

(FhPSF)[kx, ky] = yr[kx, ky]/y[kx, ky], (4.15)

where FhPSF is the DFT of the point spread function, and y and yr are the DFTs of

the original and reconstructed images, respectively. At frequencies where y is small,

the DFT of the PSF at those frequencies is highly sensitive to noise; instead, we use

the robust estimate

(FhPSF)[kx, ky] = yr[kx, ky]y[kx, ky]
∗/(|y[kx, ky]|2 + (0.01 max

kx,ky
|y[kx, ky]|)2). (4.16)

Since the reconstruction methods are non-stationary, and a PSF over the entire image

would approximate the reconstruction with a stationary kernel, a small region is used

to compute the PSF, usually a region containing the features we want to measure.
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Figure 4.14: Synthetic resolution phantom reconstruction comparisons of effective
spatial resolutions using GRAPPA and denoising methods (4× 4 nominal undersam-
pling: R = 12.1) with a four-level ‘9-7’ DWT sparsifying transform.

For the resolution phantoms examined here, we use different image regions for mea-

suring horizontal resolution and vertical resolution. Thus, we window and apodize

the original and reconstructed images prior to computing PSFs.

Once the PSFs are computed, we locate the peak and measure the full width at

half maximum (FWHM) around that peak to determine the resolution. Since we are

dealing with two-dimensional PSFs, a single resolution number would correspond to

the maximum FWHM in all directions around the peak. Since we measure spatial

resolution specifically in horizontal and vertical directions, it suffices to measure the

FWHM in the horizontal direction (for the horizontal resolution) and in the vertical

direction (for the vertical resolution). Since we only have samples of the PSF, and

the resolution is expected to be on the order of a voxel, we linearly interpolate the

PSF between points to refine our estimate.

The experiment in Figure 4.14 demonstrates the effects of denoising on the effec-

tive spatial resolution. The selected regions in the synthetic phantom are designed

to illustrate the importance of resolution, as the `1 norm-based CS method blurs the

lines together as to make them indistinguishable as separate lines. Regions A and
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B are used to measure horizontal and vertical resolution, respectively. This effect

would be expected to become more noticeable as the noise level increases, as greater

sparsification would be needed to reproduce a denoised image. From this synthetic

example, the DESIGN denoising method appears to have no worse spatial resolu-

tion than GRAPPA alone, and performs better than the other denoising methods

evaluated here.

4.2.6 Sampling Patterns

One of the requirements for conventional compressed sensing is that the observa-

tion matrix is random in some fashion to minimize the probability of a significant

component of the signal falling into the nullspace of the observation matrix. The

earlier experiments all handicap the CS and L1 SPIRiT methods by constraining the

sampling pattern to be uniformly-spaced, resulting in coherent aliasing. The DE-

SIGN method as presented is designed for uniformly-spaced subsampling of k-space

to accommodate conventional GRAPPA accelerated parallel imaging reconstruction.

However, as shown earlier, we can extend GRAPPA, and hence DESIGN denoising, to

non-uniform sampling patterns that would be more appropriate for CS. In the exper-

iments that follow, we investigate the performance of GRAPPA and DESIGN using

random and Poisson disc sampling patterns. For computational efficiency, we use

a direct GRAPPA implementation for non-uniform subsampled Cartesian k-space,

and use this GRAPPA result without otherwise modifying the DESIGN denoising

algorithm.

Comparing the GRAPPA and DESIGN denoising reconstructions of the uniformly

and randomly undersampled Shepp-Logan phantom data displayed in Figure 4.15, the

GRAPPA method appears significantly adversely affected by random sampling, but

combining random sampling with DESIGN denoising yields improved reconstructions

for both `1 and Cauchy penalty functions. The GRAPPA difference image for uni-

form undersampling shows coherent aliasing, while the GRAPPA difference image for

random undersampling shows noise-like artifacts. Since CS can eliminate the noise-

like artifacts rather effectively for such a sparse image as the Shepp-Logan phantom,
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Uniform undersampling Random undersampling

GRAPPA

DESIGN (`1)
λ = 101.6 λ = 102.2

DESIGN (Cauchy)
λ = 101.4 λ = 103

Figure 4.15: GRAPPA and DESIGN denoising methods compared for uniform and
random undersampled (4×4 nominal undersampling: R = 8.7) Shepp-Logan phantom
with finite differences sparsifying transform.
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both DESIGN reconstructions can eliminate the random sampling artifacts. The `1

norm-based DESIGN denoising cannot totally eliminate the coherent aliasing from

uniform undersampling, although DESIGN denoising with the Cauchy penalty func-

tion and uniform undersampling can eliminate all but the smallest of these artifacts

through additional sparsification.

To determine how the choice of sampling pattern affects real data, we use the T1-

weighted image #1 example slice from Figure 4.2. To elicit strong aliasing artifacts

in the uniformly undersampled data (more significant than the amplified noise), we

more aggressively crop the data, use only 10 out of 32 coil channels, and increase

the undersampling factor (to R = 13.7). The resulting GRAPPA and DESIGN de-

noising reconstructions with uniform and Poisson disc undersampling are shown in

Figure 4.16. While the resulting image quality is not great for any of the reconstruc-

tions shown, we call attention to the elimination of coherent aliasing artifacts in the

DESIGN denoised reconstructions with Poisson disc sampling. The `1 norm-based

DESIGN reconstruction with Poisson disc sampling does a reasonable job of denois-

ing and mitigating aliasing without significantly blurring the image; most of the error

appears to be on the strong outer edges, which as we know from previous experi-

ments, get smoothed. Thus, as Poisson disc sampling is prescribed for L1 SPIRiT

reconstruction, Poisson disc sampling also may be appropriate for DESIGN denoising

when GRAPPA alone is insufficient to eliminate coherent aliasing.

4.3 Discussion

Based on the simulations presented in the previous section, the DESIGN denoising

method is an effective denoising method for accelerated parallel images reconstructed

with GRAPPA, with several caveats. First, the DESIGN denoising method tends to

smooth edges in the reconstructed image. While such smoothing does not appear

to result in loss of spatial resolution or significant contrast reduction, both of which

would be major concerns for clinical application of this method, smoothed edges may

impact MRI applications that rely on edge detection, like brain segmentation and cor-
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Uniform undersampling Poisson disc undersampling

GRAPPA

DESIGN (`1)
λ = 100.8 λ = 102.2

DESIGN (Cauchy)
λ = 100.6 λ = 101.6

Figure 4.16: GRAPPA and DESIGN denoising methods compared for uniform and
Poisson disc random undersampled (5 × 5 nominal undersampling: R = 13.7) T1-
weighted MPRAGE dataset with four-level ‘9-7’ DWT sparsifying transform.
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tical thickness measurement [32]. The experiments portrayed here all involve healthy

subjects. Due to the great variety of features and abnormalities that can be encoun-

tered in human MRI, a more thorough analysis of the effects of DESIGN denoising

on images with lesions, resections, and other visible abnormalities. In addition, as

depicted in Figure 4.16, DESIGN denoising is relatively ineffective at mitigating co-

herent aliasing left behind by GRAPPA. In addition, as the undersampling factor

continues to increase, the amount of sparsification performed by DESIGN denoising

to mitigate noise amplification can significantly oversmooth the image, limiting the

usefulness of DESIGN denoising at extremely high accelerations.

Compared to multi-channel Wiener filter-based denoising, the proposed method

is more effective at mitigating noise amplification, as measured by the g-factors in

Figure 4.12. Furthermore, DESIGN denoising is not plagued by the residual coher-

ent aliasing visible in the L1 SPIRiT results in Figures 4.9-4.11. The SNR of the

GRAPPA reconstruction appears to degrade more rapidly than SPIRiT as the accel-

eration factor R increases, so DESIGN denoising may outperform L1 SPIRiT at high

acceleration factors if the SPIRiT reconstruction is used in place of the GRAPPA re-

construction in Equation (4.2). Another advantage of the DESIGN denoising method

is that it is effective with conventional uniformly-spaced undersampling of Cartesian

k-space, which is by far the most common k-space sampling approach in practice.

Therefore, DESIGN denoising can be applied retroactively to denoise previously ac-

quired GRAPPA or other accelerated parallel imaging reconstructions.

To be effective clinically, DESIGN denoising needs to be performed during the

scan session. To accelerate the implementation of DESIGN denoising, we can lever-

age multi-threaded CPU or GPU computation to reduce the computational cost of

the dominant FFT and DWT operations via parallelization. Another future exten-

sion is to combine DESIGN denoising with adaptive dictionary learning to improve

image quality. Because DESIGN denoising is limited by the quality of the image to

denoise, it is also useful to improve the quality of the accelerated parallel imaging

reconstruction method itself. The next chapter focuses on using sparsity to improve

GRAPPA kernel calibration.
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Chapter 5

GRAPPA Kernel Calibration with

Sparsity

The reconstructed image quality of auto-calibrating methods like GRAPPA can be

impacted by the quality of the calibration. When the calibration data is noisy, or

the quantity of calibration data is insufficient to yield a quality fit, the calibrated

GRAPPA kernel can both amplify noise unnecessarily and cause coherent aliasing

artifacts to remain in the reconstruction. Examples of GRAPPA reconstructions

when the fit to the ACS lines is either of poor quality or underdetermined are shown

in Figure 5.1. The DESIGN denoising method in the previous section is a post-

processing approach for improving the GRAPPA reconstructed image quality, but

that method, as its name suggests, is primarily useful for denoising. In this chapter,

we present a novel method that aims to improve the calibration step of GRAPPA

to reduce noise amplification and minimize un-resolved aliasing. Motivated by the

use of sparsity as regularization, we regularize the least squares fit normally used

for kernel calibration using the sparsity of the full-FOV coil images that would be

reconstructed from the reduced-FOV data using the calibrated kernel. This approach

would be followed by conventional GRAPPA to yield an improved reconstruction.

In this chapter, we begin with a brief discussion of regularization techniques like

Tikhonov regularization, which leads to the exposition of the proposed method. Sim-

ulations comparing the proposed calibration regularization method to other forms
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Figure 5.1: GRAPPA reconstructions with low-quality kernel calibrations demon-
strating noise amplification (left) and residual aliasing (right) with 4 × 4 nominal
undersampling. The GRAPPA reconstruction on the left was calibrated with 36× 36
ACS lines and no regularization, and the reconstruction on the right was calibrated
with 20× 20 ACS lines (underdetermined) with Tikhonov regularization.

of GRAPPA kernel calibration are presented, and the trade-off between total accel-

eration R and image quality is investigated for these kernel calibration techniques.

We conclude the chapter with a discussion of the impact of the calibration method

and potential extensions including combination with post-processing methods like

DESIGN denoising.

5.1 Theory

Consider the two-dimensional ACS fit equation used for GRAPPA kernel calibration

in Equation (2.23). Collecting all these fit equations into a single linear system yields

the least squares problem

Ĝ = minimize
G

‖YACS
t −YACS

s G‖2
F , (5.1)

where the matrices YACS
s and YACS

t contain the source and target points, respectively,

from the ACS lines, and G contains all the GRAPPA kernel weights. Suppose the

desired GRAPPA kernel measures By × Bz blocks of size Ry × Rz, and we have

NACS,y ×NACS,z ACS lines. Then, the number of ACS fits is equal to

Nfit = (NACS,y −By max{Ry − 1, 1})(NACS,z −Bz max{Rz − 1, 1}), (5.2)
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and there are ByBzP total source points and (RyRz − 1)P total target points. Thus,

YACS
s is an Nfit × (ByBzP ) matrix, whose rows represent the source points from the

ACS lines for the fit equations, and YACS
t is an Nfit× ((RyRz−1)P ) matrix with each

row containing the target points from the ACS lines for each fit. The matrix G has

size (ByBzP )× ((RyRz−1)P ), with each column a vector of weights that are used to

compute a single target point within each block. For this least squares system to have

a single solution, the matrix YACS
s must have full column rank, and it is necessary

that Nfit ≥ ByBzP . When the solution to Equation (5.1) is unique, it is equal to

Ĝ = (YACS
s

H
YACS
s )−1YACS

s

H
YACS
t . (5.3)

In real acquisitions, the source and target point values from the ACS lines have

noise. The noise in the target points is amplified in the kernel by the gain of the matrix

(YACS
s

H
YACS
s )−1YACS

s
H

, and the noise in the source points perturbs this matrix if the

noise level exceeds the minimum singular value of the matrix. The matrix YACS
s has

a singular value decomposition (SVD)

YACS
s = U


σ1

. . .

σmin


︸ ︷︷ ︸

Σ

VH , (5.4)

where rectangular matrices U and V have unitary columns, and σ1 ≥ · · · ≥ σmin

are the singular values of the matrix in decreasing order collected in diagonal matrix

Σ. For rectangular YACS
s , this is the economic decomposition; the traditional SVD

always has square unitary U and V and rectangular Σ padded with zeros. Then, if

YACS
s has full column rank, (YACS

s
H

YACS
s )−1YACS

s
H

has SVD (with singular values

in reverse order)

V


σ−1

1

. . .

σ−1
min


︸ ︷︷ ︸

Σ+

UH . (5.5)
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One measure of gain of a matrix is the induced matrix 2-norm, defined as

‖A‖2 = max
x

‖Ax‖2

‖x‖2

= max
{x:‖x‖2=1}

‖Ax‖2, (5.6)

which is equal to the maximum singular value of the matrix. The condition number κ

is equal to the ratio of maximum to minimum singular values. The condition number

σ1/σmin of YACS
s is equal to the condition number of the pseudoinverse of this ma-

trix. We examine the condition number of the matrix to determine the perturbation

susceptibility of the kernel calibration to noise in the ACS lines.

When the matrix YACS
s does not have full column rank, or it is poorly conditioned,

we can introduce regularization into Equation (5.1) to yield a single well-behaved

solution that is robust to noise in the ACS lines and numerical precision issues.

Several regularization techniques exist. Tikhonov regularization [90] is commonly

applied to SENSE reconstruction [54] and can also be applied to GRAPPA kernel

calibration

Ĝ = minimize
G

‖YACS
t −YACS

s G‖2
F + ‖αG‖2

F , (5.7)

where α > 0 is the regularization parameter. Then, the regularized solution is

Ĝ = (YACS
s

H
YACS
s + α2I)−1YACS

s

H
YACS
t . (5.8)

For α > 0, (YACS
s

H
YACS
s + α2I) � 0 since YACS

s
H

YACS
s � 0, so the matrix inverse

in Equation (5.8) is guaranteed to exist. This type of regularization attempts to find

the minimum energy solution to the un-regularized problem. Tikhonov regularization

can also be applied to an affine transform of the kernel Γ(G−G0) to elicit a solution

satisfying some other criterion, like smoothness, in which case, Γ is a finite differences

transform, and G0 = 0.

An alternative approach to regularizing GRAPPA kernel calibration is to uti-

lize the frequency-shift operator interpretation of the GRAPPA kernel [14]. For the

GRAPPA kernel G that performs a frequency shift by one over the full field of view,

applying the kernel Ry or Rz times should yield the original data shifted in the y-
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or z-direction. This insight essentially constrains the Rth power of the GRAPPA

kernel operator to approximate a permutation matrix, yielding a nonlinear system of

equations that can be used to regularize the GRAPPA kernel calibration. This non-

linear regularization can be applied to multi-dimensional accelerated parallel imaging,

although the complexity of the nonlinear system increases significantly.

The regularization approach proposed here takes advantage of the joint sparsity

of the ideal reconstructed coil images in the sparse transform domain to improve the

calibration of the kernel. Using the `1,2 mixed norm to promote joint sparsity of the

transform domain coefficients across the coils, we regularize Equation (5.1) to form

Ĝ = minimize
G

‖YACS
t −YACS

s G‖2
F + λ‖ΨF−1 GRAPPA(G,D)‖1,2, (5.9)

where GRAPPA(G,D) is the GRAPPA reconstruction operation using kernel G on

acquired data D (including ACS lines that are treated as data). Typically, conven-

tional GRAPPA reconstruction is represented as a block convolution operation on the

acquired data. Since convolution is commutative, we can also represent GRAPPA as

a block convolution matrix of the data with the GRAPPA kernel, with an additive

term for the data that gets passed through to the output (since GRAPPA does not

alter the acquired k-space data). Therefore, GRAPPA(G,D) is an affine function of

G, and the adjoint operator GRAPPA∗(G,D) is linear. In fact, the adjoint operation

of convolution is convolution by the complex conjugate of the reversed kernel (this

identity holds for one- and multi-dimensional convolution). Since convolution can be

implemented efficiently using the FFT, the presence of the GRAPPA reconstruction

operation in Equation (5.9) should not be too problematic from a computational point

of view.

The same approaches used for solving the unconstrained optimization problem

version of DESIGN denoising in Equation (4.2) can be employed here to solve Equa-

tion (5.9). We again turn to IRLS, using weights determined according to half-

quadratic minimization, to solve the problem. The least-squares approximation of
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Equation (5.9) is

Ĝ(i) = minimize
G

‖YACS
t −YACS

s G‖2
F

+
λ

2
‖(∆(i−1))1/2ΨF−1 GRAPPA(G,D)‖2

F , (5.10)

where the reweighting matrix ∆(i−1) is a diagonal matrix with entries ∆
(i−1)
n,n =

1/‖[Wn,1, . . . ,Wn,P ]‖2 computed from the sparse transform of the GRAPPA recon-

structed coil images W = ΨF−1 GRAPPA(Ĝ(i−1),D) using the previous kernel esti-

mate Ĝ(i−1). To ensure that the objective function in Equation (5.10) is differentiable,

we use a smoothed approximation of the `2 norm in the re-weighting matrix calcula-

tion:

∆(i−1)
n,n = 1/‖[Wn,1, . . . ,Wn,P , ε]‖2, (5.11)

for fixed ε > 0. The derivative of the objective function in Equation (5.10) is set to

zero:

2YACS
s

H
(YACS

s G−YACS
t )

+ λGRAPPA∗(F−HΨH∆(i−1)ΨF−1 GRAPPA(G,D),D) = 0. (5.12)

To solve this linear system, we again employ LSMR, solving for g, the vectorized

version of G, using LSMR(A,b) with

A =

 √
2(IP×P ⊗YACS

s )
√
λ(IP×P ⊗ ((∆(i−1))1/2ΨF−1KT

naDconv))

 , (5.13)

AH =
[√

2(IP×P ⊗YACS
s

H
)
√
λ
N

(IP×P ⊗ (DH
convKnaFΨH(∆(i−1))1/2))

]
, (5.14)

and

b =

 √
2 vec(IP×P ⊗YACS

t )

−
√
λ vec(∆(i−1))1/2ΨF−1KT

aD)

 . (5.15)

In the above equations, we decompose GRAPPA(G,D) into a block convolution
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Algorithm 4 Algorithm for sparsity-promoting GRAPPA kernel calibration.

Require: Ĝ(0), λ, ε, I, tol
1: Compute initial f (0) by plugging into the objective in Equation (5.9).
2: for i = 1 : I do
3: Compute W ← ΨF−1 GRAPPA(Ĝ(0),D) and set ∆

(i−1)
n,n = 1

w[n]
for w[n] =

‖[Wn,1, . . . ,Wn,P , ε]‖2, for all n = 0, . . . , N − 1.
4: Prepare matrices A and b with new reweighting matrix ∆(i−1) and run LSMR:

Ĝ(i) ← LSMR(A,b).
5: Compute f (i) by plugging in Ĝ(i) into the objective in Equation (5.9).
6: if f (i−1) − f (i) ≤ tol · f (i−1) then
7: break
8: end if
9: end for
10: return Calibrated GRAPPA kernel Ĝ(i).

operation DconvG and an affine term D and use GRAPPA(G,D) = KT
naDconvG +

KT
aD. The complete sparsity-promoting GRAPPA kernel calibration algorithm is

described in Algorithm 4.

5.2 Simulations and Results

The simulations in this chapter use the same T1-weighted real datasets acquired for

testing DESIGN denoising. Example slices are extracted from each dataset, cropped

and normalized, and magnitude combined images of these slices are used as ground

truth for generating difference images and calculating PSNR. As before, the four-level

‘9-7’ DWT is chosen as sparsifying transform for these images.

We begin by investigating the effects of regularization in three regimes marked

by the relative number of ACS fit equations to source points (across all coils) [97].

When the number of fits Nfit is much greater than the number of source points

ByBzP , we expect regularization not to have a significant effect on image quality,

as the calibration is already fairly robust to noise by virtue of the large number of

ACS lines. When the number of fits is approximately equal to the number of source

points, regularization could be important for mitigating the effects of noise on the

calibration, and the effects on image quality can be significant. Finally, when the
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number of fits is less than the number of source points, un-regularized calibration is

not possible, as the kernel is not unique, and regularization is required to determine

an appropriate choice of kernel that appropriately un-aliases the coil images.

We follow these experiments with a study of the effects of regularization on the

trade-off between number of ACS lines/total acceleration and the reconstructed im-

age quality. Our hypothesis is that quality of the calibration is a major driver of

reconstructed image quality and effective regularization can enable greater overall

acceleration while maintaining image quality.

5.2.1 Regularized Calibration Performance Comparisons

For Ry = Rz = 4 two-dimensional k-space undersampling with 36×36 ACS lines, the

kernel size is first chosen to be By = Bz = 3, as in the DESIGN denoising experiments

in Chapter 4. The GRAPPA kernel to be calibrated weights ByBzP = 288 source

points to generate (RyRz − 1)P = 480 target points, and from Equation (5.2), the

number of fit equations for each target point is 784. The matrix of source points from

the ACS lines YACS
s has size 784 × 288, and it has full column rank, meaning it has

a pseudoinverse. GRAPPA reconstructions using kernels calibrated using no regular-

ization, Tikhonov regularization, and sparsity-promoting regularization are shown in

Figure 5.2. In all these experiments, the best choices (found via parameter sweep) of

α and λ are used for Tikhonov and sparsity-promoting regularization, respectively.

The quality of the GRAPPA-reconstructed image in Figure 5.2 with un-regularized

calibration is relatively high, plagued mainly by some noise amplification, with no

visible aliasing in either the magnitude or difference images. Both regularized kernels

yield GRAPPA reconstructions with somewhat improved noise characteristics, with

little observable difference between the two.

Using such a small kernel may be introducing some unexpected dependencies in the

interpolated k-space. Since the number of target points exceeds the number of source

points, some target points are going to be linear combinations of the other target

points, and this redundancy would be expected to reduce the amount of frequency

information in the reconstructed coil images. Increasing the size of the kernel so that
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Un-regularized Tikhonov Sparsity (`1,2)

Figure 5.2: GRAPPA reconstructions of T1-weighted image #1 (4 × 4 nominal un-
dersampling: R = 10.5) with high-quality kernel calibrations with no regularization,
Tikhonov regularization, and sparsity-promoting regularization.

ByBz is at least RyRz − 1 will decrease the likelihood that this redundancy exists,

but it requires more ACS fits since there are more source points, and it reduces the

number of fits available from a fixed set of ACS lines. When we increase By and Bz to

4, the number of source points increases to 512, and the number of fits from the 36×36

ACS block decreases to 576. In this regime, the number of fits is comparable to the

number of source points, so we would expect the calibration to be more susceptible

to noise.

The reconstructed images in Figure 5.3 demonstrate the effect of calibration on

image quality. The GRAPPA reconstructions with kernels calibrated without reg-

ularization have substantially amplified noise, and either regularization technique is

effective at reducing the noise level substantially (PSNR improves by between 6 and 9

dB). In addition, there is no perceptible degradation in image quality due to blurring,

smoothing, or edge definition typically associated with denoising.

At high accelerations, the ACS lines can take almost as much time as the rest of
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Image #1: Un-regularized Image #2: Un-regularized

Image #1: Tikhonov Image #2: Tikhonov

Image #1: Sparsity (`1,2) Image #2: Sparsity (`1,2)

Figure 5.3: GRAPPA reconstructions of T1-weighted images #1 and #2 (4× 4 nom-
inal undersampling: both R = 10.5) with low-quality kernel calibrations with no
regularization, Tikhonov regularization, and sparsity-promoting regularization.
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Image #1: Tikhonov Image #2: Tikhonov

Image #1: Sparsity (`1,2) Image #2: Sparsity (`1,2)

Figure 5.4: GRAPPA reconstructions of 4 × 4 nominally undersampled T1-weighted
image #1 (R = 13.7) and image #2 (R = 12.9) with underdetermined kernel calibra-
tions with Tikhonov regularization and sparsity-promoting regularization.

the data to acquire; for Ry = Rz = 4, a 36 × 36 set of ACS lines takes half as much

time as the rest of the data. Reducing the number of ACS lines significantly would

cause the number of fits Nfit to fall below the number of source points, transforming

the least squares problem in Equation (5.1) into an underdetermined problem. To

solve this problem, regularization is necessary to identify a single solution; in the

simulations below, we compare Tikhonov regularization to the proposed sparsity-

promoting regularized calibration.

The regularization techniques are compared for underdetermined GRAPPA kernel

calibration for T1-weighted datasets #1 and 2 in Figure 5.4. In both cases, the

Tikhonov regularized kernels do not successfully undo aliasing in the coil images,

yielding magnitude images that are practically unusable. The images reconstructed

using GRAPPA kernels calibrated with sparsity-promoting regularization show far

less aliasing. While not quite the same quality as the regularized reconstructions
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in the high-quality calibration experiments, the image quality is comparable to un-

regularized reconstructions with far more ACS lines. This observation suggests that

such regularized calibration can enable high quality reconstructions from far fewer

ACS lines than with un-regularized calibration, yielding higher total accelerations.

5.2.2 Trade-Off between Acceleration and Image Quality

As we increase the number of ACS lines, we trade total acceleration R for improved

image quality. For two-dimensional undersampling by factors of Ry×Rz of Ny×Nz k-

space, the effective acceleration including NACS,y×NACS,z ACS lines is approximately

R =
RyRz

1 + (RyRz − 1)
NACS,yNACS,z

NyNz

. (5.16)

If we need to ensure the number of fit equations per target point Nfit is at least

ByBzP , and set By = Ry, and Bz = Rz, then Nfit ≥ RyRzP . For a square kernel

and square ACS region, NACS,y = NACS,z ≥ Ry(
√
P + Ry − 1), which means that

the number of ACS lines is quadratic in the undersampling factor, and for significant

undersampling, the increase in number of ACS lines can diminish the benefit of or

even overcome the acceleration due to undersampling the rest of k-space. Thus, it

behooves users of GRAPPA to be able to decrease the number of ACS lines needed

to obtain a quality image.

In this experiment, we examine the effect on image quality as approximated by

PSNR as we vary the number of ACS lines, and hence, the total acceleration R. We

repeat the experiment for GRAPPA with both un-regularized calibration, and with

the Tikhonov- and sparsity-regularized calibration techniques described earlier. The

trade-off curves are plotted for T1-weighted images #1 and #2 in Figure 5.5.

For both images, the trade-off curves for un-regularized GRAPPA kernel calibra-

tion portray a rapid drop-off in PSNR as total acceleration increases. In contrast,

all the regularization curves fall off much more slowly until total accelerations of

about R = 12. At higher accelerations, the Tikhonov-regularized calibration yields

reconstructed images with rapidly diminishing PSNR, while the drop-off in the recon-
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(a) T1-weighted Image #1.
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(b) T1-weighted Image #2.

Figure 5.5: Trade-off curves for un-regularized, Tikhonov-regularized, and sparsity-
promoting GRAPPA kernel calibration depicting the relationship between recon-
structed image PSNR and total acceleration R as the number of ACS lines is varied.
Nominal undersampling is held fixed at 4× 4.

structed image quality with sparsity-promoting calibration does not decrease nearly

as quickly. The significantly shifted trade-off curves suggest that much greater total

acceleration is possible by using regularized GRAPPA kernel calibration, especially

the sparsity-promoting calibration proposed here.

Since total acceleration depends on both the nominal undersampling and number

of ACS lines, we repeat this experiment for smaller and larger nominal undersampling

factors to gain a more complete picture of the optimal trade-off between PSNR and

total acceleration. To optimize PSNR for a given total acceleration, we construct the

upper enveloping curve of these curves for different nominal undersampling factors.

The optimal trade-off curves for un-regularized, Tikhonov-regularized, and sparsity-

promoting GRAPPA kernel calibration are depicted in Figure 5.6 using 4× 3, 4× 4,
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Figure 5.6: Trade-off curves for un-regularized, Tikhonov-regularized, and sparsity-
promoting GRAPPA kernel calibration depicting the relationship between recon-
structed image PSNR and total acceleration R as the total acceleration is varied
(by varying both nominal undersampling and the number of ACS lines).

and 5× 4 nominal 2-D undersampling. As we increase the desired total acceleration,

the optimal choice of nominal undersampling increases. Also, the most significant im-

provement in PSNR due to sparsity-promoting calibration over Tikhonov-regularized

calibration is evident at the 4 × 4 nominal undersampling level. At higher levels of

undersampling (R ≥ 14), visual inspection of the reconstructed images suggest that

the total acceleration may be beyond the range where any one of these methods can

produce a high quality image for this dataset.

5.2.3 Post-Processing with DESIGN Denoising

The sparsity-promoting GRAPPA kernel calibration technique yields a GRAPPA

kernel that produces images via GRAPPA reconstruction, and these reconstructed

images can be post-processed by DESIGN denoising like conventional GRAPPA ac-

celerated parallel imaging. Such post-processing would be expected to mitigate resid-

ual noise amplification and yield a smoother image than with sparsity-promoting

calibration alone. Examples of reconstructions using sparsity-promoting calibration

and denoising are carried out for the second T1-weighted dataset with a 4 × 4 block

GRAPPA kernel and 24 (underdetermined) and 36 (low-quality) ACS lines.
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Figure 5.7: GRAPPA and DESIGN-denoised reconstructions of T1-weighted image #2
(4× 4 nominal undersampling: R = 12.9) with underdetermined sparsity-promoting
kernel calibration.

Figure 5.7 depicts the effects of sparsity-promoting calibration and denoising in

the underdetermined GRAPPA kernel calibration regime. The denoising method ef-

fectively mitigates residual noise visible in the image, at the cost of losing some edge

definition and gray-white matter contrast. The images in Figure 5.8 tell a similar

story for the low-quality ACS fit calibration regime. The sparsity-promoting calibra-

tion (middle) greatly reduces noise amplification found in the conventional GRAPPA

reconstruction (left), and the DESIGN denoising result (right) has the residual noise

removed. As observed in experiments in Chapter 4, the denoised image loses some

edge-definition, but small features remain discernible. Clearly, in combination, the

sparsity-promoting calibration has the greater effect on image quality, but the post-

processing using DESIGN can yield visible improvements in the noise level.

5.3 Discussion

The proposed sparsity-promoting calibration method improves the image quality of

GRAPPA reconstructions by reducing the effect of noise in the ACS data on the ker-

nel weights. The images reconstructed using this novel regularization method exhibit

both reduced noise amplification and better un-aliasing than GRAPPA with either

un-regularized or Tikhonov-regularized calibration. The impact of regularization ap-

pears significant at high accelerations, where a larger GRAPPA kernel is used, and

where acquiring a lot of ACS lines is undesirable. In fact, regularized calibration can
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Figure 5.8: GRAPPA with un-regularized and sparsity-promoting calibration and
DESIGN-denoised GRAPPA with sparsity-promoting calibration of T1-weighted im-
age #2 (4× 4 nominal undersampling: R = 10.5) with 36× 36 ACS lines.

yield GRAPPA reconstructions from fewer ACS lines with the same image quality as

un-regularized calibration with more ACS lines. The shifted trade-off curve of im-

age PSNR versus total acceleration demonstrates the value of the proposed method

for highly accelerated parallel imaging. The sparsity-promoting regularization even

appears to mitigate aliasing when the number of ACS lines normally produces an

underdetermined ACS fitting problem.

The sparsity-promoting GRAPPA kernel calibration method can be combined

with DESIGN denoising to further mitigate noise amplification. This combined ap-

proach also elucidates a way to extend the calibration method to non-uniformly under-

sampled Cartesian k-space. Direct or iterative computation of the GRAPPA recon-

struction GRAPPA(G,D) for non-uniformly subsampled k-space is far slower than

for uniformly-spaced reduced-FOV k-space. We can alternatively replace D with an

estimate of uniformly-spaced k-space formed using a combination of the GRAPPA

reconstruction and sparsity, similar to L1 SPIRiT with the GRAPPA interpolation
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kernel in place of the SPIRiT consistency kernel, and iterate updating the GRAPPA

kernel and estimating the uniformly-spaced data.

Sparsity-promoting calibration significantly improves the quality of GRAPPA-

reconstructed images when the ACS lines are few in number. However, the image

quality is still degraded at very high accelerations, and we suspect that further im-

provement may be possible. One approach to be investigated is the joint estimation

of the GRAPPA kernel and the full k-space, using an estimation-theoretic framework

with a sparsity-promoting prior on the full k-space and a likelihood model on the

observations. This approach will be the focus of the next chapter.
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Chapter 6

Estimation Using GRAPPA and

Sparsity

The image reconstruction problem can be framed as an estimation problem, where

the full k-space for all the coil images is estimated from a set of observations. Nat-

urally, these observations are corrupted by noise, and since the MRI signal equation

suggests that the observations are orthogonal weighted summations of a large number

of spin vectors, the central limit theorem suggests that the observation noise can be

approximated by iid Gaussian noise vectors. Using the complex representation of

the transverse magnetization, we have an observation model with complex Gaussian

noise.

From just this observation model, likelihood estimates of the acquired k-space

can be formed, but the missing k-space cannot be estimated due to the assumption

of statistical independence across frequencies of the observations. However, parallel

imaging and transform sparsity can be used to link the missing data to these obser-

vations. In this chapter, we utilize a combination of GRAPPA and sparsity to form

estimates of the full k-space for coil images. By imposing a sparsity prior, we are

imposing a Bayesian estimation framework on the reconstruction problem, which en-

ables optimal estimation based on the posterior distribution of the full k-space given

the data, as is done for sparsity in Chapter 3. We derive a full k-space observation

model using the GRAPPA reconstructed k-space and tie the observation model to-
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gether with the sparsity prior to form a MAP estimation problem. Motivated by

the efforts in Chapter 5 to improve calibration of the GRAPPA kernel weights, we

expand the estimation problem to jointly estimate the full k-space and these weights

and pose an optimization problem that can be solved for situations where the conven-

tionally calibrated kernel may be inaccurate. Simulations depicting the performance

of the proposed Bayesian combination of GRAPPA and sparsity are followed by per-

formance of the joint estimation method for GRAPPA calibrated with a reduced

number of ACS lines.

6.1 Theory

First, we assume we have calibrated a GRAPPA kernel G using either conventional

kernel calibration using just the ACS lines or any of the regularized calibration meth-

ods discussed in Chapter 5. Using this calibrated GRAPPA kernel and the acquired

data D, we form a GRAPPA reconstruction GRAPPA(G,D), which includes “obser-

vations” of the un-acquired k-space. To estimate the true values of the full k-space

Y from these observations, we formulate an observation model for both the acquired

and GRAPPA-interpolated data, paying careful attention to the noise amplification

due to the GRAPPA kernel. We then add a joint sparsity-promoting signal model for

Y and discuss the MMSE and MAP estimators for this Bayesian inference problem.

While the MMSE estimator is not easy to compute, the MAP estimator has a similar

form to the optimization problems for DESIGN denoising or L1 SPIRiT and can be

computed using the same familiar tools.

Allowing the kernel G to vary, we extend our approach to estimate jointly the most

likely kernel and the full k-space. We formulate an observation model for the target

points YACS
t of the ACS lines’ fit equations; this observation model is a function of

the GRAPPA kernel, so finding the most likely choice of the target k-space and kernel

corresponds to maximizing simultaneously the likelihood of G and the posterior den-

sity of YACS
t , based on our observations of the source points DACS

s of the ACS lines’

fit equations. Similarly, the GRAPPA-interpolated observations of the un-acquired

110



k-space are also functions of the kernel G, so finding the most likely choice of the

un-acquired k-space and the kernel is equivalent to maximizing jointly the likelihood

of G and the posterior density of KnaY. The resulting joint optimization problem

combining all these models is similar to the optimization problem encountered ear-

lier. However, since the noise covariances for the target points of the ACS lines’ fit

equations and the un-acquired k-space depend on the unknown kernel, a modifica-

tion to the IRLS method is necessary. We propose holding the covariance matrices

fixed while solving the re-weighted least-squares problems and updating the covari-

ance matrices along with the diagonal re-weighting matrix between IRLS iterations.

The effectiveness of both estimation techniques is studied later in this chapter.

6.1.1 Estimating the Full K-Space

Consider the full multi-channel coil k-space Y and a pre-calibrated GRAPPA kernel

G. We subsample this k-space using the matrix Ka; denote by KaY the subsampled

multi-channel k-space and by D the acquired samples. Each row of D is a vector of

the multi-channel coil samples of a single k-space point k. Our observation model

for the acquired data is simple: the true k-space values in KaY are corrupted by

additive zero-mean complex Gaussian noise Na. Each row of Na has covariance

Λ, with uncorrelated real and imaginary parts, and each row (k-space frequency) is

independent of every other row. Therefore, we write

D = KaY + Na, (6.1)

where vec(N) ∼ CN (0,Λ ⊗ IN×N), a complex normal distribution with zero mean,

uncorrelated real and imaginary parts, and covariance Λ⊗ IN×N . When we estimate

the full k-space, our model treats the acquired data as noisy, so instead of preserving

the acquired data as is done in Chapters 4 and 5, the acquired data is denoised as well.

However, if preserving the acquired k-space data is desired, the methods presented in

this chapter can be adjusted easily using the nullspace formulation of the problem,

as is done with DESIGN denoising.
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The GRAPPA reconstruction GRAPPA(G,D) includes estimates X for the miss-

ing k-space KnaY, which we treat as observations by making the assumption that

the GRAPPA reconstruction operation would exactly reproduce the true values of

the missing k-space KnaY given the GRAPPA kernel G and the true values of the

acquired k-space KaY as inputs. Taking advantage of the bilinearity of the GRAPPA

reconstruction yields

X = Kna GRAPPA(G,D)

= Kna GRAPPA(G,KaY) + Kna GRAPPA(G,Na) = KnaY + Nna, (6.2)

where Nna ∼ CN (0,ΛGRAPPA) is complex Gaussian noise amplified by convolution

with the GRAPPA kernel. The GRAPPA reconstruction operator introduces corre-

lation across all the points in a k-space block as well as between the target points in a

block and the source points and target points in adjacent blocks covered by overlap-

ping kernels. From the 2-D GRAPPA reconstruction description in Equation (2.22),

the correlation between a target point’s noise np1[ky + ry1, kz + rz1] in channel p1 and

a source point’s noise np2[ky + byRy, kz + bzRz] in channel p2 used by GRAPPA to

interpolate that target point is

E{np1[ky + ry1, kz + rz1]n∗p2[ky + byRy, kz + bzRz]}

=
P∑

q1=1

gp1,q1,ry1,rz1 [by + dBy/2e − 1, bz + dBz/2e − 1]Λq1,p2. (6.3)

Similarly, the correlation between the noise in two target points in the same block is

E{np1[ky + ry1, kz + rz1]n∗p2[ky + ry2, kz + rz2]}

=
P∑

q1,q2=1

Λq1,q2

By−1∑
by=0

Bz−1∑
bz=0

gp1,q1,ry1,rz1 [by, bz]g
∗
p2,q2,ry2,rz2

[by, bz]. (6.4)

Finally, the correlation between noise in two target points in blocks that are re-

constructed from some of the same source points is (assume 0 ≤ by2 < By and
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0 ≤ bz2 < Bz; otherwise, reverse summations):

E{np1[ky + ry1, kz + rz1]n∗p2[ky + by2Ry + ry2, kz + bz2Rz + rz2]}

=
P∑

q1,q2=1

Λq1,q2

By−1∑
by1=by2

Bz−1∑
bz1=bz2

gp1,q1,ry1,rz1 [by1, bz1]g∗p2,q2,ry2,rz2 [by1 − by2, bz1 − bz2]. (6.5)

Each source point is correlated with up to ByBz(RyRz − 1)P target points, and each

target point is correlated with ByBz(RyRz − 1)P − 1 other target points and ByBzP

source points, so the complete GRAPPA noise covariance matrix has approximately

ByBzRyRzNP
2 nonzero entries; this matrix can become prohibitively large for real-

istic choices of N , P , acceleration factor, and kernel size, so when implementing an

algorithm, we need to approximate the matrix by a simpler matrix that is preferably

easy to invert. We choose to ignore correlations between k-space frequencies, reducing

to NP 2 the number of nonzero entries in the covariance matrix ΛGRAPPA. Alterna-

tively, one could ignore only the correlations across blocks of k-space frequencies,

which would reduce the number of nonzero entries to RyRzNP
2.

If cross terms are retained in the GRAPPA noise covariance matrix ΛGRAPPA,

and the number of GRAPPA kernel source points ByBz is less than the number of

target points RyRz, the noise covariance matrix will be rank deficient. Thus, when

the acceleration factor is high enough so that RyRz > ByBz, the approximation of

ΛGRAPPA ignoring correlations across k-space frequencies should be used to avoid

attempting to invert a singular matrix.

From the observation models for the acquired and GRAPPA-interpolated data,

we can form maximum likelihood estimate of the full k-space Y, which is simply

Ŷ = GRAPPA(G,D). However, this estimate is not very satisfying, as it is simply

the GRAPPA reconstruction. To denoise the GRAPPA reconstruction, we turn to

the joint sparsity-promoting signal model for the full multi-channel k-space. Sparsity-

promoting priors take the form of

p(Y) ∝ exp{−λ‖ΨF−1Y‖S,q}, (6.6)
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where ‖ · ‖S,q is defined in Equation (3.12). Priors resulting from a Cauchy or `0

penalty function can be improper (see Table 4.1). For this distribution to be well-

defined, it is sufficient for the mapping from Y to W = ΨF−1Y to be a bijection and

the prior on W to be proper (normalizable/integrable). When the sparsity measure is

separable across transform coefficients, the above distribution becomes proportional

to

p(Y) ∝ exp

{
−λ

N−1∑
n=0

s(‖w[n]‖q)

}
, (6.7)

where w[n] = [W [n, 1], . . . ,W [n, P ]] for W = ΨF−1Y. In this chapter, we use the

`1,2 mixed norm as a joint sparsity measure, so the prior becomes

p(Y) ∝
N−1∏
n=0

exp{−λ‖w[n]‖2}. (6.8)

This prior distribution is exactly the complex multiple measurement vector prior

listed in Equation (3.21). The tuning parameter λ can either be manually tuned

during estimation or treated as a parameter with hyperprior distribution p(λ), such

as a Gamma distribution. In this chapter, we choose λ using the same coarse-then-

fine parameter sweeps used in previous chapters. However, as λ is connected only to

the prior distribution, we would expect the value of λ to vary only with the sparsity

of the dataset, not with the acceleration factor or noise amplification as in previous

chapters.

We now have a Bayesian estimation problem with an observation model based

on GRAPPA interpolation and a signal model based on promoting sparsity. The

MMSE-optimal estimator is the posterior mean E{Y | D,X}. This estimator can be

computed using Bayes’ rule:

E{Y | D,X} =

∫
CN×P Yp(D | KaY)p(X | KnaY)p(Y) dY∫
CN×P p(D | KaY)p(X | KnaY)p(Y) dY

. (6.9)

The numerator computes the expectation of Y with respect to the joint distribution,

and the denominator computes the probability density function (pdf) of the obser-

vations D,X by marginalizing by the full k-space Y. Neither integral has a closed
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form, so it may be tempting to employ numeric integration techniques like quadra-

ture [48]. Unfortunately, the variables in Y are tightly coupled for both integrals by

the sparse transform and correlations, and quadrature is not helpful due to the curse

of dimensionality (i.e. the computational complexity is exponential in the number of

variables).

Alternatively, we compute the MAP estimator, which is equivalent to

Ŷ = maximize
Y

p(D | KaY)p(X | KnaY)p(Y). (6.10)

This optimization problem is very similar to DESIGN denoising or L1 SPIRiT:

Ŷ = minimize
Y

1

2
‖ vec(D−KaY)‖2

Λ⊗IM×M

+
1

2
‖ vec(X−KnaY)‖2

ΛGRAPPA
+ λ‖ΨF−1Y‖1,2. (6.11)

The notation ‖y‖2
Λ is short for ‖Λ−1/2y‖2

2, a weighted least-squares term. This op-

timization problem can be solved using IRLS or any of the other tools mentioned

for solving the unconstrained optimization formulation of DESIGN denoising. When

preserving the acquired data KaY, the first term of the objective in Equation (6.11)

vanishes, and the optimization problem becomes constrained:

Ŷ = minimize
Y

1

2
‖ vec(X−KnaY)‖2

ΛGRAPPA
+ λ‖ΨF−1Y‖1,2

s.t. D = KaY. (6.12)

The nullspace method used for DESIGN denoising can be used to optimize over the

missing data KnaY, an unconstrained problem. In this chapter, we focus mainly on

denoising the full k-space.

6.1.2 Joint Estimation of the Kernel and Full K-Space

So far, we have treated the GRAPPA kernel as a known parameter in the observation

model for the un-acquired k-space data. In this estimation-theoretic framework, we
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can estimate the GRAPPA kernel jointly with the full k-space. Conventional calibra-

tion uses the least squares problem in Equation (5.1). Since the ACS lines are noisy,

we can transform the calibration equation into an observation model by treating the

GRAPPA ACS target matrix as random variables YACS
t and replacing the unknown

true GRAPPA ACS source matrix YACS
s with the observed GRAPPA source matrix

DACS
s :

DACS
s G = YACS

t + N. (6.13)

The complex Gaussian noise N is modeled as the appropriate subset of the GRAPPA

noise N from Equation (6.2).

In the observation models for the ACS fits and the un-acquired k-space, the

GRAPPA kernel appears as an unknown parameter to be estimated. The MAP esti-

mation problem in Equation (6.10) becomes a joint estimation of both the GRAPPA

kernel G and the full k-space Y, which includes the ACS fit target matrix YACS
t :

{Ĝ, Ŷ} = maximize
G,Y

p(D | KaY)p(X | KnaY; G)p(DACS
s | YACS

t ; G)p(Y). (6.14)

Plugging in the least-squares terms and sparsity term like before yields

{Ĝ, Ŷ} = minimize
G,Y

1

2
‖ vec(DACS

s G−YACS
t )‖2

ΛACS
GRAPPA

+
1

2
‖ vec(D−KaY)‖2

Λ⊗IM×M

+
1

2
‖ vec(DconvG−KnaY)‖2

ΛGRAPPA
+ λ‖ΨF−1Y‖1,2. (6.15)

We may be tempted to apply the same tools to this problem as we applied to previous

problems that had objectives composed of least-squares terms and a joint sparsity

term. However, the noise covariance matrices ΛGRAPPA and ΛACS
GRAPPA depend on the

GRAPPA kernel G, so this problem is not quite of the same form as Equation (6.11).

However, given an initial estimate of the kernel, we can fix the noise covariance matrix

and recompute it after each problem iteration like we would the IRLS re-weighting

matrix. Ignoring the dependency on G of the noise covariance matrices, the joint

estimation problem can be solved for G and Y simultaneously, since there are no
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mixed terms containing both G and Y. To see this, we rewrite Equation (6.15) as

{Ĝ, Ŷ} = minimize
G,Y

1

2

∥∥∥∥∥∥∥∥∥Λ
−1/2
full vec




DACS
s −KACS

t

0 Ka

Dconv −Kna


G

Y

−


0

D

0



∥∥∥∥∥∥∥∥∥

2

2

+ λ‖ΨF−1Y‖1,2, (6.16)

with block covariance matrix

Λfull =


ΛACS

GRAPPA

Λ⊗ IM×M

ΛGRAPPA

 . (6.17)

When vectorizing the matrix in the first term of Equation (6.16), we stack the columns

of the first of the three rows, then the columns of the second row, and finish with the

columns of the third row. Holding the covariance matrix as fixed, this problem can be

solved using the same machinery as is used for solving the unconstrained optimization

problems for DESIGN or L1 SPIRiT. The matrix A and vector b for the least squares

problem minimizex ‖Ax− b‖2
2 we solve in each iteration are

A =



 Λfull


−1/2

∆1/2




IP×P ⊗DACS

s −IP×P ⊗KACS
t

0 IP×P ⊗Ka

IP×P ⊗Dconv −IP×P ⊗Kna

0
√

2λIP×P ⊗ (ΨF−1)

 , (6.18)

and

b =


0

Λ⊗ IM×M vec(D)

0

0

 . (6.19)

The complete method is described in Algorithm 5.
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Algorithm 5 Algorithm for Bayesian joint estimation of GRAPPA kernel and full
k-space.

Require: Ĝ(0), Ŷ(0), I, tol
1: Compute noise covariance matrix Λfull and objective value f (0) by plugging in

Ĝ(0) and Ŷ(0) into Equation (6.16).
2: for i = 1 : I do
3: Compute W← ΨF−1Ŷ(i−1).
4: Set ∆n,n ← 1

w[n]
for w[n]← ‖[Wn,1, . . . ,Wn,P , ε]‖2, for all n = 0, . . . , N − 1.

5: Solve for Ĝ(i) and Ŷ(i) using LSMR(A,b) with A in Equation (6.18) and b in
Equation (6.19).

6: Compute noise covariance matrix Λfull from new kernel and objective value f (i)

from Ĝ(i) and Ŷ(i).
7: if f (i−1) − f (i) ≤ tol · f (i−1) then
8: break
9: end if
10: end for
11: return GRAPPA kernel Ĝ(i) and full k-space result Ŷ(i).

As with the Bayesian estimation of the full k-space described earlier, holding the

GRAPPA kernel fixed, this joint estimation problem can also be adapted to preserve

the acquired data exactly. In this case, we also hold the target ACS points in the

first term of the objective in Equation (6.15) fixed.

6.2 Simulations and Results

The 32-channel T1-weighted image #2 acquired on a Siemens 3 T scanner as described

in Chapter 4 is used again here, with an example axial slice extracted, cropped, and

undersampled with uniform spacing and a 36× 36 block of ACS lines. The difference

images and PSNR values are computed from magnitude images of the combined

reconstructed and reference data, as is done in previous chapters. The four level

‘9-7’ DWT is used as a sparsifying transform for the sparsity prior, and the tuning

parameter λ for both algorithms is determined for each simulation via the two-level

coarse-then-fine parameter sweep used previously.

The first set of simulations evaluates the full k-space estimation method as com-

pared to conventional GRAPPA for different acceleration factors. The performance
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comparisons are repeated for various acceleration factors, from 3×3 uniformly spaced

undersampling (R = 7.0) up to 6×6 uniform undersampling (R = 16.1). In Figure 6.1,

comparisons are depicted for several levels of acceleration. For the acceleration levels

not shown, the estimation method increases PSNR over conventional GRAPPA from

33.1 dB to 34.6 dB for R = 7.0, from 8.1 dB to 26.8 dB for R = 14.8, and from 4.4

dB to 26.0 dB for R = 16.1. For all these acceleration factors, the PSNR-optimal

choice of λ is the equal to the same value of 105.

The GRAPPA reconstructions display rapidly increasing noise amplification with

greater acceleration, from minimal noise having little effect at R = 8.6 to significant

noise masking most features at R = 13.6. The Bayesian MAP estimates of the full

k-space have far less noise amplification, with a slowly increasing noise level through

accelerations up to R = 13.6. However, through the denoising, some residual aliasing

is visible in the Bayesian estimated images at high accelerations. Since we uniformly

space samples in k-space, we primarily rely on the GRAPPA reconstruction to undo

this aliasing, as with DESIGN denoising. Thus, we would not expect the Bayesian

estimation method to resolve this residual aliasing.

The next set of simulations focus on joint estimation of the kernel weights and

the full k-space. The method described in Algorithm 5 is applied to the T1-weighted

image #2 for the same range of undersampling as in the first set of experiments.

In Figure 6.2, the joint estimation results for high accelerations are shown alongside

conventional GRAPPA. For all these simulations, we have used a 3 × 3 GRAPPA

kernel without regard to the acceleration factor. However, for high accelerations,

such a kernel does not contain enough source points to interpolate all the missing

frequencies while maintaining linear independence across target points. Increasing

the number of source points to match the acceleration reduces the number of ACS fit

equations, producing the type of ill-conditioned or underdetermined fits that should

be regularized as discussed in Chapter 5. Rather than regularizing the calibration,

we jointly estimate the kernel and full k-space here, increasing the number of fit

equations by fitting the kernel to the full k-space instead of just the ACS lines. The

result is shown for a 5× 4 GRAPPA kernel and R = 12.1 acceleration (5× 4 uniform

119



R = 8.6
GRAPPA Bayesian (λ = 105)

PSNR: 29.5 dB 32.8 dB

R = 10.5
GRAPPA Bayesian (λ = 105)

PSNR: 24.5 dB 30.9 dB

R = 12.1
GRAPPA Bayesian (λ = 105)

PSNR: 18.9 dB 29.3 dB

R = 13.6
GRAPPA Bayesian (λ = 105)

PSNR: 12.5 dB 27.8 dB

Figure 6.1: Reconstructed and difference images using conventional GRAPPA and
Bayesian full k-space estimation for T1-weighted image #2 for several acceleration
factors (nominal undersampling increases from 4× 3 to 5× 5).
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R = 12.1
GRAPPA Bayesian (λ = 105)

PSNR: 18.9 dB 28.2 dB

R = 13.6
GRAPPA Bayesian (λ = 105)

PSNR: 12.5 dB 26.9 dB

Figure 6.2: Reconstructed and difference images using conventional GRAPPA and
Bayesian joint estimation of the kernel and full k-space for T1-weighted image #2 at
higher acceleration factors (nominal undersampling 5 × 4 and 5 × 5 for the top and
bottom rows, respectively).

undersampling) in Figure 6.3.

These joint estimation results are similar to the full k-space estimation results

shown in Figure 6.1, with a bit lower PSNR. The jointly estimated result has similar

un-aliasing to the full k-space estimate using the original GRAPPA kernel. Using a

larger kernel yields a slight improvement in PSNR, although image quality does not

change appreciably.

6.3 Discussion

This estimation-theoretic approach successfully extends denoising to higher accel-

erations than what is achievable with DESIGN denoising in Chapter 4. This im-

provement at higher accelerations is likely due to the noise model for the GRAPPA-

reconstructed k-space. The least-squares term in Equation (6.11) accounts for the
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R = 12.1
GRAPPA Bayesian (λ = 105)

PSNR: 20.3 dB 28.6 dB

Figure 6.3: Reconstructed and difference images using conventional GRAPPA and
Bayesian joint estimation of the kernel and full k-space for T1-weighted image #2
with a larger GRAPPA kernel (nominal undersampling is 5× 4).

SNR loss of using highly accelerated GRAPPA, while the DESIGN denoising least-

squares term in Equation (4.2) uses coil combination weights, which are more appro-

priate for un-accelerated data. In addition, the proposed estimation technique has an

advantage over DESIGN denoising in that the tuning parameter is insensitive to the

undersampling pattern or acceleration factor; rather, the tuning parameter is tied to

the sparsity of the image to be reconstructed. Since similar images can be expected

to have similar sparsity, a suitable choice of tuning parameter may be established and

re-used for similar images, even across subjects. Additional simulations are necessary

to validate this approach, and if the optimal choice of tuning parameter is shown to

translate across acquisitions or across subjects, the benefits for practical usage could

not be more significant.

While successful at denoising the GRAPPA reconstruction, the joint estimation

method fails to improve the kernel calibration in the simulations presented. The main

innovation in improving the kernel calibration lies in adding fit equations based on

the full k-space, so that the calibration is performed on a larger set of data. However,

these k-space points outside the ACS region typically possess less signal, diminishing

the value of these fit equations. This joint estimation method can be combined with

a regularized calibration technique like the sparsity-promoting approach described in

Chapter 5; such a combination may be more effective at improving the kernel quality

better than introducing more fits near the periphery of k-space at high accelerations.
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Just like the sparsity-promoting GRAPPA calibration technique, the joint esti-

mation method is limited to uniform undersampling by the computational efficiency

of the GRAPPA reconstruction term GRAPPA(G,D). Using direct computation

for GRAPPA reconstruction with non-uniform Cartesian subsampling preserves the

structure of the optimization problem, but direct computation typically requires many

kernels and cannot be implemented efficiently via convolution or the DFT. Iterative

computation requires a single kernel, but the joint optimization problem would in-

clude mixed terms since the kernel would be multiplying un-acquired k-space. This

approach is problematic because we are forming linear combinations of estimates with

nontrivial noise covariances rather than of acquired data with fixed noise covariances,

and the GRAPPA noise covariance is no longer straightforward to compute.
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Chapter 7

Conclusion

Magnetic resonance imaging is a versatile and powerful tool for clinical imaging and

medical research. Despite all the benefits a non-invasive, non-ionizing, whole-body

imaging tool provides, the acquisition time remains a significant bottleneck to the suc-

cess of MRI. Recent developments using multiple channel receiver coils and sparsity

models to reconstruct MR images from undersampled data motivate combining these

two complementary approaches to produce high quality images with even greater un-

dersampling. Recent methods mainly focus on combining compressed sensing with

linear inversion methods for accelerated parallel imaging reconstruction. These ap-

proaches are geared to non-uniformly undersampled or non-Cartesian sampling pat-

terns and inverse problem formulations of parallel imaging reconstruction. Instead, we

focus on uniting sparsity models with direct parallel imaging methods like GRAPPA

that are suitable for conventional uniform undersampling.

In Chapters 2 and 3, we provide background on magnetic resonance imaging and

sparsity. A brief description of classical MR physics and the image acquisition process

is followed by a discussion of methods for accelerated imaging, including accelerated

parallel imaging methods like GRAPPA. Measures of sparsity and joint sparsity are

described, and uses of sparsity models including denoising and compressed sensing

are explored. The chapter concludes with a survey of compressed sensing methods

for MRI and previous work combining compressed sensing and accelerated parallel

imaging.
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In Chapters 4 through 6, we present three different approaches for augmenting the

GRAPPA reconstruction method for accelerated parallel imaging using sparsity. The

first method, DESIGN denoising, addresses the noise amplification problem common

to all accelerated parallel imaging methods by post-processing the reconstructed im-

age, optimizing a balance between fidelity to the GRAPPA solution and joint sparsity

of the sparse transform (e.g. DWT) of the coil images, while preserving the under-

sampled acquired k-space data. This denoising method appears effective at reducing

the noise level present at moderately high accelerations (R ≈ 10), while introducing

minimal loss of contrast and spatial resolution. Both variants of DESIGN denoising,

using the `1 norm and using the Cauchy penalty with homotopy continuation, re-

duce the noise amplification, as measured by g-factors, by greater than 5 dB over the

GRAPPA reconstruction at R = 10.5 acceleration. However, the Cauchy penalty-

based denoising method is both more computationally intensive and introduces more

significant oversmoothing artifacts in the reconstructed image. From these results,

the `1 norm is more appropriate for denoising approximately sparse images.

We observe that the DESIGN denoising method does not mitigate residual alias-

ing remaining from GRAPPA reconstruction in approximately sparse MR images.

Based on the hypothesis that adjusting the GRAPPA kernel can improve un-aliasing,

we turn our attention to regularizing the calibration step using joint sparsity. From

the simulation results, regularizing the calibration to promote joint sparsity in the

coil images reconstructed using the calibrated kernel both reduces noise amplifica-

tion when the fit to the ACS lines is low-quality and improves un-aliasing when the

fit to the ACS lines is underdetermined. By improving calibration, the proposed

sparsity-promoting method shifts the trade-off between image quality and the num-

ber of ACS lines, increasing the total acceleration significantly for even moderate

accelerations. Since this method applies in the underdetermined ACS fit case, we

can also accommodate greater undersampling spacing with the same number of ACS

lines. In combination with DESIGN denoising, this sparsity-promoting calibration

method both reduces noise amplification and mitigates residual aliasing using fewer

ACS lines.
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Although the methods presented for denoising and calibrating the GRAPPA accel-

erated parallel imaging reconstruction are fairly successful at moderate accelerations,

their performance degrades significantly as the sample spacing in k-space increases

further. To extend the combination of GRAPPA and sparsity to higher accelera-

tions, we turn to a Bayesian estimation framework of the full k-space reconstruction

problem. We treat the acquired data and the GRAPPA reconstruction together as

observations of the full k-space, with noise variances for the GRAPPA-reconstructed

k-space amplified according to the calibrated GRAPPA kernel. The image sparsity

yields a prior distribution on the full k-space; the signal and observation models are

combined to form a MAP estimator of the full k-space. From the simulations, we in-

fer that this MAP estimator effectively denoises GRAPPA even at high accelerations.

In addition, we propose a joint estimation framework for both the full k-space and

the GRAPPA kernel and use the joint estimation framework to produce high quality

images from fewer ACS lines, as is done with the sparsity-promoting calibration in

Chapter 5. This joint estimation method effectively combines GRAPPA and sparsity

to yield a novel reconstruction technique for accelerated parallel imaging.

All these methods successfully improve GRAPPA reconstruction using sparsity

in different ways. These methods are mostly limited to conventional uniform un-

dersampling to leverage the efficient implementation of GRAPPA reconstruction as

convolution using the FFT, and extensions to non-uniform Cartesian undersampling

are problematic. The DESIGN denoising method is perhaps the most easily adapt-

able to non-uniform or non-Cartesian undersampling, since we can simply substitute

another more suitable reconstruction technique for the GRAPPA reconstructed k-

space in the optimization problem. The k-space (not joint) estimation technique in

Chapter 6 also can be adapted easily if noise amplification is readily quantifiable;

direct methods for non-uniform GRAPPA are more suitable for this purpose. Both

the sparsity-promoting calibration and joint estimation methods become more com-

putationally complex with non-uniform sampling since the GRAPPA reconstruction

operator and adjoint operator must both be applied in every iteration of the algo-

rithm. These limitations with non-uniform sampling limit the synergy achievable from

127



combining GRAPPA and compressed sensing in that CS typically uses non-uniform

or random sampling patterns; with uniform sampling, these methods rely more on

the GRAPPA piece to mitigate aliasing, which may not be sufficient at very high ac-

celerations. However, considering the ability to improve reconstruction quality using

uniform undersampling patterns means that we can both retrospectively reconstruct

conventionally acquired accelerated parallel imaging data and acquire data for recon-

struction with these algorithms using existing accelerated imaging pulse sequences.

Thus, we have tackled the problem of improving reconstruction of accelerated MRI

using a combination of GRAPPA accelerated parallel imaging and coil image joint

sparsity models. Novel methods were derived to denoise the result, improve the kernel

calibration, and jointly estimate the full k-space and GRAPPA kernel. Simulations

portraying the improved reconstruction quality achieved by and the drawbacks and

limitations of these algorithms were performed, and the results discussed. We con-

clude with a discussion of future directions of this research that can further benefit

the field.

Further development is required to maximize the potential of the methods de-

scribed in this thesis. Fast implementations of GRAPPA exist only for uniformly un-

dersampled k-space, but GRAPPA can be extended to non-uniform and non-Cartesian

acquisitions. While DESIGN denoising readily adapts to other direct parallel imaging

methods, the sparsity-promoting calibration and joint estimation methods do not gen-

eralize so easily. Direct adaptations of GRAPPA involve many more kernel weights

and much slower reconstructions, while a noise model for k-space reconstructed using

iterative GRAPPA methods would appear much more difficult to derive. However,

a novel approach to extending the calibration or estimation methods may be able to

overcome these difficulties and enable faster acquisitions with non-uniform or non-

Cartesian sampling patterns.

Many variants of MRI may benefit from the proposed reconstruction or denoising

techniques. Dynamic and functional imaging typically both have narrow or localized

differences between successive frames. Time frame subtraction can produce signif-

icantly greater sparsity than structural imaging without a time dimension. These
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methods can be expected to yield similar levels of improvement in highly undersam-

pled k-t acquisitions. Structured noise and other artifacts can be prevalent in these

and other imaging variants; DESIGN denoising, sparsity-promoting calibration, and

joint Bayesian estimation may need to be combined with other post-processing meth-

ods to produce high quality images.

In addition, improved performance may be attained using more sophisticated

sparse models or adaptive or learned dictionary representations. Overcomplete spar-

sifying transforms like contourlets, curvelets, or shearlets may outperform wavelet-

based sparse representations due to the directional nature of edges in MR images.

Combinations of sparsity-promoting regularizers with different sparsifying represen-

tations, like wavelets and total variation, also may reduce the artifacts present in

denoised images. In addition, to be suitable for clinical applications, these methods

must be applied to a variety of representative images, both normal and with assorted

pathologies, and the results should be examined and graded against accepted imaging

methods by trained clinicians.

Having discussed potential directions for future advancements, we conclude by

remarking that the methods proposed in this thesis succeed in enabling even greater

acceleration of MR imaging, several times greater than what can be accomplished

using accelerated parallel imaging alone. However, as described, these contributions

do not mark the end of research in advancing the science of accelerating magnetic

resonance imaging. Other methods for accelerated imaging like partial Fourier and

multi-shot sequences may be combined with accelerated parallel imaging and sparsity-

promoting reconstruction. Using the research described in this thesis, MRI can be

performed faster, and higher quality images can be acquired, lowering costs, improving

subject comfort, and expanding the utility of MRI in both the clinic and research.
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Appendix A

Optimization Methods

In this appendix, we present some background on the different optimization problems

that appear in this thesis and common techniques for solving these problems. Not

all these problems have closed-form solutions, and even when closed-form solutions

exist, computing those solutions may be computationally impractical. Fortunately,

efficient iterative methods exist in the literature for all these problems, ensuring that

the methods proposed are feasible computationally.

A.1 Least-Squares Problems

The canonical least-squares optimization problem is

x̂ = minimize
x

‖Ax− b‖2
2. (A.1)

The least-squares problem finds the solution to the overdetermined linear system

Ax = b that minimizes the residual r = Ax−b. Such a solution is unique when A has

full column rank, and this solution satisfies the “normal equations” AHAx = AHb.

When A has full column rank, AHA is a Hermitian symmetric positive definite

matrix, and we can simply compute x = (AHA)−1AHb using direct inversion, Gauss

elimination, or similar exact solution method.

When the linear system is underdetermined, it may be desirable to find the
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minimum-energy solution, which corresponds to minimizing the `2 norm of the solu-

tion x to the underdetermined system. Using Lagrange multipliers, this constrained

optimization problem is transformed into an unconstrained problem, and assuming

A has full row rank, the unique minimum-energy solution is x = AH(AAH)−1b.

Related to minimizing the solution energy, Tikhonov regularization also can be used

to find a solution to the underdetermined system:

x̂ = minimize
x

‖Ax− b‖2
2 + ‖αx‖2

2, (A.2)

where α > 0 controls the amount of regularization. The least-squares parts of the

objective combine to yield

x̂ = minimize
x

∥∥∥∥∥∥
A

αI

x−

b

0

∥∥∥∥∥∥
2

2

, (A.3)

which yields the solution x = (AHA + α2I)−1AHb. Note that for α > 0, the matrix

AHA + α2I is positive definite regardless of the shape or rank of A.

Although the solution of least-squares problems is straightforward to calculate, it

is not always feasible to compute exact solutions when A is large (many variables,

many equations, or both). To approximate solutions to least-squares problems in

these situations, a wide array of iterative methods have been developed, including

gradient descent, conjugate gradients (CG), and more sophisticated methods like

LSQR and LSMR.

A.1.1 Descent Methods: Steepest Descent and CG

The family of descent methods is broadly applicable to a wide variety of unconstrained

optimization problems. As with all these iterative methods, we initialize the problem

with a choice of x. Each iteration of a descent method consists of roughly two parts:

choosing a suitable descent direction, and minimizing the objective following a line in

that direction. Of particular interest are the steepest descent and conjugate gradients
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algorithms, which mainly differ in the choice of descent direction.

The steepest descent method (also called gradient descent), computes the gradient

vector of the objective f(x) we are trying to minimize using the current guess for x

and searches along that direction for the new x that minimizes f . In the context of

a least-squares problem, the gradient vector is ∇xf(x) = AHr, where the residual is

r = Ax − b for the current guess of x. From multivariate calculus, −∇xf(x) is the

direction of steepest descent of the objective f . Then, we can perform a simple line

search to find the new value of x in this direction from the current x that minimizes

f :

α∗ = minimize
α

‖A∇f(x)α− r‖2
2, (A.4)

with residual r. The optimal α is ((A∇f)H(A∇f))−1(A∇f)Hr, and the new choice

of x is x−α∇f(x). This iterative method can be repeated until the objective or the

choice of x has converged.

Unfortunately, the steepest descent method may take an infinite number of itera-

tions to converge to the exact value of x that solves Equation (A.1), and convergence

may be exceedingly slow. This is due to the local nature of the gradient vector; while

the gradient may point in the direction of steepest descent around the current point,

the minimum of the function may not lie in that direction. Furthermore, the gradient

at the next point is not related to the previous gradient, and the steepest descent

algorithm will typically move in a zigzag pattern. As an alternative, the conjugate

gradient method enforces “conjugacy” between descent vectors.

Technically, the conjugate gradient method [42, 84] describes an iterative approach

to solving the linear system Ax = b for a square, symmetric matrix A with full rank;

fortunately, the normal equations AHAx = AHb satisfy these conditions for least-

squares problems with A having full column rank. The CG method operates over the

real field, so to extend CG to complex-valued least-squares problems, we use

A =

<{AHA} ={AHA}T

={AHA} <{AHA}

 , x =

<{x}
={x}

 , and b =

<{b}
={b}

 . (A.5)
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To be unambiguous, we use the matrix (AHA) in the conjugate gradient algorithm

and assume everything is real. Two vectors x and y are conjugate with respect to this

system if xHAHAy = 0. Let A be M×N ; if we consider a set of N conjugate vectors

{y1, . . . ,yN}, these vectors form a basis, and we can find coefficients α1, . . . , αN such

that x̂ =
∑N

n=1 αnyn solves the normal equations. Pre-multiplying both sides of

the normal equations by yHn yields yHn AHb = yHn AHAx̂. Employing conjugacy,

yHn AHAym = 0 for m 6= n, and

yHn AHb = αny
H
n AHAyn. (A.6)

Thus, the optimal value of αn is

αn =
yHn AHb

yHn AHAyn
. (A.7)

To find a suitable set of conjugate vectors, we can use an orthogonalization tech-

nique like Gram-Schmidt, initializing using the gradient at the initial guess of x. In

particular, to compute the next conjugate vector yn+1, for n ≥ 2, the conjugate gra-

dient method needs only the previous two normal equation residuals and the current

conjugate vector yn:

yn+1 = rn +
rHn rn

rHn−1rn−1

yn, (A.8)

where the residuals are computed as rn = AH(b − Axn). Note that if not for the

second term, the conjugate gradient method would be equivalent to steepest descent.

However, that second term enforces conjugacy with the previous direction. Because

the N conjugate vectors form a basis, we are guaranteed to converge to an exact

solution within N iterations of the CG method (although realistically, we terminate

the algorithm long before exact convergence).

An example of slow convergence of the steepest descent method and fast conver-

gence of CG is shown in Figure A.1. In the example, the gradient descent method

has not converged after 20 iterations (‖r‖2 = 0.014, ‖Ar‖2 = 0.0075), while the

conjugate gradient method converges in just two iterations. Unfortunately, the con-
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Figure A.1: Steepest descent (dotted line) and conjugate gradient (solid line) methods
compared for A = [1

4
, 0; 0, 1] and b = [0; 0].

vergence of the conjugate gradient method is rapid only for early iterations, and the

method slows exponentially. More modern methods like LSQR and LSMR attempt

to improve on the convergence rate of CG, although neither method has guaranteed

finite convergence.

A.1.2 LSQR and LSMR

The conjugate gradient method requires that A is square, symmetric, and positive

definite. Since we are solving a least-squares problem, we apply CG to the normal

equations AHAx = AHb. When A is ill-conditioned, with condition number κ, the

CG method solves the normal equations with condition number κ2. Thus, CG may

converge slowly when applied to ill-conditioned problems. The LSQR method [74]

both improves convergence when A is ill-conditioned and extends this problem to

rank-deficient A.

The LSQR method uses Golub-Kahan bidiagonalization on [b A] to form unitary

U, V, and upper bidiagonal B such that UB = [b A]V. Then, if we define y such

that x = Vy, we get r = b −AVy = U(‖b‖2[1, 0, 0, . . .]T −By), and minimizing r

can be accomplished by finding the vector y that minimizes ‖‖b‖2[1, 0, 0, . . .]T−By‖2
2

and computing x = Vy.

The LSQR method is effective at minimizing ‖r‖2; however, the norm of the

residual of the normal equations ‖AHr‖2 is not nearly so well behaved, and does

not necessarily decrease monotonically with each iteration. The more recent LSMR

method [33] was developed to address this shortcoming by applying the bidiagonaliza-

tion transformation to the problem of minimizing ‖AHr‖2. The resulting algorithm

135



demonstrates monotonic behavior for both ‖r‖2 and ‖AHr‖2, yielding a better be-

haved and more robust iterative least-squares solver, even for rank-deficient A. One

notable downside of LSMR is that in certain rare cases, the algorithm can converge

much more slowly than LSQR. Of course, one may trade the robustness of LSMR for

the rapid convergence of LSQR in these situations.

A.2 Compressed Sensing Problems

The `1 norm and other penalty functions present in compressed sensing and related

optimization problems motivate a great variety of iterative methods. The (noiseless)

basis pursuit framework in Equation (3.31) with the signal y and data d belonging

to the real field can be construed as a linear program:

ŷ = minimize
w+,w−,y

1T (w+ + w−)

s.t. w+,w− ≥ 0,

w+ −w− = Ψy,

d = Kay. (A.9)

We observe that for each index n, either w+
n or w−n equals zero. Otherwise, we could

make both smaller and reduce the objective while still satisfying the constraints.

Thus, this basis pursuit problem can be solved efficiently using the simplex algorithm

or a similar method for linear programming.

When the signal is complex, and we desire to promote magnitude sparsity, or we

use the `1,2 joint sparsity penalty on multiple signals, the basis pursuit optimization

problem is no longer expressible as a linear program; the problem is now a second-

order cone program (a subtype of convex or semidefinite program):

Ŷ = minimize
k,Y

1Tk

s.t. ‖Ψn,:Y‖2 ≤ kn, n = 1, . . . , N

D = KaY. (A.10)
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Here we employ the shorthand notation Ψn,:Y for generating the nth coefficient

of the sparse vectors for each column of Y. A variety of convex iterative solvers

can be applied to second-order cone programs, including interior point methods like

SeDuMi [88].

Another family of optimization problems arises when the data is noisy, or there

is a least-squares term in the objective. The basis pursuit denoising problem with

either the `1 norm for sparsity or the `1,2 norm for joint sparsity in Equation (3.32) is

an unconstrained convex optimization problem, which can be solved using a number

of iterative methods. In general, we consider solving the regularized least-squares

problem

x̂ = minimize
x

1

2
‖Ax− b‖2

2 + λR(Cx + d), (A.11)

with regularizer R(Cx + d) ≥ 0. Examples of convex regularizers include ‖Ψx‖1

and ‖ΨX‖1,2; other nonconvex regularizers of interest include the `p (0 < p < 1) and

Cauchy penalty functions in Equations (3.3) and (3.6), respectively.

One broadly applicable iterative method for solving this problem for all these

regularizers is called IRLS [43]. The IRLS method iteratively approximates Equa-

tion (A.11) with a weighted least-squares approximation of the regularizer, like a

trust-region method:

x̂(i) = minimize
x

1

2
‖Ax− b‖2

2 +
λ

2
‖∆(i−1)(Cx + d)‖2

2. (A.12)

The reweighting matrix ∆(i−1) calibrates the second least-squares term to approxi-

mate the shape of the regularizer function around the previous iteration’s estimate

of x. The IRLS method exhibits linear and superlinear (approaching quadratic as

p → 0) convergence behavior for `1- and `p-regularized least-squares problems, re-

spectively [25].

The closely-related approach of half-quadratic minimization [34, 35] actually refers

to two different methods for approximating with quadratic functions separable reg-

ularizers of the form λ
∑

n φ(xn). The core idea of the first method, which is used

extensively in this thesis, is that the regularizer can be approximated by a family
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Table A.1: Weights for half-quadratic minimization.

φ(xn) φ′(xn)/xn φ′′(0+) cxn − φ′(xn)

|xn| ≈
√
x2
n + ε2 1√

x2n+ε2
1
ε

xn
ε
− xn√

x2n+ε2

|xn|p ≈ (x2
n + ε2)p/2 p

(x2n+ε2)1−p/2
p

ε2−p
pxn
ε2−p
− pxn

(x2n+ε2)1−p/2

log(1 + αx2
n) 2α

1+αx2n
2α 2αxn − 2αxn

1+αx2n

of quadratic functions centered at zero and multiplicatively weighted. The crit-

ical assumptions of this approach are that φ(
√
xn) is concave, φ′′(0+) > 0, and

limxn→∞ φ(xn)/x2
n = 0. Using these facts, a dual function ψ(y) exists such that

φ(xn) = infy{1
2
yx2

n + ψ(y)}. This expression is minimized using a function y(xn) =

φ′(xn)/xn, for xn 6= 0, and y(0) = φ′′(0+). These minimizers y(xn) fill the diagonal

reweighting matrix ∆ in Equation (A.12). Table A.1 lists weighting formulas for a few

regularizers used in this thesis. Note that this approximation requires φ(xn) is twice

differentiable, so smoothed approximations are used for both the `1 and `pp measures.

The second approach uses an additive shift instead of a multiplicative rescaling of the

quadratic to approximate the regularizer. This approximation replaces φ(xn) with

(xn−s)2, where s(xn) = cxn−φ′(xn), and the optimal choice of c is supxn φ
′′(xn) [67].

The optimal value of c is equal to φ′′(0+) for the regularizers in Table A.1.

In Equation (A.12), the reweighting matrix ∆(i−1) can be specified according

to half-quadratic minimization. Let w = Cx(i−1) + d. Then, for n = 1, . . . , N ,

∆
(i−1)
n,n = φ′(wn)/wn, using the expressions specified in Table A.1. For a row-separable

matrix penalty R(CX + D) of the form

R(W) =
N∑
n=1

φ(s([W1[n], . . . ,WP [n]])), (A.13)

we instead compute wn = s([W1[n], . . . ,WP [n]]), for W = CX(i−1) + D, and set

the reweighting matrix to ∆
(i−1)
n,n = φ′(wn)/wn. This extension of the half-quadratic

method also applies to vector penalties on the magnitudes of the elements of a

complex-valued vector. Matrix norms such as `1,2 and `1,∞ can be approximated

using this approach.
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Split-Bregman iteration [102] is a valuable method for solving problems of the

form of Equation (A.11). We begin by introducing an auxiliary variable y = Cx + d,

and transform Equation (A.11) into a constrained optimization over both x and y:

{x̂, ŷ} = minimize
x,y

1

2
‖Ax− b‖2

2 + λR(y), s.t. y = Cx + d. (A.14)

Bregman iterative regularization is then used to solve this problem through a series

of iterations of the form

{x(i+1),y(i+1)} = minimize
x,y

Dp(i)

J ({x,y}, {x(i),y(i)})

+
1

2
‖Ax− b‖2

2 +
1

2
‖y −Cx− d‖2

2, (A.15)

p(i+1) = p(i) −

AH −CH

0 I

 A 0

−C I

x(i+1)

y(i+1)

−
b

d

 , (A.16)

where Dp
J ({x,y}, {x(i),y(i)}) is the Bregman “distance”

Dp
J ({x,y}, {x(i),y(i)}) = J({x,y})−J({x(i),y(i)})−〈p, {x−x(i),y−y(i)}〉, (A.17)

for regularizer J({x,y}) = λR(y). The first step can be solved for x and y separately.

Solving a least-squares problem yields x, and each element of y can be computed effi-

ciently using the soft-thresholding operator. The second step consists of matrix-vector

multiplications and is straightforward to implement, too. This Bregman iteration ap-

proach can be applied to basis pursuit problems like Equation (3.31) as well, skipping

the variable splitting step. These Bregman iterations have been shown to be equiva-

lent to the augmented Lagrangian method [69], so results concerning convergence and

numerical stability for this well-known method carry over to split-Bregman iteration.

A final set of methods for solving compressed sensing-type problems utilizes a

Bayesian interpretation of the compressed sensing framework and uses belief propa-

gation over the graph of the problem to converge to a solution rather efficiently [4,

29, 78]. These methods rely on the large scale limiting behavior of the associated
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graphical models to reduce the CS reconstruction problem to iterating simple scalar

estimators. Thus, they scale well to large problems with many variables. While

not used explicitly in this thesis, modifications of these methods may increase the

computational speed of the proposed sparsity-promoting algorithms greatly. Thus,

developing such modifications is of great interest.
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