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Abstract

The accuracy of analog-to-digital converters (ADCs) is greatly affected by the uni-
formity of the times at which samples of the analog input signal are taken. The error
in the sample times, known as jitter, or timing noise, has a non-linear, time-varying
and input-dependent effect on the sample values, as opposed to the additive noise
usually considered. At present, the error due to jitter is minimized through the use
of low-jitter clocks, limiting the suitability of such ADCs for low-power applications.
This thesis investigates the problem of mitigating the effects of jitter through digital
post-processing of the samples, which would allow ADCs to use less accurate clocks
without compromising accuracy.

This thesis equates mitigating jitter with estimating the parameters of a bandlim-
ited input signal based on samples collected in the presence of timing noise. Two ap-
proaches are considered: classical, observation model-driven estimation, and Bayesian
estimation that incorporates a prior model of the signal parameters. For both ap-
proaches, algorithms are derived that achieve lower mean-squared-error (MSE) by
taking the non-linear effect of the jitter into account. In the non-random case, iter-
ative approximations to the maximum likelihood estimator are developed, including
an Expectation-Maximization algorithm. To bound the MSE of such algorithms, the
unbiased Cramér-Rao lower bound is approximated using Gauss-Hermite quadrature.
For the Bayesian approach, a Taylor series-based estimator and several variants on
the Gibbs sampler that all approach the Bayes least squares estimate are designed.
These estimators are compared in performance to the optimal linear estimators de-
rived without taking jitter into account. The proposed algorithms are shown to
tolerate significantly more jitter than the baseline linear algorithms. Applications
of these results and extending these algorithms to correcting spatial uncertainty are
discussed briefly as well.

Thesis Supervisor: Vivek K Goyal
Title: Assistant Professor
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Chapter 1

Introduction

Sampling is essential to digital signal processors, communication receivers, and digital

control systems to represent analog signals digitally for analysis or further processing.

In general, these generated samples are susceptible to two kinds of error: amplitude

error and error in the timing of the samples. Mitigating the amplitude error is a

well-studied problem, and simple approaches such as noise shaping are well-known

to effectively mitigate this type of noise. The timing error, also known as jitter, was

studied previously in the 1960s, by Balakrishnan [1], Brown [6], Liu and Stanley [24],

and others. However, at present, the timing error is often corrected at the source,

using a clock with relatively low phase noise, rather than through any kind of signal

processing.

The primary motivation for revisiting the mitigation of jitter is to enable analog-to-

digital converters (ADCs) to use less accurate clocks more suitable for ultra low-power

applications. As the digital components in mixed-signal systems continue to shrink,

minimizing the power consumption of the analog portion of the system becomes more

important. According to Lee and Hajimiri in [21], the power consumed by an ADC

is proportional to factors such as the desired accuracy and the rate that samples are

collected. The intuition behind such an observation is rather simple: using conven-

tional algorithms, the presence of jitter substantially increases the MSE for a given

number of bits of accuracy, thereby requiring effectively more bits of data to achieve

the same desired MSE. The notion of connecting MSE to the number of bits used to
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Figure 1-1: The effect of jitter in sampling a signal x(t). The error introduced in the
samples yn by the jitter zn can range from negligible to rather large.

represent a sample is more natural in the context of scientific notation: if a voltage

were measured to be known to six decimal places, its precision would be ±0.5µV .

However, if the noise floor suddenly increased by 20 dB, the measured voltage would

only be known to five decimal places. To regain the original measurement precision

of ±0.5µV , the device would have to be ten times more sensitive than before.

The effect of jitter can be described mathematically in terms of either signal-to-

noise ratio (SNR) or effective number of bits (ENOB). In [5], Brannon uses a linear

jitter model that ties the effect of the jitter to the maximum slew rate of the bandlim-

ited input signal. The sampled signal is degraded because its frequency spectrum is

the convolution of the jittered sampling impulse train’s distorted frequency spectrum

with that of the input signal. The output SNR, accounting for jitter only, is

SNR(dB) = −20 log10(ΩBσz) + constant, (1.1)

where ΩB is the maximum non-zero frequency of the bandlimited signal, and σz is the

standard deviation of the jitter. More generally, Brannon provides the output SNR

10



relationship when thermal effects are included:

SNR(dB) = −20 log10

(

(ΩBσz)
2 +

(
1 + ǫ

2N

)2

+
(

σw

2N

)2
)1/2

+ constant, (1.2)

where N is the number of bits, σw is the standard deviation of the thermal (additive)

noise, and ǫ is the average differential nonlinearity (DNL) of the ADC. When the

additive noise is sufficiently small, the effect of the jitter dominates, and (1.2) is

appproximately equal to (1.1). According to [21], the power dissipated is proportional

to the SNR, which is defined in that article as the ratio of mean-square signal voltage

to mean-square noise voltage. Thus, for large enough σz,

Pdiss ∝ 1/(ΩBσz)
2. (1.3)

Alternatively, in [31], Walden demonstrates that reducing the standard deviation of

the jitter by 50% increases the effective number of bits by one. (Brannon also briefly

references this phenomenon.) Each additional bit is equivalent to doubling the root-

mean-square (rms) accuracy of the output, as described before. According to the

tradeoff presented in [30] for high-speed ADCs,

Speed × (Accuracy (rms))2

Power
≈ constant. (1.4)

The consequence of both (1.3) and (1.4) is that doubling the standard deviation of

the jitter reduces the power dissipated by a factor of four.

Employing a more tolerant post-processing method, a clock generator with high

jitter can replace a more exact clock, and the ADC will still achieve the same desired

performance, but on a much lower power budget. In addition, being able to utilize a

clock signal with substantial amounts of jitter would be expected to have additional

benefits, similar to how [22] and [23] advocate modulating the power supply signal to

reduce electromagnetic interference across the chip.

Timing noise is a consequence of statistical variations in the edge-to-edge period

of the clock signal. Such variation is due to random fluctuations of the temperature or
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voltage of the oscillator, as well as the responsiveness of the sample-and-hold circuit.

Jitter, unlike the typically studied additive white noise, both varies over time and

is non-linear in its effect on the samples. In [21], Lee and Hajimiri use a simple

sinusoid to explain the time-varying nature of jitter. Additionally, the effect of jitter

is signal-dependent. For instance, a slowly varying signal, such as a ramp function or

a low-frequency sinusoid, would not be affected much by jitter. However, jitter would

have a much greater effect on the samples of a high-frequency sinusoid (see Figure 1-

2). Thus, attempting to categorize jitter as additive white noise independent of the

signal itself greatly oversimplifies the problem, and the jitter error will be poorly

mitigated as a result.

0 1 2 3
−0.5

0

0.5

t
(a)

x(
t)

, y
n

 

 

0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

t
(b)

x(
t)

, y
n

 

 

x(t)
x(n/M+z

n
)

y
n

x(t)
x(n/M+z

n
)

y
n

Figure 1-2: Signal dependent, non-linear, time-varying nature of jitter. Jitter affects
the samples yn of (a) flat and (b) sinusoidal signals x(t) differently.

In this thesis, jitter is incorporated into the observation model more consistently

with its natural definition, i.e. uncertainty in the sample times.
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1.1 Formulating the Estimation Problem

A bandlimited signal with bandwidth 1/T can be specified using the sinc function

and its integer shifts as a cardinal basis (x(kT ) = xk):

x(t) =
∞∑

k=−∞
sinc

(
t

T
− k

)

xk. (1.5)

Similarly, a periodic bandlimited signal with period KT can be specified using the

periodic-sinc function psincK(t) = sin(πt)
K sin(πt/K)

. The resulting basis is also a cardinal

one:

x(t) =
K−1∑

k=0

psincK

(
t

T
− k

)

xk. (1.6)

Without loss of generality, we may assume for the rest of this thesis that T = 1.

Given K parameters xk, sampling such a signal at oversampling rate M yields exact

samples

yn =
K−1∑

k=0

psincK

(
n

M
− k

)

xk. (1.7)

Two sources of noise are present in this problem: additive noise and jitter. The

additive noise, represented by wn, is considered to be zero-mean white Gaussian noise,

with constant known variance σ2
w. For simplicity, the jitter zn is also assumed to be

zero-mean white Gaussian noise, with constant known variance σ2
z . Incorporating

both noise sources yields the observation model

yn =
K−1∑

k=0

psincK

(
n

M
+ zn − k

)

xk + wn. (1.8)

Written in matrix form,

y = H(z)x + w, (1.9)

where [H(z)]n,k
∆
= psincK(n/M + zn − k). Denote by p(x), p(y; x), and p(y|x),

the probability density function (pdf) of x, the pdf of y parameterized according

to the deterministic variable x, and the pdf of y conditioned on the random vari-

able x, respectively. In this thesis, the random variable(s) associated with a pdf are

13



given implicitly unless otherwise explicitly stated. Framing the problem in standard

estimation-theoretic manner, mitigating the effect of both additive and timing noise

is equivalent to finding the best estimate of the signal parameters x given the obser-

vations y, according to some criterion, such as mean-squared error. In this thesis,

the signal parameters are assumed to be either 1) deterministic and unknown, or 2)

independent and identically distributed (iid) uniformly between −1 and 1. Both noise

sources are assumed to be independent of both the parameters x and each other. This

formulation differs from the problem of compensating for unknown timing offsets in

time-interleaved ADCs, as presented in [11]: the jitter on each sample is independent,

whereas the time-interleaved ADC problem assumes that the timing offset for each

ADC remains a constant parameter of each ADC.

1.2 Outline

The remainder of this thesis is divided into four chapters. In the next chapter, general

background is provided on the different types of estimators investigated and the math-

ematical and theoretical concepts used in the later chapters. In the two chapters that

follow, both the non-random and Bayesian estimation problems are explored. For the

non-random case, iterative algorithms are developed to approximate the most likely

values of the parameters and contrast these algorithms’ performance against the basic

linear estimator that does not consider jitter. Also, a lower bound on the unbiased

MSE is approximated and compared against these estimators. In the Bayesian case,

the best linear estimator is derived and compared to the best linear estimator if jitter

were not included in the observation model. Then, the optimal Bayesian estimator

is approximated using a variety of numerical and statistical techniques; their perfor-

mance is contrasted with the no-jitter model’s optimal linear estimator. In the final

chapter, the overall usefulness of the proposed algorithms is evaluated, and future

directions and applications are discussed.
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Chapter 2

Background

This thesis takes two perspectives on the same basic estimation problem: guessing the

signal parameters x from a sequence of observations y. The first views the parameters

as deterministic, yet unknown quantities. In this setup, there is no prior knowledge

about x, and estimation methods must rely exclusively on the data. The second way

to approach this problem is to assume a prior distribution on the signal parameters,

e.g. iid Uniform(−1, 1) or iid Normal(µ, σ2), where

Uniform(a, b) = U(x; a, b)
∆
=







1
b−a

a ≤ x ≤ b,

0 otherwise

, (2.1)

and

Normal(µ, σ2) = N (x; µ, σ2)
∆
=

1√
2πσ2

e−(x−µ)2/(2σ2). (2.2)

Then, a wide variety of Bayesian estimation methods can be used. In this chapter,

different estimators are introduced in their general forms for both the deterministic

(non-random) and the Bayesian cases. Discussion specific to the observation model

will be postponed to the following chapters.

Both of these approaches are complicated by the fact that the likelihood function

(and the posterior density) does not have a closed form. In particular, for the non-
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random case,

p(y;x) =
∫

RN
N (y;H(z)x, σ2

wI)N (z;0, σ2
zI) dz, (2.3)

and for the Bayesian case,

p(y|x) =
∫

RN
N (y;H(z)x, σ2

wI)N (z;0, σ2
zI) dz. (2.4)

To overcome this difficulty, this integral may be approximated in several ways, in-

cluding using a Taylor series expansion or using Gauss-Hermite quadrature, a method

of numerical integration.

Even with such approximations, non-standard probability distributions will need

to be manipulated. As a way around this, various stochastic methods can be used to

great advantage. Basic methods such as importance sampling and rejection sampling

are introduced, along with more sophisticated Markov chain Monte Carlo (MCMC)

methods like Gibbs sampling and slice sampling. Properly utilizing these methods,

useful approximations to the Bayes Least Squares (BLS) estimate and the Cramér-

Rao lower bound can be computed.

2.1 Non-Random Parameter Estimation

Fundamentally consistent with the frequentist philosophy that all the information

necessary to perform estimation is contained in the observation model, non-random

parameter estimation assumes nothing about the unknown parameters. In the absence

of knowledge of a prior distribution that generated the unknown parameters, the

mean-square-error (MSE) is difficult to minimize, since it explicitly relies on the true

value of the unknown parameters. However, numerous methods have been developed

to both provide a lower bound on the MSE for unbiased estimators as well as generate

reasonable estimates for the unknown parameters. The Cramér-Rao lower bound, the

best unbiased linear estimator, and the maximum-likelihood estimator are all such

methods explored in this thesis.

16



2.1.1 Cramér-Rao Lower Bound

The Cramér-Rao lower bound on the error variance of unbiased estimators relates the

minimum error covariance an unbiased estimator can achieve to the Fisher information

matrix; i.e.

E

[

(x̂(y) − x)(x̂(y) − x)T
]

≥ Iy(x)−1, (2.5)

where “≥” is in the positive-semidefiniteness sense. In turn, this implies that the trace

of Iy(x)−1 is a lower bound on the minimum achievable MSE for an unbiased estimator

for any particular value of x. The Fisher information matrix can be expressed in a

couple different ways:

Iy(x)
∆
= E





(

∂l(x;y)

∂x

)(

∂l(x;y)

∂x

)T


 = −E

[

∂2l(x;y)

∂x∂xT

]

, (2.6)

where l(x;y)
∆
= ln p(y;x) is the log-likelihood function.

An unbiased estimator that satisfies (2.5) with equality is termed efficient. Such

an efficient unbiased estimator x̂eff(y) exists if and only if

x̂eff(y) = Iy(x)−1∂l(x;y)

∂x
+ x, (2.7)

and the estimator is valid (constant with respect to the true value of the parameters

x) [18].

When there is no jitter, i.e. z = 0 in (1.9), the observation model is linear, and

therefore, an efficient estimator exists that is itself linear:

x̂eff,z=0(y) = (H(0)TH(0))−1H(0)Ty. (2.8)

The minimum achievable MSE, which is the error variance of the efficient estimator,

is equal to

E

[

‖x̂eff,z=0(y) − x‖2
2

]

= σ2
w tr

(

(H(0)TH(0))−1
)

. (2.9)

The Cramér-Rao lower bound only applies to the MSE of unbiased estimators. It is
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often possible (and desirable) to develop a biased estimator with an even lower MSE.

2.1.2 Linear Estimators

A linear estimator is specified as x̂L(y) = Ay + b, where A and b are fixed. This

estimator is linear in the data y.

When the observation model is linear in x, i.e. y = Hx + w, it is possible to

construct an unbiased linear estimator:

x̂L(y) = E [H]+ (y − E[w]) . (2.10)

When H is a fixed known matrix, the observation model is linear, and the efficient es-

timator formula in (2.7) applies here. However, in most cases, the linearity constraint

prevents the estimator from being efficient. In fact, when the observation model in-

cludes a random matrix H, such as H(z), the linear estimator can be expected to

have a suboptimal MSE since the effect of such perturbations is accounted for by only

the mean of the matrix.

2.1.3 Maximum-Likelihood (ML) Estimation

Another logical approach to estimating a deterministic parameter using the observa-

tion model is to determine the value of x that maximizes the likelihood of observing

the acquired data. Stated mathematically,

x̂ML(y) = arg max
x

pY(y;x) = arg max
x

l(x;y). (2.11)

Several problems arise when attempting to perform this optimization directly. First

of all, the (log-)likelihood function needs to be available. Oftentimes, this is the

case; however, the likelihood function featured in this research problem does not

have a closed form, which makes maximizing the likelihood more difficult. Secondly,

if the objective function is not separable with respect to x, the optimization can

become intractable. Finally, a non-concave log-likelihood function can have many

18



local maxima, so finding the global maximum analytically can be extremely difficult.

For example, consider the known-jitter observation model, y = H(z∗)x + w with

z∗ known. The log-likelihood function is

l(y;x) = − 1

2σ2
w

(y − H(z∗)x)T (y − H(z∗)x) − constants (2.12)

By orthogonality, (2.12) is maximized when

x = x̂ML,z=z∗(y) = H(z∗)+y (2.13)

where H(z∗)+ is the pseudoinverse, assuming that the choice of z∗ does not reduce the

H(z∗) matrix to less than full column rank. This estimator is actually efficient (and

linear). In fact, it is true that when an efficient estimator exists, that estimator also

maximizes the log-likelihood function [18]. In addition, even if an efficient estimator

does not exist, the ML estimator is asymptotically efficient (the error covariance

converges to the Cramér-Rao bound as M → ∞) as long as the Cramér-Rao bound

exists [18].

For the observation model with jitter, the resulting likelihood function is too

complex to maximize directly. To reduce the difficulty of the ML estimation problem,

several iterative approaches are considered, including the EM algorithm, described

next.

2.1.4 Expectation-Maximization (EM) Algorithm

The EM algorithm, as summarized by Bilmes in [3] and described in detail by Demp-

ster, Laird, and Rubin in [10], iteratively maximizes the EM algorithm by augmenting

the vector of observations with “hidden data” (z). The hidden data is usually chosen

so that it would trivialize the optimization problem if known. The augmented vector

of observations is termed the “complete data;” the original observations y are called

the “incomplete data.”

“EM” refers to the maximization of an expectation performed in each iteration.
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Consider the expected value of the log-likelihood of the complete data for a new guess

of x, with respect to the likelihood of the complete data given the observed data y

and the previous iteration’s guess for x:

Q(x; x̂(i)) = E

[

log p(y, z;x) | y; x̂(i)
]

. (2.14)

Then, the new guess for x is the value that maximizes (2.14):

x̂(i+1) = arg max
x

Q(x; x̂(i)). (2.15)

If maximizing this function is too difficult, it suffices to simply increase it; this modi-

fication produces a “Generalized EM” algorithm. Why does the EM algorithm work?

Following the most general derivation in [10], begin with the relation between the

likelihood of the incomplete and complete data,

log p(y;x) = log p(y, z;x) − log p(z|y;x). (2.16)

Taking the expected value of both sides with respect to p(z|y;x′), the left side re-

mains simply the log-likelihood of the observed data, since it does not depend on the

incomplete data z:

log p(y;x) = E[log p(y, z;x) | y;x′]
︸ ︷︷ ︸

u(x)

−E[log p(z|y;x) | y;x′]
︸ ︷︷ ︸

v(x)

. (2.17)

As a consequence of Jensen’s inequality,

E[log p(z|y;x) | y;x′] ≤ E[log p(z|y;x′) | y;x′], (2.18)

with equality if and only if p(z|y;x′) = p(z|y;x) almost everywhere. Thus, v(x)

in (2.17) will become less negative than before. To increase the log-likelihood, it

suffices to simply choose a value of x that increases (or even better, maximizes) u(x).

Repeat with the new guess of x and continue until x̂ converges to a stationary
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point of the likelihood function. If the likelihood function has only one such point,

the EM algorithm converges to the ML estimate. However, the likelihood function

is rarely concave; therefore, the choice of initial conditions is very important to the

success of this algorithm. Although the EM algorithm is guaranteed to converge

under very mild conditions [10], the rate of convergence depends on the choice of

complete data. In [17], Herzet and Vandendorpe assert that the rate of convergence

is worst when the Cramér-Rao lower bound for the incomplete data is much greater

than the CRB for the complete data set.

2.2 Bayesian Estimation

The effectiveness of non-random parameter estimation is inherently limited without

any prior knowledge of the generating distribution of the unknown parameters. The

Bayesian approach assumes knowledge of the prior distribution, and it utilizes this

additional information to better estimate the value of the parameters.

In this thesis, it is assumed that the parameters are iid Uniform(−1, 1), essentially

asserting that given no data, any parameter value between −1 and 1 is equally likely

to be correct. Of course, in the absence of such an assertion, one can still construct

a prior that will suit the estimation problem to enable Bayesian inference. Two

justifiable approaches are to use either a least informative prior or a conjugate prior.

The least informative prior is commonly defined to be the prior on x that maxi-

mizes the information gained from observing the data y; it is the prior that maximizes

the mutual information I(X;Y) [29]. However, except for a few special cases, the least

informative prior is not known and is difficult to find. A maximum entropy model (the

prior that maximizes H(X)) or Jeffreys prior is commonly used instead for practical

reasons. The Jeffreys prior is defined for a single parameter as p(x) = 1
ζ

√

I(x|y) where

I(x|y) is the conditional Fisher Information, and ζ
∆
=
∫
√

I(x|y) dx is a normalization

constant.

The conjugate prior is used mainly to ensure tractability of the posterior density;

it guarantees that the posterior distribution has the same form as the likelihood
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function. However, since the likelihood function itself is intractable, using a conjugate

prior (even if it could be found) offers no benefit.

2.2.1 BLS Estimation

The objective of our estimation problem is to minimize the MSE of the estimator

x̂BLS(y)
∆
= arg min

x̂(·)
E

[

(x̂(y) − x)T (x̂(y) − x)
]

. (2.19)

Equivalently, the BLS estimator is simply the expected value of the posterior; i.e.

x̂BLS(y) = E[x|y] =

∫

xp(y|x)p(x) dx
∫

p(y|x)p(x) dx
. (2.20)

Using the law of iterated expectation on (2.20), it is easy to see that the BLS estimator

is unbiased.

In addition to minimizing the MSE, the BLS estimator satisfies the property that

the estimation error is orthogonal to any function of the data (including the BLS

estimator itself):

E[(x − x̂BLS(y))f(y)T ] = 0, ∀f(·). (2.21)

As a consequence, the BLS estimator has the minimum error covariance (in the

positive-definiteness sense), and another estimator has equal error covariance if and

only if the estimator is equal to the BLS estimator plus a constant.

In the case of a Gaussian linear observation model, where x and w have Normal

distributions and H is known, the BLS estimator is linear and also maximizes both

the likelihood and posterior density functions. Thus, in the known jitter case, for

Gaussian x,

x̂BLS,z=z∗(y) = H(z∗)+y. (2.22)

When the parameters (x) are uniform instead of Gaussian, the BLS estimator is no

longer linear.
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2.2.2 LLS Estimation

The Linear Least Squares (LLS) estimator is defined to be the estimator that mini-

mizes the MSE over the set of all linear (affine) estimators. The LLS estimator can

be expressed in terms of the first and second moments of the observation model:

x̂LLS(y) = ΛxyΛ
−1
y (y − my) + mx. (2.23)

From the above expression, it is easy to see that the LLS estimator is also unbiased.

In addition, the LLS estimator has the following orthogonality property: (analogous

to the BLS orthogonality property stated in (2.21))

E

[

(x − x̂LLS(y))(Fy + g)T
]

= 0, ∀F,g. (2.24)

The LLS estimator has the minimum error covariance in the family of linear estimators

as well. This error covariance can also be expressed solely in terms of the second-order

statistics of the Bayesian model:

ΛLLS = Λx − ΛxyΛy
−1Λxy

T . (2.25)

Since ΛLLS ≥ ΛBLS, approximating the BLS estimate, which will perform better on

average, is the focus of the Bayesian portion of this thesis.

2.3 Taylor Series and Numerical Integration

Throughout this thesis, integrals of non-standard functions, usually involving periodic

sinc functions, along with weighting functions, usually a Gaussian kernel, need to be

evaluated. One general method to consider involves approximating the non-weighting

function part of the integrand with a Taylor series expansion and integrating via mo-

ments. Another more problem-specific approach that provides more advantageous

convergence properties approximates the integrand with orthogonal polynomials cho-

sen based on the weighting function. In the following discussion of approximate
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integration methods, consider the integration problem of finding E[f(x)] for some

function f(x). These numeric integration methods can be contrasted to the stochas-

tic approximation methods found in the next section for solving the same problem

by sampling from a distribution p(x).

2.3.1 Integration via Taylor Series Expansion

Given that f(x) is continuously differentiable on the open ball (a, b), it can be ex-

pressed in terms of a convergent power series for all x ∈ [a, b]:

f(x) =
∞∑

k=0

f (k)(x0)

k!
(x − x0)

k. (2.26)

Taylor’s theorem [27] states that there exists some x∗ ∈ (a, b) such that

f(x) =
n−1∑

k=0

f (k)(x0)

k!
(x − x0)

k +
f (n)(x∗)

n!
(x − x0)

n,∀x ∈ [a, b]. (2.27)

This theorem can be easily extended to the multivariate case.

Now, suppose we wish to integrate
∫ b
a f(x)p(x) dx. This integral can be approxi-

mated by applying Taylor’s theorem, and the approximation error can be bounded.

Consider the partial Taylor series expansion f ∗(x) about x = x0:

f ∗(x) =
n−1∑

k=0

f (k)(x0)

k!
(x − x0)

k. (2.28)

Denote the remainder term in (2.27) Rn(x−x0)
n. Then, the integration error can be

bounded in terms of Rn:

∣
∣
∣
∣
∣

∫ b

a
f(x)p(x) dx −

∫ b

a
f ∗(x)p(x) dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ b

a
Rn(x − x0)

np(x) dx

∣
∣
∣
∣
∣

(2.29)

≤ |Rn|
∫ b

a
|x − x0|np(x) dx. (2.30)

In the open ball (a, b), the error term is bounded by the maximum absolute value of

the nth derivative of f : |Rn| ≤ Mn
∆
= supx∈(a,b) |f (n)(x)|. Assuming the nth derivative
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is also finite in this range, the supremum exists, and is itself finite. Thus,

∣
∣
∣
∣
∣

∫ b

a
f(x)p(x) dx −

∫ b

a
f ∗(x)p(x) dx

∣
∣
∣
∣
∣
≤ Mn

∫ b

a
|x − x0|np(x) dx. (2.31)

Herein lies the problem with approximating such an integral with Taylor’s theorem.

The error is proportional to the size of the interval, and in many cases, it scales rather

poorly. For instance, when f(x) is a periodic function, Taylor series approximation

attempts to fit a polynomial that goes to infinity to a bounded function. Such an

approximation, while it converges as n goes to infinity, requires at least as many terms

as there are local extrema in the interval to give a good approximation everywhere

on the interval.

2.3.2 Gauss Quadrature Method

To compute E[f(x)], we can consider the general framework
∫ b
a f(x)w(x) dx, where the

weighting function w(x) used is the pdf pX(x). For many such weighting functions,

a sequence of orthogonal polynomials p0(x), p1(x), . . . , pn(x), . . . can be derived such

that
∫ b

a
w(x)pm(x)pn(x) dx = cδm−n. (2.32)

If c =
∫ b
a w(x) dx, the set of orthogonal polynomials is orthonormal.

Any such sequence of orthogonal polynomials p0(x), p1(x), . . . , pn(x), . . . can be

specified recursively via a three-term recurrence (plus initial conditions) [9]:

pn(x) = (anx + bn)pn−1(x) − cnpn−2(x). (2.33)

Approximating the integral
∫ b
a w(x)f(x) dx with a summation of the form

∑n
i=1 wif(xi)

is called “quadrature”. Familiar examples of quadrature include Riemann sums, the

trapezoidal rule, and Simpson’s rule. Choosing the points xi to be the zeros of the

polynomial pn(x) guarantees that weights can be generated that approximate all poly-

nomials of order 2n − 1 exactly [9]. In addition, with the relatively mild conditions

that f(x) be continuously differentiable and the bound on the sequence of deriviatives
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does not increase super-exponentially, this method produces a uniformly convergent

n-term approximation to the integral for any such f(x). The approximation error is

∣
∣
∣
∣
∣

∫ b

a
f(x)w(x) dx −

n∑

i=1

wif(xi)

∣
∣
∣
∣
∣
=

c

(2n)!
|f (2n)(ξ)|, (2.34)

where c is defined in (2.32) and ξ is some fixed point in (a, b).

The difficulty in using quadrature lies in determining the abscissas (xi’s) and

associated weights for a given n. In [15], Golub and Welsch developed a simple method

for computing the abscissas and weights of an nth-order orthogonal polynomial using

the recurrence relation for the sequence of polynomials and eigen-decomposition. This

method is explained in [9]. Dividing both sides of (2.33) by an,

xpn−1(x) =
1

an

pn(x) − bn

an

pn−1(x) +
cn

an

pn−2(x). (2.35)

Consider repeating (2.35) for the entire vector of orthogonal polynomials p(x) =

[p0(x), p1(x), . . . , pN−1(x)]T , and let

T =

















−b1/a1 1/a1 0 · · · 0

c2/a2 −b2/a2 1/a2

0 c3/a3 −b3/a3

...
. . .

0 −bN/aN

















. (2.36)

The zeros of pN(x) are simply the eigenvalues of T, a tridiagonal matrix, since

xp(x) = Tp(x) +













0
...

0

pN(x)/aN













. (2.37)

Using a similarity transformation, T can be made symmetric as well; let αn =
√

cn+1

anan+1
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and βn = −bn/an. Then, T is similar to J:

J =

















β1 α1 0 · · · 0

α2 β2 α2

0 α3 β3

...
. . .

0 βN

















. (2.38)

The eigenvalues of J are the zeros of pN(x). From the eigenvalues xi and associated

eigenvectors p(xi), we can find the weights, too. In [15], Golub and Welsch derive

the fact that
√

wi is the normalizing factor of the eigenvector p(xi). Let qi be the

eigenvector of unit norm for eigenvalue xi; then, qi =
√

wip(xi). Using p0(xi) since

it is a constant,

wi =
q2
i0

p0(xi)2
. (2.39)

2.3.3 Gauss-Hermite Quadrature

One weighting function of interest, defined over (−∞,∞), is the normalized Gaus-

sian weighting function w(x) = 1√
2π

e−x2/2. The associated sequence of orthogonal

polynomials is the class of Hermite polynomials, defined as

Hn(x) = n!
⌊n/2⌋
∑

m=0

(−1/2)m xn−2m

m!(n − 2m)!
, (2.40)

or recursively as

H0(x) = 1

H1(x) = x

Hn+1(x) = xHn(x) − nHn−1(x). (2.41)

The three-term recurrence in (2.41) can be used to determine the abscissas and weights

of the Gauss-Hermite quadrature rule, via the eigenvalue method developed by Golub

and Welsch described previously. In the expression for J (2.38), αn =
√

n and βn = 0.
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Also, these abscissas and weights can be easily adapted for arbitrary µ or σ:

1√
2πσ

∫ ∞

−∞
f(x)e−

(x−µ)2

2σ2 dx ≈
n∑

i=1

wif(σxi + µ). (2.42)

Gauss-Hermite quadrature will always converge uniformly to the true value of the

integral (as long as f(x) is contained within a superexponential envelope [9]). The

rate of convergence for Gauss-Hermite quadrature can be extremely rapid for very

smooth functions. More specifically,

error ≤ max
x

n!

(2n)!

∣
∣
∣f (2n)(x)

∣
∣
∣ . (2.43)

Clearly, the error is zero for polynomials of degree less than 2n. Also, the (2n)! term

in the denominator will encourage very fast convergence as long as the derivative does

not increase exponentially with n.

2.4 Stochastic Approximation Methods for Esti-

mation

Rather than attempt to compute a particular expectation by integration, stochastic

approximation samples from the distribution for the random variable(s) over which

the expectation is taken to generate an approximation for the expected value.

Let x1, . . . ,xN be N iid samples generated from pX(·). Define the sample average

SN = 1
N

∑N
n=1 f(xn). Then, by the Weak Law of Large Numbers, SN → E[f(x)] in

probability, if that expected value is finite. For large enough N the expected value

can be approximated with the sample mean,

E[f(x)] ≈ 1

N

N∑

n=1

f(xn). (2.44)

Therefore, the values of the function f evaluated at samples generated from the

distribution can be averaged to approximate E[f(x)]. The challenge inherent in this
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approach is ensuring that enough samples have been taken to approximate the desired

expectation. Chebyshev’s inequality can be used to show that the rate of convergence

is at least σ2/N (where σ2 is the trace of the covariance matrix of x).

Unfortunately, stochastic estimation is rarely so simple, because the sampling

distribution is either very complex or impossible to sample from directly. Fortunately,

a variety of methods have been developed to approximate the expectation in a similar

manner without being required to sample from this distribution directly.

2.4.1 Importance Sampling

The simplest such method to approximate E[f(x)] when p(x) cannot be sampled from

directly is importance sampling. Importance sampling consists of sampling instead

from a proposal density q(x) that is close to p(x) and using weighted versions of these

samples in the summation in (2.44).

Given a proposal density with the same support as p(x) (or at least containing

the support of p(x)), the modified algorithm is easily derived:

E[f(x)] =
Eq(·)[f(x)w(x)]

Eq(·)[w(x)]
, w(x)

∆
=

p(x)

q(x)

≈
∑N

n=1 f(xn)w(xn)
∑N

n=1 w(xn)
, xn ∼ q(·) . (2.45)

However, importance sampling has the drawback that the majority of samples xn

will cluster around the modes of q(x), which may differ from the modes of p(x), thus

biasing the approximation away from the true expected value, for finite N . Essentially,

importance sampling is relatively inaccurate for a given number of samples, and this

method should only be used when the proposal density has a very similar form to the

actual distribution.

2.4.2 Rejection Sampling

Rejection sampling is a Monte Carlo method devised by von Neumann [12] for gen-

erating samples from a target distribution using an easy-to-sample proposal density.
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This method can be combined with normal stochastic approximation to approximate

the desired expected value.

Rejection sampling works like this: consider the proposal density q(x). Choose c

such that cq(x) ≥ p(x), for all values of x; this is the most challenging step of the

algorithm, since it requires that we can find an envelope for the function p(x). Also,

if c is chosen to be too large, the algorithm will end up rejecting a larger number of

samples. Sample (u,x), where u ∼ U(0, 1), and x ∼ q(·). If ucq(x) ≤ p(x), accept

the sample; otherwise, reject it, and repeat this step. The accepted sample has the

property that it is distributed according to p(x).

The rationalization of rejection sampling is quite straightforward. Given a sample

x ∼ q(x), the joint distribution of (u,x) is q(x)U(0, 1). Then, the probability of

acceptance for a given value of x is P (u < p(x)/cq(x) | x) = p(x)/cq(x), and the

joint probability p(x, accepted) = p(x)/c. Using Bayes’ Rule, it is easy to show that

the probability density of x, given that it was accepted, is simply the desired pdf

p(x):

p(x|accepted) =
p(x, accepted)

∫

p(x, accepted) dx′ =
p(x)/c

∫

p(x′)/c dx′ = p(x). (2.46)

2.4.3 Gibbs Sampling

Gibbs sampling, discussed by Geman and Geman in [14], is a Markov chain Monte

Carlo method that employs a Markov chain whose stationary distribution is the joint

posterior distribution of interest. For convenience, define the notation x−k be the

random vector [x1, . . . , xk−1, xk+1, . . . , xK ]. The fundamental assumption of Gibbs

sampling is that while the joint distribution p(x1, . . . , xK) is difficult to sample from,

it is easy to generate samples from the full conditional distributions p(xk|x−k). Denote

the random variable with this full conditional distribution xk|−k.

Thus, by constructing a Markov graph like Figure 2-1 to have the conditioned

parameters xk|−k ∼ p(xk|x−k) as the nodes of the graph, the stationary distribution

of this graph is the joint distribution p(x1, . . . , xK). A simple random walk can be

used to approach this joint distribution, and after a “burn-in” period of iterations

until the walk reaches a steady state, further samples can be used as if they were
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Figure 2-1: Markov chain of the Gibbs sampler. Gibbs sampling consists of repeatedly
sampling from these transition distributions in turns until the chain converges to the
steady-state. Since the steady-state distribution is the joint pdf p(x), further samples
from the transition probabilities will be generated as if they were generated by the
joint distribution itself.

generated from the joint distribution directly.

The main drawback to Gibbs sampling is that the burn-in period can be highly

variable, and extensive testing is necessary to determine how many steps to wait until

the process has converged.

2.4.4 Slice Sampling

A more general Monte Carlo method that frames the sampling problem differently

is termed slice sampling; Neal explains this method in detail in [25]. For simplicity,

only univariate slice sampling will be discussed here.

Slice sampling derives from the principle that sampling from a distribution x ∼
p(·) is the same as sampling uniformly from the region under the density function,

{(x, y) : 0 < y < p(x)}, and discarding the y value. However, for a given distribution,

this region is not easily defined.

Slice sampling uses a Markov chain (depicted in Figure 2-2) that converges to this

distribution to overcome such difficulties, analogously to the idea of Gibbs sampling

where p(x|y) and p(y|x) are the conditional sampling distributions. Essentially, each

iteration of slice sampling consists of three steps, with the latter two steps approxi-

mately sampling x from the slice of the region with the appropriate y value:

1. Given x(0), compute p(x(0)) and sample y uniformly from (0, p(x(0))).
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Figure 2-2: Slice sampling of p(x) illustrated: (a) Sampling is performed by traversing
a Markov chain to approximate p(x), the stationary distribution. Each iteration
consists of (b) uniformly choosing a slice {x : p(x) = y} and uniformly picking a new
sample x from that slice.

2. Construct an interval (L,R) containing x(0) and as much of the slice S = {x :

f(x) > y} as possible.

3. Uniformly sample x(1) from the portion of slice contained in that interval.

These last two steps in particular are not easily implemented efficiently. Making the

interval as small as possible while containing as much of the slice as possible is a

difficult task considering that the inverse image p−1(y) is almost always impossible to

find, and usually, the implementer does not even know how many times p(x) crosses

y. The third step is difficult because even when an interval is small, the fraction of

the interval contained in the slice may be a much smaller still, so a sample from the

interval may only be in the slice with a low probability.

The ideal choice of an interval containing the slice S would be (L = inf(S), R =

sup(S)); this interval contains the entire slice, and the range of points in the interval

not in the slice is minimized. To choose such an interval, a root-finding method

can be employed to locate the outermost points where p(x) crosses the generated

value y. Newton’s method or Halley’s method can be used, or if the distribution

is approximately monotonic over the interval of interest, a binary-search method

may yield exponentially fast convergence. The binary search method for where a
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monotonically increasing function p(x) takes the value y over the interval [L,R] is

described below:

Require: p(x), y, L,R

while R − L > ǫ do

x = (L + R)/2

if p(x) > y then

R = x

else

L = x

end if

end while

return x

The monotonically decreasing version of this algorithm is similar (just switch the

inequality in the “if” condition).

However, the probability density function of interest is rarely monotonic. If the

support of p(x) is bounded (finite), the entire support can be used; however, the slice

still may be a very small portion of the interval, and sampling from the slice may

prove very inefficient. In [25], Neal develops a “stepping-out” method for expanding

upon an initial estimate for the size of the slice S, as well as a “doubling” procedure

for expanding upon a random initial estimate for the size of the slice.

To sample from the slice contained in the chosen interval, the “shrinkage” pro-

cedure proposed in [25] is used. Essentially, each rejected sample drawn from the

interval is used to shrink the interval; since the interval always had and will continue

to contain x(i−1) (part of the slice by construction), as the interval size goes to zero,

the probability that the sample from the interval will not be in the slice also goes to

zero, assuming that the slice contains an open set around x(i−1). Assuming that p(x)

is continuous around x(i−1) is sufficient. The shrinkage method to sample from the

slice {x : p(x) ≥ y} (or portion thereof) contained in the interval [L,R] is described

below:

Require: p(x), x(i−1), y, L,R
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x(i) = x(i−1)

while R − L > ǫ do

x ∼ U(L,R)

if p(x) > y then

x(i) = x

L = R

else if x < x(i−1) then

L = x

else

R = x

end if

end while

return x(i)

This algorithm converges on a random sample from the slice contained in the interval.
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Chapter 3

Non-Random Parameter

Estimation

This chapter focuses on developing and comparing techniques for estimating unknown,

deterministic parameters of a bandlimited signal in the presence of jitter and additive

noise. When there is no jitter, the efficient estimator (2.8) is linear and has a closed

form. The purpose of developing estimators for the true observation model is to do

better than the efficient (no-jitter) estimator when the sampling process is affected

by jitter.

The general observation model is discussed in the introduction (see 1.9): N obser-

vations y are generated by sampling a periodic (or periodically-extended) signal, pa-

rameterized by x, at M times the Nyquist rate. The resulting likelihood function (2.3)

does not have a closed form, and the N -dimensional integral requires careful appli-

cation of numerical integration techniques to ensure computational feasability. The

independence assumptions on the timing noise and additive noise sources together

make the N -dimensional integral separable, yielding a product of N one-dimensional

integrals, which is a much easier expression to manipulate:

pY(y;x) =
N−1∏

n=0

∫

N (yn;hn(zn)Tx, σ2
w)N (zn; 0, σ2

z) dzn, (3.1)

where hn(zn)T is the nth row vector of the matrix H(z).
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An unbiased linear estimator and several iterative maximum-likelihood estimators

are developed for this observation model and compared against the efficient estimator

for the no-jitter model when the samples are in fact jittered. The Cramér-Rao bound

is approximated using stochastic estimation and Hermite quadrature, and the result-

ing approximate minimum MSE values are compared against the linear and iterative

estimators. For substantial amounts of jitter, the results at the end of this chapter

demonstrate that the iterative EM algorithm developed here provides better perfor-

mance than the no-jitter efficient estimator when MSE performance is paramount.

3.1 Linear Estimators

A variety of linear estimators x̂L(y)
∆
= Ay + b can be used to estimate the signal

parameters. First, the ML estimator (2.13) derived for the known jitter case is linear;

this estimator is efficient in the absence of jitter (or, alternatively, when the jitter is

known), and therefore, this estimator is used as the baseline approach against which

to compare new estimators.

Another type of linear estimators of interest is the class of linear unbiased estima-

tors for the true observation model. Consider the unbiased linear estimator (2.10);

this estimator corresponds to A = E[H(z)]+ and b = 0.

Since an unbiased linear estimator must be unbiased for any value of x, it is easy

to see that when x = 0, b also must be zero. In addition, for the estimator to be

unbiased in all other cases, AE[H(z)] = I. Thus, the set of linear unbiased estimators

is

x̂L,E[x̂]=x(y) ∈ {Ay : AE[H(z)] = I}. (3.2)

Since E[H(z)] is of full column rank, the pseudoinverse is a left inverse of E[H(z)],

thus satisfying the condition for A in (3.2):

E[H(z)]+ = (E[H(z)]T E[H(z)])−1
E[H(z)]T . (3.3)

The Best Linear Unbiased Estimator (BLUE) for the MSE criterion can be derived
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similarly to the fixed-H matrix case specified by Kay in [18]. Adapting this formula

to a stochastic H matrix (see Appendix A), however, results in

x̂BLUE(y) = (E[H(z)]TΛy
−1

E[H(z)])−1
E[H(z)]TΛy

−1y, (3.4)

where the covariance matrix of the data Λy depends on the value of the parameters:

Λy = E[H(z)xxTH(z)T ] − E[H(z)]xxT
E[H(z)]T + σ2

wI. (3.5)

This estimator depends on the actual value of x. Thus, no unique valid linear unbiased

estimator minimizes the MSE for all values of x. To determine more carefully what

goes wrong, re-examine the expression for Λy. Because the jitter is independent, the

first expectation in (3.6) is separable for m 6= n, and the off-diagonal elements of Λy

are identically zero:

[Λy]m,n = E[hm(zm)TxxThn(zn)] − E[hm(zm)T ]xxT
E[hn(zn)] (3.6)

= E[hm(zm)Tx]E[xThn(zn)] − E[hm(zm)T ]xxT
E[hn(zn)] (3.7)

= 0. (3.8)

The diagonal elements of Λy are simply var(hn(zn)Tx) + σ2
w. Using the fact that

hn(zn)Tx is just a scalar,

Λy =










xT cov(h0(z0))x
. . .

xT cov(hN−1(zN−1))x










+ σ2
wI. (3.9)

To result in a valid estimator, it is sufficient for the covariance matrix Λy to be a scalar

matrix (a scalar times the identity matrix), which can only happen when the inner

covariance matrices cov(hn(zn)) are equal for all n. If Λy were not a scalar matrix,

it could not commute with E[H(z)] in (3.4), and the resulting estimator would still

depend on x. Since (3.9) is only a scalar matrix when hn(zn) is deterministic, the
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BLUE expression would be expected to vary with x. Experimentation with K = 3,

M = 2, and σw = σz = 0.1 verifies that the BLUE estimator is in fact not valid, since

the resulting matrix A in the linear model differs for different values of x:

Table 3.1: BLUE (x̂BLUE(y) = Ay) for randomly generated values of x
x A = (E[H(z)]TΛy

−1
E[H(z)])−1

E[H(z)]TΛy
−1






0.7374
−0.8311
−0.2004











0.6527 0.1871 0.072 −0.1709 −0.0114 0.2705
0.1013 0.2275 0.5427 0.3806 −0.0518 −0.2002
−0.0313 −0.1511 −0.1009 0.5131 0.3268 0.4434











−0.4803
0.6001
−0.1372











0.507 0.269 0.0729 −0.1908 −0.0553 0.3972
0.049 0.216 0.637 0.2672 −0.0022 −0.167

−0.0818 −0.1644 −0.0048 0.398 0.3781 0.4749











0.8213
−0.6363
−0.4724











0.7543 0.1541 0.0355 −0.1334 0.0196 0.17
0.1072 0.2901 0.4105 0.5137 −0.1165 −0.2051
0.0699 −0.1837 −0.1378 0.551 0.3574 0.3433






3.2 Iterative ML Estimation

The ML estimation problem requires solving the optimization problem in (2.11),

which is non-linear in x. Thus, approximate methods involving repeated iterations

of a simpler problem are of interest.

One such iterative method of iterative MAP/ML estimation was previously inves-

tigated by Kusuma and Goyal in [19, 20] for the similar problem of delay estimation.

Using a one-at-a-time maximization approach, the estimates of x, z converge to a

local maximum of the joint pdf p(y, z;x). The iterations are divided into two steps:

1. Given a prior estimate of the parameters (e.g. delay), compute the MAP esti-

mate for the jitter:

ẑ(i+1) = arg max
z

pZ|Y(z|y; x̂(i)). (3.10)

2. Use the new estimate of the jitter to find the most likely estimate of the deter-

ministic parameters:

x̂(i+1) = arg max
x

pY|Z(y|ẑ(i+1);x). (3.11)
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The first step can be simplified by recognizing that the posterior density for the

jitter is separable, so the individual jitters can be estimated individually. Although

the resulting expression to maximize is still non-convex, it is one-dimensional, and

standard gradient techniques can be used to find locally optimal points:

ẑ(i+1)
n = arg min

zn

z2
n

σ2
z

+
(yn − hn(zn)T x̂(i))2

σ2
w

. (3.12)

The second step is even simpler; given an estimate for z, the resulting optimization

problem is an over-determined least-squares optimization problem, with a standard

solution via projection/orthogonalization.

x̂(i+1) = arg min
x

||y − H(ẑ(i+1))x||2 = H(ẑ(i+1))+y. (3.13)

A modification of this algorithm is to use the Bayes’ Least Squares estimate of the

jitter in the first step, instead of the MAP estimate. The BLS estimate can be

determined using Gauss-Hermite quadrature to numerically integrate E[zn|yn;x], for

each n separately. The use of quadrature is much faster and more numerically stable

than the general local optimization routines that can be employed to solve (3.12).

However, this change can disrupt the monotone convergence behavior of the MAP/ML

algorithm. In fact, it is easy to construct a situation where such an algorithm never

convergences or even diverges:

For simplicity, consider the trivial case where x and z are one-dimensional. Then,

suppose we start at x(1), z(1) in Figure 3-1. The MAP step would remain at z(1), since

it is a local maximum, but the BLS step would instead move to z(2), being the mean

of the conditional density p(z|y; x = x(1)). Then, the ML step would choose x(2),

being the maximum of the conditional density p(y|z = z(2); x). The BLS step would

then move back to z(1), and the ML step would move back to x(1), so it is not difficult

to imagine cycling between these locations forever.
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Iterations on the Joint Likelihood p(y,z;x) Plot
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x(1) z(2)

z(1)

Figure 3-1: Iterative BLS/ML Algorithm: Non-convergent behavior example where
the estimates of z and x alternate between z(1) and z(2) and x(1) and x(2), never
converging to a single value.

3.3 ML Estimation Using the EM Algorithm

The philosophy behind the Expectation-Maximization algorithm is that the source of

the difficulty in ML estimation is the uncertainty present in the observation model.

The EM algorithm framework attempts to circumvent this problem by augmenting

the observations with intermediate, (usually) hidden random variables that account

for the sources of the uncertainty in such a way as to make the new observation

model more manageable. For instance, in [3], Bilmes uses the EM algorithm to

drastically reduce the difficulty of determining the parameters of a mixture density

from observations by augmenting those observations with the hidden knowledge of

what distribution in the mixture generated each observation. In another example,

Bilmes describes how to use the Baum-Welch [2] algorithm, which is a well-known

member of the class of Generalized EM algorithms, to estimate the parameters of a
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hidden Markov model.

Likewise, in this estimation problem, the observed data y is incomplete; however,

with knowledge of the jitter values z, the estimation problem becomes manageable.

Defining the hidden data to be the jitter z, and the complete data to be the combi-

nation of the two, the EM algorithm can be used to maximize the likelihood function

by repeatedly maximizing (2.14), the expected log-likelihood of the complete data,

conditioned on the observed data and the previous estimate of the parameters.

Each iteration of the algorithm consists of maximizing (3.14) conditioned on the

prior estimate of x:

Q(x, x̂(i)) = E

[

log p(y, z;x)|y; x̂(i)
]

. (3.14)

This expectation is actually rather straightforward to maximize. The log-likelihood of

the complete data can be expressed as the sum of the log-likelihood of the observations

given the jitter and the log-prior on the jitter:

log p(y, z;x) = − 1

2σ2
w

||y − H(z)x||22 −
1

2σ2
z

||z||22 + constant. (3.15)

Expanding the above further to separate the powers of x and substituting this ex-

panded form into (3.14) yields

Q(x, x̂(i)) =
−1

2σ2
w

(

yTy − 2yT
E

[

H(z)|y; x̂(i)
]

x + xT
E

[

H(z)TH(z)|y; x̂(i)
]

x
)

− 1

2σ2
z

E

[

zTz|y; x̂(i)
]

+ constant. (3.16)

Maximizing (3.16) with respect to x involves taking the derivative and setting it equal

to zero:

∂Q(x, x̂(i))

∂x
=

1

σ2
w

(

E

[

H(z)T |y; x̂(i)
]

y − E

[

H(z)TH(z)|y; x̂(i)
]

x
)

= 0. (3.17)

The Hessian matrix is negative definite since H(z)TH(z) is positive definite; therefore,
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the extremal value is indeed a maximum:

∂2Q(x, x̂(i))

∂x∂xT
= − 1

σ2
w

E

[

H(z)TH(z)|y; x̂(i)
]

< 0. (3.18)

At the maximum value x = x̂(i+1), (3.17) must vanish; thus, rearranging terms,

E

[

H(z)TH(z)|y; x̂(i)
]

x = E

[

H(z)|y; x̂(i)
]T

y. (3.19)

Since H(z)TH(z) is positive definite with probability 1, the solution to (3.19) exists

and is unique. Thus, all that remains is to find the values of these expectations.

Using the conditional independence of y given z and Bayes’ Rule (this is where the

assumption of whiteness of both w and z comes into play),

p(z|y; x̂(i)) =
N−1∏

n=0

p(yn|zn; x̂(i))p(zn)

p(yn; x̂(i))
. (3.20)

What makes Gauss-Hermite quadrature an attractive method for numeric integration

in both cases is that the integrals are now separable. Below are the approximations

used for the left and right sides of (3.19).

E

[

H(z)TH(z)|y; x̂(i)
]

=
N−1∑

n=0

E

[

hn(zn)hn(zn)T |yn; x̂(i)
]

(3.21)

≈
N−1∑

n=0

1

p(yn; x̂(i))

I∑

i=1

wihn(zi)hn(zi)
T p(yn|zi; x̂

(i)) (3.22)

[

E

[

H(z)|y; x̂(i)
]]

n,:
= E

[

hn(zn)T |yn; x̂(i)
]

(3.23)

≈ 1

p(yn; x̂(i))

I∑

i=1

wihn(zi)
T p(yn|zi; x̂

(i)) (3.24)

p(yn; x̂(i)) ≈
I∑

i=1

wip(yn|zi; x̂
(i)) (3.25)

Using Gauss-Hermite quadrature, the complexity is roughly O(NI), which means that

the number of computations scales linearly with the number of samples or number

of terms in the quadrature. Such computational performance is generally consid-

ered reasonable, although for an increasing number of samples, calculations would be
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better done off-line.

3.4 Approximating the Cramér-Rao Bound

By definition, the Cramér-Rao lower bound on the MSE of an unbiased estimator

of the parameters is the trace of the inverse of the Fisher information matrix Iy(x),

defined in (2.6). The Fisher information matrix can be estimated using Gauss-Hermite

quadrature and stochastic approximation. Using the independence of the noise, the

log-likelihood function factors into a summation of log-likelihoods of the individual

data:

ln p(y;x) =
N−1∑

n=0

ln p(yn;x). (3.26)

Substituting into (2.6),

Iy(x) =
N−1∑

n=0

E





(

∂ ln p(yn;x)

∂x

)(

∂ ln p(yn;x)

∂x

)T


 . (3.27)

Differentiating (3.26) yields

∂ ln p(yn;x)

∂x
=

∂p(yn;x)
∂x

p(yn;x)
. (3.28)

The bottom expression is approximated in (3.25). Similarly, the top expression can

be approximated using Gauss-Hermite quadrature, resulting in

∂p(yn;x)

∂x
≈

I∑

i=1

wiN (yn;hn(zi)
Tx, σ2

w)
(yn − hn(zi)

Tx)hn(zi)

σ2
w

. (3.29)

Let Fn(yn;x) be the resulting approximation for
(

∂ ln p(yn;x)
∂x

) (
∂ ln p(yn;x)

∂x

)T
. Since sam-

pling from a Gaussian mixture can be accomplished simply by choosing a mixture

randomly according to the weights, and sampling from the chosen Normal distribu-

tion, the approximation to p(yn;x), a Gaussian mixture, is easy to sample. These

sampled values can be substituted into the expression inside the expectation in (3.27)

to approximate the Fisher information matrix. Taking the trace of the inverse of the
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result yields an estimate of the Cramér-Rao lower bound. In summary,

CRB = tr
(

Iy(x)−1
)

≈ tr





[
N−1∑

n=0

1

S

S∑

s=1

Fn(ys;x)

]−1


 , (3.30)

where ys ∼
∑I

i=1 wiN (yn;hn(zi)
Tx, σ2

w) and

Fn(yn;x) =

(∑I
i=1 wiN (yn;hn(zi)

Tx, σ2
w)(yn − hn(zi)

Tx)hn(zi)

σ2
w

∑I
i=1 wip(yn|zi;x)

)

·
(∑I

i=1 wiN (yn;hn(zi)
Tx, σ2

w)(yn − hn(zi)
Tx)hn(zi)

σ2
w

∑I
i=1 wip(yn|zi;x)

)T

. (3.31)

3.5 Simulations

The ML estimation algorithms presented (the alternating MAP/ML estimator, the

alternating BLS/ML variant, and the EM algorithm) are all implemented using

MATLAB. To evaluate these algorithms, both the (no-jitter) efficient linear estimator

in (2.13) and the linear unbiased estimator in (2.10) are also developed. In addition,

the Gauss-Hermite quadrature approximation to the Cramér-Rao lower bound given

in (3.30) is written.

Before comparing the performance of these iterative algorithms, their convergence

properties and sensitivity to initial conditions needs to be studied. While the alter-

nating MAP/ML and EM algorithms are guaranteed to converge, the algorithms do

not guarantee any particular rate of convergence, and the BLS/ML algorithm is not

guaranteed to converge at all (although in many cases, it will). Since these iterative

algorithms all depend on the supplied initial conditions, gauging the effect on these

algorithms of choosing different initial conditions is important.

Once the appropriate number of iterations and choice of initial conditions have

been determined for these algorithms, simulations are performed to compare the MSE

of the best of these iterative algorithms against the MSE of the best estimator for

the no-jitter case. In particular, these simulations depict how much more jitter the

iterative algorithms would tolerate than the no-jitter linear estimator, for the same

MSE. The Cramér-Rao lower bound approximation is used as a point of comparison
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for the relative efficiency of these estimators.

3.5.1 Convergence and initial condition sensitivity of itera-

tive methods

If these iterative algorithms are to prove functional, a certain degree of convergence

must be guaranteed for a given number of iterations. Before presenting the simulation

results, some discussion of the expected convergence properties of these algorithms

should be reviewed.

The iterative MAP/ML algorithm is a simple “hill-climbing” algorithm, repeatedly

maximizing the joint distribution p(y, z;x) with respect to z and x, along different

directions. The invariant property of MAP/ML estimation is that the joint probabilty

density of the generated values is guaranteed to be increasing over every iteration.

Since the distribution function is in fact bounded, the algorithm is guaranteed to

converge to a local maximum. The EM algorithm, which also increases the likelihood

function with each iteration, is guaranteed also to converge to a local maximum of

the likelihood function p(y;x).

The iterative BLS/ML algorithm is not such a hill-climbing algorithm, so there

is no such invariant that the joint probability p(y, z;x) increases with each iteration

of guessing z and x. In particular, the BLS step may result in a decreased joint pdf.

Thus, this algorithm is not guaranteed to converge. However, empirical simulations

presented below suggest that this algorithm is well-behaved as long as the jitter is

sufficiently small relative to the additive noise.

These three algorithms are run for 500 iterations each, for a variety of different

choices of M , σz, and σw. The squared Euclidean norm of the difference between

successive guesses for x is plotted for the different algorithms for several of these

cases. At convergence, this difference goes to zero. The convergence behavior is

shown in Figure 3-2 for several different values of M , σz, and σw.

This series of plots demonstrates the general convergence trends observed through

extensive simulation. Decreasing σz and σw respectively decrease and increase the
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Figure 3-2: Convergence of Iterative (MAP/ML, BLS/ML, EM) Algorithms: The
2-norm of the difference between successive iterations of these algorithms is plotted
over 500 iterations for K = 5 and different parameter values: (a) M = 4, σz = 0.5,
σw = 0.75 (b) M = 16, σz = 0.5, σw = 0.75 (c) M = 4, σz = 0.25, σw = 0.75 (d)
M = 4, σz = 0.5, σw = 0.1.

number of iterations until convergence. The intuition behind this result for the EM

algorithm is that as the jitter decreases, the ML estimate becomes more linear, and

thus, the linear iterations themselves are closer to the true ML estimator; whereas

the set of consistent estimates with the bandlimitedness factor becomes narrower

and more difficult to find as the additive noise decreases. Increasing the oversampling
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factor affects the rate of convergence similarly to decreasing σw, as it also further con-

strains the set of acceptable x. For the iterative MAP/ML and BLS/ML estimators,

varying these parameters has a similar effect on the shape of the joint distribution

p(y, z;x), so these estimators behave similarly. Note that the iterative MAP/ML

estimator has extremely slow convergence relative to the other estimators, whereas

the BLS/ML variant has very rapid convergence. Despite the rapid convergence be-

havior, in actuality, the BLS/ML estimator is not guaranteed to converge; failures

during testing would adversely impact the algorithm’s performance. Because of these

negative properties of the MAP/ML and BLS/ML algorithms, only the EM algorithm

will be evaluated for performance in the following sections.

Before evaluating the EM algorithm’s performance, however, the sensitivity of this

algorithm to initial conditions should also be studied. Since all these algorithms at-

tempt to find local maxima of the objective function, the initial conditions can dictate

which local maximum the algorithm converges to, as well as the rate of convergence.

The effects of the initial conditions on the different algorithms are quantified accord-

ing to the resulting squared-error of the results. The error is plotted for each of 25

trials, each using four sets of initial conditions: the no-jitter linear estimate H(0)+y,

the true value of x, and two randomly generated values of x. Two examples demon-

strating opposite sensitivities to initial conditions for the EM algorithm are shown in

Figure 3-3.

The EM algorithm’s sensitivity varies with the shape of the likelihood function; a

likelihood function with many extrema increases the number of regions of attraction,

thus increasing the algorithm’s sensitivity to initial conditions. The bumpiness of the

likelihood function increases with larger σz and smaller σw. Increasing the oversam-

pling factor has the same effect as increasing σz, since the jitter is larger relative to

the spacing between the samples. However, since random initialization appears to do

generally worse than the others, the linear (no-jitter) estimate is the initial condition

of choice. This choice has the additional benefit that the result will be guaranteed to

have a likelihood no worse than the linear (no-jitter) efficient estimate.
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Figure 3-3: Sensitivity to Initial Conditions of EM Algorithm: The resulting error
of using the EM algorithm on four different initial points for 25 tests is shown for
K = 5 parameters and (a) M = 2, σz = 0.75, σw = 0.1, and (b) M = 2, σz = 0.25,
σw = 0.25.

3.5.2 Linear vs. iterative methods

Intuitively, the greatest potential for improvement relative to the (known/no jitter)

linear estimator is when the jitter dominates the effect of the additive noise, i.e. when

σz is large relative to σw. However, the iterative algorithms become less accurate as

σz increases, due to greater quadrature error and the likelihood function becoming

more oscillatory. The first of these sources of error can be mitigated by choosing a

finer quadrature (increasing I). Increasing the oversampling factor further reduces

the impact of both the jitter and the additive noise, causing the likelihood function

to be better behaved (more smooth). Thus, the greatest potential for improvement

is in a region where σz ≫ σw and M is large.
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Obviously, the amount of jitter an iterative algorithm can tolerate, for a particular

choice of additive noise variance σ2
w and oversampling factor M , is an important

performance measure. The ability to tolerate jitter is determined by comparing the

resulting MSE against that of a baseline algorithm, such as the (no-jitter) linear

efficient estimator. As shown in Figures 3-4, 3-5, and 3-6, there is a region of σz for

each set of parameters σw and M that results in an improved (decreased) MSE. There

are several consequences of this improvement that designers can take advantage of:

1. A designer can use the EM algorithm to achieve the same MSE performance

with increased jitter, reducing the required accuracy of the clock, and hence,

the power consumption of the ADC.

2. The EM algorithm can be employed to reduce the amount of oversampling

required to achieve a certain performance threshold with jitter. Thus, the clock

rate decreases, resulting in lower power consumption.

These simulations were performed using 500 random trials to approximate the MSE

(each trial consists of randomly chosen parameters x and noise z,w) for each set of

salient parameters: the oversampling factor M , and the noise standard deviations

σz and σw. The results demonstrate that the EM algorithm is indeed a worthwhile

alternative over the (no-jitter) linear efficient estimator to achieve performance gain

or lower power consumption.

3.5.3 CRB vs. linear and EM algorithms

The Cramér-Rao lower bound (CRB) provides a bound for how well (in the MSE

sense) an unbiased estimator can perform. Although the CRB technically does not

apply to biased estimators, it is a helpful metric for determining whether a proposed

algorithm is satisfactory. Here, the CRB is estimated using the method in Section 3.4

and plotted for different values of M , σz, and σw, for a randomly chosen value of x.

Then, the approximate MSE for both the unbiased linear estimator in (3.4) and the

EM algorithm is compared to the CRB; the result of one such comparison is shown

in Figure 3-7.
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Figure 3-4: Comparing the EM algorithm against the (no-jitter) linear efficient esti-
mator for K = 10, σw = 0.1.

Note that for σz ≪ σw, both estimators achieve the Cramér-Rao bound. Also,

the EM algorithm continues to achieve the CRB for a range of larger σz, whereas

the MSE of the linear unbiased estimator increases more rapidly in this region. For

σz ≫ σw, both estimators increase more rapidly than the CRB.
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Figure 3-5: Comparing the EM algorithm against the (no-jitter) linear efficient esti-
mator for K = 10, σw = 0.05.
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Figure 3-6: Comparing the EM algorithm against the (no-jitter) linear efficient esti-
mator for K = 10, σw = 0.01.
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Figure 3-7: The Cramér-Rao lower bound compared against the linear unbiased esti-
mator in (2.10) and the EM algorithm for K = 10 parameters chosen randomly, and
σw = 0.05. The CRB was approximated using 500 samples from p(yn;x), and the
estimators’ MSE performance was estimated using 100 trials each for the same x and
randomly generated noise.
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Chapter 4

Bayesian Parameter Estimation

While the results of the previous chapter certainly are encouraging, including a prior

on the signal parameters should further improve estimation performance. This chap-

ter also focuses on estimating the parameters x of a signal using the observation

model discussed in the introduction in (1.9). Whereas the previous chapter assumed

no model on the parameters, this chapter supposes that the parameters are generated

by a random process. Like non-random parameter estimation, the objective of the

Bayesian estimation problem is to minimize some cost function, such as the expected

squared-error (MSE) of the result. The Bayes Least Squares estimator will be used to

accomplish this. Since the Bayes Least Squares estimate is difficult to compute, both

deterministic and stochastic methods for approximating this estimator are employed.

For consistency, one prior will be used throughout the discussion in this chapter.

While a more specific characterization of the actual input signal would allow for a

more accurate model, and hence a better estimate, the maximum entropy model is

the “hardest” prior to use in the sense it provides the minimum structure on the

unknown parameters. Also, in the maximum entropy case, the parameters should

be independent to maximize the joint entropy. Thus, while a Gaussian prior would

simplify many calculations and guarantee that the baseline no-jitter linear estima-

tor is the no-jitter BLS estimator, the maximum entropy model is preferred so the

problem is approached with the most difficult prior. The Uniform distribution has

the maximum entropy of all distributions with finite support [7]. Without loss of
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generality, then, we may assume that the signal parameters are generated by an iid

Uniform(−1, 1) random process. The independence and zero-mean assumptions also

are very useful throughout this chapter for simplifying the derivations.

The posterior density can be derived using Bayes’ rule:

p(x|y) =
p(y|x)p(x)

∫ · · · ∫ p(y|x′)p(x′) dx′ . (4.1)

Due to the assumption of independence of x, and the assumption that the noise

sources are also independent, the prior and likelihood are both separable. Therefore,

p(x|y) =

∏N−1
n=0 p(yn|x)

∏K−1
k=0 p(xk)

∫ · · · ∫ ∏N−1
n=0 p(yn|x′)

∏K−1
k=0 p(x′

k) dx′ . (4.2)

The likelihood function p(yn|x) does not have a closed form, but it can be expressed

using integration as in (2.4).

4.1 Linear Estimators

The form of the linear estimator for x that minimizes the MSE is stated in (2.23).

Since E[x] = 0 and E[y] = E[H(z)]E[x] + E[w] = 0,

x̂LLS(y) = E[x(H(z)x + w)T ](E[(H(z)x + w)(H(z)x + w)T ])−1y. (4.3)

Since the parameters and noise sources are all independent, and Λx = σ2
xI is a scalar

matrix, where σ2
x = 1/3 is the variance of Uniform(−1, 1), the above expression

simplifies to

x̂LLS(y) = E[H(z)]T
(

E[H(z)H(z)T ] +
σ2

w

σ2
x

I

)−1

y. (4.4)

The expectations in (4.4) do not have a closed form. Gauss-Hermite quadrature or

another approximation method can be employed to approximate the expectations,

and the close-to-optimal linear estimator can be evaluated numerically.

The error covariance ΛLLS has a similar standard expression, given in (2.25),
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which reduces to

ΛLLS = σ2
x



I − E[H(z)]T
(

E[H(z)H(z)T ] +
σ2

w

σ2
x

I

)−1

E[H(z)]



 . (4.5)

The optimal linear estimator for the case with known jitter is similar to (4.4):

x̂LLS,z=z∗(y) = H(z∗)T

(

H(z∗)H(z∗)T +
σ2

w

σ2
x

I

)−1

y. (4.6)

When there is no jitter, this reduces to

x̂LLS,z=0(y) = H(0)T

(

H(0)H(0)T +
σ2

w

σ2
x

I

)−1

y. (4.7)

Substantial literature already exists exploring the optimal linear estimator problem

in detail. In [1], Balakrishnan derives the coefficients of the optimal convolution ker-

nel for reconstructing the original bandlimited signal. Whereas in the case of simple

bandlimited reconstruction without jitter, the optimal reconstruction operation con-

volves the samples with a sinc function, Balakrishnan proves that the coefficients that

minimize the MSE of the reconstructed signal x̂(t) =
∑

n an(t)yn are determined by

the characteristic function of the jitter C(Ω)
∆
= E

[

ejΩz
]

and the discrete-time power

spectral densities φxx(ω) and φyy(ω) =
∣
∣
∣C
(

ω
T

)∣
∣
∣

2
φxx(ω) + a2:

an(t) =
1

2π

∫ π

−π
C
(

ω

T

)
φxx(ω)

∣
∣
∣C
(

ω
T

)∣
∣
∣

2
φxx(ω) + a2

e−jω(n−t/T ) dω, (4.8)

where a2 = 1
2π

∫ π
−π

(

1 −
∣
∣
∣C
(

ω
T

)∣
∣
∣

2
)

φxx(ω) dω. When z = 0, (4.8) reduces to sinc(t/T −
n), as expected. Balakrishnan also contends in [1] that the optimal non-linear estimate

is actually linear. However, Balakrishnan considers only non-linear operators on

individual data values (he does not include non-linear functions of the entire vector

y). Specifically, Balakrishnan considers only non-linear estimators of the form

x̂(t) =
∑

n

∞∑

k=0

an
k(t)fk(yn), (4.9)
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where fk(·) is any non-linear function. Balakrishnan then shows that the MMSE

estimator must satisfy

E[x(t)|yn] = E

[
∑

m

∞∑

k=0

am
k (t)fk(ym)|yn

]

, (4.10)

and as a result, the optimal non-linear estimator has am
k (t) = 0 for all k 6= 1, f1(y) is

linear, and the expression for am
1 (t) is identical to (4.8).

In [24], Liu and Stanley consider the error introduced by the jitter when using

a standard low-pass/sinc-interpolation filter to reconstruct a wide-sense stationary

signal bandlimited to ±ΩB. For the case when the jitter is independent with variance

σz, the error ǫ2 is bounded by

ǫ2 ≤ 2(Rxx(0) − Rxx(σz)) ≤ Rxx(0)Ω2
Bσ2

z , (4.11)

where the second inequality holds for small σz (i.e. ΩBσz ≪ π). They also compute

the error for when the jitter is Gaussian and the input signal power spectral density

Sxx(Ω) = 1
2ΩB

for |Ω| < ΩB:

ǫ2 = 2 −
√

2π

ΩBσz

erf

(

ΩBσz√
2

)

. (4.12)

For small enough x, erf(x) ≈ 2√
π

(

x − x3

3

)

, so

ǫ2 ≈ 2 −
√

2π

ΩBσz

(

2√
π

)(

ΩBσz√
2

)

+

√
2π

ΩBσz

(

2

3
√

π

)(

ΩBσz√
2

)3

=
1

3
Ω2

Bσ2
z . (4.13)

Note that in both cases, the squared error scales approximately with σ2
z . The rest

of this chapter will be devoted to developing algorithms that improve on this perfor-

mance bound.
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4.2 BLS Estimation Using Taylor Series

The BLS estimator can be expressed in terms of the likelihood function, as in (2.20).

The likelihood function can be expressed in terms of p(y|z,x), resulting in

x̂BLS(y) =

∫

x [
∫ N (y;H(z)x; σ2

wI)N (z;0, σ2
zI) dz] p(x)dx

∫

[
∫ N (y;H(z)x; σ2

wI)N (z;0, σ2
zI) dz] p(x)dx

. (4.14)

This N -dimensional integration can be approximated in any number of ways. One

method whose complexity does not scale exponentially with N involves using a partial

Taylor series expansion of f(z) = N (y;H(z)x; σ2
wI) about z = 0. The first, second,

and third mixed partial derivatives are listed below:

∂f(z)

∂zn

= f(z)
1

σ2
w

(yn − hn(zn)Tx)(h′
n(zn)Tx) (4.15)

∂2f(z)

∂zn∂zm

= f(z)

(

1

σ4
w

(ym − hm(zm)Tx) (h′
m(zm)Tx)(yn − hn(zn)Tx)(h′

n(zn)Tx)

+
δn−m

σ2
w

(yn − hn(zn)Tx)(h′′
n(zn)Tx) − δn−m

σ2
w

(h′
n(zn)Tx)2

)

(4.16)

∂3f(z)

∂zn∂zm∂zl

= f(z)

(

1

σ6
w

(yl − hl(zl)
Tx)(h′

l(zl)
Tx)(ym − hm(zm)Tx)

· (h′
m(zm)Tx)(yn − hn(zn)Tx)(h′

n(zn)Tx)

+
δm−l

σ4
w

(ym − hm(zm)Tx)(h′′
m(zm)Tx)(yn − hn(zn)Tx)(h′

n(zn)Tx)

− δm−l

σ4
w

(h′
m(zm)Tx)(h′

m(zm)Tx)(yn − hn(zn)Tx)(h′
n(zn)Tx)

+
δn−l

σ4
w

(ym − hm(zm)Tx)(h′
m(zm)Tx)(yn − hn(zn)Tx)(h′′

n(zn)Tx)

− δn−l

σ4
w

(ym − h′
m(zm)Tx)(h′

m(zm)Tx)(h′
n(zn)Tx)(h′

n(zn)Tx)

+
δn−mδn−l

σ2
w

(yn − hn(zn)Tx)(h(3)
n (zn)Tx)

− δn−mδn−l

σ2
w

(h′
n(zn)Tx)(h′′

n(zn)Tx)

− 2δn−mδn−l

σ2
w

(h′
n(zn)Tx)(h′′

n(zn)Tx)

)

(4.17)
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The 2nd-order Taylor series expansion is equal to

f(z) = f(0) + ∇f(0)z +
1

2
zT∇2f(0)z +

N−1∑

n,m,l=0

∂3f(ξn,m,l)

∂zn∂zm∂zl

znzmzl
1

(n,m, l)!
(4.18)

for some ξn,m,l, where ∇f and ∇2f are the gradient (row) vector and Hessian matrix,

respectively, and (n,m, l)! is an extension of the factorial operator for mixed-partial

derivatives:

(n,m, l)! =







6 n = m = l;

2 n = m 6= l; n = l 6= m; m = l 6= n;

1 otherwise

. (4.19)

Using the following lemma, as well as the triangle inequality, the partial third

derivatives in (4.17) can be (loosely) bounded.

Lemma 1 Let f(t) be a real-valued periodic function bandlimited to frequency ±π/T ,

with period KT . Also, let fk = f(tk), where tk = t0 + kT and t0 is arbitrary. Then,
∑K−1

k=0 |fk|2 does not depend on the value of t0.

Proof. This lemma follows directly from Parseval’s Theorem: suppose f(t) has

the Fourier transform Fc(Ω). The sampled fk has discrete-time Fourier transform

F (ω) = e−jΩt0Fc(Ω) where Ω = ω/T . Then,

K−1∑

k=0

|fk|2 =
1

2π

∫ π

−π
|F (ω)|2 dω =

1

2π

∫ π

−π
|e−jωt0/T ||Fc(ω/T )|2 dω. (4.20)

Since |e−jωt0/T | = 1, the energy of the signal does not depend on t0. �

Applying Lemma 1 to bound ||hn(zn)||2 and its derivatives, the following quantities
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can be bounded by fixed constants h̄(0), h̄(1), h̄(2), h̄(3):

|yn − hn(zn)Tx| ≤ |yn| + h̄(0)||x||2 (4.21)

|h′
n(zn)Tx| ≤ h̄(1)||x||2 (4.22)

|h′′
n(zn)Tx| ≤ h̄(2)||x||2 (4.23)

|h(3)
n (zn)Tx| ≤ h̄(3)||x||2 (4.24)

Together with the triangle inequality, and the fact that |f(z)| ≤ 1/(2πσ2
w)N/2, the

third mixed partial derivatives ∂3f(z)
∂zn∂zm∂zl

can be bounded by Fn,m,l:

Fn,m,l
∆
=

1

(2πσ2
w)N/2

(

1

σ6
w

(|yl| + h̄(0)||x||2)(h̄(1)||x||2)

· (|ym| + h̄(0)||x||2)(h̄(1)||x||2)(|yn| + h̄(0)||x||2)(h̄(1)||x||2)

+
δm−l

σ4
w

(|ym| + h̄(0)||x||2)(h̄(2)||x||2)(|yn| + h̄(0)||x||2)(h̄(1)||x||2)

+
δm−l

σ4
w

(h̄(1)||x||2)(h̄(1)||x||2)(|yn| + h̄(0)||x||2)(h̄(1)||x||2)

+
δn−l

σ4
w

(|ym| + h̄(0)||x||2)(h̄(1)||x||2)(|yn| + h̄(0)||x||2)(h̄(2)||x||2)

+
δn−l

σ4
w

(|ym| + h̄(1)||x||2)(h̄(1)||x||2)(h̄(1)||x||2)(h̄(1)||x||2)

+
δn−mδn−l

σ2
w

(|yn| + h̄(0)||x||2)(h̄(3)||x||2)

+
δn−mδn−l

σ2
w

(h̄(1)||x||2)(h̄(2)||x||2) +
2δn−mδn−l

σ2
w

(h̄(1)||x||2)(h̄(2)||x||2)
)

.

(4.25)

Now, consider integrating f(z)N (z;0, σ2
zI) using the 2nd-order partial Taylor series

expansion f ∗(z) ((4.18) minus the error terms). Then, the integration error can be

bounded using (4.25):

∣
∣
∣
∣

∫

(f(z) − f ∗(z))p(z) dz
∣
∣
∣
∣ ≤

∑

n,m,l

∫
∣
∣
∣
∣
∣

∂3f(ξn,m,l)

∂zn∂zm∂zl

znzmzl

(n,m, l)!

∣
∣
∣
∣
∣
p(z) dz (4.26)

≤
∑

n,m,l

Fn,m,l

(n,m, l)!

∫

|znzmzl|p(z) dz. (4.27)
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It can be shown using integration by parts that

∫

|zn|3N (z;0, σ2
zI) dz = 2

√

2

π
σ3

z (4.28)

∫

|zn|z2
mN (z;0, σ2

zI) dz =

√

2

π
σ3

z (4.29)

∫

|znzmzl|N (z;0, σ2
zI) dz =

2

π

√

2

π
σ3

z . (4.30)

Integrating the partial Taylor series expansion itself with respect to the probability

measure p(z) uses the moments of the Gaussian. The resulting expression can be

plugged back into (4.14) to yield

x̂BLS(y) ≈
∫

x
(

f(0) + σ2
z

2
tr(∇2f(0))

)

p(x)dx
∫ (

f(0) + σ2
z

2
tr(∇2f(0))

)

p(x)dx
. (4.31)

where f(0) and tr(∇2f(0)) depend on x as a polynomial times a Gaussian kernel.

In particular, f(0) is simply the Gaussian kernel N (y;H(0)x, σ2
wI), and tr(∇2f(0)),

which is described in (4.16), is a 4th-degree polynomial in x, multiplied by the same

Gaussian kernel.

Since H(0)TH(0) = MI, as a result of the orthogonality of the psinc basis and

Lemma 1, the exponent of f(0), which is also found in its derivatives, can be easily

re-expressed to form a Gaussian kernel for x instead of y:

||y − H(0)x)||22
σ2

w

=
(yTy + xT Mx − 2(H(0)Ty)Tx)

σ2
w

(4.32)

=
M ||x − H(0)T

M
y)||22 + yT

(

I − H(0)H(0)T

M

)

y

σ2
w

. (4.33)

Thus,

N (y;H(0)x, σ2
wI) =

exp
[

−yT (MI−H(0)H(0)T )y
2Mσ2

w

]

(2πσ2
w)(N−K)/2MK/2

N
(

x;
H(0)T

M
y,

σ2
w

M
I

)

. (4.34)

The resulting polynomials in (4.31) are of degree five and four, in the numerator and
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denominator, respectively. The resulting integral also has a closed form, albeit in

terms of the Gaussian error function, because the integral is over a finite interval

instead, yielding incomplete moments of the Gaussian kernel N (x; H(0)T

M
y, σ2

w

M
I).

Below are the coefficients that multiply the mixed terms in the polynomials in x for

the top and bottom integrals in (4.31). Since the top is different from the bottom only

in that the top has an extra factor of x multiplying everything, the coefficients will be

indexed according to their place in the bottom polynomial. Indexing the coefficients

as c(0) multiplying (1), c
(1)
i multiplying xi, c

(2)
i,j multiplying xixj (considered different

from xjxi), c
(3)
i,j,k multiplying xixjxk, c

(4)
i,j,k,l multiplying xixjxkxl,

c(0) = 1 (4.35)

c
(1)
i =

σ2
z

2σ2
w

N−1∑

n=0

ynH
(2)
n,i (4.36)

c
(2)
i,j =

σ2
z

2σ2
w

N−1∑

n=0

(

y2
n

σ2
w

− 1

)

H
(1)
n,iH

(1)
n,j − H

(0)
n,iH

(2)
n,j (4.37)

c
(3)
i,j,k = − σ2

z

σ4
w

N−1∑

n=0

ynH
(0)
n,iH

(1)
n,jH

(1)
n,k (4.38)

c
(4)
i,j,k,l = − σ2

z

2σ4
w

N−1∑

n=0

H
(0)
n,iH

(0)
n,jH

(1)
n,kH

(1)
n,l , (4.39)

where H
(m)
n,k =

[
dm

dzm psincK(z)
]

z=n/M−k
.

Let m̂x = 1
M

H(0)Ty and σ̂2
x = 1

M
σ2

w. Then, the bottom integral in (4.31) is equal

to

1

(2πσ2
w)(N−K)/2MK/2

(

c(0)
∫

N (x; m̂x, σ̂
2
xI)dx +

K−1∑

i=0

c
(1)
i

∫

xiN (x; m̂x, σ̂
2
xI)dx

+
K−1∑

j=0

c
(2)
i,j

∫

xixjN (x; m̂x, σ̂
2
xI)dx +

K−1∑

k=0

c
(3)
i,j,k

∫

xixjxkN (x; m̂x, σ̂
2
xI)dx

+
K−1∑

l=0

c
(4)
i,j,k,l

∫

xixjxkxlN (x; m̂x, σ̂
2
xI)dx

)

, (4.40)
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and the top integral in (4.31) is equal to

1

(2πσ2
w)(N−K)/2MK/2

(
K−1∑

i=0

c(0)
∫

xiN (x; m̂x, σ̂
2
xI)dx

+
K−1∑

j=0

c
(1)
j

∫

xixjN (x; m̂x, σ̂
2
xI)dx +

K−1∑

k=0

c
(2)
j,k

∫

xixjxkN (x; m̂x, σ̂
2
xI)dx

+
K−1∑

l=0

c
(3)
j,k,l

∫

xixjxkxlN (x; m̂x, σ̂
2
xI)dx

+
K−1∑

m=0

c
(4)
j,k,l,m

∫

xixjxkxlxmN (x; m̂x, σ̂
2
xI)dx

)

. (4.41)

While this approximation for the BLS estimator does not require complicated numeric

integrations, the complexity scales poorly with K. For K = 10, the approximation

to the top integral alone involves over 105 terms. This poor scalability reduces the

number of parameters we reasonably can estimate at a time, and in the event that

the approximation is inexact, the scalability gets even worse as more derivatives from

the Taylor series of f(z) are added (four more powers of x for each additional even

term in the Taylor series).

4.3 Approximating the BLS Estimator with Gibbs

Sampling

Rather than attempt to solve the integral in (4.14) repeatedly for different sample

values, augment the parameters with the jitter z and approximate the joint BLS

estimate E[x, z|y] instead. The resulting estimate for x is equivalent to the BLS

estimate E[x|y]; the estimate for z can be ignored.

For this scenario, Gibbs sampling can be used, iteratively drawing samples from

p(x|y, z) and p(z|y,x). The general algorithm consists of alternatingly sampling from

each of these distributions in some (not necessarily natural) order and averaging all

the samples for each parameter after a sufficient “burn-in” period has elapsed.

If the underlying Markov chain is irreducibile and aperiodic, Gibbs sampling will

eventually converge to a steady-state distribution that is the joint posterior distribu-
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tion p(x, z|y). In [13], Gelfand points out that as long as the joint pdf is continuous

and bounded, and the support is connected, the Gibbs sampler will converge. How-

ever, the rate of convergence depends on how the variables are split. In [28], Smith

and Roberts also discuss the role of correlation between the parameters; to maxi-

mize the rate of convergence, highly correlated variables should be sampled together

at once. Once the Markov chain is sufficiently close to the stationary distribution,

further samples are effectively taken from this joint posterior and can be used to ap-

proximate the BLS estimate of these parameters. In the algorithm, Ib represents the

time until the Markov chain reaches its steady state, and I represents the number

of samples taken afterward from the joint posterior. Experimentation is needed to

determine appropriate values of these parameters.

Require: y, I, Ib

z(0) = 0

x(0) = 0

for i = 1 : I + Ib do

z
(i)
0 ∼ p(·|z(i−1)

1 , . . . , z
(i−1)
N−1 ,x(i−1),y)

z
(i)
1 ∼ p(·|z(i)

0 , z
(i−1)
2 , . . . , z

(i−1)
N−1 ,x(i−1),y)

...

z
(i)
N−1 ∼ p(·|z(i)

0 , . . . , z
(i)
N−2,x

(i−1),y)

x
(i)
0 ∼ p(·|z(i), x

(i−1)
1 , . . . , x

(i−1)
K−1 ,y)

x
(i)
1 ∼ p(·|z(i), x

(i)
0 , x

(i−1)
2 , . . . , x

(i−1)
K−1 ,y)

...

x
(i)
K−1 ∼ p(·|z(i), x

(i)
0 , . . . , x

(i)
K−2,y)

end for

x̂ = 1
I

∑Ib+I
i=Ib+1 x(i)

ẑ = 1
I

∑Ib+I
i=Ib+1 z(i)

return x̂, ẑ

For each parameter, the distribution of that parameter conditioned on the data

and other parameters is proportional to the joint density of all the parameters and

the data, with the appropriate values of the other parameters and data plugged-in
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to the expression, so it suffices to sample from the joint distribution instead (keeping

the other parameter values fixed, of course). Thus,

zn ∼ N (yn;hT
n (zn)x, σ2

w)N (zn; 0, σ2
z), (4.42)

where hT
n (zn) is the nth row of H(z), and

xk ∼ N (y;H(z)x, σ2
wI). (4.43)

Unfortunately, the density for zn is not easy to sample from directly; however, a

method like rejection sampling can reliably sample from this distribution by sampling

from a suitable proposal distribution q(zn). Here, the propsal density used is q(·) ,

N (·; 0, σ2
z), and 1/c =

√

2πσ2
w.

Let the vector x−k represent of all but the kth parameter. Also, let Hk(z) and

H−k(z) be the kth column and all but the kth column, respectively, of the matrix

H(z). The density for xk, however, can be sampled using the cdf inversion method.

Re-expressing the Normal distribution in (4.43) as a Normal distribution on xk, the

overall distribution becomes a truncated Normal distribution; i.e.

xk ∼ N
(

xk; µk, σ
2
k

)

U(xk;−1, 1) (4.44)

where

µk =
Hk(z)

T (y − H−k(z)x−k)

Hk(z)THk(z)
(4.45)

σ2
k =

σ2
w

Hk(z)THk(z)
(4.46)

Now, denote the zero-mean unit-variance version of xk by χk. Then, χk has a trun-

cated standard Normal distribution between ak = −1−µk

σk
and bk = 1−µk

σk
. Thus, this

distribution can be sampled by generating a uniform random variable u between Φ(a)

and Φ(b). Then, the inverse cdf can be used to convert u to the corresponding value

of χk. When the mean µk lies within the finite support [ak, bk], this method is very

efficient and stable; however, when the support is mainly the tail of the Normal dis-
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tribution, the cdf is flat throughout the region, and inversion fails or results in a

poor approximation to the truncated Gaussian random variable. Robert suggests

employing rejection sampling in this region and describes the optimal proposal distri-

bution for the univariate standard normal case in [26]. Define the shifted exponential

distribution Exp(x; α, µ) to have the pdf

Exp(x; α, µ) =







αe−α(x−µ) x ≥ µ,

0 x < µ

. (4.47)

Then, the optimal proposal distribution for rejection sampling when the support

interval [a, b] lies to the right of zero is a shifted exponential distribution with shift

µ = a and optimal scaling factor

α∗ =
a +

√
a2 + 4

2
. (4.48)

The “accept” condition for a sample x ∼ Exp(α∗, a) here is two-fold: x ≤ b, and

ρ(x)
∆
= exp[−(x − α∗)2] ≥ u ∼ U(0, 1). When the support lies to the left of zero,

the situation can be viewed as a mirror image of this problem. Also, Robert proves

that it is better to instead use a uniform proposal distribution if the interval [a, b] is

sufficiently small; i.e. use the proposal distribution U(x; a, b) if (for the case 0 < a < b)

(b − a) ≤ 1

α∗ exp
[

(a2 − α∗a + 1)/2
]

. (4.49)

Once the samples χk are generated, the desired samples xk can be recovered by

undoing the linear transformation: xk = σkχk + µk.

One might question why, since all the parameters x are highly correlated given the

data y, they are not sampled altogether to improve the rate of convergence. However,

performing a linear transformation on the multivariate truncated normal distribution

distorts the support of the distribution, so that the support is no longer a Cartesian

product of intervals [a0, b0] × [a1, b1] × · · · × [aK−1, bK−1]. Thus, the multivariate

distribution is difficult to sample from, and Gibbs sampling is recommended as an
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alternative in [26].

4.4 Slice Sampling to Approximate the BLS Esti-

mator

Slice sampling is used to improve upon the Gibbs sampler developed in the previous

section, as an inexpensive alternative to rejection sampling to create samples from

the univariate distributions p(zn|y,x). An alternative approach involving using slice

sampling and Gauss-Hermite quadrature to sample from the full conditional distri-

butions p(xk|y,x−k) yields another Gibbs sampling method that does not require

samples of the jitter zn. However, this approach is computationally very expensive,

and since the quadrature yields only an approximation to the full conditional distri-

bution, this other approach has a measurable probability of yielding a very inaccurate

approximation to the BLS estimate.

In [25], Neal points out that performing Gibbs sampling using slice sampling to

sample from each full conditional distribution allows slice sampling to be easily applied

to complicated multivariate distributions. Using slice sampling on a multivariate

distribution directly is possible; however, for each iteration, finding a reasonable

approximation to the slice {x : p(x|y) ≥ a}, where a is the height of the slice

(generated uniformly from the previous sample x̂), can be very difficult, and generally,

the number of samples required to adequately represent a K-dimensional distribution

is exponential in K.

The main application of slice sampling presented entails substituting slice sam-

pling for the inefficient rejection sampling process used to generate samples from

p(z|y,x) with a slice sampler. Since p(z|y,x) is separable, univariate slice sampling

can be employed and generate samples of zn in parallel for all n. In addition, the

target density is proportional to p(yn|zn,x)p(zn), which has a closed form. Therefore,

both finding the interval containing the slice and sampling from the portion of the

interval that is part of the slice are expected to be relatively efficient. The below
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algorithm shows the adapted Gibbs sampler:

Require: y, I, Ib

z(0) = 0

x(0) = 0

for i = 1 : I + Ib do

for n = 0 : N − 1 do

u ∼ U(0, p(y, z(i−1)
n |x(i−1)))

Use “shrinkage” method to obtain sample z(i)
n from slice.

end for

x(i) ∼ p(·|z(i),y)

end for

x̂ = 1
I

∑Ib+I
i=Ib+1 x(i)

ẑ = 1
I

∑Ib+I
i=Ib+1 z(i)

return x̂, ẑ

Since u ≤ p(y, zn|x(i−1)), the range of possible zn (and thus the extreme endpoints

for search) is simply

|zn| ≤ σz

√

−2 log u − 2N log(2πσwσz) (4.50)

Because the target distribution can be highly oscillatory within this interval, narrow-

ing the interval to make sampling from the slice more efficient is not considered to

preserve accuracy. Instead, the shrinkage method is applied to the entire bounded

interval, which is not too large for u close to 1. This resulting algorithm can be

faster than the original Gibbs sampler, and therefore, it can gain greater accuracy by

approximating E[x, z|y] with a greater number of iterations. However, the accuracy

gained from additional iterations would have to be balanced by the fact that each it-

eration of slice sampling only produces an approximation to the target density, unlike

rejection sampling. Therefore, the generated samples are less reliable, and the MSE

for this algorithm can be expected to be greater in general than for the exact Gibbs

sampler.
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4.5 Simulations

As a baseline method, the LLS estmators for both the no-jitter (4.7) and random-

jitter (4.4) cases are implemented, the latter using Gauss-Hermite quadrature to

approximate E[H(z)] and E[H(z)H(z)T ]. Also, approximations to the BLS estimate

using a second-order Taylor series expansion, Gibbs sampling, and slice sampling are

written in MATLAB.

Just as with the iterative ML estimators in Chapter 3, it is essential to verify

that the stochastic approximations to the BLS estimate all converge in a reasonable

time. All these Monte Carlo algorithms are guaranteed to converge to the true BLS

estimate, but the rate of convergence depends on the distributions used. In addition,

each algorithm’s sensitivity to initial conditions needs to be evaluated. If the Markov

chain of the Gibbs sampler is both irreducible and aperiodic, it should have exactly

one stationary distribution, which will be the steady-state distribution regardless of

the initial conditions [16]. However, if the chain is not irreducible, the chain may

have many steady-state distributions, one for each recurrence class.

Once the convergence behavior and sensitivity to initial conditions have been

studied, all of these BLS estimation algorithms are simulated against the optimal

linear estimators for the random and zero-jitter cases. The goal of designing these

algorithms is to tolerate the use of a less accurate sampling clock; the hypothesis is

that by incorporating jitter into the observation model, algorithms can be constructed

that take advantage of the more accurate model to yield better MSE performance.

4.5.1 Convergence of stochastic methods

The general convergence properties of a Gibbs sampler are well-known. The slice

sampling variant results in a slightly more complicated Markov chain, but the algo-

rithm should still converge. While the rate of convergence is approximately linear in

the number of sampling iterations, simulations are needed to determine how many

iterations are required to be sufficiently close to the true BLS estimate. In addition,

the choice of initial conditions can influence the steady-state distribution, as well as
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the rate of convergence.

Both sampling-based approximations to the BLS estimator share similar conver-

gence characteristics. The effects of changing the oversampling factor, jitter, and

additive noise on the convergence rates are shown for each algorithm in Figures 4-1

and 4-2. The key message to get out of these plots is that convergence accelerates

with increased oversampling rate or decreased additive noise or jitter variance.
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Figure 4-1: Gibbs sampler (with rejection sampling for zn) convergence of BLS esti-
mate over 500 iterations for K = 5, (a) M = 2, σz = 0.1, σw = 0.25, (b) M = 16,
σz = 0.1, σw = 0.25, (c) M = 2, σz = 0.001, σw = 0.25, (d) M = 2, σz = 0.1,
σw = 0.05.

However, these algorithms have a limited usefulness when the jitter variance is too

large. The examples in Figures 4-3 and 4-4 demonstrate that when σw is much smaller

than σz, or not enough oversampling is used, the algorithms may fail to converge to

the same value, or may converge very slowly.
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Figure 4-2: Gibbs sampler (with slice sampling for zn) convergence of BLS estimate
over 500 iterations for K = 5, (a) M = 2, σz = 0.1, σw = 0.25, (b) M = 16, σz = 0.1,
σw = 0.25, (c) M = 2, σz = 0.001, σw = 0.25, (d) M = 2, σz = 0.1, σw = 0.05.

4.5.2 Linear and BLS methods compared

Having studied the convergence properties of the stochastic methods and analyzed

their sensitivity to initial conditions, the performance of these algorithms now can be

compared against the optimal linear estimate without jitter to confirm that account-

ing for the jitter more realistically in the observation model can yield better MSE

performance.

The Taylor series approximation to the BLS estimate is connected to the error

bound in (4.27). Essentially, to minimize the Taylor series approximation error, the

additive noise variance should be maximized relative to σz. This constraint coun-

terbalances the idea that the additive noise variance cannot be too great to risk the

additive noise drowning out the effect of the jitter. To test the performance, the
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Figure 4-3: Gibbs sampler (with rejection sampling for zn) sensitivity to initial condi-
tions of BLS estimate over 500 iterations for K = 5: (a) M = 4, σz = 0.1, σw = 0.25
is relatively stable, while (b) M = 2, σz = 0.5, σw = 0.01 does not converge to the
same value. The plots display the MSE (relative to the true value) for each iteration,
starting the algorithms in five different ways: initializing x and z to zero; initializing
z to zero and using the (no-jitter) LLS estimate for x; initializing both z and x to
the true value; and initializing z to a random value and using the fixed-jitter LLS
estimate for x, done for two different random values of z.

jitter deviation is fixed to σz = 0.001 and M and σw are allowed to vary. The average

improvement in MSE with K = 10 and 100 tests for every parameter combination is

shown in Table 4.1.

Evidently, σw = 0.5 appears to be a good choice to get consistent, substantial

improvement (4 − 8%). Table 4.2 shows the average MSE improvement for σw = 0.5

and varying σz.

For σz large enough relative to σw, the second order Taylor series expansion be-

comes a poor representation of the actual distribution, so the behavior, not unexpect-
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Figure 4-4: Gibbs sampler (with slice sampling for zn) sensitivity to initial conditions
of BLS estimate over 500 iterations for K = 5: (a) M = 4, σz = 0.1, σw = 0.25 is
relatively stable, while (b) M = 2, σz = 0.5, σw = 0.01 does not converge to the
same value. The plots display the MSE (relative to the true value) for each iteration,
starting the algorithms in five different ways: initializing x and z to zero; initializing
z to zero and using the (no-jitter) LLS estimate for x; initializing both z and x to
the true value; and initializing z to a random value and using the fixed-jitter LLS
estimate for x, done for two different random values of z.

edly, becomes rather chaotic. However, the performance improvement for smaller σz

is encouraging.

In Figures 4-5, 4-6, 4-7, and 4-8, the Gibbs sampler is compared against the no-

jitter linear least squares estimator to demonstrate the improvement that can be

achieved using Gibbs sampling. Just as with the iterative estimators for the non-

random case, the Gibbs sampler yields the greatest improvement over the linear

estimator when the jitter is large relative to the additive noise, but not when the

jitter is so large that the Gibbs sampler becomes an inaccurate approximation to the
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Table 4.1: Average (%) MSE Improvement for approximate BLS vs. LLS estimation
(σz = 0.001)

σw M = 2 3 4 6 8 16
2.5 0.001 0.019 0.22 0.54 0.39 0.96
1 0.9 2.8 4.3 2.9 7.4 7.5

0.5 5.6 8.2 6.1 4.6 8.3 7.6
0.1 5.5 6.0 3.0 2.8 2.9 2.9

0.025 1.9 2.3 1.7 0.56 0.88 0.24

Table 4.2: Average (%) MSE Improvement for approximate BLS vs. LLS estimation
(σw = 0.5)

σz M = 2 3 4 6 8 16
0.001 5.6 8.2 6.1 4.6 8.3 7.6
0.01 5.6 8.2 6.1 4.6 8.3 7.6
0.1 5.8 7.6 5.9 4.2 7.9 5.6
0.5 0.49 -0.24 37.4 94.2 99.6 91.4

BLS estimate.

The Gibbs sampler using slice sampling for zn has similar overall performance

to the Gibbs sampler (compare to Figures 4-9, 4-10, 4-11, and 4-12). Notice the

performance improvement given by using a slice sampler instead of rejection sampling

in the case of high-oversampling (e.g. M = 16) and small additive noise variance.

This performance boost can be traced to the difficulty of rejection sampling of zn for

these parameter choices. Essentially, when there is little additive noise to perturb

the observations and high oversampling constrains the choice of signal parameters,

the regions of zn with high probability are very small and spaced far apart; therefore,

rejection sampling can fail to find them, especially when the proposal distribution is

a unimodal Normal distribution, and the target distribution is highly oscillatory, as

in Figure 4-13.
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Figure 4-5: Gibbs sampler (with rejection sampling for zn) performance compared
to no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.25, and
various choices of oversampling M and jitter σz.
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Figure 4-6: Gibbs sampler (with rejection sampling for zn) performance compared
to no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.1, and
various choices of oversampling M and jitter σz.
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Figure 4-7: Gibbs sampler (with rejection sampling for zn) performance compared
to no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.05, and
various choices of oversampling M and jitter σz.
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Figure 4-8: Gibbs sampler (with rejection sampling for zn) performance compared
to no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.01, and
various choices of oversampling M and jitter σz.
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Figure 4-9: Gibbs sampler (with slice sampling for zn) performance compared to no-
jitter linear least squares estimate over 500 trials for K = 10, σw = 0.25, and various
choices of oversampling M and jitter σz.
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Figure 4-10: Gibbs sampler (with slice sampling for zn) performance compared to no-
jitter linear least squares estimate over 500 trials for K = 10, σw = 0.1, and various
choices of oversampling M and jitter σz.
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Figure 4-11: Gibbs sampler (with slice sampling for zn) performance compared to
no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.05, and
various choices of oversampling M and jitter σz.
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Figure 4-12: Gibbs sampler (with slice sampling for zn) performance compared to
no-jitter linear least squares estimate over 500 trials for K = 10, σw = 0.01, and
various choices of oversampling M and jitter σz.
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Figure 4-13: Example plot of the pdf p(y0, z0|x) with respect to z0 (holding y0 fixed),
for K = 10, σw = 0.01, σz = 0.5, and M = 16. This joint conditional pdf is used to
generate samples of z0, given the data y0 and the previous estimate of the parameters
x, in the Gibbs sampler. The proposal distribution for rejection sampling (a zero-
mean normal distribution with variance σ2

z) is also shown for reference. Note that for
z0 close to zero, the joint conditional pdf has extremely low probability, so rejection
sampling may reject an extraordinarily large number of samples before accepting a
sample.
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Chapter 5

Closing Remarks

The problem of estimating the parameters of a signal sampled in the presence of

both jitter and additive noise is revisited, and new methods for achieving substantial

improvement in MSE performance for both the non-random and Bayesian parameter

cases are proposed. In particular, simulations confirm that the iterative EM algorithm

is an attractive alternative to the linear estimation methods commonly employed

today, and the Gibbs sampler and its variants show similar promise for the Bayesian

case. These exciting results have numerous implications for the design of modern

analog-to-digital converters.

As mentioned in the introduction, the growing market for ultra-low power electron-

ics is stimulating the desire to make analog-to-digital converters more power-efficient.

In addition, analog-to-digital converters have to be smaller and more inexpensive to

be able to satisfy the demands of implantable medical instruments and other micro-

devices. For instance, mobile wireless radio transceivers for cellular phones require

extraordinary design constraints, where longer battery life, smaller size, and lower

cost are primary design goals. In [5], Brannon cites how disruptive even 0.1 picosec-

onds of jitter can be to a GSM receiver/decoder. Thus, the ADCs currently used in

common devices must incorporate clocks with extremely low phase noise, especially

at high frequencies. At the Microsystem Technologies Laboratory at MIT, a single-

chip ultra-wideband (UWB) system is proposed in [4], in which the flash ADC uses

approximately a third of the chip area and over 86 mW of the chip’s 271 mW power
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budget. Many other examples of the ADC’s role in chip size and power consumption

can be found throughout the electronics industry.

The iterative ML estimation and stochastic BLS estimation algorithms introduced

in Chapter 3 and 4 can be used to reduce the need for low-noise clock signals in the

above applications. By relaxing the stringent requirement on the clock jitter, de-

signers employing these algorithms can use smaller analog-to-digital converters that

consume less power, without sacrificing system-level performance. Since these post-

processing algorithms do not require real-time access to the signal, the jitter mitiga-

tion process can be performed off-chip to minimize power consumption and complex-

ity. As an alternative, the oversampling factor can be decreased instead of the jitter,

thus decreasing the clock frequency, and hence, ADC power consumption.

Where to next? While I demonstrate that these algorithms yield considerable

improvement over a wide range of jitter variance, these algorithms are by no means

perfect. For very large jitter, all these algorithms become too inaccurate to be of

much use. Developing methods to improve the accuracy of these algorithms would

increase their useful range considerably, allowing even more jitter to be tolerated. In

addition, these sampling methods are very inefficient computationally, since many

samples must be generated and thrown away before an approximation for the BLS

estimate even can be computed. Minimizing the so-called “burn-in” time of these

algorithms would yield significant computational savings and perhaps improve the

quality of the BLS estimate. Finally, more work is needed to extend the iterative

EM algorithm and the Gibbs sampler for when the jitter is correlated or the signal

parameters are generated from a non-trivial random process. However, care must

be taken to avoid dramatically increasing the complexity of each iteration. These

methods can all be modified for useful classes of non-bandlimited signals, such as

splines.

Beyond analog-to-digital converters, jitter mitigation algorithms have a place in

a variety of signal-processing systems. For instance, when applied to the frequency

domain, timing noise translates into uncertainty in frequency; thus, jitter mitiga-

tion can yield a more accurate Fourier transform device for systems like spectrum
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analyzers. Also, mitigating jitter can reduce the potential for intersymbol interfer-

ence in communication systems where symbols are packed closely together in time or

frequency.

Mitigating clock jitter or timing/frequency noise is not the only direct application

of this work. In the spatial domain, location uncertainty is analogous to jitter, and

philosophically, such errors can be corrected using the same approach. Imagine a

camera where the spacing of the pixels in the photosensor can be inconsistent. The

cost of such components should fall dramatically if manufacturing tolerances can be

relaxed. Location-jitter mitigation may even be combined with image de-mosaicing

algorithms to better align the RGB color channels of the digital image.

The benefits of jitter mitigation are well worth the effort. Numerous iterative and

stochastic algorithms for performing jitter mitigation have been presented and their

performance simulated against simple linear algorithms. Several avenues for future

exploration have been outlined, and the implications for analog-to-digital conversion,

ultra-low power devices, and other areas just described. The author of this thesis

hopes that this work will set the stage for the further exploration of jitter mitigation

and the application of such algorithms in novel devices.
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Appendix A

Derivation of the BLUE

Suppose the observation model is of the form in (1.9). Then, a linear unbiased

estimator, as shown in (3.2), must satisfy

E[H(z)]Tai = di, ∀i, (A.1)

where aT
i is the ith row of A and di is a column vector whose only nonzero element

is a one in the ith position.

The Best Linear Unbiased Estimator (BLUE) is the estimator that satisfies (A.1)

and minimizes the MSE. Since the aT
i rows can be chosen separately for each estima-

tor, the estimator variance (which for unbiased estimators is also the error variance

and MSE), can be minimized separately for each unknown parameter. The variance

for the estimate of one such parameter is given by aT
i Λyai, where Λy is the covari-

ance matrix of y, which depends on x. Being a covariance matrix, Λy is both positive

definite and symmetric (since the data is not deterministic, assume that the covari-

ance matrix is not degenerate). Therefore, performing the constrained optimization

problem

min
ai

aT
i Λyai (A.2)

subject to the ith constraint in (A.1) is equivalent to minimizing ‖wi‖2
2, where wi =

Λy
1/2ai. This new minimization problem can be solved as in [8]: it has a particular

solution w̆i found using the observation that since W
∆
= E[H(z)]TΛy

−1/2 has full row
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rank, WWT is invertible:

w̆i = WT (WWT )−1di. (A.3)

This solution can be projected onto W and decomposed into its component in the

range of W and the orthogonal component in the null-space of W; denote these

components wW and wW⊥, respectively. Then, using the standard orthogonality

argument,

wW = WT (WWT )−1di = w̆. (A.4)

Since wTw = wT
WwW + wT

W⊥wW⊥, selecting w to be in the range of W minimizes

the 2-norm, with wW⊥ = 0. Thus, plugging back into the expression for ai,

ai = Λy
−1

E[H(z)](E[H(z)]TΛy
−1

E[H(z)])−1di. (A.5)

Stacking the rows together yields the familiar expression for A:

A =










−aT
1 −
...

−aT
K−










= (E[H(z)]TΛy
−1

E[H(z)])−1
E[H(z)]TΛy

−1. (A.6)

The resulting estimator is the Best Linear Unbiased estimate for x. When H is a

known matrix, this result simplifies to the one derived in [18]. However, Kay reaches

this result differently, using Lagrange multipliers.
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