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Abstract

This thesis focuses on the design of magnetic resonance imaging (MRI) radio-frequency (RF)
excitation pulses, and its primary contributions are made through connections with the novel
multiple-system single-output (MSSO) simultaneous sparse approximation problem. The
contributions are both conceptual and algorithmic and are validated with simulations, as
well as anthropogenic-object-based and in vivo trials on MRI scanners.

Excitation pulses are essential to MRI: they excite nuclear spins within a subject that
are detected by a resonant coil and then reconstructed into images. Pulses need to be
as short as possible due to spin relaxation, tissue heating, and main field inhomogeneity
limitations. When magnetic spins are tilted by only a small amount, pulse transmission may
be interpreted as depositing energy in a continuous three-dimensional Fourier-like domain
along a one-dimensional contour to form an excitation in the spatial domain. Pulse duration
is proportional to the length of the contour and inversely proportional to the rate at which
it is traversed, and the rate is limited by system gradient hardware restrictions. Joint design
of the contour and a corresponding excitation pulse is a difficult and central problem, while
determining near-optimal energy deposition once the contour is fixed is significantly easier.

We first pose the NP-Hard MSSO problem and formulate greedy and convex relaxation-
based algorithms with which to approximately solve it. We find that second-order-cone
programming and iteratively-reweighted least squares approaches are practical techniques
for solving the relaxed problem and prove that single-vector sparse approximation of a
complex-valued vector is an MSSO problem.

We then focus on pulse design, first comparing three algorithms for solving linear systems
of multi-channel excitation design equations, presenting experimental results from a 3 Tesla
scanner with eight excitation channels.

Our aim then turns toward the joint design of pulses and trajectories. We take joint de-
sign in a novel direction by utilizing MSSO theory and algorithms to design short-duration
sparsity-enforced pulses. These pulses are used to mitigate transmit field inhomogeneity in
the human brain at 7 Tesla, a significant step towards the clinical use of high-field imag-
ing in the study of cancer, Alzheimer’s disease, and Multiple Sclerosis. Pulses generated
by the sparsity-enforced method outperform those created via conventional Fourier-based
techniques, e.g., when attempting to produce a uniform magnetization in the presence of se-
vere RF inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method
produces an excitation with 1.28 times lower root-mean-square error than conventionally-
designed 15-spoke pulses. To achieve this same level of uniformity, conventional methods
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must use 29-spoke pulses that are 1.4 times longer.
We then confront a subset selection problem that arises when a parallel excitation system

has more transmit modes available than hardware transmit channels with which to drive
them. MSSO theory and algorithms are again applicable and determine surprising target-
specific mixtures of light and dark modes that yield high-quality excitations.

Finally, we study the critical patient safety issue of specific absorption rate (SAR) of
multi-channel excitation pulses at high field. We develop a fast SAR calculation algorithm
and propose optimizing an individual pulse and time-multiplexing a set of pulses as ways to
reduce SAR; the latter is capable of reducing maximum local SAR by 11% with no impact
on pulse duration.

Thesis Supervisor: Elfar Adalsteinsson
Title: Associate Professor of Electrical Engineering
Associate Professor of Health Sciences and Technology

Thesis Supervisor: Vivek K Goyal
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is an extremely useful tool for producing high-resolution

images of soft tissues in the human body. Unlike computed tomography (CT), MRI does

not require the use of ionizing radiation and is generally a safe, practical procedure [22].

MRI may be viewed as a two-stage experiment that non-invasively yields a spatial map-

ping of hydrogen nuclei in living subjects. Nuclear spins within a subject are first excited

using a radio-frequency (RF) excitation pulse and proportions of excited spins are then de-

tected using a resonant coil; images are then reconstructed from this data. Excitation pulses

need to be tailored to a user’s specific needs and in most applications need to be as short

in duration as possible due to spin relaxation, tissue heating, and main field inhomogeneity

limitations. Further, in almost all imaging scenarios, excitations must not only be fast,

but spatially-selective as well. That is, an excitation pulse should manipulate nuclear spins

within only a particular two-dimensional (2-D) or three-dimensional (3-D) region of space

(e.g., a 5-mm-thick slice of tissue), leaving spins outside of this region untouched and thus

undetectable by the readout coil. Such spatially-selective excitations reduce the duration

and complexity of both the data readout and image reconstruction processes [12]. Finally,

spatially-tailored excitation pulses are often desired: these pulses are able to vary the extent

to which nuclear spins are excited across space. In short, the design and analysis of such

short-duration, spatially-selective, spatially-tailored excitation pulses, their application to

open problems, and the study of a mathematical sparse approximation problem inspired by

MRI pulse design are important topics and the focus of this thesis.
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One may show that RF excitation pulse design, under a linear approximation, involves

choosing to deposit energy in a continuous, 3-D, Fourier-like domain in order to form some

desired excitation in the spatial domain [102]; this domain is referred to as excitation k-space.

Energy may only be deposited along a 1-D contour in k-space, and there are limitations on

where and how it may be placed: the velocity and acceleration with which one traverses

the contour are subject to MRI system gradient hardware threshold values and switching

times. The most important fact is that excitation pulse duration corresponds directly to

the length of the chosen contour and the rate it is traversed. A key problem then is to find

a short “trajectory” through this k-space (and a corresponding energy deposition along this

trajectory) such that a high-fidelity version of the desired excitation forms in the spatial

domain. Other problems of interest include analyzing the effect excitation pulses have on

tissue heating, the design of pulses to mitigate such safety concerns, and the creation of new

algorithms that will produce pulses suitable for use on newly-developed parallel transmission

hardware.

1.2 Applications

Overall, in broad terms, each contribution to MRI excitation put forth in this thesis gener-

ally focuses on one, two, or all three of the following application areas:

1.2.1 High-Field Transmit Profile B+
1 Inhomogeneity Mitigation

High-magnetic-field MRI systems exhibit great promise because they significantly increase

tissue contrast and signal-to-noise ratio (SNR) [65], but in vivo human imaging at high

field is impeded by the presence of severe B+
1 transmit profile inhomogeneity [16], a phe-

nomenon that arises due to wavelength interference effects [133,136] and tissue-conductive

RF amplitude attenuation [29]. When standard slice-selective RF excitation waveforms

that work well on low-field systems are used to conduct high-field imaging experiments,

B+
1 inhomogeneity causes the resulting images to exhibit undesirable center brightening,

spatial contrast variation, and SNR non-uniformity, despite the use of homogeneous volume

RF excitation coils [26, 67, 73, 133, 136]. Solving this problem is a critical and necessary

step towards the use of high-field imaging in the study of cancer, Alzheimer’s disease, and

Multiple Sclerosis [2]. Note that inhomogeneity is also a concern at low field when imaging
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structures such as the spine [119] and body [15].

1.2.2 Parallel Excitation Multi-Channel Pulse Design

A recent MRI excitation concept, termed “parallel transmission” (and sometimes referred

to as “parallel excitation” or “transmit SENSE”), involves equipping an MRI scanner with

an RF excitation coil that differs substantially from those of standard systems in that

it is comprised of multiple elements that are each capable of independent, simultaneous

transmission [58, 79, 113, 130, 168, 169]. The presence of multiple elements allows one to

undersample a given excitation k-space trajectory and yet in many cases still form a high-

fidelity version of the desired excitation; undersampling the trajectory is greatly beneficial

because it reduces the distance one travels in k-space, in turn reducing the duration of the

corresponding pulse [58, 79, 113, 130, 168, 169]. This ability to “accelerate” in the Fourier-

like k-space domain and reduce pulse duration arises due to the extra spatial degrees of

freedom provided by the system’s multiple transmit elements; significant acceleration is not

possible on a conventional system equipped with a single-channel transmission coil unless

sophisticated joint trajectory-pulse design techniques are employed. Parallel transmission

systems also offer a flexible means for spatially-tailoring excitation patterns for inner-volume

excitation [47] and addressing increased main field (B0) and B+
1 inhomogeneity observed

at high field strengths [133, 136]. The design of parallel transmission pulses is an ongoing

open problem; a key issue of interest involves understanding and exploring to what extent

a given parallel transmission system may undersample excitation k-space and shorten pulse

duration and yet still produce a high-quality, patient-safe excitation.

1.2.3 Specific Absorption Rate Analysis and Reduction

Specific absorption rate (SAR)—defined as the average energy deposition in an N -gram

(Ng) region of tissue over a period of time due to the application of one or more radio-

frequency (RF) excitation pulses—is an important safety concern when conducting MRI

experiments on human subjects. Avoiding dangerously-high SAR is especially a concern for

the parallel transmission of spatially-tailored multi-dimensional excitation pulses through a

multi-channel transmission system [58,79,113,130,168,169]. This is because when multiple

transmit channels are simultaneously employed, the local electric fields generated by each

channel undergo superposition and local extremes in electric field magnitude may arise [168],
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leading to spikes in SAR within a local 1g or 10g region that are of major concern to regula-

tory bodies in both the United States [21] and Europe [70,71]. A recent study has confirmed

the frequent occurrence of such “hot spots” and found that parallel excitation pulses pro-

duce relatively high ratios of local SAR to whole-head mean SAR [111], making local rather

than global SAR the limiting factor of parallel transmission. Furthermore, it is unfortunate

that the greatest strength of parallel transmission systems—their ability to undersample

excitation k-space and reduce the length of the corresponding excitation pulse—creates an

additional SAR concern beyond the aforementioned one. Namely, accelerating a k-space

trajectory significantly increases peak pulse power [56, 78, 81, 141], which to the first order

has a quadratic impact on SAR. For example, to maintain the same nuclear spin flip angle

and excitation quality, a conventional “hard” (i.e., constant amplitude) excitation pulse [12]

requires a peak power increase by a factor of C as its duration is shortened by the same

factor, causing global SAR to increase by a factor of C2. Even when the repetition time of

the pulse is kept constant such that total RF duty cycle decreases by a factor of C, SAR

still increases linearly with C [78]. Understanding the SAR behavior of accelerated parallel

excitation pulses at both standard and high field strengths is an open problem, as is the

optimization of parallel transmission pulses (and pulse sequences) for the purpose of local

and global SAR reduction.

1.3 Algorithmic Focus: Multi-System Single-Output Simul-

taneous Sparse Approximation

Most of the advances in the first two MRI applications presented in this thesis are based on

forging connections with a novel sparse approximation problem and developing algorithms

for this problem. We will show that viewing pulse design from a sparsity approximation

perspective [23,24,31,34,37,41,43,44,52,93,96,107] gives rise to an NP-Hard linear inverse

problem where simultaneously sparse vectors are required to solve a set of equations involv-

ing multiple system matrices and a single known observation vector that is by itself a focus

worth pursuing from an applied mathematical standpoint. After studying multi-system,

single-output (MSSO) systems and designing MSSO algorithms independently of excitation

pulse design, we apply our work to the first two application areas listed above.
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1.4 Thesis Outline and Contributions

The chapter-by-chapter structure of the dissertation is given below. Publications and intel-

lectual property stemming from the work of each chapter are also listed.

Chapter 2 presents background information on MRI excitation theory, conventional

single-channel and multi-channel pulse design, and sparse approximation. The most impor-

tant segment of this chapter is our summary of how to linearize the continuous-time system

of differential equations governing MRI RF excitation under the low-flip-angle assumption

to arrive at the linear Fourier k-space relation between RF energy deposited by the system

and the resulting excitation that forms in the spatial domain [102].

Chapter 3 proposes the multiple-system, single-output (MSSO) simultaneous sparsity

problem, an NP-Hard linear inverse problem that requires the determination of multiple

unknown signal vectors. Each unknown vector passes through a different system matrix

and the results are added to yield a single observation vector. Given the matrices and lone

observation, the objective is to find a simultaneously sparse set of unknown vectors that

solves the system. Seven algorithms are formulated to approximately solve this problem.

Three greedy techniques are developed (matching pursuit [93], orthogonal matching pur-

suit [23,31,96], and least squares matching pursuit [31]) along with four methods based on

a convex relaxation (iteratively reweighted least squares [77], two forms of iterative shrink-

age [34,41,43,44], and formulation as a second-order cone program [17,92]). While deriving

the algorithms, we prove that seeking a single sparse complex-valued vector is equivalent to

seeking two simultaneously sparse real-valued vectors, increasing the relevance and ap-

plicability of MSSO theory, and then proceed to evaluate how well the techniques perform

during sparsity profile recovery and MRI multi-channel pulse design scenarios. Overall,

each algorithm is found to have its own particular weaknesses and merits, e.g., the iter-

ative shrinkage techniques converge slowly, but because they update only a subset of the

overall solution per iteration rather than all unknowns at once, they are useful in cases

where attempting the latter is prohibitive in terms of system memory. This work has been

submitted as an article to the journal indicated below:

• A. C. Zelinski, V. K. Goyal, and E. Adalsteinsson. Simultaneously Sparse Solutions

to Linear Inverse Problems with Multiple System Matrices and a Single Observation

Vector. Siam J Sci Comp, In Review, 2008.
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Chapter 4 studies three algorithms for solving linearized systems of RF waveform de-

sign equations for calculating accelerated spatially-tailored excitations on parallel excitation

MRI systems. Their artifact levels, computational speed, and RF peak and root-mean-

square voltages are analyzed. A singular value decomposition (SVD) [50, 51, 118] inversion

method is compared to Conjugate Gradient Least Squares (CGLS) [62] and Least Squares

QR (LSQR) [100,101], two iterative algorithms designed to solve large linear systems. The

excitation pulses calculated using these methods are used in both Bloch simulations and

imaging experiments on an actual eight-channel parallel excitation array implemented on a

3T human scanner. Overall, experiments show that waveforms designed using LSQR and

CGLS have lower peak and RMS waveform voltages and produce excitations with fewer

artifacts than those generated by the SVD-based method. This work resulted in a journal

article, conference paper, and patent:

• A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, V. K. Goyal,

F. Hebrank, U. Fontius, F. Schmitt, and E. Adalsteinsson. Comparison of Three

Algorithms for Solving Linearized Systems of Parallel Excitation RF Waveform De-

sign Equations: Experiments on an Eight-Channel System at 3 Tesla Concepts Magn

Reson, Part B: Magn Reson Eng, 31B(3):176–190, Aug. 2007.

• A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, F. Hebrank,

U. Fontius, F. Schmitt, and E. Adalsteinsson. RF Pulse Design Methods for Reduc-

tion of Image Artifacts in Parallel RF Excitation: Comparison of 3 Techniques on

a 3T Parallel Excitation System with 8 Channels. In Proc. Int. Soc. for Magnetic

Resonance in Medicine (ISMRM), page 1686, Berlin, Germany, 2007.

• A. C. Zelinski, E. Adalsteinsson, K. Setsompop, L. L. Wald, and U. Fontius. Method

for designing RF excitation pulses in magnetic resonance tomography. US Patent

7336145, issued February 26, 2008.

Chapter 5 uses MSSO theory to develop a sparsity-enforcement algorithm that jointly

determines quickly-traversable excitation k-space trajectories along with corresponding ex-

citation pulses. The proposed method lets users specify a desired 3-D spatially-tailored

and spatially-selective excitation and then generates a pulse and trajectory explicitly opti-

mized for the task at hand. The algorithm functions by applying an `1-norm penalty while
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searching over a large number of possible trajectory segments (and corresponding RF pulse

segments); this process ultimately reveals a small, sparse subset of trajectory and pulse seg-

ments that alone form a high-fidelity version of the desired target excitation. The method

is general: it applies to conventional single-channel as well as emerging multi-channel par-

allel transmission systems, and also to a variety of 2-D and 3-D k-space trajectories. After

mathematically developing the joint pulse-trajectory design technique, we use it to design

single-channel slice-selective pulses that mitigate B+
1 inhomogeneity in the human brain at

7 Tesla and eight-channel pulses that produce highly-structured excitations at 3 Tesla, and

single-channel 2-D spiral-trajectory pulses. Overall, this body of work led to two journal

articles, a pending patent, and four conference abstracts:

• A. C. Zelinski, L. L. Wald, K. Setsompop, V. K. Goyal, and E. Adalsteinsson.

Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design. IEEE Trans Med

Imag, In Press, 2008.

• A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, V. K. Goyal,

and E. Adalsteinsson. Fast Slice-Selective RF Excitation Pulses for Mitigating B+
1

Inhomogeneity in the Human Brain at 7T. Magn Reson Med, 59(6):1355-1364, June

2008.

• A. C. Zelinski, E. Adalsteinsson, V. K. Goyal, and L. L. Wald. Sparsity-Enforced

Joint Trajectory and RF Excitation Pulse Design. US Patent Pending, Internal Case

No. MGH 3726 / MIT 13074, 2008.

• A. C. Zelinski, V. K. Goyal, E. Adalsteinsson, and L. L. Wald. Sparsity in MRI

RF Excitation Pulse Design. In Proc Conf Information Sciences and Systems, pages

252–257, Princeton, NJ, March 2008.

• A. C. Zelinski, K. Setsompop, V. Alagappan, V. K. Goyal, L. L. Wald, and E. Adal-

steinsson. In Vivo B+
1 Inhomogeneity Mitigation at 7 Tesla Using Sparsity-Enforced

Spatially-Tailored Slice-Selective Excitation Pulses. In Proc. Int. Soc. for Magnetic

Resonance in Medicine (ISMRM), page 620, Toronto, Canada, 2008.

• A. C. Zelinski, V. K. Goyal, L. L. Wald, and E. Adalsteinsson. Sparsity-Enforced

Joint Spiral Trajectory & RF Excitation Pulse Design. In Proc. Int. Soc. for Magnetic

Resonance in Medicine (ISMRM), page 1303, Toronto, Canada, 2008.
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• A. C. Zelinski, K. Setsompop, V. K. Goyal, V. Alagappan, U. Fontius, F. Schmitt,

L. L. Wald, and E. Adalsteinsson. Designing Fast 3-D RF Excitations by Optimiz-

ing the Number, Placement, and Weighting of Spokes in k-Space via a Sparsity-

Enforcement Algorithm. In Proc. Int. Soc. for Magnetic Resonance in Medicine

(ISMRM), page 1691, Berlin, Germany, 2007.

Chapter 6 confronts a subset selection problem that arises when a parallel excitation

system has more transmit modes available than hardware transmit channels with which to

drive them. Here we show the applicability of MSSO theory and propose a fast target-

dependent sparsity-enforced subset selection algorithm that explicitly accounts for the de-

sired excitation pattern when choosing the mode subset, in contrast with principal com-

ponent and covariance analysis methods that only use the spatial profiles of the transmit

modes and thus determine only a single mode subset for all excitations. In one simulated

experiment, the proposed fast algorithm actually finds the optimal solution to the under-

lying NP-Hard combinatoric subset selection problem. This work appeared at a conference

and is also undergoing patent processing:

• A. C. Zelinski, V. Alagappan, V. K. Goyal, E. Adalsteinsson, and L. L. Wald. Sparsity-

Enforced Coil Array Mode Compression for Parallel Transmission. In Proc. Int. Soc. for

Magnetic Resonance in Medicine (ISMRM), page 1302, Toronto, Canada, 2008

• A. C. Zelinski, L. L. Wald, V. Alagappan, V. K. Goyal, and E. Adalsteinsson. Sparsity-

Enforced Coil Array Mode Compression for Parallel Transmission. US Patent Pend-

ing, Internal Case No. MGH 3673 / MIT 13014, 2008.

Chapter 7 investigates the behavior of whole-head and local SAR as a function of

trajectory acceleration factor and target excitation pattern due to the parallel transmission

of spatially-tailored excitations at a high field strength of 7 Tesla. Finite-difference time-

domain simulations in a multi-tissue head model are used to obtain B+
1 and electric field

maps of an eight-channel transmit head array. Local and average SAR produced by 2-D

spiral-trajectory excitations are examined as a function of trajectory acceleration factor

and a variety of target excitation parameters when pulses are designed for constant root-

mean-square excitation pattern error. To rapidly calculate local SAR, we develop a fast

algorithm with a small memory footprint. Mean and local SAR are shown to vary by orders
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of magnitude depending on acceleration factor and excitation pattern, often exhibiting

complex, non-intuitive behavior. Furthermore, we find that the ratio of local to global SAR

is often large, which implies that local SAR, rather than global SAR, is the limiting factor

of eight-channel parallel transmission at 7T. These results suggest that the validation of

individual target patterns and corresponding pulses is necessary to enable routine clinical

use of parallel transmission systems. This project culminated in a journal article and two

conference papers:

• A. C. Zelinski, L. M. Angelone, V. K. Goyal, G. Bonmassar, E. Adalsteinsson, and

L. L. Wald. Specific Absorption Rate Studies of the Parallel Transmission of Inner-

Volume Excitations at 7 Tesla. J Magn Reson Imag, In Press, 2008.

• A. C. Zelinski, L. M. Angelone, V. K. Goyal, G. Bonmassar, E. Adalsteinsson, and

L. L. Wald. Specific Absorption Rate Studies of the Parallel Transmission of Inner-
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Resonance in Medicine (ISMRM), page 1188, Berlin, Germany, 2008.

Chapter 8 proposes several ways to reduce the maximum local SAR produced by

parallel excitation pulses, since Chapter 7 shows that local SAR is a major safety concern of

such pulses. We first pose a linear-algebraic formulation to evaluate whole-head or local Ng

SAR, showing that local Ng SAR at any location may be computed using a highly-sparse,

redundant block-diagonal matrix; this generalizes the mean-SAR matrix given in [168].

We then introduce a method to explore excitation fidelity, mean SAR and pulse duration

tradeoffs, pose a constrained optimization problem that ensures local Ng SAR meets certain

constraints, and discuss the computational implications of such an optimization. This work

appeared as two conference articles:

• A. C. Zelinski, K. Setsompop, V. Alagappan, B. A. Gagoski, L. M. Angelone, G. Bon-

massar, U. Fontius, F. Schmitt, E. Adalsteinsson, and L. L. Wald. Pulse Design

Methods for Reduction of Specific Absorption Rate in Parallel RF Excitation. In
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Proc. Int. Soc. for Magnetic Resonance in Medicine (ISMRM), page 1698, Berlin,

Germany, 2007.

• A. C. Zelinski, V. K. Goyal, L. M. Angelone, G. Bonmassar, L. L. Wald, and E. Adal-

steinsson. Designing RF Pulses with Optimal Specific Absorption Rate (SAR) Char-

acteristics and Exploring Excitation Fidelity, SAR, and Pulse Duration Tradeoffs. In

Proc. Int. Soc. for Magnetic Resonance in Medicine (ISMRM), page 1699, Berlin,

Germany, 2007.

Chapter 9 also focuses on SAR-reduced parallel transmission, introducing the novel

concept time-multiplexing a set of pulses that each produce approximately the same exci-

tation pattern yields a lower maximum local SAR than does transmitting any individual

pulse over many repetition times. We then present an algorithm for determining the op-

timal multiplexing scheme (in the lowest maximum local SAR sense) when given a set of

candidate pulses, demonstrating the technique via simulations of a 7-Tesla eight-channel

parallel transmission system. We plan to submit this work to the following journal:

• A. C. Zelinski, V. K. Goyal, and E. Adalsteinsson. Reduction of Maximum Local

Specific Absorption Rate via Pulse Multiplexing. J Magn Reson Imag, In Preparation

for Submission, 2008.

Chapter 10 summarizes the contributions this thesis makes to the MRI and sparse

approximation communities and outlines directions for future research.

Manuscript structure. Applied mathematicians interested in the general MSSO prob-

lem should read the background on sparse approximation given in Chapter 2 and then turn

their attention to Chapter 3. The MRI applications and methods that rely in part on MSSO

theory and algorithms are located in Chapter 5 and Chapter 6. MRI excitation pulse de-

signers will be most interested in Chapter 5 (and to some extent, Chapter 6), whereas RF

safety researchers interested in the study and reduction of SAR due to parallel transmission

should refer to Chapter 7, Chapter 8, and Chapter 9.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

Here we provide an overview of magnetic resonance imaging (MRI). While comprehensive

descriptions of MRI may be found in, e.g., [12, 89], what follows is a brief introduction to

the modality to provide adequate context for discussing MRI excitation pulse design. The

most important concept to take away from this chapter is how pulse design, under a linear

approximation, involves choosing to deposit energy along a 1-D contour in a continuous,

3-D, Fourier-like “k-space” in order to form a desired excitation in the spatial domain.

2.1.1 System Overview

Fig. 2-1 depicts a prototypical MRI system that consists of:

• A strong magnetic main field that in most cases is generated by driving a large DC

current through superconducting coils. This field, referred to as “B0” (and of strength

B0 in units of Tesla), is directed from the feet to the head and defines the spatial z

axis. When a subject is placed within the bore of the magnet, a small proportion of

hydrogen atoms (H+) within the subject transition into a steady state, aligning fully

with B0 and precessing at the Larmor frequency, ω0 = γB0 (rad/sec), where γ is the

gyromagnetic ratio, a known physical constant (Hz/T). The gyromagnetic ratio of H+ is

42.576 MHz/T.

• A set of gradient coils that are able to impart controlled spatially-linear variations

(gradients) on the z-directed B0 field as a function of x, y, or z when driven with
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Figure 2-1: Cutaway view of a prototypical MRI scanner. The system’s main field,
B0, is oriented along the spatial z axis (directed from the feet to the head). In the steady
resting state, nuclear spins within the subject align with this main field and precess at
the Larmor frequency, ω0 = γB0 (rad/sec). [Image c©2008 National Magnetic High Field
Laboratory, Tallahassee, FL, USA. Used with permission.]

the proper currents. The continuously-valued gradient waveforms are denoted G(t) =

[Gx(t), Gy(t), Gz(t)]T, where T is the vector transpose, and are typically in units of

mT/m. The amplitude and slew rates of these waveforms are limited by hardware switch-

ing time and amplitude constraints. We will show shortly that these constraints limit

the speed at which we may traverse a contour through excitation k-space and thus are

an impediment to designing short-duration pulses.

• A radio-frequency transmission coil whose field is oriented perpendicularly to the static

main field and tuned to the Larmor frequency. This coil is able to influence nuclear spins

in the subject when driven by an RF voltage waveform, b(t), or a current waveform,

a(t), placed on top of a carrier waveform. In almost all cases, a quadrature coil [126]

is employed: one that is able to influence both the x and y components of the effec-

tive magnetic field simultaneously. We use complex variables to represent these two

orthogonal components at each instant in time, which allows us to treat b(t) and a(t) as

complex-valued time-varying signals.

• A reception coil that is able to detect, by induction, precessing transverse components of

spins that have deviated from the steady state. Transverse components are the compo-

nents of spins that lie in the (x, y) plane orthogonal to the spin component along the z

axis. Reception hardware is often integrated directly with the transmission coil.
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• A digital interface that is able to send trains of waveform samples to the gradient and

RF coils, and that is also able to sample and store inductive signals sensed by the receive

coil.

2.1.2 Larmor Precession and an Illustrative Thin-Slice-Imaging Example

Now let us consider an imaging scenario where our goal is to image the density of protons

within a thin slice of the subject’s brain. To begin, a subject lies motionless within the

scanner; at all locations, proportions of magnetic spins align with z, yielding net magne-

tizations solely along the z axis. The gradient coils are dormant, and the reception coil,

only capable of detecting transverse (non-z-directed) components of oscillating spins, senses

only thermal noise. Suddenly, a specially-crafted RF pulse is sent through the transmission

coil along with a judiciously-chosen set of gradient waveforms. The pulse excites only those

spins within a thin slice of tissue within the subject’s brain, most often only those spins

within (z0−δ/2, z0 +δ/2), producing a single-slice excitation. Spins within this δ-mm-thick

slice are tilted away from their steady-state z-directed position, while those outside the slice

are left in perfect alignment with the main field. Assume here that spins within the slice are

all tilted uniformly by a small angle; e.g., by 30 degrees at all (x, y, z = z0± δ/2) locations.

These small-tip-angle spins precess at the Larmor frequency, rotating around the z axis at

the angular rate w0, all while returning to the z-directed steady state position.

We note here that spatial flip-angle uniformity during excitation is crucial: if spins are

tilted non-uniformly across space, the intensity and contrast of the resulting image will

no longer correspond to the actual density of underlying spins and the image will contain

contrast and SNR non-uniformities that erode its diagnostic quality.

The transient behavior of a prototypical excited magnetic spin is illustrated in Fig. 2-2.

The rate at which the spin’s z-component recovers is modeled well by an exponential time

constant, denoted T1, and the rate at which its transverse components decay is modeled

well by an exponential time constant denoted T2. These constants depend on tissue type

as well as field strength, e.g., white brain matter has T1 ≈ 780 ms and T2 ≈ 80 ms when

B0 = 1.5 Tesla [12].

As the transverse components decay, they induce a current in the receive coil; this is

referred to as free induction decay (FID). During this brief time, the system enables its

analog-to-digital converter and samples the FID signal, s(t). The Fourier transform of
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Figure 2-2: Larmor precession and spin recovery. A spin is excited by an RF pulse
and tilted away from the z axis. After the transmission of the pulse, it then returns to its
steady-state position, precessing at a rate ω0 = γB0 when in the presence of a main field
of strength B0. The rate at which the longitudinal z component recovers, and at which
the transverse components decay, is modeled well by the tissue-dependent exponential time
constants T1 and T2. Here, the spin has only been tilted by a small angle away from z; this
is called small-tip-angle excitation.

this waveform is then computed, but because all spins within the thin slice of tissue have

precessed at ω0, no spatial information is obtained: the magnitude of the Fourier component

corresponding to ω0 simply indicates the density of excited spins within the entire slice. The

receive coil has done little more than provide us with the integral of all detectable spins;

only the “DC” component of the image we wish to generate has been determined.

What must be done to produce a useful spatial image of spin proportions within the

thin slice? The late Paul Lauterbur conceived of the solution [87]: induce a gradient along

the main field during the excitation process and make spins at different spatial locations

precess at different rates; this lets the readout coil observe a signal with a spread of frequency

components, each corresponding to spin proportions at a particular point in space. Consider,

for example, applying a gradient of magnitude Gx such that the z-directed B0 field varies

with x, i.e., B(x) = B0+xGx. Now a spin at x precesses at rate w(x) = γB(x) after applying

the RF pulse, rather than simply at rate ω0. The signal observed by the readout coil is now

comprised of various significant frequency components whose magnitudes provide spatially-

dependent spin density information. Extending this process to two dimensions (using both

x and y gradients) permits the readout and reconstruction of a 2-D image whose intensity

at (x, y) corresponds with the density of spins at (x, y, z0 ± δ/2).

The scenario outlined above—namely, exciting a thin slice of tissue—is referred to as

“thin-slice excitation” and is the predominant type of MRI excitation conducted today. This

type of excitation dominates the field because it simplifies the readout stage by permitting
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the system to record and reconstruct an image from only two dimensions of data. One topic

that has not yet been explained in this subsection is how to design an RF pulse that uni-

formly excites spins within only a thin slice of tissue. The creation of such spatially-selective,

spatially-tailored pulses is the focus of our work. The design problem is essentially one of

choosing G(t) and b(t) such that spins across (x, y, z) undergo a user-defined excitation.

2.1.3 The Bloch Equation

Let us now back away from the illustrative example and simply consider a cluster of many

magnetic spins within a tiny voxel centered about r = [x, y, z]T in space. Here we will

employ vector notation to differentiate between field and spin components along the x, y,

and z axes; to begin, let x, y, and z be unit vectors along these respective axes, and let

us neglect the effect of the time constants T1 and T2. The discussion here is largely based

upon Ch. 5 and Ch. 6 of [98] and Sec. 1 of [102].

In the absence of a main field, the many spins within the voxel are oriented at random,

and the net magnetizations along each axis, Mx(r), My(r), and Mz(r), are essentially zero.

We may represent these with a vector: M(r) = [Mx(r),My(r),Mz(r)]T. An inductive coil

that is able to detect transverse components will thus observe no significant magnetization

along the x and y axes.

However, in the presence of the z-directed main field B0 = B0z, a fraction of the mag-

netized spins aligns with this field, creating a non-zero magnetized equilibrium component

along z, denoted M0. But because the many spins in the tiny voxel that do not align

with the main field still have random orientations, the net magnetization along x and y

remains zero and spins within the tiny voxel remain undetected by the reception coil. In

this situation, M(r) = M0z.

Now let us apply a time-varying excitation pulse through the transmission coil, injecting

the following circularly-polarized signal into the RF coil: B1(t) = B1(t)e−jω0t, where B1(t)

may be viewed as a complex-valued modulation term (a waveform with both magnitude and

phase) and ω0 as a carrier frequency. This RF signal influences the x and y components

of the overall magnetic field at r and impacts a small fraction of the magnetic spins in

the region of interest. If we consider a reference frame that rotates about z at angular

velocity ω = γB, the net magnetic spin components obey the following continuous-time

35



three-dimensional differential Bloch equation [14]:

dM(r, t)
dt

= γM(r, t)×B(r, t)− ω ×M(r, t), (2.1)

where × is the vector cross product, B(r, t) is the magnetic field at r (in this case equal to

B0 + B1(t)), and the rightmost term accounts for the rotation about z. Essentially, (2.1)

describes how the components of the magnetization vector M evolve over time due to the

application of the RF pulse in the presence of the main field (hence M’s new dependence

on time) [98].

Now assume we drive each gradient coil with a time-varying waveform to modulate the

z component of the magnetic field at r. We express the gradient as the vector G(t) =

Gx(t)x + Gy(t)y + Gz(t)z, so at location r and time t its impact on the magnetic field is

(G(t) · r)z = [0, 0, Gx(t)x + Gy(t)y + Gz(t)z]T, where · is the vector dot product. Thus the

overall effective field at r and time t becomes B(r, t) = B0 + B1(t) + (G(t) · r) z, and (2.1)

becomes:

d

dt




Mx(r, t)

My(r, t)

Mz(r, t)


 = γ




0 G(t) · r −B1,y(t)

−G(t) · r 0 B1,x(t)

B1,y(t) −B1,x(t) 0







Mx(r, t)

My(r, t)

Mz(r, t)


 , (2.2)

where B1,x(t) and B1,y(t) are the demodulated orthogonal time-varying real-valued compo-

nents of the applied RF field that are produced by the quadrature transmission coil [102].

2.1.4 Time Constant Equations

Before studying (2.2), here we simply note the behavior of M(r, t) when T1(r) and T2(r)

are accounted for. Assuming that an excitation pulse is applied prior to time t = 0 and

ends at t = 0, the longitudinal component returns to its equilibrium state based on T1(r)

as follows:

Mz(r, t) = Mz(r, 0+)e−t/T1(r) + M0(r)(1− e−t/T1(r)), (2.3)

where Mz(r, 0+) is the value of the longitudinal component immediately after the excitation

pulse has finished being transmitted. If we represent the transverse components Mx(r, t)

and My(r, t) via the complex-valued variable m(r, t) = Mx(r, t) + jMy(r, t), then the rate
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of decay of the transverse components is governed by T2(r) as follows:

m(r, t) = m(r, 0+)e−t/T2(r)e−jω(r)t. (2.4)

This is a decaying complex-valued sinusoid. Here, ω(r) = γB(r) and B(r) is simply the

z-directed magnetic field strength at location r. The main point here is that after exciting

a desired region, the transverse components decay away as modeled by T2.

2.1.5 The Small-Tip-Angle Assumption and Excitation k-Space

We now continue our study of the expanded Bloch equation given in (2.2). Let us assume

that the RF energy deposited by the system tilts the z component of the net magnetization

by only a small angle at location r and thus Mz(r, t) ≈ M0, the latter being the original

constant longitudinal steady-state net magnetization when only the main field is active.

Imposing this assumption decouples the third component of (2.2) from the other two.1 If

we define the transverse magnetization as a complex-valued variable m(r, t) = Mx(r, t) +

jMy(r, t) and the applied RF pulse as the complex-valued time waveform b(t) = B1,x(t) +

jB1,y(t), then according to Pauly et al. [102], the x and y components of (2.2)—those

components visible to the reception coil—may be structured as a single complex-valued

differential equation:

m(r, t) = −jγ (G(t) · r) m(r, t) + jγb(t)M0. (2.5)

Recalling that in the steady-state M(r) = M0z, and imposing this as an initial condition

(i.e., that m(r, 0) = 0), Pauly et al. solve (2.5) to yield the final magnetization at time

L [102]:

m(r, L) = m(r) = jγM0

∫ L

0
b(t) exp

(
−jγr ·

∫ L

t
G(s)ds

)
dt (2.6)

This is the core equation that motivates the interpretation of RF pulse design as depositing

energy in excitation k-space (a spatial frequency domain) to tailor the resulting magneti-

1It is worth noting that it has been empirically shown that this assumption holds extremely well for up
to a 60-degree tip angle and approximately for up to a 90-degree angle, breaking down for flip angles nearing
180 degrees [102].
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zation m(r) in a desired way. To see this, define k(t) as follows [102]:

k(t) = −γ

∫ L

t
G(s)ds, (2.7)

and then substitute (2.7) into (2.6) to obtain:

m(r) = jγM0

∫ L

0
b(t) exp (jr · k(t)) dt. (2.8)

This results in a striking change: (2.8) is now simply a 3-D Fourier transform to within a

multiplicative constant.

One may interpret (2.8) as follows: k(t) is a 1-D contour that traces through a 3-D

continuous spatial frequency domain over time; RF energy as represented by the complex-

valued time-varying signal b(t) is deposited along this contour at different frequencies, and a

Fourier transform of this energy describes the approximate transverse magnetization pattern

arising in the spatial domain. We see too the explicit dependence of the trajectory on the

gradients: the negated remaining running time integral of G(t) from time t to L determines

our location in k-space at time t. Because the gradient waveforms are driven by real

hardware, and because such hardware has its own amplitude, slew rate, and switching time

constraints, this means that the rate and extent to which we may traverse a contour through

k-space is itself constrained.

We see now that our desire to obtain short-duration excitation pulses (as discussed in

Ch. 1) is directly at odds with the gradient-related impediments on k-space traversal. This

is why the design of efficient, short trajectories through k-space (and RF waveforms to

accompany them) remains an open, high-impact problem even nearly 20 years after Pauly

first proposed excitation k-space.

2.1.6 Data Readout and Image Reconstruction

We briefly alluded to post-excitation data readout and image reconstruction in the thought

experiment of Sec. 2.1.2. From here onward we will simply assume that if one forms a

high-fidelity version of the desired excitation, the readout stage is able to be accomplished.

There is a great deal of literature discussing MRI readout theory that details many styles

of data collection and image reconstruction, e.g., [12, 89,98].
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Figure 2-3: Single-spoke slice-selective excitation example. A sinc-like RF pulse
segment is played over a period of time where the gradients are constructed such that the
trajectory proceeds through a straight line along the kz axis in excitation k-space. Due to
the small-tip-angle Fourier-like relation given in (2.8), this sinc-like energy along kz yields
a box-shaped excitation profile along z, i.e., it primarily excites only those spins within the
small region z0±δ, such that m(x, y, z) is a constant positive value for z ∈ (z0−δ/2, z0+δ/2)
and zero otherwise.

2.1.7 Spoke-Trajectory Pulses for Thin-Slice Excitation

We now briefly revisit the thin-slice excitation discussion of Sec. 2.1.2 and focus on a class of

slice-selective pulses comprised of k-space trajectory segments that resemble sine cardinals

(sincs). We refer to these pulse segments as “spokes” [108, 113, 132] because as each is

played, its trajectory in k-space is a straight line. In the small-tip-angle regime, based

on the relation given in (2.8), a rectangle-like slice profile along the z axis is achieved by

placing a sinc-like RF pulse segment (a spoke) in the kz direction of excitation k-space. In

practice, a true sinc along kz is replaced by a finite-length, sinc-like waveform [113]. The

time-bandwidth product and kz-extent of the segment influence the thickness and transition

edges of the slice; such Fourier properties as well as others hold in this situation due to (2.8).

Single-spoke pulses. Fig. 2-3 provides a simple illustrative example of a one-spoke

pulse, the accompanying RF waveform, and the resulting transverse magnetization pattern.

The reason spoke-based pulses are effective at exciting thin slices is because they spend the

majority of their time (and deposit energy) throughout moderate-to-high kz frequencies,

which allows them to strongly influence the magnetization m(r) along the spatial z axis.

Multi-spoke pulses. Playing a single sinc-like spoke at (kx, ky) = (0, 0) (DC) in k-

space is one way to excite a thin slice, and it is the traditional method of slice-selective

excitation. Depositing energy at a single frequency in (kx, ky), however, does not provide
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any ability to tailor the resulting in-plane (x, y) spatial excitation pattern when using a

single-channel excitation system; even with a multi-channel excitation system, significant

tailoring of the in-plane excitation is not possible with this approach. Thus in order to

strongly influence the in-plane excitation flip angle while simultaneously maintaining slice

selectivity, one must place a number of spokes at various locations in (kx, ky), modulating

the amplitude and phase of each to form a desired in-plane transverse magnetization; here,

the complex weightings in (kx, ky) form the in-plane excitation, while the sinc-encoded kz

traversals provide slice selectivity in z. Simultaneous slice selection and in-plane tailoring

are possible due to the separability of the 3-D Fourier transform in (2.8) that relates the

spatial excitation to the deposition of energy in k-space. Unfortunately, using multiple

spokes has the negative consequence of increasing pulse duration. Thus an ideal spoke-

based pulse is one that not only achieves the user-specified in-plane excitation, but does so

using as few spokes as possible. (We will confront this problem in Ch. 5 by using a sparse-

approximation-inspired technique to optimize spoke placements in the (kx, ky) plane.)

2.1.8 Spiral-Trajectory Pulses for Structured In-Plane Excitation

without Slice Selectivity

Now let us consider a different trajectory, one that spends all of its time spiraling within

the (kx, ky) plane and never travels away from kz = 0. No matter how much RF energy

we place along this trajectory, its energy deposition is simply a Dirac delta with respect

to kz frequencies, which means that its excitation along the spatial z axis will be nonzero

along z everywhere m(x, y) 6= 0. In other words, a 2-D spiral trajectory—as well as any

other trajectory that fails to deposit energy at nonzero kz frequencies—is incapable of

exciting spins within only a thin slice along z. The upside of spiral trajectory pulses (and

other 2-D trajectories) is that they are able to highly-structure the in-plane magnetization

m(x, y) because they travel out to and may deposit energy at moderate-to-high kx and

ky frequencies. Fourier properties hold here: for example, the radial spacing of the spiral

rings determines the extent to which aliasing may occur within the field of view, and the

maximum frequencies traversed by the spiral inherently limit the resolution of the excitation

we may form. When designing a spiral trajectory, one must account for these properties to

avoid aliased excitations or patterns too low in resolution.

Figure 2-4 illustrates a spiral trajectory, the gradients that implement the spiral, and
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Figure 2-4: Spiral-trajectory excitation example. The gradients and (kx, ky)-space
trajectory are given, along with the RF waveform, b(t), deposited by the system as the
trajectory is traversed. Within the (x, y) plane, a highly-structured box forms (due to
energy placed at high kx and ky frequencies), but when viewing the resulting magnetization
along z, the pulse fails to excite spins within only a thin slice.

the pulse magnitude b(t) one may play along the trajectory to yield a highly-structured

box-shaped excitation in the (x, y) spatial plane, but due to the fact that no energy is

placed away from kz = 0, we see that there is no spatial selection in z.

2.1.9 Non-Idealities of Excitation: B+
1 and Main Field Inhomogeneity

When the small-tip-angle approximation is applied to a realistic single-transmit-channel

system, we arrive at the following equation [102,146] rather than at (2.8):

m(r) = jγM0S(r)
∫ L

0
b(t)ej∆B0(r)(t−L)ejr·k(t) dt = S(r)p(r). (2.9)

Notice that (2.9) is identical to (2.8) except for the presence of S(r) and ej∆B0(r)(t−L). Here,

m(r) is in radians, t in seconds, and γ in rad/T/s. The implicitly defined term, p(r), will

be discussed shortly.

Spatial transmit B+
1 profile. The first new variable, S(r), is complex-valued, varies

across space, and is referred to as the spatial transmit profile of the transmission channel. In

other words, S(r) is essentially a spatial basis function that conveys how capable the coil is
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Figure 2-5: Single-channel system spatial B+
1 transmit profile in a water phantom

at 7T. |S(x, y, z0)| is depicted in units of nT/V, varying significantly with r due to the B+
1

inhomogeneity phenomenon. It will be difficult to produce a uniform flip angle across space
within a thin slice without using a sophisticated pulse (e.g., a multi-spoke pulse).

at exciting spins across space. For example, if S(r) = 0, then the transmit coil is incapable

of tilting spins at r. Here, S(r) is in units of T/V.2 The true term for S(r) is “B+
1 map”,

“B+
1 profile”, or “B+

1 (r)”, but we use S(r) to avoid confusion with the system’s reception

profile, denoted B−
1 , and to simplify notation.

B0 main field inhomogeneity. The second new variable, ∆B0(r), is a field map of

B0 inhomogeneity in radians/second. Essentially, the system’s main field is never perfectly

equal to B0 everywhere. When considering this non-ideality from a k-space perspective, it

causes a phase accrual over time at each location r, which is handled by the ej∆B0(r)(t−L)

term in (2.9). A main field inhomogeneity map is easy to acquire on a modern system and

its phase accrual effect may be mitigated by simply incorporating it into the design process,

as will be detailed shortly. B+
1 inhomogeneity is a significantly worse problem.

Nominal excitation. The implicitly defined term of (2.9), p(r), is the nominal excita-

tion that forms before accounting for S(r). In other words, p(r) is the excitation that would

form across space if S(r) = 1 for all r.

Detrimental effect of B+
1 inhomogeneity at high field. At high magnetic field

strengths, where B+
1 inhomogeneity [16] is severe, S(r) will vary significantly with r [29,

133, 136]. For example, Fig. 2-5 shows the in-plane |S(x, y, z0)| that arises when a water

2If a current waveform a(t) were substituted for the voltage waveform b(t) in (2.9), S(r) would be in
units of T/A.
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phantom (an anthropogenic object used for test imaging) is placed in a 7 Tesla scanner.

When a low-flip-angle pulse is transmitted on a high-field system, its nominal excitation,

p(r), is multiplied (pointwise) by the inhomogeneous S(r) to yield the actual magneti-

zation, as given in (2.9). Applying a standard one-spoke slice-selective excitation, where

|p(x, y, z0)| = 1, thus results in a non-uniform in-plane flip angle magnitude, equal to

|S(x, y, z0)p(x, y, z0)| = |S(x, y, z0)|. This is extremely detrimental because a non-uniform

flip angle across space causes all resulting images to have unwanted contrast and SNR

variations across space, limiting their diagonistic quality.

In contrast, an ideal mitigation pulse produces a nominal excitation p(r) such that

|S(r)p(r)| is constant for all r in some region of interest, i.e., the ideal |p(r)| equals the

pointwise inverse of S(r), denoted |S(r)|−1, to within a multiplicative constant. This pulse

is ideal in the sense that it mitigates the magnitude of the inhomogeneity; it does not

impose phase uniformity because the latter is not stringently required in most clinical

imaging applications.

Recalling that thin-slice uniform excitation is fundamental for most imaging schemes, we

see that in order to achieve such an excitation in the presence of inhomogeneity, one must not

only place energy throughout moderate-to-high kz frequencies to be selective about z = z0,

one must also judiciously place energy throughout (kx, ky) to tailor the nominal excitation

to mitigate the inhomogeneous in-plane S(x, y, z = z0). In Ch. 5, we will enable high-

field imaging by implementing sparse approximation techniques that design short-duration

thin-slice B+
1 -mitigation pulses.

2.1.10 Single-Channel Excitation Pulse Design

We now outline a spatial-domain-based method to design an excitation pulse to achieve a

desired excitation d(r) across space. This method accounts for S(r) and thus may be able to

mitigate inhomogeneity in certain spatial regions if the trajectory covers the proper spatial

frequencies. The approach here is largely due to [146].

Assumptions. First we assume that S(r) and ∆B0(r) are known at all points r within

a particular region of interest, called the field of excitation (FOX). Further, let the gradient

waveforms, G(t), be fixed, which in turn fixes the trajectory through k-space, k(t), due to

the latter’s linear dependence on the former as given in (2.7).
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Discretization. We now discretize (2.9) by sampling space at locations r1, . . . , rNs

within the FOX and sampling time at t1, . . . , tNt ∈ [0, L]; the ti are spaced uniformly by

∆t. This yields

m = SFb = Ab (2.10)

Here, S ∈ CNs×Ns is a diagonal matrix comprised of Ns samples of the spatial profile S(r)

taken within the user-defined FOX. The next matrix, F ∈ CNs×Nt , brings energy placed

in k-space into the spatial domain at the Ns locations where the coil profile is sampled

within the FOX. Formally, F(m,n) = jγM0∆te
j∆B0(rm)(tn−L)ejrm·k(tn). Finally, b ∈ CNt is

comprised of samples of the RF waveform, b(t), spaced by ∆t [146].

To within aliasing constraints, users are free to choose how finely to sample the spatial

and temporal variables in (2.9) and thus control whether m = Ab is underdetermined or

overdetermined [80,146]. Furthermore, by sampling r only within the FOX, (2.10) becomes

blind to the excitation that forms outside of the desired FOX and is thus freed from needless

spatial constraints.

Conventional pulse generation. To excite a pattern d(r), we must determine an

RF pulse to play through the transmit coil. To do this, one may form Ns samples of the

desired pattern into the vector d ∈ CNs and create a pulse that (approximately) achieves

the desired excitation by solving

d = SFb (2.11)

for b. We might solve (2.11) via direct inversion (or pseudoinversion) of SF, or perhaps

instead solve a Tikhonov-regularized problem [123,124] that penalizes the `2 energy of b:

min
b

{‖d− SFb‖2
2 + δtik‖b‖2

2}, (2.12)

where δtik is a small nonnegative regularization term. After solving (2.11) in some manner,

we may extract the time samples of the pulse from b and play the pulse through a Bloch-

equation simulator or the actual system. If (2.11) is solved accurately, the small-tip angle

approximation is valid, and the SNR is sufficient, then the excitation that forms will resemble

the target pattern, d(r).

44



20

0

40

60

80

100

120

140

160

180

nT
 / 

vo
lt

|S1(r)| |S2(r)| |S3(r)| |S4(r)|

|S5(r)| |S6(r)| |S7(r)| |S8(r)|

Figure 2-6: Profile magnitudes of an eight-channel 3-Tesla parallel excitation
MRI system. Here the magnitudes of the Sp(r)s are depicted for p = 1, . . . , 8; samples
of each Sp(r) may be taken within the nonzero region of influence (the chosen FOX) and
stacked into the diagonal matrix Sp. Across space, the Sp(r)s are not orthogonal—their
regions of influence overlap each other to some extent.

2.1.11 Multi-Channel Parallel Excitation Pulse Design

Recently, systems have emerged whose transmit coils are comprised of P > 1 elements, each

capable of independent, simultaneous transmission, e.g., [58,79,113,130,168,169]. Because

each of the P transmission elements has its own corresponding spatial transmit profile,

denoted Sp(r), and assuming the small-tip-angle assumption still holds, (2.9) extends as

follows:

m(r) = jγM0

P∑

p=1

Sp(r)
∫ L

0
bp(t)ej∆B0(r)(t−L)ejr·k(t) dt, (2.13)

where bp(t) is the RF pulse played along the transmission coil’s pth channel (V) [59]. If

the gradients here are the same as in (2.9), the trajectory k(t) remains the same, but

now there are P energy weightings being deposited along it; the pth weighting produces

an excitation in the spatial domain (impacted by Sp(r)) and the superposition of the P

individual excitations yields the overall excitation.

Multi-channel system transmit profiles. Fig. 2-6 depicts the coil profile magnitudes

of an eight-channel system within an oil phantom at 3 Tesla. Spatially, the Sp(r)s are not

orthogonal—their regions of influence overlap each other to some extent. If the strength of

the main field is increased, the Sp(r)s will exhibit increased variation.

Conventional parallel pulse generation. Here we summarize the design method

of [59]. Other pulse design approaches that rely on k-space but not the exact spatial-domain

discretization steps given here are those of Katscher et al. [79] and Zhu et al. [168,169].
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To begin, suppose we have a P -channel system and want to produce a desired excitation

d(r). Formally, let us seek bp(t)s in (2.13) such that the resulting m(r) is close in the `2

sense to d(r) for all r in a user-defined FOX. As in Sec. 2.1.10, a set of gradients is chosen

to traverse a contour in k-space that is considered useful. We then discretize (2.13) in space

at locations r1, r2, . . . , rNs , and uniformly sampled in time at t1, t2, . . . , tNf
(samples are

spaced by ∆t). This yields

m = S1Fb1 + · · ·+ SPFbP

= [S1F · · ·SPF]




b1

...

bP


 = Atotbtot,

(2.14)

where Sp ∈ CNs×Ns is a diagonal matrix comprised of Ns samples of Sp(r) taken within the

FOX. The next matrix, F ∈ CNs×Nt , is an operator that brings energy placed in k-space

into the spatial domain at the Ns locations where each coil profile is sampled and is identical

to the one given in Sec. 2.1.10. Finally, each bp ∈ CNt contains samples of bp(t) [59].

A set of P RF pulses that (approximately) achieves the desired excitation may now be

generated by solving

d = Atotbtot (2.15)

for btot, where d ∈ CNs is constructed by sampling d(r). Solving (2.15) via Tikhonov

regularization is one way to find a well-conditioned solution btot, i.e.,

min
btot

{‖d−Atotbtot‖2
2 + δ‖btot‖2

2}. (2.16)

After solving the problem, samples of each of the P RF pulses may now be extracted from

btot, played through the P -channel system, and used to produce an excitation close to d(r).

Undersampling. The presence of multiple excitation elements allows one to under-

sample an excitation trajectory relative to a conventional Nyquist-sampled trajectory and

yet often still form a high-fidelity version of the desired excitation. Undersampling is greatly

beneficial: it reduces the distance traveled in k-space and thus the duration of the corre-

sponding pulse.

Unaccelerated vs. accelerated spiral-trajectory eight-channel design exam-
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ple. Fig. 2-7 illustrates details of the design process when generating parallel excitation

pulses to produce a 15-degree, 28-mm × 28-mm target box pattern with fixed in-box and

overall fidelity constraints. Spirals are “accelerated” by factors of R, which means that the

radial separation between spiral samples is increased R-fold relative to a Nyquist-sampled

R = 1 design. The columns, from left to right, show design details for R = 1, 4, and 7

trajectories. The first and second rows depict the progressively-undersampled spiral trajec-

tories fed to the design algorithm in each case and the gradients of each trajectory. The

third row depicts the magnitude of the eighth channel’s RF pulse shape, |a8(t)|. (In the

interest of space, only one of the eight RF pulse shapes in each case is shown). Finally, the

bottom row shows the resulting excitations after Bloch-simulating the gradients and pulses;

each pattern has the same fidelity. As R increases, the pulses grow shorter in duration as

intended, and the eighth channel’s RF pulse changes greatly in both magnitude and shape.

The R = 7 pulse shape has a 100-times greater peak magnitude than the R = 1 pulse

shape, a natural consequence of the fact that with only an R = 7 spiral, there are very

few degrees of freedom remaining in k-space with which to form the excitation relative to

the Nyquist-sampled R = 1 spiral, which forces the system to drive the channel profiles

intensely with high-amplitude RF pulse shapes in order to form the desired pattern. This

makes intuitive sense: the lack of k-space freedom forces the system to rely heavily upon

its degrees of freedom in the spatial domain.

Relation to parallel readout. Parallel transmission is the excitation counterpart to

the concept of readout-side acceleration where the use of multiple reception coils permits

one to undersample readout-side data and substantially reduce readout time [106, 115];

the development of parallel transmission arrays has lagged behind that of multi-channel

reception arrays because unlike readout-side scenarios where adding an additional channel

is simplistic and low in cost, adding a transmit channel requires an expensive RF power

amplifier and adds greatly to the complexity of the MRI system’s online, real-time safety

monitoring hardware.

2.1.12 Signal Intensity Equations

Here we outline the intensity (i.e., magnitude) one observes in a reconstructed image at

location r that arises when one plays particular types of pulses through the scanner. These

equations will play a crucial role in the next subsection.
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Figure 2-7: Unaccelerated vs. accelerated spiral-trajectory parallel excitation
eight-channel pulse design example. Target pattern: 28-mm × 28-mm centered 15-
degree square pattern with fixed in-box and overall normalized root-mean-square error con-
straints. Left, middle, and right columns: design details for R = 1, 4, and 7 trajectories,
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Second row: gradient waveforms. Third row: magnitude of the eighth channel’s RF pulse
shape, |a8(t)|. Bottom row: resulting excitations. As R increases, the pulses grow shorter
in duration as intended. The eighth channel’s RF pulse (along with the other seven pulses
that are not shown) change greatly in both magnitude and shape with increasing R due to
the loss of degrees of freedom in k-space.
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First, assume a standard one-spoke slice-selective pulse is repeatedly transmitted with

peak transmit voltage V through a transmit coil’s pth channel with a fixed repetition time

(TR). During this process, we form an intensity image SI via a readout procedure referred

to as a gradient-recalled echo (GRE) [12,89,98]. In this scenario, the following holds:

SI(r, V ) = c · ρ(r) · |B−
1 (r)| · sin(V α(r)) · 1−E1(r, TR)

1− E1(r, TR) cos(V α(r))
, (2.17)

where c is a gain constant, ρ(r) is proton (H+) density, E1(r,TR) = exp(−TR/T1(r)),

and α(r) is the flip angle achieved at location r in rad/V [27, 137]. We thus see how the

tissue relaxation parameter T1, peak voltage, and choice of repetition time impact image

intensity. The effect of T2 has been ignored, which is a reasonable assumption [98,137]. For

a standard pulse of duration τ , α(r) = γτ |Sp(r)| [27,137].

The final parameter of (2.17), |B−
1 (r)|, is the dual of the |Sp(r)|s: it is the magnitude

of the system’s reception or receive profile.3 Analogously to |Sp(r)|, the receive profile will

exhibit significant spatial variation (inhomogeneity) on high-field systems. From (2.17),

we see that an inhomogenous |B−
1 (r)| indeed impacts SNR across space, but not image

contrast. In practice, its image shading effect is removed simply via pointwise division from

the resulting image SI.

Now assume we play a special-purpose magnetization reset pulse after the standard pulse

as detailed in [33]. This eliminates the denominator of (2.17), yielding

SI(r, V ) = c ·R(r) · (1− E1(r,TR)) · sin(V α(r)) = q(r,TR) · sin(V α(r)), (2.18)

where R(r) = ρ(r)|B−
1 (r)| is the proton-density-weighted receive profile and q(r, TR) is

implicitly defined; this expression holds even for TR < T1 [33].

Finally, consider a case where V is small enough such that V α(r) is small everywhere

and a reset pulse is not used; here, cos(V α(r)) ≈ 1 and sin(V α(r)) ≈ V α(r), causing the

(1− E1(r,TR)) terms of (2.17) to cancel, resulting in the following image intensity:

SI(r, V ) = c · V ·R(r) · α(r). (2.19)

3For the purposes of this thesis, the systems we use for experimentation have only one reception profile
regardless of how many transmit channels they may have.
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2.1.13 Transmit Profile, Receive Profile, and Flip Angle Map Estimation

Throughout the chapter we assumed that the single-channel system transmit profile, S(r),

and the multi-channel system profiles, the Sp(r)s, were known. In reality, these profiles

must be estimated. Here we first describe how to estimate Sp(r) by collecting a series

of images and exploiting (2.18). Other transmit profile magnitude estimation methods

include [18,33,69,82,95,137]. We then describe a single-channel method to estimate R(r) =

ρ(r)|B−
1 (r)| and α(r) due to any excitation pulse,4 a seemingly novel approach that we

introduced in [112,161,164].

Estimating the transmit profile magnitude |Sp(r)|. If B+
1 inhomogeneity is not

severe, one may exploit (2.18) to obtain α(r) (and subsequently |Sp(r)|) simply by collecting

two short-TR images using standard slice-select pulses with peak voltages V1 and V2, where

V2 = 2V1 (using the reset pulse each time), dividing the magnitude of the second image

by the first (pointwise), and taking the inverse cosine [33, 69]. This method relies on the

voltages being large enough such that the flip angle across the FOX is no longer in the

linear regime [i.e., such that sin(V α(r)) 6= V α(r)]. Unfortunately, when inhomogeneity is

severe (e.g., in the human brain at B0 = 7 Tesla), the voltages V1 and V2 fail to produce

flip angles that fall outside of the linear regime across the entire FOX, and as a result the

double-angle procedure fails to produce a stable |Sp(r)| estimate at all spatial locations of

interest. Therefore we adopt a different approach: using a standard pulse followed by a

reset pulse each time, we vary V over a wide enough range to ensure that both low-flip

and high-flip angles are achieved at each spatial location r and collect N short-TR images.

For each r, we then fit the N corresponding intensity samples to (2.18) in the least-squares

sense using the Powell method [103]; this obtains |Sp(r)| in T/V as well as q(r, TR). The V s

are chosen such that, for each r, at least several of the N samples are in the large-tip-angle

regime [82,137].

Estimating the transmit profile phase ∠(Sp(r)). To estimate the phase of Sp(r), we

keep V constant and collect one low-flip image and set ∠(Sp(r)) equal to the phase of this

image. This yields phase relative to the system’s receive coil, which is sufficient [113,165].

Estimating the proton-density-weighted receive profile R(r) on a one-channel

system. Fitting the transmit profile as described yields not only |S(r)| but q(r,TR) as well.

4Estimating α(r) is critical in order to determine whether a non-standard mitigation pulse succeeds at
producing a uniform flip angle magnitude across space.
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However, obtaining the desired R(r) from q(r, TR) is non-trivial because the latter depends

on T1 as seen in (2.18). Instead, we collect a low-flip image using a standard one-spoke

pulse (without using the reset pulse), averaging multiple times such that (2.19) holds and

SNR is large. We divide this image (pointwise) by α(r) = γτ |S(r)| to obtain R(r) (to within

a multiplicative constant).

Estimating the flip angle map α(r) of any low-flip-angle pulse on a one-

channel system. The weighted receive profile, R(r), does not depend on the excitation

pulse. Exploiting this, we may estimate the flip angle map achieved by any pulse, even

a non-standard one such as a spoke-based mitigation waveform. First, we collect a low-

flip image using the pulse of interest (without using the reset pulse); the intensity of the

resulting image thus obeys (2.19). We then divide this image by the R(r) estimate to obtain

an estimate of the actual magnetization that arises when the pulse is played on the scanner

(to within a multiplicative constant).

2.1.14 Safety Concern: Specific Absorption Rate

Specific absorption rate (SAR) is defined as the average energy deposition in an Ng region

over an extended period of time due to the application of one or more radio-frequency (RF)

excitation pulses and is a major safety concern as discussed in Ch. 1. We briefly state the

equations that govern the “point SAR” that occurs at a single voxel r in space due to the

parallel transmission of ampere-valued pulse shapes a1(t), . . . , aP (t) through a P -channel

system5,6 and the definition of local Ng SAR. Assume we know Nt time samples of each

pulse shape spaced uniformly in time by ∆t, i.e., for p = 1, . . . , P , we know ap(n∆t) for

n ∈ {0, 1, . . . , Nt − 1}. Recall from (2.13) that L is the duration of each pulse shape and

thus L = Nt∆t.

Electric fields. For p = 1, . . . , 8, assume we know Ep(r) = [Ep,x(r), Ep,y(r), Ep,z(r)]T

(V/m/A). Formally, Ep(r) is the three-dimensional electric field (V/m) that arises at r

when a unit ampere waveform tuned to the Larmor frequency is driven through channel p.

Point SAR at location r. We calculate SAR (W/kg) at r by superimposing the

electric field produced by each transmit channel due to each time sample in the RF pulse

shape and then time averaging the net field’s squared magnitude over the repetition time

5Here we have used ap(t)s rather than bp(t)s, i.e., current waveforms rather than voltage waveforms; the
derivations here still hold if voltage waveforms are used with only a slight change in units.

6If one is concerned about single-channel system SAR, simply set P = 1 in this subsection.
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(TR) interval in which the pulse is played and weighting by the known conductivity and

density of that location [21,70,71]. The pulse shapes are transmitted from time 0 to L and

nothing is transmitted during the time interval (L,TR). Formally,

SAR(r) =
σ(r)
2ρ(r)

1
TR

∫ TR

0
‖E(r, t)‖2

2 dt = D
σ(r)
2ρ(r)

1
L

∫ L

0
‖E(r, t)‖2

2 dt, (2.20)

where D = L
TR is the duty cycle, ρ(r) and σ(r) are the density (kg/m3) and conductivity

(S/m) of the tissue at location r, and E(r, t) is the superposition of the electric fields

generated by each of the channels scaled by the waveform samples transmitted at each time

instant [168], i.e.,

E(r, t) =
P∑

p=1

ap(t)Ep(r). (2.21)

Since we know discrete samples of the ap(t)s, we may approximately solve (2.20) via numeric

integration:

SAR(r) ≈ σ(r)
2ρ(r)

∆t

TR

Nt−1∑

n=0

‖E(r, n∆t)‖2
2 =

σ(r)
2ρ(r)

∆t

TR

Nt−1∑

n=0

∥∥∥∥∥∥

P∑

p=1

ap(n∆t)Ep(r)

∥∥∥∥∥∥

2

2

(2.22)

Whole-head and local N-gram SAR. After obtaining SAR(r) for all r of interest

(e.g., all locations in a human head model), global SAR (also referred to as mean SAR) is

simply obtained by averaging the SAR(r) values. Likewise, Ng SAR at each r is obtained

by finding an N -gram cube around each r and then averaging SAR(r) over all r within the

cube, in line with [1]. (The FDA [21] and IEC [70,71] mandate averaging over cubes rather

than spheres.)

In Ch. 7, we will focus on the study of SAR produced by parallel transmission pulses.

In Ch. 8 and Ch. 9, we will propose and study methods to design SAR-reduced pulses.

2.1.15 SAR-Reduced Parallel Transmission

To conclude the MRI section of this chapter, we briefly summarize two recent branches of

work that have arisen that attempt to address and mitigate the SAR concerns of parallel

transmission by improving upon the pulse design process.

• `2 and `∞ constraints on pulse samples. Because the vast majority of low-flip pulse design

algorithms generate a parallel excitation pulse by solving a linear system of equations (e.g.,
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[59, 102, 146, 168]), a simple way to (indirectly) reduce SAR is to impose regularizations

while solving the linear system, constraining or reducing the root-mean-square or peak

amperages of the resulting pTX pulse [59, 165]. This approach is simpler than those

below—no knowledge of the local electric field generated by each transmit array element

is required—but it does not guarantee a SAR decrease because pTX SAR does not scale

directly as a function of a pulse’s `2 and `∞ energies. (Only on a single-channel system

is SAR guaranteed to scale directly with `2 and `∞ pulse energies.)

• Explicit constraints on global and local SAR. An alternative, more extensive approach is to

explicitly build SAR constraints into the pulse design process. Because both whole-head

mean SAR and local Ng SAR at any location may be expressed quadratically in terms of

pulse sample values [56,57,158,168], constraints on both whole-head and local SAR may

be incorporated simply by adding quadratic constraints to the design algorithm [57,158].

For example, the algorithm of [57] explicitly accounts for global SAR as well as local SAR

at several spatial locations by incorporating several quadratic constraints into the design.

It requires knowledge of the local electric field generated by each transmit array element

per unit input, typically requiring FDTD simulations of a human body model. Examples

of work in this area include [55,57,68,134,139,142,158].

Other pTX SAR research. In addition to the pulse design improvements above,

other work involves the monitoring and tracking of SAR arising during a scan in real time

[28,54] and hardware-based SAR reduction by improving the efficiency and spatial encoding

capabilities of pTX arrays [5, 6].

In Ch. 8, we will pose several SAR-reduced design approaches that were proposed along-

side [56,168], whereas in Ch. 9, we will introduce a novel approach to SAR reduction: time

multiplexing a set of similar pulses to reduce maximum local SAR.

2.2 Sparse Approximation Theory and Algorithms

2.2.1 Overview

Moving away from MRI, we now provide background about sparse approximation theory.

Over the past decade and a half, much work has been done on this topic; useful references

include [23, 24, 31, 34, 37, 41, 43, 44, 52, 93, 96, 107]. Fundamentally, the goal of sparse ap-
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proximation is to find a vector (or vectors) of unknowns with a small number of nonzero

elements such that a (linear) system of equations (approximately) holds. The base case

sparse approximation problem involves one known observation vector, a known system ma-

trix, and a single sparse unknown vector [24,52,107]; we will refer to this as the single-system

single-output (SSSO) problem. A generalization of the SSSO problem is the single-system

multiple-output (SSMO) simultaneous sparsity problem, where there are multiple unknown

vectors, a single system matrix, and a host of observation vectors [32, 92, 127, 129]. The

background provided here on both SSSO sparsity and SSMO simultaneous sparsity will

be useful when we study multiple-system, single-output (MSSO) simultaneous sparsity in

Ch. 3; this novel linear inverse problem involves multiple unknown simultaneously sparse

vectors, but unlike SSMO, each such vector passes through a different system matrix and

the outputs of the various system matrices undergo a linear combination, yielding only one

observation vector.

2.2.2 Single-System Single-Output (SSSO) Sparse Approximation

Consider a linear system of equations d = Fg, where d ∈ CM , F ∈ CM×N , g ∈ CN , and d

and F are known. It is common to use the Moore-Penrose pseudoinverse of F, denoted F†,

to determine ĝ = F†d as an (approximate) solution to the system of equations. When d

is in the range of F, ĝ is the solution that minimizes ‖ĝ‖2, the Euclidean or `2 norm of ĝ.

When d is not in the range of F, no solution exists; ĝ minimizes ‖ĝ‖2 among the vectors

that minimize ‖d− Fĝ‖2.

When a sparse solution is desired, it is necessary for the analogue to ĝ to have only

a small fraction of its entries differ from zero. We are faced with a sparse approximation

problem of the form

min
g
‖g‖0 subject to ‖d− Fg‖2 ≤ ε, (2.23)

where ‖·‖0 denotes the number of nonzero elements of a vector. The subset of {1, 2, . . . , N}
where there are nonzero entries in g is called the sparsity profile. For general F, solving

(2.23) essentially requires a search over up to 2N − 1 nonempty sparsity profiles. The

problem is thus computationally infeasible except for very small systems of equations (e.g.,

even for N = 30, one may need to search 1,073,741,823 subsets). Formally, the problem is

NP-Hard [36,96].
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For problems where (2.23) is intractable, a large body of work supports a greedy search

over the columns of F to seek out a small subset of columns that, when weighted and

linearly combined, yields a result that is close to d in the `2 sense along with a sparse

g [23,31,37,93,96].

A second body of research supports the relaxation of (2.23) to find a sparse g [24]:

min
g
‖g‖1 s.t. ‖d− Fg‖2 ≤ ε. (2.24)

This is a convex optimization and thus may be solved efficiently [17]. The solution of

(2.24) does not always match the solution of (2.23)—if it did, the intractability of (2.23)

would be contradicted—but certain conditions on F guarantee a proximity of their solutions

[39, 40, 128]. Note that (2.24) applies an `1 norm to g, but an `p norm (where p < 1) may

also be used to promote sparsity [24, 52]; this leads to a non-convex problem and will not

considered in this disseration.

The optimization

min
g

{
1
2‖d− Fg‖2

2 + λ‖g‖1

}
(2.25)

has the same set of solutions as (2.24). The first term of (2.25) keeps residual error down,

whereas the second promotes sparsity of g [24,122]. As the control parameter, λ, is increased

from zero to infinity, the algorithm yields sparser solutions and the residual error increases;

sparsity is traded off with residual error. Various methods may be used to solve (2.25), such

as iteratively reweighted least squares (IRLS) [77] (e.g., FOCUSS [52]), iterative shrinkage

[34, 41, 43, 44], and second-order cone programming (SOCP) [17, 92]. Throughout the rest

of this thesis, we will focus on formulations resembling (2.25) and its analogues rather than

(2.24).

It is important to understand that a problem of the form (2.25) may arise as a proxy

for (2.23) or as the inherent problem of interest. For example, in a Bayesian estimation

setting, (2.25) yields the maximum a posteriori probability estimate of g from d when the

observation model involves F and Gaussian noise and the prior on g is Laplacian. Similar

statements can be made about the relaxations of the simultaneous sparse approximation

problems posed in the following sections.
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2.2.3 Single-System Multiple-Output (SSMO)

Simultaneous Sparse Approximation

Let us now consider a generalization of the base-case SSSO problem where there are mul-

tiple unknown vectors, a single system matrix, and a host of observation vectors; the pth

observation vector arises by multiplying the single system matrix with the pth unknown

vector. The caveat here is that the system requires a simultaneously sparse set of vectors

as the solution, i.e., a set of vectors where only a small number of each vector’s entries

are nonzero, and where the vectors’ sparsity profiles (the locations of the nonzero entries)

are equivalent (or are promoted to be equivalent with an increasing penalty given other-

wise) [32,92,127,129]. We refer to this as the single-system multiple-output problem.

Formally, the single-system multiple-output (SSMO) problem consists of P observation

vectors (“snapshots”), all of which arise from the same system matrix:

dp = Fgp, for p = 1, . . . , P, (2.26)

where dp ∈ CM is known for p = 1, . . . , P along with F ∈ CM×N . In this scenario, we

want to constrain the number of positions at which any of the gps are nonzero. Thus we

seek approximate solutions in which the gps are not only sparse, but the union of their

sparsity patterns is small; that is, a simultaneously sparse set of vectors is desired [92,127].

Unfortunately, optimal approximation with a simultaneous sparsity constraint is even harder

than (2.23).

Extending single-vector sparse approximation greedy techniques is one way to find an

approximate solution [32, 129]. Another approach is to extend the relaxation (2.25) as

follows:7

min
G

{
1
2 ‖D− FG‖2

F + λ ‖G‖S

}
, (2.27)

where D = [d1, . . . ,dP ] ∈ CM×P , G = [g1, . . . ,gP ] ∈ CN×P , ‖ · ‖F is the Frobenius norm,

and

‖G‖S =
N∑

n=1

√√√√
P∑

p=1

|G (n, p) |2 =
N∑

n=1

√√√√
P∑

p=1

|gp[n]|2, (2.28)

i.e., ‖G‖S is the `1 norm of the `2 norms of the rows of the G matrix.8 This latter operator

7For P = 1, (2.27) collapses to the base case of (2.25).
8Although here we have applied an `1 norm to the `2 row energies of G, an `p norm (where p < 1) could
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is a simultaneous sparsity norm: it penalizes the program (produces large values) when

the columns of G have dissimilar sparsity profiles [92]. Fixing λ to a sufficiently large

value and solving this optimization yields simultaneously sparse gps. Given the convex

objective function in (2.27), one may then attempt to find a solution that minimizes the

objective using, for example, IRLS-based [32] or SOCP-based [92] approaches. We conclude

by noting that a formal analysis of the minimization of the convex objective (2.27) may be

found in [127].

be used in place of the `1 norm if one is willing to deal with a non-convex objective function. Further, an
`q norm (where q > 2) rather than an `2 norm could be applied to each row of G because the purpose of
the row operation is to collapse the elements of the row into a scalar value without introducing a sparsifying
effect.
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Chapter 3

Multiple-System Single-Output

(MSSO)

Simultaneous Sparse

Approximation

3.1 Introduction

Here we propose a new type of linear inverse problem (independently of MRI) that requires

a simultaneously sparse set of vectors as the solution. As discussed in Sec. 2.2, prior work

on simultaneously sparse solutions to linear inverse problems focuses on the single-system

multiple-output (SSMO) simultaneous sparsity problem, where there are multiple unknown

vectors, a single system matrix, and a host of observation vectors [32,92,127,129].

Here we study a problem different from the aforementioned one. This multiple-system

single-output (MSSO) simultaneous sparsity problem still consists of multiple unknown vec-

tors, but now each such vector is passed through a different system matrix and the outputs

of the various system matrices undergo a linear combination, yielding only one observation

vector. Given the matrices and lone observation, one must find a simultaneously sparse set

of vectors that (approximately) solves the system. This problem has been explored in an

MRI RF low-flip excitation pulse design context [157,162,167], and may also have applica-

tions to source localization using sensor arrays [74,84] and signal denoising [24,38,44,49].
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Like SSMO, MSSO arises as a generalization of the single-system single-output (SSSO)

sparse approximation problem, where there is one known observation vector, a known system

matrix, and the solution one seeks is a single sparse unknown vector [24,52,107].

In this chapter, we propose three forward-looking greedy techniques—matching pursuit

(MP) [93], orthogonal matching pursuit (OMP) [23, 31, 96], and least squares matching

pursuit (LSMP) [31]—and also develop IRLS-based, shrinkage-based, and SOCP-based al-

gorithms to approximately solve the NP-Hard MSSO simultaneous sparsity problem. We

then evaluate the performance of the algorithms across three experiments: the first and sec-

ond involve sparsity profile recovery in noiseless and noisy scenarios, respectively, while the

third deals with linear MRI RF excitation pulse design from the perspective of an applied

mathematician rather than an MRI pulse designer. We also prove that single-vector sparse

approximation of a complex vector readily maps to the MSSO problem.

We first formulate the MSSO problem in Sec. 3.2 and then propose seven algorithms for

solving the problem in Sec. 3.3. Details and results of the numerical experiments are given

in Sec. 3.4, while the strengths and weaknesses of the algorithms are discussed in Sec. 3.5.

Concluding remarks appear in Sec. 3.6. A version of the work in this chapter is currently

under review [155].

3.2 MSSO Problem Formulation

We outline the MSSO problem in a style analogous to that of SSMO systems in (2.26, 2.27)

and then pose a second formulation that is useful for deriving several algorithms in Sec. 3.3.

3.2.1 Standard Formulation

Consider the following system:

d = F1g1 + · · ·+ FPgP

= [F1 · · ·FP ]




g1

...

gP


 = Ftotgtot,

(3.1)

where d ∈ CM and the Fp ∈ CM×N are known. Unlike the SSMO problem in (2.26),

there is now only one observation and P different system matrices. Here we again desire an
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approximate solution where the gps are simultaneously sparse; formally,

min
g1, . . . ,gP

‖d− Ftotgtot‖2 s.t. the simultaneous K-sparsity of the gps. (3.2)

This is, of course, harder than the base case SSSO problem in (2.23) and thus NP-Hard. To

keep the problem as general as possible, there are no constraints on the values of M , N , or P ,

i.e., there is no explicit requirement that the system be overdetermined or underdetermined.

Further, we have used complex-valued rather than real-valued variables.

In the first half of Sec. 3.3, we will pose three approaches that attempt to solve the

MSSO problem (3.2) in a greedy fashion. Another approach to solve the problem is to

apply a relaxation similar to (2.25, 2.27):

min
G

{
1
2 ‖d− Ftotgtot‖2

2 + λ ‖G‖S

}
, (3.3)

where G and ‖G‖S are the same as in (2.27) and (2.28), respectively. In the second half of

Sec. 3.3, we will outline four algorithms for solving this relaxed problem. By setting P = 1,

(3.3) collapses to the base case of (2.25).

3.2.2 Alternate Formulation

In several upcoming derivations, it will be useful to view the MSSO problem from a different

standpoint. To begin, we construct several new variables that are simply permutations of

the Fps and gps. First we define N new matrices:

Cn = [f1,n, . . . , fP,n] ∈ CM×P , for n = 1, . . . , N, (3.4)

where fp,n is the nth column of Fp. Next we construct N new vectors:

hn = [g1[n], . . . ,gP [n]]T ∈ CP , for n = 1, . . . , N, (3.5)
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where gp[n] is the nth element of gp and T is the transpose operation. Given the Cns and

hns, we now pose the following system:

d = C1h1 + · · ·+ CNhN

= [C1 · · ·CN ]




h1

...

hN


 = Ctothtot.

(3.6)

Due to (3.4, 3.5), the system in (3.6) is equivalent to the one in (3.1). The relationship

between the gps and hns implies that if we desire to find a set of simultaneously sparse gps

to solve (3.1, 3.2), we should seek out a set of hns where many of the hns equal an all-zeros

vector, 0, but a few hns are high in `2 energy (typically with all elements being nonzero).

This claim is apparent if we consider the fact that H = [h1, . . . ,hN ] is equal to the transpose

of G, and that the gps are only simultaneously sparse when ‖G‖S is sufficiently small.

Given this setup, the NP-Hard formulation here equivalent to that of (3.2) is as follows:

min
h1, . . . ,hN

‖d−Ctothtot‖2 s.t. the usage of only K of the hns, (3.7)

which, similarly to (3.2), might be (approximately) solved from a greedy standpoint.

Continuing with this alternate formulation, and given our desire to find a solution where

most of the hns are all-zero vectors and a few are dense, we relax the problem as follows:

min
htot

{
1
2 ‖d−Ctothtot‖2

2 + λ
N∑

n=1

‖hn‖2

}
. (3.8)

Fixing λ to a sufficiently large value and solving this optimization yields many low-energy

hns (each close to 0), along with several dense high-energy hns. Further, because
∑N

n=1 ‖hn‖2

is equivalent to ‖G‖S, this means (3.8) is equivalent to (3.3), and thus just like (3.3), the

approach in (3.8) finds a set of simultaneously sparse gps.

3.2.3 Differences between the SSMO and MSSO Problems

In the SSMO problem, we see from (2.26) that there are many different ds and a single F.

The ratio of unknowns to knowns always equals N/M regardless of the number of obser-

vations, P . A large P when solving SSMO is actually beneficial because the simultaneous
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sparsity of the underlying gps becomes more exploitable; empirical evidence of improved

sparsity profile recovery with increasing P may be found in both [32] and [92].

In contrast, we see from (3.1) that in the MSSO problem there is a single d and many

different Fs. Here the ratio of unknowns to knowns is no longer constant with respect

to P ; rather it is equal to PN/M . We will show in Sec. 3.4 that as P increases, the

underlying simultaneous sparsity of the gps is not enough to combat the increasing number

of unknowns, and that for large P , correctly identifying the sparsity profile of the underlying

unknown gps is a daunting task.

3.3 Proposed Algorithms

We now derive algorithms to (approximately) solve the MSSO problem defined in Sec. 3.2.

3.3.1 Matching Pursuit (MP)

To begin, we extend the single-vector case of matching pursuit [93] to an MSSO context.

The classic MP technique first finds the column of the system matrix that best matches

with the observed vector and then removes from the observation vector the projection of

this chosen column. It proceeds to select a second column of the system matrix that best

matches with the residual observation, and continues doing so until either K columns have

been chosen (as specified by the user) or the residual observation ends up as a vector of

all zeros. This algorithm is fast and computationally-efficient because the best-matching

column vector during each iteration is determined simply by calculating the inner product

of each column vector with the residual observation and ranking the resulting inner product

magnitudes.

Now let us consider the MSSO system as posed in (3.6). In the first iteration of standard

MP, we seek out the single column of the system matrix that can best represent d. But in the

MSSO context, we need to seek out which of the N Cn matrices can be best used to represent

d when the columns of Cn undergo an arbitrarily-weighted linear combination. The key

difference here is that on an iteration-by-iteration basis, we are no longer deciding which

column vector best represents the observation, but which matrix does so. The intuition

behind this approach is that ideal solutions should consist of only a few dense hns and

many all-zeros hns. For the kth iteration of the algorithm, we need to select the proper
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index n ∈ {1, . . . , N} by solving:

qk = argmin
n

min
hn

‖rk−1 −Cnhn‖2
2, (3.9)

where qk is the index that will be selected and rk−1 is the current residual observation. For

fixed n, the solution to the inner minimization is obtained via the pseudoinverse, hopt
n =

C†
nrk−1, yielding

qk = argmin
n

min
hn

‖rk−1 −Cn(C†
nrk−1)‖2

2 = argmax
n

rH
k−1CnC†

nrk−1, (3.10)

where H is the Hermitian transpose. From (3.10) we see that, analogously to standard

MP, choosing the best index for iteration k involves computing and ranking a series of

inner-product-like quadratic terms.

Algorithm 3.1 outlines the entire procedure. After K iterations, one obtains IK ⊂
{1, . . . , N} (of cardinality T ≤ K), a set indicating the chosen Cn matrices. The weights to

apply to each chosen matrix (i.e., the corresponding hns) are obtained via a finalization step;

they are the best weightings in the `2-residual-error sense with which to linearly combine the

columns of the chosen Cn matrices to best match the observation d. Since T total matrices

end up being chosen by the process, there is no penalty in retuning the T associated hn

vectors because they are allowed to be dense. The N − T other Cns (and corresponding

hns) are not used.1

One property of note is that if M ≤ P , Algorithm 3.1 stops after one iteration. This is

because CnC†
n in this case is simply an M ×M identity matrix for all n ∈ {1, . . . , N}, and

thus any one of the Cns is enough to represent d exactly when its columns are properly

weighted and linearly combined.

3.3.2 Orthogonal Matching Pursuit (OMP)

In single-vector MP, the residual rk always ends up orthogonal to the kth column of the

system matrix, but as the algorithm continues iterating, there is no guarantee the residual

remains orthogonal to column k or is minimized in the least-squares sense with respect to

1From the perspective of Fps and gps in (3.1), Algorithm 3.1 determines weights to place along only T
rows of G (leaving the other N − T rows zeroed out) that still yields a good approximation of d in the `2
error sense. It is seeking out the best rows of G which, when densely filled, yield a sound approximation of
d.
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Algorithm 3.1 MSSO Matching Pursuit
Task: greedily choose up to K of the Cns to best represent d via C1h1 + · · ·+ CNhN .

Data and Parameters: d and Cn, n ∈ {1, . . . , N} are given. K iterations.

Precompute: Qn = CnC†
n, for n ∈ {1, . . . , N}.

Initialize: Set k = 0, r0 = d, I0 = ∅, S0 = [ ].

Iterate: Set k = 1 and apply:
• qk = argmaxn rH

k−1Qnrk−1.

• if qk /∈ Ik−1 then
Ik = Ik−1 ∪ {qk}
Sk = [Sk−1,Cqk

]
else

Ik = Ik−1

Sk = Sk−1

end if

• rk = rk−1 −Qqk
rk−1.

• k = k + 1. Terminate loop if k > K or rk = 0. IK ends with T ≤ K elements.
Compute Weights: x = S†Kd, unstack x into hq1 , . . . ,hqT ; set remaining hns to 0.

the entire set of k chosen column vectors (indexed by q1, . . . , qk). Furthermore, K iterations

of single-vector MP do not guarantee K different columns will be selected. Single-vector

OMP is an extension to MP that attempts to mitigate these problems by improving the

calculation of the residual vector. During the kth iteration of single-vector OMP, column

qk is chosen exactly as in MP (by ranking the inner products of the residual vector rk−1

with the various column vectors), but the residual vector is updated by accounting for all

columns chosen up through iteration k rather than simply the last one [31,96].

To extend OMP to the MSSO problem, we choose matrix qk during iteration k as in

MSSO MP and then in the spirit of single-vector OMP compute the new residual as follows:

rk = d− Sk(S
†
kd), (3.11)

where Sk = [Cq1 , . . . ,Cqk
] and S†kd is the best choice of x that minimizes the residual error

‖d− Skx‖2. That is, to update the residual we now employ all chosen matrices, weighting

and combining them to best represent d in the least-squares sense, yielding an rk that

is orthogonal to the columns of Sk (and thus orthogonal to Cq1 , . . . ,Cqk
), which has the

benefit of ensuring that OMP will select a new Cn matrix at each step.

Algorithm 3.2 describes the OMP algorithm; the complexity here is moderately greater

65



Algorithm 3.2 MSSO Orthogonal Matching Pursuit
Task: greedily choose up to K of the Cns to best represent d via C1h1 + · · ·+ CNhN .

Data and Parameters: d and Cn, n ∈ {1, . . . , N} are given. K iterations.

Precompute: Qn = CnC†
n, for n ∈ {1, . . . , N}.

Initialize: Set k = 0, r0 = d, I0 = ∅, S0 = [ ].

Iterate: Set k = 1 and apply:

• qk = argmaxn /∈ Ik−1
rH
k−1Qnrk−1.

• Ik = Ik−1 ∪ {qk}
• Sk = [Sk−1,Cqk

]

• rk = d− SkS
†
kd.

• k = k + 1. Terminate loop if k > K or rk = 0. IK ends with T ≤ K elements.

Compute Weights: x = S†Kd, unstack x into hq1 , . . . ,hqT ; set remaining hns to 0.

than that of MP because the pseudoinversion of an M ×Pk matrix is required during each

iteration k.

3.3.3 Least Squares Matching Pursuit (LSMP)

Beyond OMP there exists a greedy algorithm with an even greater computational complexity

known as LSMP. In single-vector LSMP, one solves N − k + 1 least squares minimizations

during iteration k in order to determine which column of the system matrix may be used

to best represent d [31].

Thus to extend LSMP to MSSO systems, we must ensure that during iteration k we

account for the k − 1 previously chosen Cn matrices when choosing the kth one to best

construct an approximation to d. Specifically, index qk is selected as follows:

qk = argmin
n ∈ {1, . . . , N}, n /∈ Ik−1

min
x

‖S(n)
k x− d‖2

2, (3.12)

where Ik−1 is the set of indices chosen up through iteration k − 1, S(n)
k = [Sk−1,Cn],

Sk−1 = [Cq1 , . . . ,Cqk−1
], and x ∈ CPk. For fixed n, the solution of the inner iteration is

xopt = (S(n)
k )†d; it is this step that ensures the residual observation error will be minimized

by using all chosen matrices. Substituting xopt into (3.12) and simplifying the expression
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Algorithm 3.3 MSSO Least Squares Matching Pursuit
Task: greedily choose K of the Cns to best represent d via C1h1 + · · ·+ CNhN .

Data and Parameters: d and Cn, n ∈ {1, . . . , N} are given. K iterations.

Initialize: Set k = 0, I0 = ∅, S0 = [ ].

Iterate: Set k = 1 and apply:

• qk = argmaxn /∈ Ik−1
dH(S(n)

k )(S(n)
k )†d, where S(n)

k = [Sk−1,Cn]

• Ik = Ik−1 ∪ {qk}
• Sk = [Sk−1,Cqk

]

• k = k + 1. Terminate loop if k > K or rk = 0. IK ends with T ≤ K elements.

Compute Weights: x = S†Kd, unstack x into hq1 , . . . ,hqT ; set remaining hns to 0.

yields

qk = argmax
n /∈ Ik−1

dHQ(n)
k d, (3.13)

where Q(n)
k = (S(n)

k )(S(n)
k )†.

Algorithm 3.3 describes the LSMP method. The complexity here is much greater than

that of OMP because N − k + 1 pseudoinversions of an M ×Pk matrix are required during

each iteration k. Furthermore, the dependence of Q(n)
k on both n and k makes precomputing

all such matrices infeasible in most cases. One way to decrease computation and runtime

might be to extend the projection-based recursive updating scheme of [31] to MSSO LSMP.

3.3.4 Iteratively Reweighted Least Squares (IRLS)

Having posed three greedy approaches for solving the MSSO problem, we now turn our

attention toward minimizing (3.8), the relaxed objective function. Here, the regularization

term λ is used to trade off simultaneous sparsity with residual observation error.

One way to minimize (3.8) is to use an IRLS-based approach [77]. To begin, consider

67



manipulating the right-hand term of (3.8) as follows:

λ
N∑

n=1

‖hn‖2 = λ
N∑

n=1

‖hn‖2
2

‖hn‖2
= λ

N∑

n=1

|hn[1]|2 + · · ·+ |hn[P ]|2
‖hn‖2

≈ λ

2

N∑

n=1

[h∗n[1], . . . ,h∗n[P ]]




2
‖hn‖2+ε

. . .

2
‖hn‖2+ε







hn[1]
...

hn[P ]




=
λ

2

N∑

n=1

hH
nWnhn

=
λ

2
[
hH

1 · · ·hH
N

]



W1

. . .

WN







h1

...

hN


 =

λ

2
hH

totWtothtot,

(3.14)

where ∗ is the complex conjugate of a scalar, Wn is a P × P real-valued diagonal matrix

whose diagonal elements each equal 2/(‖hn‖2 + ε), and ε is some small non-negative value

introduced to mitigate poor conditioning of the Wns. If we fix Wtot ∈ RPN×PN by com-

puting it using some prior estimate of htot, then the right-hand term of (3.8) becomes a

quadratic function and (3.8) transforms into a Tikhonov optimization [123,124]:

min
htot

{
1
2 ‖d−Ctothtot‖2

2 + λ
2h

H
totWtothtot

}
. (3.15)

Finally, by performing a change of variables and exploiting the properties of Wtot, we can

convert (3.15) into an expression that may be minimized using the robust and reliable

conjugate-gradient (CG) least-squares solver LSQR [100,101], so named because it applies

a QR decomposition [51] when solving the system in the least-squares sense. LSQR works

better in practice than several other CG methods [13] because it restructures the input

system via the Lanczos process [86] and applies a Golub-Kahan bidiagonalization [50] prior

to solving it. (Aside: we will study LSQR in an MRI pulse design context in Ch. 4.)

To apply LSQR to (3.15), we first construct W1/2
tot as the element-by-element square-

root of the diagonal matrix Wtot and then take its inverse to obtain W−1/2
tot . Defining

q = W1/2
tot htot and A = CtotW

−1/2
tot , (3.15) becomes:

min
q

{‖d−Aq‖2
2 + λ‖q‖2

2

}
. (3.16)
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Algorithm 3.4 MSSO Iteratively Reweighted Least Squares

Task: Minimize
{

1
2 ‖d−Ctothtot‖2

2 + λ
∑N

n=1 ‖hn‖2

}
using an iterative scheme.

Data and Parameters: λ, d, Ctot, δ, and K are given.

Initialize: Set k = 0 and htot,k=0 = (Ctot)†d (or e.g. htot,k=0 = 1).

Iterate: Set k = 1 and apply:

• Create Wtot from htot,k−1; construct W1/2
tot , W−1/2

tot , and let A = CtotW
−1/2
tot .

• Obtain qtmp by using LSQR to solve minq

{‖d−Aq‖2
2 + λ‖q‖2

2

}
.

• Set htot,tmp = W−1/2
tot qtmp.

• Line search: find µ0 ∈ [0, 1] such that (1− µ)htot,k−1 + µhtot,tmp minimizes (3.8).

• Set htot,k = (1− µ0)htot,k−1 + µ0htot,tmp.

• k = k + 1. Terminate loop when k > K or (3.8) decreases by less than δ.

Finalize: Unstack the last htot solution into h1, . . . ,hN .

This problem may be solved directly by simply providing d, λ, and A to the LSQR package

because LSQR is formulated to solve the exact problem in (3.16). Calling LSQR with these

variables yields qopt, and the solution hopt
tot is backed out via W−1/2

tot qopt.

Algorithm 3.4 outlines how one may iteratively apply (3.16) to attempt to find a solution

that minimizes the original cost function, (3.8). The technique iterates until the objective

function decreases by less than δ or the maximum number of iterations, K, is exceeded. The

initial solution estimate is obtained via pseudoinversion of Ctot (an all-zeros initialization

would cause Wtot to be poorly conditioned). A line search is used to step between the

prior solution estimate and the upcoming one; this improves the rate of convergence and

ensures the objective decreases at each step. This method is global in the sense that all

PN unknowns are being estimated concurrently per iteration.

3.3.5 Row-by-Row Shrinkage (RBRS)

The proposed IRLS technique solves for all PN unknowns during each iteration, but this

is cumbersome when PN is large. An alternative approach is to apply an inner loop that

fixes n and then iteratively tunes hn while holding the other hms (m 6= n) constant; thus

only P (rather than PN) unknowns need to be solved for during each inner iteration.

This idea inspires the RBRS algorithm. The term “row-by-row” is used because each

hn corresponds to row n of the G matrix in (3.3), and “shrinkage” is used because the `2
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energy of most of the hns will essentially be “shrunk” (to some extent) during each inner

iteration: when λ is sufficiently large and many iterations are undertaken, many hns will

be close to all-zeros vectors and only several will be dense and high in energy.

RBRS for real-valued data

Assume d and the Cns of (3.8) are real-valued. We now seek to minimize the function by

extending the single-vector sequential shrinkage technique of [43] and making modifications

to (3.8). Assume we have prior estimates of h1 through hN , and that we now desire to

update only the jth vector while keeping the other N − 1 fixed. The shrinkage update of

hj is achieved via:

min
x

{
1
2

∥∥[
ΣN

n=1Cnhn −Cjhj

]
+ Cjx− d

∥∥2

2
+ λ ‖x‖2

}
, (3.17)

where ΣN
n=1Cnhn−Cjhj forms an approximation of d using the prior solution coefficients,

but discards the component contributed by the original jth vector, replacing the latter

via an updated solution vector, x. The left-hand term promotes a solution x that keeps

residual error down, whereas the right-hand term penalizes xs that contain nonzeros. It is

crucial to note that the right-hand term does not promote the element-by-element sparsity

of x; rather, it penalizes the overall `2 energy of x, and thus both sparse and dense xs are

penalized equally if their overall `2 energies are the same.

One way to solve (3.17) is to take its derivative with respect to xT and find x such that

the derivative equals 0. By doing this and shuffling terms, and assuming we have an initial

estimate of x, we may solve for x iteratively:

xi =
[
CT

j Cj +
λ

‖xi−1‖2 + ε
I
]−1

CT
j rj , (3.18)

where rj = d+Cjhj −ΣN
n=1Cnhn, I is a P ×P identity matrix, and ε is a small value that

avoids ill-conditioned results.2 By iterating on (3.18) until (3.17) changes by less than δinner,

we arrive at a solution to (3.17), xopt, and this then replaces the prior solution vector, hj .

Having completed the update of the jth vector, we proceed to update the rest of the vectors,

looping this outer process K times or until the main objective function, (3.8), changes by

2Eq. (3.18) consists of a direct inversion of a P ×P matrix, which is acceptable in this paper because all
experiments involve P ≤ 10. If P is large, (3.18) could be solved via a CG technique (e.g., LSQR).
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Algorithm 3.5 MSSO Row-by-Row Sequential Iterative Shrinkage

Task: Minimize
{

1
2 ‖d−Ctothtot‖2

2 + λ
∑N

n=1 ‖hn‖2

}
using an iterative scheme when all

data is real-valued.

Data and Parameters: λ, d, Cn (n ∈ {1, . . . , N}), δouter, δinner, K, and I are given.

Initialize: Set k = 0 and htot = (Ctot)†d (or e.g. htot = 1), unstack into h1, . . . ,hN .

Iterate: Set k = 1 and apply:

• Sweep over row vectors: set j = 1 and apply:

◦ Optimize a row vector: set i = 1 and x0 = hj and then apply:

• xi =
[
CT

j Cj + λ
‖xi−1‖2+ε I

]−1
CT

j rj , where rj = d + Cjhj − ΣN
n=1Cnhn.

• i = i + 1. Terminate when i > I or (3.17) decreases by less than δinner.

◦ Finalize row vector update: set hj to equal the final x.

◦ j = j + 1. Terminate loop when j > N .

• k = k + 1. Terminate loop when k > K or (3.8) decreases by less than δouter.

Finalize: If λ was large enough, several hns should be dense and others close to 0.

less than δouter. Algorithm 3.5 details the entire procedure; unlike IRLS, here we essentially

repeatedly invert P × P matrices to pursue a row-by-row solution, rather than PN × PN

matrices to pursue a solution that updates all rows per iteration.

Extending RBRS to complex-valued data

If (3.8) contains complex-valued terms, we may structure the row-by-row updates as in

(3.17), but because the derivative of the objective in (3.17) is complicated due to the

presence of complex-valued terms, the simple update equation given in (3.18) is no longer

applicable. One way to overcome this problem is to turn the complex-valued problem into

a real-valued one.

To accomplish this conversion, let us first create several real-valued expanded vectors:

d̃ =


 Re(d)

Im(d)


 ∈ R2M , h̃n =


 Re(hn)

Im(hn)


 ∈ R2P , (3.19)

as well as real-valued expanded matrices:

C̃n =


 Re(Cn) −Im(Cn)

Im(Cn) Re(Cn)


 ∈ R2M×2P . (3.20)
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Due to the structure of (3.19, 3.20) and the fact that ‖hn‖2 equals ‖h̃n‖2, the following

optimization is equivalent to (3.8):

min
h̃1, . . . , h̃N





1
2

∥∥∥∥∥d̃−
N∑

n=1

C̃nh̃n

∥∥∥∥∥

2

2

+ λ
N∑

n=1

‖h̃n‖2



 . (3.21)

This means we may apply RBRS to complex-valued scenarios by substituting the h̃ns for

the hns and C̃ns for the Cns in (3.17, 3.18) and Algorithm 3.5. [Eq. (3.18) becomes an

applicable update equation because (3.17) will consist of only real-valued terms and the

derivative calculated earlier is again applicable.] Finally, after running the algorithm to

obtain finalized h̃ns, we may simply restructure them into complex hns.

3.3.6 Column-by-Column Shrinkage (CBCS)

Here we propose a dual of RBRS—a technique that sequentially updates the columns of G

(i.e., the gps) in (3.1, 3.3) rather than its rows (the hns). Interestingly, we will show that

this approach yields a separable optimization and reduces the overall problem to simply

repeated element-by-element shrinkages of each gp.

CBCS for real-valued data

Assume the gps, Fps, and d in (3.3) are real-valued and that we have prior estimates of

the gps. Let us consider updating the pth vector while keeping the other P − 1 fixed. This

reduces (3.3) to

min
x

{
1
2 ‖r− Fpx‖2

2 + λ
N∑

n=1

√
(x[n])2 + b[n]

}
, (3.22)

where x will be the update of gp, and r and b are as follows:

r = d + Fpgp −
P∑

q=1

Fqgq, (3.23)

and

b[n] = −(gp[n])2 +
P∑

q=1

(gq[n])2, for n = 1, . . . , N. (3.24)

If the b[n]s were not present, (3.22) would reduce to the standard problem iterated shrinkage

is intended to solve [43,44].
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Now let us apply a proximal relaxation [30,34,48] to (3.22) and seek a solution x ∈ RN

as a shrinkage update of gp:

min
x

{
1
2

(
‖r− Fpx‖2

2 + α
∥∥x− gp

∥∥2

2
− ∥∥Fp(x− gp)

∥∥2

2

)
+ λ

N∑

n=1

√
(x[n])2 + b[n]

}
, (3.25)

where α is chosen such that αI − FT
p Fp is positive definite (e.g., α may be set to the

maximum singular value of Fp). The idea here is to replace gp with the solution x and then

iterate this procedure, repeatedly solving (3.25). This ultimately yields an updated x that

globally minimizes (3.22) because the proximal method is guaranteed to arrive at a local

minimum [34, 48] and (3.22) itself is convex. Having obtained x, we perform an update,

gp = x, and then repeat the overall process for the next gp, and so forth. Additionally, we

add a layer of iteration on top of this column-by-column sweep, optimizing each of the P

vectors a total of K times.

The only obstacle that remains in order for us to implement the entire algorithm is an

efficient way to solve (3.25). We pursue such an approach by first expanding the terms of

(3.25):

min
x

{
c + vTx +

α

2
xTx + λ

N∑

n=1

√
(x[n])2 + b[n]

}
, (3.26)

where c = 1
2r

Tr+α
2 gT

p gp− 1
2g

T
p FT

p Fpgp and v = FT
p Fpgp−αgp−FT

p r. Since c is constant, we

may ignore it in the optimization. Upon closer inspection, we see that (3.26) is a separable

problem and that the individual scalar elements of x may be optimized independently. For

the nth element of x, (3.26) simplifies to:

min
x[n]

{
v[n]x[n] +

α

2
(x[n])2 + λ

√
(x[n])2 + b[n]

}
, (3.27)

Having burrowed down to an element-by-element problem, all that remains is to efficiently

solve (3.27). One approach is to compute the derivative of its objective with respect to

x[n] and find x[n] such that the derivative equals zero. The derivative equals the following

nonlinear scalar equation:

v[n] + x[n]

(
α +

λ√
(x[n])2 + b[n]

)
. (3.28)
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Setting the derivative in (3.28) to zero and assuming we have an initial estimate of x[n], we

may solve for x[n] iteratively as follows:

(x[n]i) = −v[n]

(
α +

λ√
(x[n]i−1)2 + b[n] + ε

)−1

, (3.29)

where ε is simply a small value that avoids ill-conditioned scenarios.

We may now formulate CBCS as Algorithm 3.6. As we seek to update a fixed g1, note

how we iteratively tune its N elements, one at a time, via (3.29), but instead of moving on

immediately to update g2, we update g1, r, v, and b, and tune over the elements of g1 yet

again, doing this repeatedly until the per-vector objective, (3.22), stops decreasing—only

then moving on to g2. Empirically, we find this greatly speeds up the rate at which the

gps converge to a simultaneously sparse solution, but unfortunately, even with this extra

loop, CBCS still requires excessive iterations for larger problems (see Sec. 3.4). Similarly

to RBRS in Algorithm 3.5, note how the inner loops are cut off when the objective function

stops decreasing to within some small value δ or some fixed number of iterations has been

exceeded.

Extending CBCS to complex-valued data

If (3.3) contains complex-valued terms, we may structure the column-by-column updates as

in (3.22, 3.25), but the expansion and derivative of the latter equation’s objective function

does not lend itself to the simple update equations given in (3.26, 3.27, 3.29). One way to

overcome this problem is to turn the complex-valued problem into a real-valued one. This

approach is not equivalent to the one used to extend RBRS to complex data.

First we stack the target vector, d, into a real-valued vector:

d̃ =


 Re(d)

Im(d)


 ∈ R2M , (3.30)

and then split, rather than stack, the unknown vectors into 2P new vectors:

g(Re)
p = Re(gp) ∈ RN , g(Im)

p = Im(gp) ∈ RN , for p = 1, . . . , P. (3.31)

We then aggregate these vectors into G̃ = [g(Re)
1 ,g(Im)

1 , . . . ,g(Re)
P ,g(Im)

P ]. Next, we split each
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Algorithm 3.6 MSSO Column-by-Column Sequential Iterative Shrinkage

Task: Minimize
{

1
2 ‖d− Ftotgtot‖2

2 + λ ‖G‖S

}
when all data is real-valued.

Data and Parameters: λ, d, Fp, p ∈ {1, . . . , P}, δtot, δvec, δelem, K, J , I are given.

Initialize: gtot = (Ftot)†d; split into g1, . . . ,gP ; set α = max. sing. val. among Fps.

Iterate: Set k = 1 and apply:

• Sweep over column vectors: set p = 1 and apply:

◦ Optimize a column vector: set j = 1 and apply:
• Construct r = d + Fpgp −

∑P
q=1 Fqgq.

• Construct b[l] = −(gp[l])2 +
∑P

q=1(gq[l])2, for l = 1, . . . , N .

• Construct v = FT
p Fpgp − αgp − FT

p r.

• Set x0 = gp.

• Sweep over column elements: set n = 1 and apply:
◦ Optimize nth element of x: set i = 1 and apply:

• (x[n]i) = −v[n]
(

α + λ√
(x[n]i−1)2+b[n]+ε

)−1

.

• i = i + 1. Stop if i > I or (3.27) decreases by less than δelem.

◦ n = n + 1. Terminate when n > N .

• Update column vector: set gp to equal the final x.

• j = j + 1. Terminate when j > J or (3.22) decreases by less than δvec.

◦ p = p + 1. Terminate when p > P .

• k = k + 1. Terminate loop when k > K or (3.3) decreases by less than δtot.

Finalize: If λ was sufficiently large, g1, . . . ,gP should be simultaneously sparse.

Fp into two separate matrices, for p = 1, . . . , P :

F(A)
p =


 Re(Fp)

Im(Fp)


 ∈ R2M×N , F(B)

p =


 −Im(Fp)

Re(Fp)


 ∈ R2M×N , (3.32)

yielding 2P new real-valued matrices.

Due to the structure of (3.30, 3.31, 3.32), the following optimization is equivalent to

75



(3.3):

min
G̃

{
1
2

∥∥∥∥∥∥
d̃−

P∑

p=1

F(A)
p g(Re)

p −
P∑

p=1

F(B)
p g(Im)

p

∥∥∥∥∥∥

2

2

+ λ

N∑

n=1

√√√√
P∑

p=1

(g(Re)
p [n])2 +

P∑

p=1

(g(Im)
p [n])2

}
.

(3.33)

The equivalence arises because the first and second terms of (3.33) are equivalent to 1
2‖d−

Ftotgtot‖2
2 and ‖G‖S in (3.3), respectively.

This means we may apply CBCS to complex-valued problems by performing column-

by-column optimization over the 2P real-valued unknown vectors. This works because

CBCS will pursue solutions where the g(Re)
1 ,g(Im)

1 , . . . ,g(Re)
P ,g(Im)

P vectors are simultaneously

sparse, which is equivalent to pursuing simultaneously sparse g1, . . . ,gP s. After running

CBCS on the 2P vectors, we simply restructure them into P complex-valued gps.

Finally, let us set P = 1 and thus consider the case of single-vector sparse approximation.

The above derivations show that seeking a single sparse complex-valued vector is equivalent

to seeking two simultaneously sparse real-valued vectors. In other words, single-vector

sparse approximation of a complex vector readily maps to the MSSO problem, increasing

the applicability of algorithms that solve the latter.

3.3.7 Second-Order Cone Programming (SOCP)

We now propose a seventh and final algorithm to solve the MSSO problem as given in (3.3).

We branch away from the shrinkage approaches that operate on individual columns or rows

of the G matrix and again seek to concurrently estimate all PN unknowns. Rather than

using an IRLS technique, however, we pursue a second-order cone programming approach,

motivated by the fact that second-order cone programs may be solved via efficient interior

point algorithms [120, 125] and are able to encapsulate conic, convex-quadratic [97], and

linear constraints. (Quadratic programming is not an option because the gps, Fps, and d

may be complex.)

Second-order conic constraints are of the form a = [a1, . . . , aN ]T such that

‖[a1, . . . , aN−1]T‖2 ≤ aN . (3.34)

76



The generic format of an SOC program is

min
x

cTx s.t. Ax = b and x ∈ K, (3.35)

where K = RN
+ × L1 × · · · × LN , RN

+ is the N -dimensional positive orthant cone, and the

Lns are second-order cones [97]. To convert (3.3) into the SOC format, we first write

min
G

{
1
2s + λ1Tt

}

s.t. z = dtot−Ftotgtot and ‖z‖2
2 ≤ s

and ‖[Re(g1[n]), Im(g1[n]), . . . , Re(gP [n]), Im(gP [n])]T‖2 ≤ tn

(3.36)

where n ∈ {1, . . . , N} and t = [t1, . . . , tN ]T. The splitting of the complex elements of the

gps mimics the approach used when extending CBCS to complex data, and (3.36) makes

the objective function linear, as required. Finally, in order to represent the ‖z‖2
2 ≤ s

inequality in terms of second-order cones, an additional step is needed. Given that s =
1
4(s + 1)2 − 1

4(s− 1)2, the inequality may be rewritten as zHz + 1
4(s− 1)2 ≤ 1

4(s + 1)2 and

then expressed as a conic constraint: ‖[zT, 1
2(s− 1)]T‖2 ≤ 1

2(s + 1) [91,97]. Applying these

changes yields

min
{

1
2s + λ1Tt

}

s.t. z = dtot − Ftotgtot and ‖[zT, u]T‖2 ≤ v,

u = (s− 1)/2, v = (s + 1)/2, s ≥ 0,

and ‖[Re(g1[n]), Im(g1[n]), . . . , Re(gP [n]), Im(gP [n])]T‖2 ≤ tn,

(3.37)

which is a fully-defined SOC program that may be implemented and solved numerically.

There is no Algorithm pseudocode for this technique because having set up the variables in

(3.37), one may simply plug them into an SOCP solver. In this paper we implement (3.37)

in SeDuMi (Self-Dual-Minimization) [120], a free software package consisting of MATLAB and

C routines.

3.4 Experiments and Results

Our motivation for solving MSSO sparse approximation problems comes from MRI RF

excitation pulse design. Due to the NP-hardness of the problem (3.2), there is no reasonable
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way to check the accuracy of approximate solutions to these problem instances obtained with

the algorithms introduced here. Thus, before turning to the MRI RF excitation pulse design

problem in Sec. 3.4.3, we present several synthetic experiments. These experiments allow

comparisons among algorithms and also reveal some empirical properties of the relaxation

(3.3). Theoretical exploration of this relaxation is also merited but is beyond the scope of

this dissertation.

All experiments are performed on a Linux server with a 3.0-GHz Intel Pentium IV

processor. The system has 16 gigabytes of random access memory, ample to ensure that

none of the algorithms require the use of virtual memory; this completely avoids excessive

hard drive paging. MP, LSMP, IRLS, RBRS, CBCS are implemented in MATLAB, whereas

SOCP is implemented in SeDuMi. The runtime of any method could be reduced significantly

by implementing it in a completely compiled format such as C. Note: OMP is not evaluated

because its performance always falls in between that of MP and LSMP.

3.4.1 Sparsity Profile Estimation in a Noiseless Setting

Overview

We now evaluate how well the algorithms of Sec. 3.3 estimate sparsity profiles when the

underlying gps are each strictly and simultaneously K-sparse and the observation d of

(3.1) is known exactly and not corrupted by noise. This corresponds to a high-SNR source

localization scenario where the sparsity profile indicates locations of emitters and our goal

is to find the locations of these emitters [74,84,91,92]. Our goal is to get an initial grasp of

the challenges of solving the MSSO problem.

We synthetically generate real-valued sets of Fps and gps in (3.1), apply the algorithms,

and record the fraction of correct sparsity profile entries recovered by each. We vary M in

(3.1) to see how performance at solving the MSSO problem varies when the Fps are under-

determined vs. overdetermined and also vary P to see how rapidly performance degrades

as more system matrices and vectors are employed.

Details

For all trials, we fix N = 30 in (3.1) and K = 3, which means each gp vector consists

of thirty elements, three of which are nonzero. We consider P ∈ {1, 2, . . . , 8}, and M ∈
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{10, 15, . . . , 40}. For each of the fifty-six fixed (M,P ) pairs, we create 50 random instances

of (3.1). Each of the 2,800 instances is constructed and evaluated as follows:

• Pick a K-element subset of {1, . . . , N} uniformly at random. This is the sparsity profile.

• Create P total N -element vectors, the gps. The K elements of each that correspond to

the sparsity profile are filled in with draws from a Gaussian ∼ N (0, 1) distribution; all

other elements are set to zero.

• Create P total M ×N matrices, the Fps. Each element of each matrix is determined by

drawing from N (0, 1); each column of each matrix is normalized to have unit `2 energy.

• Compute d =
∑P

p=1 Fpgp. Shuffle Fps and gps into Cns and hns via (3.4, 3.5).

• Apply the algorithms:

◦ MP, LSMP: iterate until K elements are chosen or the residual approximation is 0. If

less than K terms are chosen, this hurts the recovery score.

◦ IRLS, RBRS, CBCS, SOCP: approximate a λ oracle: proxy for a good choice of λ

by looping over roughly seventy λs in [0, 2], running the given algorithm each time.

This sweep over λ results in high-energy, dense solutions through negligible-energy, all-

zeros solutions. For each of the estimated ĝtots (that vary with λ), estimate a sparsity

profile by noting the largest `2 energy rows of the associated Ĝ matrix.3 Remember

the highest fraction recovered across all λs.

After performing the above steps, we average the results of the 50 trials associated with

each fixed (M, P ) to yield the average fraction of recovered sparsity profile elements.

Results

Each subplot of Fig. 3-1 depicts the average fraction of recovered sparsity profile elements

versus the number of knowns, M , for a fixed value of P , revealing how performance varies

as the Fp ∈ RM×N matrices go from being underdetermined to overdetermined.

Recovery Trends. As the number of knowns M increases, recovery rates improve sub-

stantially, which is sensible. For large M and small P , the six algorithms behave similarly,

consistently achieving nearly 100% recovery. For large P and moderate M , however, spar-

3For example, if the true sparsity profile is {1, 2, 9} and the largest `2 energy rows of Ĝ are {2, 7, 8}, then

the fraction of recovered sparsity profile terms equals 1/3. Now suppose only two rows of Ĝ have nonzero
energy and the profile estimate is only {7, 8}. The fraction recovered is now zero.
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Figure 3-1: Sparsity profile estimation in a noiseless setting. Subplots depict average
fraction of sparsity profile elements recovered over 50 trials of six algorithms as M is varied.
P is fixed per subplot, and N = 30 and K = 3 for all trials. Data is generated as described
in Sec. 3.4.1. Recovery scores for IRLS, RBRS, CBCS, and SOCP assume a good choice of
λ is known. For large M , all algorithms exhibit high recovery rates; for large P , small M ,
or both, the algorithms that seek to minimize (3.3, 3.8) generally outperform those that
greedily pursue a solution.
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sity profile recovery rates are dismal—as P increases, the underlying simultaneous sparsity

of the gps is not enough to combat the increasing number of unknowns, PN . As M is de-

creased and especially when P is increased, the performance of the greedy techniques falls

off relative to that of IRLS, RBRS, CBCS, and SOCP, showing that the convex relaxation

approach itself is a sensible way to approximately solve the formal NP-Hard combinatorial

MSSO simultaneous sparsity problem. Furthermore, the behavior of the convex algorithms

relative to the greedy ones coincides with the studies of greedy vs. convex programming

sparse approximation methods in single-vector [24,31] and SSMO contexts [32]. Essentially,

in contrast with convex programming techniques, the greedy algorithms only look ahead

by one term, cannot backtrack on sparsity profile element choices, and do not consider

updating multiple rows of unknowns of the G matrix at the same time. LSMP tends to

perform slightly better than MP because it solves a least squares minimization and explicitly

considers earlier chosen rows whenever it seeks to choose another row of G.

Convergence. Across most trials, IRLS, RBRS, CBCS, and SOCP converge rapidly and

do not exceed the maximum limit of 500 outer iterations. The exception is CBCS when M

is small and P = 8: here, the objective function frequently fails to decrease by less than the

specified δ = 10−5.

Runtimes. For several fixed (M, P ) pairs, Table 3.1 lists the average runtimes of each

algorithm across the 50 trials associated with each pair.4 For IRLS, RBRS, CBCS, and

SOCP, runtimes are also averaged over the many λ runs. Among the convex minimization

methods, SOCP seems superior given its fast runtimes in three out of four cases. Peak

memory usage is not tracked here because it is difficult to do so when using MATLAB

for such small problems; it will be tracked during the third experiment where the system

matrices are vastly larger and differences in memory usage across the six algorithms are

readily apparent.

Closer Look: Solution Vectors. We now observe how the algorithms that seek to min-

imize the convex objective behave during the 43rd trial when K = 3, N = 30, M = 10,

and P = 1, corresponding to the base case problem of estimating one sparse real-valued

vector, g1. Fig. 3-2 illustrates estimates obtained by SOCP, CBCS, RBRS, and IRLS when

λ = 0.03; for each algorithm, a subplot shows elements of both the estimated and actual

g1, and lists the estimated sparsity profile (ESP), number of profile terms recovered, and

4In the interest of space we do not list average runtimes for all fifty-six (M, P ) pairs.
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(M, P )
Algorithm (10,8) (20,1) (30,5) (40,8)
MP 5.4 1.8 2.6 4.0
LSMP 11.4 5.6 15.6 27.6
IRLS 92.6 10.1 73.2 175.0
RBRS 635.7 36.0 236.8 401.6
CBCS 609.8 7.1 191.4 396.3
SOCP 44.3 37.0 64.3 106.5

Table 3.1: Average algorithm runtimes for noiseless sparsity profile estimation.
For several fixed (M,P ) pairs, each algorithm’s average runtime over the corresponding 50
trials is given in units of milliseconds; N = 30 and K = 3 for all trials (runtimes of the latter
four algorithms are also averaged over the multiple λ runs per trial). MP is substantially
faster than the other techniques, as expected. For larger problems, e.g. (M,P ) = (10, 8),
the runtimes of both RBRS and CBCS are excessive relative to those of the other convex
minimization techniques, IRLS and SOCP.

value of the objective function given in (3.3, 3.8). Although RBRS, CBCS, and SOCP

yield slightly different solutions (among which SOCP yields the best profile estimate), they

all yield an objective function equal to 0.028 ± 10−5. Convex combinations of the three

solutions continue to yield the same value, suggesting that the three algorithms have found

solutions among a convex set that is the global solution to the objective posed in (3.3, 3.8).

Given the fact that in this case SOCP outperforms RBRS and CBCS, we see that even

the globally-optimal solution to the relaxed convex objective does not necessarily optimally

solve the true K-sparse profile recovery problem. In contrast to the other methods, IRLS

yields a slightly higher objective function value, 0.030, and its solution vector is not part

of the convex set—it does however correctly determine 2 of the 3 terms of the true sparsity

profile.

Closer Look: Objective Function Behavior. Concluding the experiment, Fig. 3-3 plots

the objective vs. λ for the 25th trial when M = 30 and P = 6, studying how the objective

(3.3, 3.8) varies with λ when applying SOCP, CBCS, RBRS, and IRLS. For all seventy

values of λ ∈ [0, 2], SOCP, CBCS, and RBRS generate solutions that yield the same ob-

jective function value. For λ < 1
4 , IRLS attains the same objective function value as the

other methods, but as λ increases, IRLS is unable to minimize the objective function as

well as SOCP, RBRS, and CBCS. The behavior in Fig. 3-3 occurs consistently across the

fifty trials of the other (M, P ) pairs.
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Figure 3-2: Noiseless sparsity profile estimation with IRLS, RBRS, CBCS, SOCP.
Here M = 10, N = 30, P = 1, and K = 3. The algorithms are applied with λ fixed at 0.03
and attempt to estimate the single unknown vector, g1, along with the sparsity profile.
Subplots depict the elements of both the estimated and actual g1, along with the estimated
sparsity profile (ESP), number of profile terms recovered, and objective function value.
SOCP leads to a superior sparsity profile estimate, and SOCP, RBRS, and CBCS seem
to minimize the convex objective given in (3.3, 3.8). IRLS does not, but still manages to
properly identify 2 out of 3 sparsity profile terms.
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Figure 3-3: Noiseless sparsity profile estimation: objective function behavior. For
the 25th trial of the (M, P ) = (30, 6) series, SOCP, CBCS, RBRS, and IRLS are used to
solve (3.3, 3.8) for 70 values of λ ∈ [0, 2]; the value of the objective function vs. λ is given
above. For λ > 1

4 , IRLS’s solutions do not minimize the objective as well as those produced
by the three other methods.
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3.4.2 Sparsity Profile Estimation in the Presence of Noise

Overview

We now evaluate how well the algorithms of Sec. 3.3 estimate sparsity profiles when the

underlying gps are each strictly and simultaneously K-sparse and the observation d of

(3.1) is corrupted by additive white Gaussian noise. The signal-to-noise ratio (SNR) and

K are varied across sets of Monte Carlo trials in order to gauge algorithm performance

across many scenarios. For a given trial with a fixed SNR level in units of decibels (dB),

the M elements of the true observation vector, dtrue, are corrupted with independent and

identically distributed (i.i.d.) zero-mean Gaussian noise with variance σ2, related to the

SNR as follows:

σ2 =
1
M
‖dtrue‖2

2 · 10−SNR/10 (3.38)

This noise measure is analogous to that of [32].

Details

We fix N = 30, M = 25, and P = 3, and consider SNR ∈ {−10,−5, 0, . . . , 25, 30} and

K ∈ {1, 3, 5, 7, 9}. For each fixed (SNR, K) pair, we generate 100 noisy observations and

apply the algorithms as follows:

• Generate the sparsity profile, gps, Fps, hns, and Cns as in Sec. 3.4.1. The gps are

simultaneously K-sparse and all terms are real-valued.

• Compute dtrue = F1g1 + · · ·+ FPgP .

• Construct dnoisy = dtrue + n where n ∼ N (0, σ2I) and σ2 is given by (3.38).

• Apply the algorithms by providing them with dnoisy and the system matrices:

◦ MP, LSMP: iterate until K elements are chosen or the residual approximation is 0. If

less than K terms are chosen, this hurts the recovery score.

◦ IRLS, RBRS, CBCS, SOCP: using a pre-determined fixed λ (see below), apply each

algorithm to obtain estimates of the unknown vectors and sparsity profiles.

After performing the above steps, we average the results of the 100 trials associated with

each fixed (SNR,K, alg) triplet to yield the average fraction of sparsity profile elements that

each algorithm recovers.
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Control Parameter Selection. The λ mentioned in the list above is determined as fol-

lows: before running the overall experiment, we generate three noisy observations for each

(SNR,K) pair. We then apply IRLS, RBRS, CBCS, and SOCP, tuning the control parame-

ter λ by hand until finding a single value that produces reasonable solutions. All algorithms

then use this hand-tuned, fixed λ and are applied to the other 100 noisy observations associ-

ated with the (SNR,K) pair under consideration. Thus, in distinct contrast to the noiseless

experiment, we no longer assume an ideal λ is known for each denoising trial.

Results

Each subplot of Fig. 3-4 depicts the average fraction of recovered sparsity profile elements

versus SNR for a fixed K, revealing how well the six algorithms are able to recover the

K elements of the sparsity profile amidst noise in the observation. Each data point is the

average fraction recovered across 100 trials.

Recovery Trends. When K = 1, we see from the upper-left subplot of Fig. 3-4 that

all algorithms have essentially equal performance for each SNR. Recovery rates improve

substantially with increasing SNR, which is sensible. For each algorithm, we see across the

subplots that performance generally decreases with increasing K; in other words, estimating

a large number of sparsity profile terms is more difficult than estimating a small number

of terms. This trend is evident even at high SNRs. For example, when SNR is 30 dB and

K = 7, SOCP is only able to recover ∼ 70% of sparsity profile terms. When K = 9, the

recovery rate falls to ∼ 60%. For low SNRs, e.g., -5 dB, all algorithms tend to perform

similarly, but the greedy algorithms perform increasingly worse than the others as K goes

from moderate-to-large and SNR surpasses zero dB. In general, MP performs worse than

LSMP, and LSMP in turn performs worse than IRLS, SOCP, RBRS, and CBCS, while the

latter four methods exhibit essentially the same performance across all SNRs and Ks. For

K = 3, MP’s performance falls off relative to IRLS, SOCP, RBRS, and CBCS, but LSMP’s

does not. As K transitions from 3 to 5, however, LSMP performs as badly as MP at low

SNRs, but its performance picks up as SNR increases. As K continues to increase beyond

5, LSMP’s performance is unable to surpass that of MP, even when SNR is large. Overall,

Fig. 3-4 shows that convex programming algorithms are superior to greedy methods when

estimating sparsity profiles in noisy situations; this coincides with data collected in the

noiseless experiment in Sec. 3.4.1, as well as the empirical findings of [31,32].
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Figure 3-4: Sparsity profile estimation in the presence of noise. Each subplot depicts
the average fraction of recovered sparsity profile elements versus SNR for a fixed K, revealing
how well the algorithms recover the K elements of the sparsity profile amidst noise in the
observation. Each data point is the average fraction recovered across 100 trials; data is
randomly generated as described in Sec. 3.4.2. N, M and P are always fixed at 30, 25, and
3, respectively. For each (SNR,K) pair, a “good” lambda is chosen by denoising a few cases
by hand and then using this fixed λ for 100 fresh denoising trials. Performance degrades
with increasing K and decreasing SNR. For large K, the greedy algorithms perform worse
than IRLS, SOCP, RBRS, and CBCS, whereas the latter four methods perform essentially
identically across all (SNR,K) combinations.
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Convergence. For many denoising trials, CBCS typically requires more iterations than

the other techniques in order to converge. At times, it fails to converge to within the

specified δ = 10−5, similarly to how it behaves during the noiseless experiment of Sec. 3.4.1.

Runtimes. Across all denoising trials, MP, LSMP, IRLS, RBRS, CBCS, SOCP have

average runtimes of 3.1, 25.1, 57.2, 247.0, 148.5, and 49.2 milliseconds. It seems SOCP

is best for denoising given that it is the fastest algorithm among the four methods that

outperforms the greedy ones. IRLS is nearly as fast as SOCP and thus is a close second

choice for sparsity profile estimation.

Closer Look: Mean Square Errors of Convex Minimization Methods Before and After

Estimating the Sparsity Profile and Retuning the Solution. Now let us consider the 35th

trial of the (SNR = 0 dB,K = 3) pair. We do away with the fixed λ assumption and now

assume we care (to some extent) not only about estimating the sparsity profile, but the

true solution htot as well. To proxy for this, we study how the mean square errors (MSEs)

of solutions generated by IRLS, SOCP, RBRS, and CBCS behave across λ before and after

identifying the sparsity profile and retuning the solution. Figure 3-5 depicts the results of

this investigation.

Running each algorithm for a particular λ yields a solution ĥtot(alg, λ). The left subplot

simply illustrates the MSEs of the ĥtot(alg, λ)s with respect to the true solution. Among

SOCP, RBRS, CBCS, and IRLS, only the last is able to determine solutions with MSEs

less than unity (consider the IRLS error curve for λ ≥ 0.3).

Consider now retuning each of the ĥtot(alg, λ)s as follows: unstack each into ĥn(alg, λ)

for n ∈ {1, . . . , N} and then remember the K vectors whose `2 energies are largest, yielding

an estimate of the K-element sparsity profile. Let these estimated indices be {q1, . . . , qK}.
Now, generate a retuned solution by using the K matrices associated with the estimated

sparsity profile and solving dnoisy = [Cq1 , . . . ,CqK ]xtot for xtot ∈ RKP . This latter vector

consists of KP elements and by unstacking it we obtain a retuned estimate of the ĥn(alg, λ)s,

e.g., ĥq1(alg, λ) equals the first K elements of xtot, and so forth, while the other ĥn(alg, λ)s

for n /∈ {q1, . . . , qK} are now simply all-zeros vectors. Reshuffling the retuned ĥn(alg, λ)s

yields ĝp(alg, λ)s that are strictly and simultaneously K sparse whose weightings yield the

best match to the noisy observation in the `2 sense. Unlike the original solution estimate,

which is not necessarily simultaneously K-sparse, here we have enforced true simultaneous

K-sparsity. We may or may not have improved the MSE with respect to the true solution:
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Figure 3-5: MSEs of convex minimization methods before and after estimating
the sparsity profile and retuning the solution. Here MSE vs. λ is studied during
the 35th trial of the (SNR = 0 dB,K = 3) denoising series. Fixing λ and applying a given
algorithm yields the solution ĥ(alg, λ). Left plot: MSEs of the ĥ(alg, λ)s vs. the true solution
htot. Right plot: MSEs of the solution estimates after they undergo retuning to be strictly
and simultaneously K-sparse. (Sec. 3.4.2 outlines the retuning process.) For all algorithms
and λs, MSE increases substantially relative to the left plot. No method correctly estimates
the true K-term sparsity profile and thus the retuning step causes every estimated solution
to branch further away (in the MSE sense) from the actual one.

for example, if we have grossly miscalculated the sparsity profile, the MSE of the retuned

solution is likely to increase substantially, but if we have estimated the true sparsity profile

exactly, then the retuned solution will likely be quite close (in the `2 sense) to the true

solution, and MSE will thus decrease.

The MSEs of these retuned solutions with respect to the true htot are plotted in the

right subplot of Fig. 3-5. For all algorithms and λs, MSE has increased relative to the left

subplot, which means that in every case our estimate of the true underlying solution has

worsened. This occurs because across all algorithms and λs in Fig. 3-5, the true K-term

sparsity profile is incorrectly estimated and thus the retuning step makes the estimated

solution worse. The lesson here is that if one is interested in minimizing MSE in low-to-

moderate SNR regimes it may be best to simply keep the original estimate of the solution

rather than detect the sparsity profile and retune the result. If one is not certain that

the sparsity profile estimate is accurate, retuning is likely to increase MSE by fitting the

estimated solution weights to an incorrect set of generating matrices. On the other hand, if

one is confident that the entire sparsity profile will be correctly identified with sufficiently

high probability, retuning will be beneficial; see [46,49,53] for related ideas.
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3.4.3 MRI RF Excitation Pulse Design

from an Applied Mathematical Perspective

Overview

For the final experiment we study how well the six algorithms design MRI RF excitation

pulses. Because the conversion of the physical problem into an MSSO format involves MRI

physics and requires significant background, we only briefly outline how the system matrices

arise and why simultaneously sparse solutions are necessary. A complete formulation of the

problem will be given in Ch. 5 and is also described in [157,167].

Formulation

For the purposes of this chapter design of an MRI RF excitation pulse reduces to the

following problem: assume we are given M points in the 2-D spatial domain, r1, . . . , rM ,

along with N points in a 2-D “Fourier-like” domain, k1, . . . ,kN . Each rm equals [xm, ym]T,

a point in space, while each kn equals [kx,n, ky,n]T, a point in the Fourier-like domain,

referred to as “k-space”. The rms and kns are in units of centimeters (cm) and inverse

centimeters (cm−1), respectively. The kns are Nyquist-spaced relative to the sampling

of the rms and may be visualized as a 2-D grid located at low kx and ky frequencies

(where “kx” denotes the frequency domain axis that corresponds to the spatial x axis).

Under reasonable assumptions, energy placed at one or more points in k-space produces a

pattern in the spatial domain; this pattern is related to the k-space energy via a Fourier-

like transform [102]. Assume we place an arbitrary complex weight gn ∈ C (i.e., both a

magnitude and phase) at each of the N locations in k-space. Let us represent these weights

using a vector g = [g1, . . . , gN ]T ∈ CN . In an ideal (i.e., physically-unrealizable) setting,

the following holds:

m = Ag, (3.39)

where A ∈ CM×N is a known dense Fourier matrix5 and the mth element of m ∈ CM is the

image that arises at rm, denoted m(rm), due to the energy deposition along the N points

on the k-space grid as described by the weights in the g vector.

The goal now is to form a desired (possibly complex-valued) spatial-domain image d(r)

at the given set of spatial domain coordinates (the rms) by placing energy at some of

5Formally, A(m, n) = jγeirm·kn , where j =
√−1 and γ is a known lumped gain constant.
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the given kn locations while obeying a special constraint on how the energy is deposited.

To produce the spatial-domain image, we will use a “P -channel MRI parallel excitation

system” [79, 113]—each of the system’s P channels is able to deposit energy of varying

magnitudes and phases at the k-space locations and is able to influence the resulting spatial-

domain pattern m(r) to some extent. Each channel p has a known “profile” across space,

Sp(r) ∈ C, that describes how the channel is able to influence the magnitude and phase of

the resulting image at different spatial locations. For example, if S3(r5) = 0, then the 3rd

channel is unable to influence the image that arises at location r5, regardless of how much

energy it deposits along k1, . . . ,kN . The special constraint mentioned above is as follows:

the system’s channels may only visit a small number of points in k-space—they may only

deposit energy at K ¿ N locations.

We now finalize the formulation of problem: first, we construct P diagonal matrices

Sp ∈ CM×M such that Sp(m,m) = Sp(rm),m = 1, . . . , M . Now we assume that each

channel deposits arbitrary energies at each of the N points in k-space and describe the

weighting of the k-space grid by the pth channel with the vector gp ∈ CN . Based on the

physics of the P -channel parallel excitation system, the overall image m(r) that forms is

the superposition of the profile-scaled subimages produced by each channel:

m = S1Ag1 + · · ·+ SPAgP

= F1g1 + · · ·+ FPgP

= Ftotgtot,

(3.40)

where m = [m(r1), . . . , m(rM )]T. Essentially, (3.40) is the real-world version of (3.39) for

P -channel systems with profiles Sp(r) that are not constant across r.

Recalling that our overall goal is to deposit energy in k-space to produce the image d(r),

and given the special constraint that we may only deposit energy among a small subset of

the N points in k-space, we arrive at the following problem:

min
g1, . . . ,gP

‖d−m‖2 s.t. the simultaneous K-sparsity of the gps, (3.41)

where d ∈ CM = [d(r1), . . . , d(rM )]T ∈ CM and m is given by (3.40). That is, we seek out

K < N locations in k-space at which to deposit energy to produce an image m(r) that is

close in the `2 sense to the desired image d(r). Strictly and simultaneously K-sparse gps
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are the only valid solutions to the problem.

One sees that (3.41) is precisely the MSSO system given in (3.2) and thus the algorithms

posed in Sec. 3.3 are applicable to the pulse design problem. In order to apply the convex

minimization techniques (IRLS, SOCP, RBRS, and CBCS) to this problem, the only addi-

tional step needed is to retune any given solution estimate ĝtot(alg, λ) into a strictly and

simultaneously K-sparse set of vectors; this retuning step is computationally tractable and

was described in Sec. 3.4.2’s “Closer Look” subsection.

Aside. An alternative approach to decide where to place energy at K locations in k-space

is to compute the Fourier transform of d(r) and decide to place energy at (kx, ky) frequencies

where the Fourier coefficients are largest in magnitude [147]. This method does yield valid

K-sparse energy placement patterns, but in Ch. 5 and [157, 162, 167] we empirically show

that this technique is always outperformed by convex minimization approaches. Thus we

do not delve into the Fourier-based method here.

Experimental Setup

Using an eight-channel system (i.e., P = 8) whose profile magnitudes (the |Sp(r)|s) are

depicted in Fig. 2-6, we will design pulses to produce the desired complex-valued image

shown in the left subplot of Fig. 3-6. We sample the spatial (x, y) domain at M = 356

locations within the region where at least one of the profiles in Fig. 2-6 is active—this

region of interest is the field of excitation (FOX) discussed in Sec. 2.1.10.6 The spatial

samples are spaced by 0.8 cm along each axis and the FOX has a diameter of roughly 20

cm. Given our choice of r1, . . . , r356, we sample the S(r)s and d(r) and construct the Sps

and d. Next, we define a grid of N = 225 points in (kx, ky)-space that is 15 × 15 in size

and extends outward from the k-space origin. The points are spaced by 1
20 cm−1 along each

k-space axis and the overall grid is shown in the right subplot of Fig. 3-6. Finally, because

we know the 356 rms and 225 kns, we construct the 356 × 225 matrix A in (3.39, 3.40)

along with the Fps in (3.40). We now have all the data we need to apply the algorithms

and determine simultaneously K-sparse gps that (approximately) solve (3.41).

We apply the algorithms and evaluate designs where the use of K ∈ {1, . . . , 30} candidate

points in k-space is permitted (in practical MRI scenarios, K up to 30 is permissible).

6Sampling points outside of the FOX where no profile has influence is unnecessary because an image can
never be formed at these points no matter how much energy any given channel places throughout k-space.
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Figure 3-6: Desired image and k-space grid. Left image: desired complex-valued image,
d(r). Medium-gray region = FOX; other regions denote locations where we want image to
be nonzero with the given magnitudes and phases. Sampling d(r) at the 356 locations
within the FOX allows us to construct d in (3.41). Right subplot: 15× 15 grid of N = 225
candidate k-space locations, k1, . . . ,k225, at which the P channels may deposit energy and
thus influence the resulting image. The physical constraints of the MRI excitation process
force us to place energy at only a small number of grid locations.

Typically, the smallest K possible that produces a version of d(r) to within some `2 fidelity

is the design that the MRI pulse designer will use on a real system since this will correspond

to the shortest pulse that accomplishes the desired task.

To obtain simultaneously K-sparse solutions with MP and LSMP, we set K = 30,

run each algorithm once, remember the ordered list of chosen indices, and back out every

solution for K = 1 through K = 30 via the retuning technique of Sec. 3.4.2.

For each convex minimization method (IRLS, SOCP, RBRS, and CBCS), we apply the

following procedure: first, we run the algorithm for 14 values of λ ∈ [
0, 1

4

]
, storing each

resulting solution, ĝtot(alg, λ). Then for fixed K, to determine a simultaneously K-sparse

deposition of energy on the k-space grid, we apply the retuning process of Sec. 3.4.2 to each

of the 14 solutions, obtaining 14 strictly simultaneously K-sparse retuned sets of solution

vectors, ĝ(K)
tot (alg, λ). The one solution among the 14 that best minimizes the `2 error

between the desired and resulting images, ‖d−Ftotg
(K)
tot (alg, λ)‖2, is chosen as the solution

for the K under consideration. Essentially, we again assume we know a good value for λ

when applying each of the convex minimization methods. To attempt to avoid convergence

problems, RBRS and CBCS are permitted 5,000 and 10,000 maximum outer iterations,

respectively (see below).
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Figure 3-7: MRI pulse design results. Left subplot: `2 error vs. K is given for MP,
LSMP, IRLS, RBRS, CBCS, and SOCP. For fixed K, LSMP consistently outperforms
the other algorithms. Right subplot: objective function values vs. λ when SOCP, CBCS,
RBRS, and IRLS attempt to minimize (3.3, 3.8). SOCP and IRLS converge and seem to
minimize the objective; RBRS does so as well for most λs. CBCS routinely fails to converge
even after 10,000 iterations and thus its solutions yield large objective function values.

Results

Image `2 Error vs. Number of Energy Depositions in k-Space. Figure 3-7’s left subplot shows

the `2 error versus K curves for each algorithm. As K is increased, each method produces

images with lower `2 error, which is sensible: depositing energy at more locations in k-space

gives each technique more degrees of freedom with which to form the image. In contrast to

the sparsity profile estimation experiments in Sec. 3.4.1 and Sec. 3.4.2, however, here LSMP

is the best algorithm: for each fixed K considered in Fig. 3-7, the LSMP technique yields

a simultaneously K-sparse energy deposition that produces a higher-fidelity image than all

other techniques. For example, when K = 17 LSMP yields a solution that leads to an

image with `2 error of 3.3. In order to produce an image with equal or better fidelity, IRLS,

RBRS, and SOCP need to deposit energy at K = 21 points in k-space, and thus produce

less useful designs from an MRI perspective. CBCS fares the worst, needing to deposit

energy at K = 25 grid points in order to compete with the fidelity of LSMP’s K = 17

image.

Closer Look: Objective Function vs. λ. The right subplot of Fig 3-7 shows how well

the four convex minimization algorithms minimize the objective function (3.3, 3.8) before

retuning any solutions and enforcing strict simultaneous K-sparsity. For each fixed λ, SOCP

and IRLS find solutions that yield the same objective function value. RBRS’s solutions

generally yield objective function values equal to those of SOCP and IRLS, but at times
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Figure 3-8: Convergence behavior of IRLS, SOCP, RBRS, CBCS. Each subplot
illustrates the value of each algorithm’s objective function (3.3, 3.8) as the algorithm iterates.
Upper row subplots are scaled to have the same y axis, whereas the bottom row subplots
are “zoomed out” to illustrate the overall behavior of RBRS and CBCS. IRLS and SOCP
converge rapidly, within 4 and 19 iterations, respectively. RBRS and CBCS require roughly
150 and 10,000 iterations, respectively. The runtimes of IRLS, SOCP, RBRS, and CBCS in
this case are 29, 121, 450, and 5,542 seconds.

lead to higher values: in these cases RBRS almost converges but does not do so completely.

Finally, for most λs CBCS’s solutions yield extremely large objective function values; in

these cases CBCS completely fails to converge.

Closer Look: Objective Function Convergence for λ = 0.025. The right subplot of Fig 3-

7 shows that for λ = 0.025, IRLS, SOCP, RBRS, and CBCS generate solutions that yield

the same objective function value, suggesting that each method succeeds at minimizing the

objective function. Figure 3-8 illustrates how the algorithms converge in this specific case:

each subplot tracks the value of an algorithm’s objective function as it iterates. Subplots

along the top row all have the same y axis, giving a close look at how the algorithms

behave. The two subplots along the bottom row “zoom out” along the y axis to show

RBRS’s and CBCS’s total behavior. IRLS and SOCP converge rapidly, within 4 and 19

iterations, respectively. RBRS requires roughly 150 outer iterations, while CBCS requires

nearly 10,000.

Runtimes and Peak Memory Usage. Setting K = 30, we run MP and LSMP and record

the runtime of each. Across the 14 λs, IRLS, RBRS, CBCS, and SOCP’s runtimes are

recorded and averaged. The peak memory usage of each algorithm is also noted; these
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Algorithm Runtime Peak Memory Usage (MB)
MP 11 sec 704
LSMP 46 min 304
IRLS 50 sec 320
RBRS 87 min 320
CBCS 3.3 hr 320
SOCP 96 sec 432

Table 3.2: Algorithm runtimes and peak memory usage for MRI pulse design.
Each algorithm’s runtime and peak memory usage is listed. The runtimes of the latter four
algorithms are averaged over the fourteen λs per trial. MP is again faster than the other
techniques, but consumes more memory because of its precomputation step (see Algorithm
3.1). IRLS and SOCP are quite similar performance-wise and minimize the convex objective
function equally well (see Fig. 3-7), but we see here that IRLS is approximately 1.9 times
faster and uses 1.4 times less peak memory than SOCP, making the former the superior
technique among the convex methods.

statistics are presented in Table 3.2. In distinct contrast to the smaller-variable-size ex-

periments in Sec. 3.4.1 and Sec. 3.4.2 where all four convex minimization methods have

relatively short runtimes (under one second), here RBRS and CBCS are much slower, leav-

ing IRLS and SOCP as the only feasible techniques among the four. Furthermore, while

LSMP does indeed outperform IRLS and SOCP on an `2 error basis (as shown in Fig. 3-7),

the runtime statistics here show that LSMP requires order-of-magnitude greater runtime to

solve the problem—therefore, in some real-life scenarios where designing pulses in less than

5 minutes is a necessity, IRLS and SOCP are superior. Finally, in contrast to Sec. 3.4.1’s

runtimes given in Table 3.1, here IRLS is 1.9 times faster than SOCP and uses 1.4 times

less peak memory, making it the superior technique for MRI pulse design since IRLS’s `2

error performance and ability to minimize the objective function (3.3, 3.8) essentially equal

that of SOCP.

Closer Look: Images and Chosen k-Space Locations for K = 17. To conclude the

experiment, we fix K = 17 and observe the images produced by the algorithms along with

the points at which each algorithm chooses to deposit energy along the grid of candidate

points in (kx, ky)-space. Figure 3-9 illustrates the images (in both magnitude and phase)

that arise due to each algorithm’s simultaneously 17-sparse set of solution vectors,7 while

Fig. 3-10 depicts the placement pattern chosen by each method. From Fig. 3-9, we see

7Each image is generated by taking the corresponding solution gtot, computing m in (3.40), unstacking
the elements of m into m(r), and then displaying the magnitude and phase of m(r).
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that each algorithm forms a high-fidelity version of the desired image d(r) given in the

left subplot of Fig. 3-6, but among the images, LSMP’s most accurately represents d(r)

(e.g., consider the sharp edges of the LSMP image’s rectangular box). MP’s and CBCS’s

images are noticeably fuzzy relative to the others. The placements in Fig. 3-10 give insight

into these performance differences. Here, LSMP places energy at several higher frequencies

along the ky and kx axes, which ensures the resulting rectangle is narrow with sharp edges

along the spatial y and x axes. In contrast, CBCS fails to place energy at moderate-to-

high (kx, ky)-space frequencies and thus cannot produce a rectangle with desirable sharp

edges, while MP branches out to some extent but fails to utilize high ky frequencies. IRLS,

RBRS, and SOCP branch out to higher ky frequencies but not to high kx frequencies,

and thus their associated rectangles in Fig. 3-9 are sharp along the y axis but exhibit less

distinct transitions (more fuzziness) along the spatial x axis. In general, each algorithm

has determined 17 locations at which to place energy that yield a fairly good image and

each has avoided the computationally impossible scenario of searching over all N -choose-K

(225-choose-17) possible placements.

3.5 Discussion

3.5.1 MRI Pulse Design vs. Denoising and Source Localization

The MRI pulse design problem in Sec. 3.4.3 differs substantially from the source localization

problem in Sec. 3.4.1, the denoising experiment in Sec. 3.4.2, and other routine applications

of sparse approximation (e.g. [24, 31, 32, 38, 44, 49, 92]). It differs not only in purpose but

in numerical properties, the latter of which are summarized in Table 3.3. While this list

will not always hold true on an application-by-application basis, it does highlight general

differences between the two problem classes.

3.5.2 Merits of Row-by-Row and Column-by-Column Shrinkage

Even though LSMP, IRLS, and SOCP tend to exhibit superior performance across different

experiments in this manuscript, RBRS and CBCS are worthwhile because unlike the former

methods that update all PN unknowns concurrently, the shrinkage techniques update only

a subset of the total variables during each iteration.
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Figure 3-9: MRI pulse design: images per algorithm for K = 17. Each algorithm is
used to solve the MRI pulse design problem using 17 energy depositions along the k-space
grid, attempting to produce an image close to the desired one, d(r), given in the left subplot
of Fig. 3-6. From each set of simultaneously 17-sparse solution vectors, we calculate the
resulting image via (3.40) and display both its magnitude and phase. LSMP’s image best
resembles the desired one; IRLS’s, RBRS’s, and SOCP’s images are nearly as accurate;
MP’s and CBCS’s images lack crisp edges, coinciding with their larger `2 errors.
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Figure 3-10: MRI pulse design: energy deposition patterns per algorithm for
K = 17. Each algorithm’s placement of energy in k-space is displayed. LSMP branches
out to moderate kx frequencies and high ky frequencies, partly explaining the superiority
of its image in Fig. 3-9. IRLS, RBRS, and SOCP succeed in branching out to higher ky

frequencies but do not place energy at |kx| À 0. MP and CBCS fail to spread their energy
to high spatial frequencies, and thus their images in Fig. 3-9 lack distinct edges and appear
as “low-pass filtered” versions of d(r).

MRI Pulse Design Denoising and Source Localization
• Fps overdetermined • Fps underdetermined
• No concept of noise: given d is dtrue • Noisy: given d is not dtrue

• Sweep over λ useful • Ideal λ unknown
• Metric: ‖d−m‖2 • Metrics: ‖gtot − ĝtot‖2, and/or

fraction of rec. sparsity profile terms

Table 3.3: Unique trends of the MRI pulse design problem. This table highlights
differences between the MRI problem and standard denoising and source localization appli-
cations. Items here will not always be true, instead providing general highlights about each
problem class.
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For example, RBRS as given in Algorithm 3.5 updates only P unknowns at once, while

CBCS as given in Algorithm 3.6 updates but a single scalar at a time. RBRS and CBCS

are thus applicable in scenarios where P and N are exceedingly large and tuning all PN

parameters during each iteration is not possible. If storing and handling M × PN or

PN ×PN matrices exceeds a system’s available memory and causes disk thrashing, RBRS

and CBCS, though they require far more iterations, might still be better options than

LSMP, IRLS, and SOCP in terms of runtime.

3.6 Conclusion

We defined the linear inverse multiple-system, single-output (MSSO) simultaneous sparsity

problem where simultaneously sparse sets of unknown vectors are required as the solution.

This problem differed from prior problems involving multiple unknown vectors because

in this case, each unknown vector was passed through a different system matrix and the

outputs of the various matrices underwent linear combination, yielding only one observation

vector.

To solve the proposed MSSO problem, we formulated three greedy techniques, matching

pursuit, orthogonal matching pursuit, and least squares matching pursuit, along with algo-

rithms based on iteratively reweighted least squares, iterative shrinkage, and second-order

cone programming methodologies. The MSSO algorithms were evaluated across noiseless

and noisy sparsity profile estimation experiments as well as a magnetic resonance imag-

ing pulse design experiment; for sparsity profile recovery, algorithms that minimized the

relaxed convex objective function outperformed the greedy methods, whereas in the noise-

less magnetic resonance imagine pulse design experiment, greedy LSMP exhibited superior

performance.

Finally, when deriving CBCS for complex-valued data, we proved that seeking a single

sparse complex-valued vector is equivalent to seeking two simultaneously sparse real-valued

vectors—we mapped single-vector sparse approximation of a complex vector to the MSSO

problem, increasing the applicability of algorithms that solve the latter.

Overall, while improvements upon these seven algorithms (and new algorithms alto-

gether) surely do exist, we have laid the groundwork of the MSSO problem and conducted

an initial exploration of algorithms with which to solve it.
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Chapter 4

Comparison of Three Algorithms

for Solving Linearized Systems of

Parallel Excitation Pulse Design

Equations: Experiments on an

Eight-Channel System at 3 Tesla

4.1 Introduction

In this chapter we investigate three algorithms for solving the linearized system of parallel

excitation RF waveform design equations given in (2.14, 2.15) by conducting several exper-

iments. The artifact levels and RF peak and root-mean-square (RMS) voltages of pulses

generated by each method are analyzed along with algorithm runtime. The pulses calcu-

lated using these methods are used in both Bloch simulations and imaging experiments

on an actual 8-channel parallel excitation coil array implemented on a 3T human scanner.

Specifically, RF waveforms are designed for accelerated 2-D spiral k-space trajectories to

produce a variety of 2-D target excitations and for a 3-D spokes trajectory to produce a

uniform thin-slice excitation. The material of this chapter first appeared in [165, 166] and

is patented [150].

In Experiment 1 (E1), pulses are designed using each algorithm to produce a square
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target pattern for R = 1, 4, 6, and 8 spiral trajectories. For each algorithm and R value,

the mean-square error (MSE) between the resulting Bloch-simulated excitation and target is

calculated, which quantifies each method’s excitation artifacts. Each waveform’s peak volt-

age, Vpeak, and root-mean-square (RMS) voltage, VRMS, are also determined. In Experiment

2 (E2), the trajectories are again spirals and the target is a text logo. In addition to Bloch

simulation analyses, the waveforms are played through a fully-implemented eight-channel

parallel excitation system at 3T and actual excitations are analyzed. In Experiment 3 (E3),

the trajectory is a fixed set of “spokes” in kz that sample the (kx, ky)-plane to achieve

slice selection in z [108, 113, 132] and the in-plane target is a uniform pattern. Finally, in

Experiment 4 (E4), the trajectory is an R = 8 spiral and the target is again the text logo.

Thousands of pulses are designed by looping over each method’s primary control param-

eter, which provides extensive empirical data that shows how well each method trades off

excitation quality with Vpeak and VRMS.

For each experiment, after fixing the target and trajectory, the Bloch equations relating

the RF waveforms and target excitation are first linearized using the formalism of [59] as

presented in Sec. 2.1.11, to which the reader may refer if the notation or formulation of the

matrices here seems unfamiliar. After linearizing the system, each design method is used to

generate a set of pulses. The methods have different regularizations and implementations

that influence their optimization criteria and finite-precision arithmetic effects, which in turn

strongly affect the resulting pulses, causing each method to produce a unique waveform and

excitation.

The first design algorithm involves an approximate pseudoinverse generated via singular

value decomposition (SVD), a popular approach for least-squares problems whose use is

analytically justifiable [51,118]. The other methods are Conjugate Gradient Least-Squares

(CGLS) and Least-Squares QR (LSQR), iterative CG optimization algorithms for solving

large linear systems [62, 100, 101]. An early use of an MRI-related CG method was the

reconstruction of sensitivity encoded (SENSE) data by Pruessmann and Kannengießer [76,

104, 105]. More recently, CG methods have been used to design pulses for a single-channel

system [146] and an emulated parallel excitation system [59].
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4.2 Multi-Channel Parallel Excitation Pulse Design

Following the approach of [59] outlined in Sec. 2.1.11, we arrive at the system of equations

given in (2.15) that allows us to design parallel excitation pulses to play through a P -channel

system. We restate this system below for easy reference:

d = Ab, (4.1)

where we have chosen to use A and b in place of the more cumbersome variables Atot

and btot and we assume that the coil profiles S1(r), . . . , SP (r) are known. The vector d

consists of Ns elements, while A and b are of size Ns × PNt and PNt × 1, respectively; all

three of these terms may be complex-valued. For all experiments considered in this chapter,

Ns = 1466.

Recall that choosing a desired excitation pattern d(r) and k-space trajectory k(t) im-

plicitly determines d and A, where d is Ns × 1, formed by ordering the elements of d(r)

within the FOX. It is then necessary to find a candidate vector b that approximately solves

d = Ab. Once b is found, voltage samples of the P waveforms (b1(t), . . . , bP (t)) may

be extracted, played through a Bloch simulation or actual system, and an excitation pat-

tern may be recorded, the latter of which will resemble the target if the small-tip angle

approximation [102] holds and the SNR is sufficient.

4.3 Three Algorithms for Solving a Linear System

4.3.1 SVD-Based Truncated Pseudoinversion

One may solve (4.1) via a truncated pseudoinverse generated by an SVD [51, 118], seeking

a solution that minimizes ‖d−Ab‖2. This is accomplished with the Moore-Penrose pseu-

doinverse of A, denoted as A†, yielding bopt = A†d. To generate A†, an SVD is used to

decompose A into UΣVH, where U and V are Ns×Ns and PNt×PNt eigenvector matrices

and H is the complex transpose. If A is of rank J < min(Ns, PNt), then Σ is Ns × PNt

and diagonal, and its diagonal elements σ1 ≥ . . . ≥ σJ > 0 are the nonzero singular values

(SVs) of A. Formally,

A† = VΣ+UH =
J∑

j=1

σ−1
j vjuH

j , (4.2)
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where uj and vj are the jth columns of U and V, and Σ+ is implicitly defined. When

A is ill-conditioned, (4.2) yields a poor candidate for b because it uses all nonzero SVs,

even those representing only the system’s noise subspace. However, by retaining only the

first K < J singular values and avoiding the use of the smaller ones, a better-conditioned

truncated pseudoinverse is obtained:

A†
K =

K∑

k=1

σ−1
k vkuH

k , (4.3)

allowing one to obtain a better-conditioned estimate bK = A†
Kd. Therefore, K is this

method’s control parameter: as it is increased, the error ‖d − AbK‖2 decreases whereas

the energy of the solution vector, ‖bK‖2, increases. One typically applies this method

by retaining just enough SVs to yield a solution with acceptably low residual error while

keeping ‖b‖2 as small as possible. For large matrices this algorithm is slow because it

computes an SVD, but for fixed K there exist fast methods to compute A†
K directly.

4.3.2 Conjugate Gradient Least-Squares (CGLS)

This algorithm solves the following optimization problem:

min
b

∥∥(
AHA + λCGLSI

)
b−AHd

∥∥
2

(4.4)

where λCGLS is a regularization term. One sees from (4.4) that as λCGLS is increased,

‖b‖2 decreases and residual error ‖r‖2 = ‖d−Ab‖2 increases. CGLS does not perform an

SVD and requires only 2Ns + 3PNt complex multiplications per iteration i. When λCGLS

is zero, CGLS is identical to Hestenes and Stiefel’s iterative CG method for least-squares

problems [62].

Pseudocode for CGLS is given in Algorithm 4.1 and shows how the sequence of approxi-

mations bi is generated. Analytically, the bi are such that the residual error ‖ri‖2 decreases

monotonically [62]. When solving (4.4), users may restrict the number of iterations or spec-

ify a threshold ε such that CGLS halts when ‖si‖2
2/‖s0‖2 < ε. CGLS may also incorporate

preconditioning matrices, weighted norms, and initial conditions.

CGLS is similar to Sutton et al.’s CG method (SCG) [121] used in [146] and [59] for

pulse design because both CGLS and SCG are based on the Hestenes-Stiefel method. Step
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Algorithm 4.1 Conjugate Gradient Least Squares (CGLS)

1. Set r0 = d, s0 = AHd, p1 = s0, γ0 = ‖s0‖2
2, b0 = 0 = [0, . . . , 0]T

2. For i = 1, 2, . . . repeat the following:

(a) q = Api (Hestenes and Stiefel’s intermediate vector)

(b) δi = ‖qi‖2
2 + λCGLS‖pi‖2

2 (incorporate regularization term)

(c) αi = γi−1/δi (calculate step size)

(d) bi = bi−1 + αipi (update set of RF waveforms)

(e) ri = ri−1 − αiqi (update residual error vector)

(f) si = AHri − λCGLSbi (incorporate regularization term)

(g) γi = ‖si‖2
2

(h) βi = γi/γi−1

(i) pi+1 = si + βipi

(j) Test for convergence. Exit if a stopping criterion is met.

2(c) of CGLS given in Algorithm 4.1 shows that the numerator of the step size αi equals

‖si−1‖2, and thus is guaranteed to be nonnegative real (zero if an exact solution is reached).

The numerator of SCG’s step size, however, is pH
i si−1 = (si−1 +βipi−1)Hsi−1, and thus not

guaranteed to be positive. We confirmed this numerically by providing SCG with randomly

generated inputs and consistently observing complex-valued step sizes.

4.3.3 Least-Squares QR (LSQR)

This algorithm is an implementation of Tikhonov regularization and solves large linear

least-squares problems in a numerically attractive manner [123, 124]. Its name comes from

its use of the QR decomposition [51,118]. The algorithm has one regularization parameter,

λLSQR, and solves the following:

min
b

(
‖d−Ab‖2

2 + λ2
LSQR ‖b‖2

2

)
. (4.5)

As λLSQR is increased, more weight is placed on the energy of b than on the residual error,

causing ‖b‖2 to decrease and ‖d −Ab‖2 to increase. LSQR also avoids use of an SVD; it

requires 3Ns + 5PNt complex multiplications per iteration. Pseudocode for LSQR when

λLSQR = 0 is given in Algorithm 4.2, based on Sec. 4 of [101].

LSQR, like CGLS, generates bi such that ‖ri‖2 decreases monotonically, but LSQR
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Algorithm 4.2 Least-Squares QR (LSQR)

1. Initialize and begin the bidiagonalization.
β1u1 = d, α1v1 = AHu1, w1 = v1, b0 = 0, φ̄ = β1, ρ̄ = α1

2. For i = 1, 2, . . . repeat steps 3 through 6

3. Continue the bidiagonalization.

(a) βi+1ui+1 = Avi − αiui

(b) αi+1vi+1 = AHui+1 − βi+1vi

4. Construct and apply orthogonal transformation.

(a) ρi = (ρ̄2
i + β2

i+1)
1/2

(b) ci = ρ̄i/ρi

(c) si = βi+1/ρi

(d) θi+1 = siαi+1

(e) ρ̄i+1 = −ciαi+1

(f) φi = ciφ̄i

(g) φ̄i+1 = siφ̄i

5. Update b, w.

(a) bi = bi−1 + (φi/ρi)wi)

(b) wi+1 = vi+1 − (θi+1/ρi)wi

6. Test for convergence. Exit if a stopping criterion has been met.

performs better in practice [13, 101] due to its unique restructuring of the input system

(via the Lanczos process [86] and Golub-Kahan bidiagonalization [50]) prior to solving it.

Empirical studies have shown that LSQR finds solutions with lower residual error than

CGLS when A is ill-conditioned, and of similar fidelity when A is well-conditioned [13,

101]. Further description of how LSQR applies the Lanczos process and Golub-Kahan

factorization, along with pseudocode when λLSQR 6= 0, is located in [100,101].

In addition to the above, LSQR’s stopping rules are carefully designed to reflect the

data’s accuracy. Relative to CGLS’s stopping rule, LSQR’s ensures it always shuts down

sooner and its corresponding b estimate is equally acceptable. This advantage becomes

more pronounced as A’s conditioning worsens [101].1 Note that while LSQR indeed requires

1This was also confirmed directly by M. A. Saunders, one of the creators of LSQR.
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Ns +2PNt more complex multiplications per iteration than CGLS, this is mitigated by the

fact that LSQR often requires fewer iterations to attain a similar-fidelity solution.

4.4 Quality Metrics

4.4.1 Image Quality Evaluation

For each experiment we conduct, we generate a 2-D image, o(x, y), either via a Bloch

simulation or by performing an excitation on the 8-channel system. We then evaluate the

quality of o(x, y) by using metrics that quantify how closely it matches the target pattern

d(x, y), each of which is explained below.

Mean-squared error (MSE). This measures how close o(x, y) is to d(x, y) over a

chosen region of interest (ROI):

MSE(o, d) =
1

card(Z)

∑

(x,y)∈Z

|o(x, y)− d(x, y)|2 (4.6)

where Z is a set of coordinates that implicitly defines the spatial ROI over which the MSE

is computed, and card(Z) is the cardinality, or number of elements, of Z.

Second-order statistics. Computing the mean µ and standard deviation σ of o(x, y)

in different ROIs quantifies the severity of artifacts and noise present within each, e.g., if

the target is uniform in a particular ROI, a small σ implies that o(x, y) closely matches

d(x, y) in that region.

Peak value. The maximum value in an ROI of o(x, y) quantifies the worst-case artifact

present, e.g., given two observations of the same target, larger peak values in one indicate

it has more artifacts than the other.

Note on non-MSE metrics. Recent RF pulse design work uses MSE to evaluate the

quality of an excitation, e.g., [59, 146]. As an extension of this methodology, we make use

of non-MSE metrics in addition to MSE, because the latter is not always an ideal indicator

of excitation quality. E.g., Wang et al. provide an example of six images with identical

MSE, but three contain significant spike-like noise [138]. Using region-by-region peak value

and second-order statistics analyses on these images causes the noise-ridden ones to exhibit

worse scores, whereas MSE incorrectly indicates all images are of equal quality.
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4.4.2 RF Waveform Characterization

Consider a set of waveforms represented by the PNt-element vector, b. The peak voltage,

Vmax, equals ‖b‖∞, and the aggregated RMS voltage is defined as

VRMS =

(
1

PNt

PNt∑

n=1

|b[n]|2
)

, (4.7)

where b[n] is the nth element of b. For each set of waveforms, knowing Vmax allows us to

compare pulses’ relative peak powers. And since VRMS is proportional to both integrated

and average pulse power, comparing VRMS values of different pulses tells how much power

they dissipate relative to one another. Note that since b contains waveforms across all

excitation channels, Vpeak is the peak among all P waveforms.

4.5 Experiment Setup

System configuration. The parallel system is built around a Siemens 3T Tim Trio scanner

(Siemens Medical Solutions, Erlangen, Germany). The transmit array is composed of eight

circular, overlapped, 15-cm diameter, detunable surface coils arranged on a 28-cm diameter

acrylic tube [7]. All scans are performed in a 17-cm low-dielectric oil phantom. For each

RF design, the array’s eight channels are driven, modulated in magnitude and phase by the

pulses. Readouts are performed using a GRE sequence [12, 89, 98] with a repetition time

(TR) of 30 ms, an echo time (TE) of 6 ms, and a bandwidth (BW) of 400 Hz/pixel.

Spatial profiles (B+
1 maps). Spatial profiles S1(r), . . . , SP (r) within the oil phantom

are obtained using the approach outlined in Sec. 2.1.13. Specifically, low-flip-angle pulse

is sent through each of the eight coil array elements, one at a time, and reception occurs

on the system’s body coil. B+
1 maps are generated by recording a complex-valued image

via a gradient-recalled echo (GRE) sequence with TR, TE, and BW equal to 20 ms, 6 ms,

and 400 Hz/pixel, respectively, yielding 51 x 51 pixel, 4-mm resolution maps that capture

the magnitude and relative phase of each array element. The magnitudes of these profiles

are given in Fig. 2-6. Spatial variations in the body coil’s reception profile are not removed

because the profile is fairly uniform, exhibiting less than 5% variation. Before using the

maps to generate the A matrix, each is scaled by a constant so the largest magnitude across

all map pixels equals unity. This scaling makes the maps “qualitative” in the low flip angle
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Square MIT Logo

Uniform Logo Regions

R0   R1   R2   R3

Figure 4-1: Target excitation patterns and MIT logo regions. The square, MIT logo,
and uniformly-flat targets are shown. The MIT logo has two nonzero intensity levels-the
lower part of the letter “i” is twice as intense as the others. The region-by-region breakdown
of the logo is also shown. Region 0 is where statistical noise occurs; Region 1 is the ring-like
edge region where the most glaring artifacts typically occur; Region 2 is the suppression
region where the coil profiles interact and attempt to cancel out, but do not do so perfectly
in practice; Region 3 is the letters of the target.

domain; they do not convey the exact flip angle achieved.

Target images. The targets are a square, a Massachusetts Institute of Technology

(MIT) logo, and a uniformly-flat excitation. Fig. 4-1 depicts each 51 x 51 pixel, 4-mm

resolution target. The logo has two nonzero intensity levels: the lower part of the “i” is

twice the intensity of other letters. The intensities of the square, the uniform target, and

the lower part of the “i” equal 0.01; this value is arbitrarily chosen since the B+
1 maps are

qualitative. This means that the Vpeak and VRMS of each b vector designed using these maps

and targets are not actually in units of volts, but since 0.01 is used consistently through all

experiments, it is possible to make relative comparisons between voltage statistics.
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Figure 4-2: An R = 4 spiral and 10-spoke slice-selective trajectory.

Spiral trajectories. The 2-D k-space spirals are configured to have 4-mm resolution

and an 18-cm field-of-view (FOV). Gradient amplitude and slew rate are 35 mT/m and 150

T/m/s, respectively. For R = 1, 4, 6, and 8, spirals are created that are 9.47, 2.42, 1.64,

and 1.26 ms long, undergo 16, 4, 3, and 2 revolutions, and lead to b vectors of length 15152,

3872, 2642, and 2016, respectively. The R = 4 spiral is depicted in Fig. 4-2.

Spokes trajectory. The slice-selective trajectory consists of 10 spokes in kz placed

in the (kx, ky) plane to yield an 18-cm FOV, and is shown in Fig. 4-2. Slice thickness is 1

cm and the center spoke’s time-bandwidth product is 4. Gradient amplitude and slew rate

are 30 mT/m and 120 T/m/s, yielding a 5.84 ms pulse. To simplify the design process,

we restrict the shape of each waveform to a Hanning-windowed sinc in kz, which fixes the

slice-selectivity of the trajectory and means that each design method only needs to calculate

an amplitude and phase for each excitation channel to encode along each spoke. With 10

spokes and 8 coil elements, this means A has 80 columns and b has 80 elements.

Experiment summary. Table 4.1 summarizes the four experiments to be conducted.
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Label Target Pattern Trajectory Type Methodology
E1 Square Spirals (R = 1, 4, 6, 8) Simulations
E2 MIT Logo Spirals (R = 1, 4, 6, 8) Simulations + System Runs
E3 Uniformly-Flat Spokes Simulations
E4 MIT Logo Spiral (R = 8) Simulations + System Voltages

Table 4.1: Experiment list.

Experiments 1, 2, and 3 (Bloch simulations). In E1 and E2, the targets are the

square and text logo, respectively, and the trajectories are R = 1, 4, 6, and 8 spirals. In E3,

the in-plane target is the uniform pattern and the spokes trajectory is used. For every fixed

target and trajectory, d and A are known, and b vectors are then calculated by solving

d = Ab using one of the algorithms. Once b is determined, pulses are Bloch-simulated as

in [113].

For E1, E2, and E3, we first apply the SVD method, retaining enough SVs so the Bloch

simulation of the resulting pulse yields an acceptable-looking excitation. Noting the MSE

between this excitation and the target, we run LSQR and CGLS, tuning their parameters

such that their Bloch-simulated pulses yield equal or lower MSE excitations. We attempt

to make CGLS’s MSE close to LSQR’s, but this is difficult because CGLS is highly sensitive

to λCGLS (see Discussion below). Voltage analyses are performed on each pulse once it is

calculated.

Experiment 2 (8-channel system at 3T). For E2, each waveform designed during

the simulation stage is played through the 8-channel excitation system by first scaling each

“qualitative” b vector by a constant so its elements represent actual voltages. This scaling

depends on both R and the design algorithm, and is chosen such that the flip angle of

the MIT logo excited on the system is approximately constant across all experiments. Each

excitation conducted on the system is then stored as a magnitude image, and MSE, voltage,

and region-by-region second-order statistics and peak value analyses are conducted. The

latter two metrics are calculated over the regions depicted in Fig. 4-1. Region 0 (R0) is

where system noise is present, Region 1 (R1) the edge region where glaring artifacts tend

to occur, Region 2 (R2) the suppression region where the profiles are interacting to cancel

each other out, and Region 3 (R3) the letters.

Experiment 4. Here the trajectory is the R = 8 spiral and the target is the MIT logo.

For each design algorithm, we loop over many choices of its control parameter, generating
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SVD LSQR CGLS
Kept SVs Total SVs RT λLSQR Iter. RT λCGLS Iter. RT

R = 1 976 1466 476 0.25 500 57 0.0125 1000 40
R = 4 861 1466 227 0.08 250 29 0.006 1000 19
R = 6 623 1466 187 0.09 500 16 0.0075 750 12
R = 8 391 1466 159 0.025 500 27 0.0005 750 37

Table 4.2: Experiment 1 (square target, spiral trajectories): algorithm design
parameters and runtimes. Input parameters to each method used to compute each of
the b vectors are listed. RT is runtime (sec).

thousands of pulses (bs). Then for each designed pulse, we compute its Bloch-simulated

excitation’s MSE with respect to the target, along with Vpeak and VRMS. Since we know

from E2 how to properly scale each method’s b vectors in order to play them on the eight-

channel system, we scale them here as well, obtaining the actual voltage characteristics of

each pulse. This essentially generates MSE vs. voltage tradeoff curves for each method.

Note that extremely low-MSE pulses that yield completely unrealistic voltage values (e.g.,

Vpeak > 1000 V) are disregarded.

4.6 Results

Experiments 1, 2, and 3 (Bloch simulations). For E1, the 12 resulting excitations

are shown in Fig. 4-3. The rows and columns correspond to the R = 1, 4, 6 and 8 spiral

trajectories and the three design algorithms, respectively. Each subplot depicts the Bloch-

simulated excitation, the MSE between this simulated excitation and target, and (Vmax,

VRMS). Fig. 4-4 shows the results of E2, and is formatted analogously to Fig. 4-3. For

E3, Bloch-simulated images, MSEs, Vmax, and VRMS appear in Fig. 4-5. For E1, E2, and

E3, each method’s design parameters and runtime are listed in Table 4.2, Table 4.3, and

Table 4.4, respectively. In the interest of space, second-order statistics and peak values are

not shown for these experiments.

Experiment 2 (8-channel system at 3T). Fig. 4-6 shows the system images when

the scaled b vectors are played through the 8-channel system. The region-by-region means,

standard deviations, and peak values of each are shown in Fig. 4-7, where bar graphs of each

statistic are shown for R0 through R3. The axes of each such graph are R and algorithm

type.
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Figure 4-3: Experiment 1’s bloch-simulated excitations with MSE, Vmax, and
VRMS overlays. The rows from top to bottom correspond to R = 1, 4, 6, and 8. From
left to right, the columns correspond to RF waveforms designed using the SVD method,
LSQR, and CGLS. The MSE between each excitation and the target is shown, along with
Vmax and VRMS of each designed waveform.
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Figure 4-4: Experiment 2’s bloch-simulated excitation images with MSE, Vmax,
and VRMS overlays. Formatting here is analogous to that of Fig. 4-3.
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SVD LSQR CGLS
Kept SVs Total SVs RT λLSQR Iter. RT λCGLS Iter. RT

R = 1 835 1466 663 0.75 3000 26 0.5 3000 10
R = 4 674 1466 220 0.46 250 7.1 0.22 250 5.3
R = 6 676 1466 187 0.06 500 22 0.0038 550 18
R = 8 767 1466 158 0.025 500 27 0.0005 1000 35

Table 4.3: Experiment 2 (MIT logo target, spiral trajectories): algorithm design
parameters and runtimes. Formatting here is analogous to that of Table 4.1.

SVD LSQR CGLS
Kept SVs Total SVs RT λLSQR Iter. RT λCGLS Iter. RT

39 80 0.8 3.0 200 0.15 0.01 100 0.1

Table 4.4: Experiment 3 (uniformly-flat target, spokes trajectory): algorithm
design parameters and runtimes. Formatting here is analogous to that of Table 4.1.

MSE = 1.10e 004

V
max

,V
RMS

=(3.3e 003,4.2e 004)

SVD
1.09e 004

(3.3e 003,3.7e 004)

LSQR
1.10e 004

(3.3e 003,3.6e 004)

CGLS

Figure 4-5: Experiment 3’s Bloch-simulated excitation images with MSE, Vmax,
and VRMS overlays. Each image shows the in-slice excitation achieved by the RF waveform
designed with each algorithm. From left to right, the images are due to the SVD method,
LSQR, and CGLS.
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Figure 4-6: Experiment 2’s excitations conducted on the 8-channel system with
MSE, Vmax, and VRMS overlays. Formatting here is analogous to that of Fig. 4-3.
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Figure 4-7: Experiment 2’s excitations conducted on the 8-channel system:
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Experiment 4. The upper, middle, and lower plots of Fig. 4-8 illustrate E4’s results.

The upper plot shows the iteration-by-iteration MSE performance of LSQR and CGLS

when λCGLS and λLSQR equal zero. The middle plot shows the MSE vs. Vpeak tradeoff of

a variety of SVD pulses (by retaining different numbers of nonzero SVs) and the tradeoff

curve for a large number of LSQR-designed pulses (generated by varying λLSQR over a wide

range). The lower plot is analogous to the middle one, showing the MSE vs. VRMS tradeoffs

of the SVD and LSQR methods. CGLS data is not displayed in the middle and lower plots

because, at the displayed scale, it is nearly identical to the LSQR data.

4.7 Discussion

Mean-square errors (MSEs). Referring to Fig. 4-3, Fig. 4-4, Fig. 4-5, Fig. 4-6, one sees

that each LSQR and CGLS excitation has an equal or lower MSE than the corresponding

SVD one, proving that we calibrated the designs properly. Further, as R increases, the

MSEs of the SVD designs grow faster than those of LSQR and CGLS.

Experiments 1, 2, and 3 (Bloch simulations). For E1, Fig. 4-3 makes evident

that excitations due to LSQR and CGLS are better than those due to SVD, i.e., for fixed

R, LSQR and CGLS always result in lower MSE, Vpeak, and VRMS. Also, regardless of

design technique, we see that artifacts always increase rapidly with R. In particular, when

transitioning from R = 6 to 8, MSE increases by factors of 1.42, 1.37, and 1.32 for the

SVD, LSQR, and CGLS designs, respectively. Analyzing Fig. 4-4, one sees E2 exhibits the

same trends, e.g., for R = 6, the LSQR image has 1.11 times lower MSE and (1.63, 1.23)

times lower voltages than the SVD method. For CGLS, (Vpeak, VRMS) are nearly identical

to LSQR’s, but CGLS’s MSE is higher, so LSQR outperforms CGLS in excitation quality

for the same amount of waveform energy.

In E3, A is 1466 × 80 in size and thus highly overdetermined, whereas in E1 and E2

it is highly underdetermined, which means E3 represents a substantially different design

problem. Yet as Fig. 4-5 shows, LSQR and CGLS continue to outperform the SVD based

method, e.g., the SVD and LSQR images have nearly the same MSE, but LSQR’s VRMS is

1.14 times lower than the SVD pulse’s voltage. We do see that LSQR is not outperforming

the SVD method as well as in E1 and E2, and thus conjecture that LSQR and CGLS

provide a moderately better MSE vs. voltage tradeoffs than the SVD method when the
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Figure 4-8: Experiment 4’s results. The upper plot shows the iteration-by-iteration
MSE performance of LSQR and CGLS when λCGLS and λLSQR equal zero. The middle
plot shows the MSE vs. Vpeak tradeoff of a variety of SVD pulses and the tradeoff curve for
a large number of LSQR-designed pulses. The lower plot is analogous to the middle one,
showing MSE vs. VRMS tradeoffs of the SVD and LSQR methods.
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system is small and overdetermined, and significantly better ones when it is large and

underdetermined.

Experiment 2 (8-channel system at 3T). From Fig. 4-7, one sees that R0’s µ and σ

are equivalent across all images, confirming the noise floor is equivalent across all trials. For

each R, the means of the images in R3 are nearly equal, proving each excitation achieved

nearly the same flip angle. In R0 through R2, if no artifacts at all were present, the µ and

σ values in Fig. 4-7 would equal those of the background noise, because the ideal target has

zero intensity there. This means that smaller µ and σ in these regions imply fewer artifacts

are present. In R1, the ring-like edge region that is particularly artifact-ridden, it is evident

that for fixed R, LSQR and CGLS images exhibit superior second-order statistics than SVD

images. E.g., in R1 for R = 6, (µ, σ) for the LSQR and CGLS images equal (206, 126) and

(203, 127), respectively, whereas SVD’s are significantly higher, equal to (260, 175). This

same trend occurs in R2 and R3. The peak values also exhibit these trends, e.g., for R = 4

in R2, the SVD image has a peak of 1935 whereas the LSQR and CGLS images have much

smaller peaks of 1393 and 1526.

Comparing the MIT logo simulation results in Fig. 4-4 with the eight-channel system

results in Fig. 4-6, one sees that LSQR and CGLS’s better MSE vs. voltage tradeoffs are

present not just in the Bloch simulations, but in the system images as well. This proves that

the advantage of LSQR and CGLS is due to the fundamental properties of these algorithms

exhibited during the simulation stage, and is not due to system hardware effects such as

transmission bandwidth.

Experiment 4. From the upper plot of Fig. 4-8, it is clear that for any of the given

numbers of iterations, LSQR slightly outperforms CGLS in terms of MSE. From the middle

and lower plots, it is evident that the LSQR method provides superior MSE vs. Vpeak and

MSE vs. VRMS tradeoffs relative to the SVD method. Specifically, for every MSE evaluated,

LSQR creates a pulse with lower peak and lower RMS voltage than the SVD method does.

In many cases, the performance of LSQR relative to the SVD method is extreme, e.g., the

SVD pulse that yields an image quality of log10(MSE) = -5.8 has Vpeak = 55.3 V and VRMS

= 12.3 V, whereas the LSQR pulse achieves the exact same MSE with Vpeak and VRMS

equal to merely 41.4 and 6.9 V. Note that these superior tradeoffs exhibited by LSQR are

not limited to our chosen target and trajectory; they hold across many target-trajectory

combinations, but due to space limitations we do not present these results. In conclusion,
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E4 suggests that for the given target, trajectory, and fixed MSE, LSQR will always produce

a pulse with better voltage characteristics than the SVD method.

Voltage characteristics. It is clear from E1 through E4 that LSQR and CGLS design

pulses with better artifact vs. voltage tradeoffs than the SVD method. Because SAR is

heavily influenced by Vpeak and VRMS, we speculate that the SAR values of LSQR and

CGLS waveforms are significantly lower than those of SVD-based pulses.

One noticeable trend across all experiments is the rapid growth of Vpeak and VRMS

with R. E.g., LSQR’s Vpeak jumps from 5.54 to 40.0 V when transitioning from R = 4

to 6, and jumps to 95.49 V when R = 8. These observations coincide with those of [81]

and [131], extending the former’s work from a strip-line coil to our circular array, and the

latter’s from a four-channel to an eight-channel system. This rapid voltage growth poses

constraints on in vivo applications and implies the infeasibility of R À 1 designs due to

algorithm development alone. However, since the maximum feasible R with moderate power

requirements is strongly linked to the number of transmit elements and the design of the

array [81], it may still be possible to achieve R À 1 pulses by designing arrays to handle

higher voltages and have higher efficiencies.

Performance of LSQR and CGLS. LSQR and CGLS outperform the SVD method

not only because of their numerical properties but because they directly penalize large b

vectors, whereas the SVD algorithm does not do so. Across all experiments, LSQR and

CGLS perform similarly in terms of each metric: this is because A is well-conditioned in all

cases. Because of this, either algorithm may be used for waveform design instead of the SVD-

based method. However, although they perform similarly in terms of MSE, voltage values

and runtimes, LSQR should be used over CGLS, because of the various empirical studies

showing its superior performance, especially in cases where A is ill-conditioned [13,101].

Limitations. One limitation of this work is the qualitative nature of the spatial coil

profiles. In future chapters, we will often use quantitative B+
1 maps—those that describe

the exact flip angle at each spatial location geenerated by each array element per input

volt—to avoid this problem.

Another limitation is that during E2’s eight-channel runs, several system images are sat-

urated in a small sub-region of R3 because of the system imaging format’s limited dynamic

range relative to the acquisition parameters. To circumvent this issue, pixels within the

more intense part of the letter “i” are discarded from R3’s second-order statistic and peak
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value computations, preventing error propagation. Note that in images where saturation

was not an issue, the intensity level of the “i” was indeed twice that of the other letters.

4.8 Conclusion

Two iterative CG methods, LSQR and CGLS, have been shown to obtain better or equal

quality excitations compared to an SVD-based truncated pseudoinversion method, while

simultaneously producing pulses with significantly lower peak and RMS waveform voltages.

This was shown to hold across a range of targets, k-space trajectories, and acceleration

factors in both Bloch simulations and imaging experiments on an eight-channel system at

3T. Between LSQR and CGLS, the former had superior numerical properties.

To the best of our knowledge, this work has made the following contributions: (a)

investigating different numerical methods of solving systems of parallel excitation equations

that exhibit surprising performance differences, (b) validating these new methodologies

across three types of targets and two different k-space trajectories, (c) introducing non-

MSE metrics that avoid the possible pitfalls of judging excitation quality solely via MSE, (d)

quantifying increases in Vpeak and VRMS voltage as a function of R for an 8-channel system

with up to 8-fold trajectory accelerations, permitting exploration of the important issue of

pulse energy, (e) validating our results by conducting actual accelerated parallel excitations

on a realistic 8-channel system at 3T, and (f) showing for one target and trajectory, for all

realistically-feasible system voltages, LSQR always generates a pulse with lower Vpeak and

VRMS relative to the SVD method when excitation quality is fixed.
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Chapter 5

Sparsity-Enforced Joint k-Space

Trajectory and RF Excitation

Pulse Design

5.1 Introduction

The purpose of this chapter is to improve the flexibility of the excitation process in MRI

and generate optimized, target-excitation-specific sets of gradient waveforms and radio-

frequency (RF) excitation pulses that outperform conventional non-optimized sets of gra-

dient and excitation waveforms. We pose a design algorithm that yields short-duration,

high-excitation-fidelity pulses and applies to both parallel transmission systems and con-

ventional single-channel excitation systems. This algorithm is applicable to high-field MRI

RF excitation pulse design where spatially-tailored excitation is useful for a variety of clin-

ical imaging scenarios, but is not limited to high field systems. Our intent is to provide a

means for the automatic generation of target-specific k-space trajectories (and correspond-

ing sets of gradient waveforms and RF pulses). The contents of this chapter appear in

two journal papers [164, 167], four conference abstracts [157, 159, 161, 162], and a pending

patent [149].

Conventional non-joint trajectory and RF pulse design. In conventional pulse

design, one decides on a general excitation format, e.g., a slice-selective excitation, and

then simply chooses a standard set of gradients and an RF pulse to accomplish the task.
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For example, a constant z gradient and sinc-shaped RF pulse may be chosen to cause

the coil to excite a thin slice of tissue in the spatial z direction, as depicted in Fig. 2-3

and discussed in Sec. 2.1.7. A pulse designer puts thought into the task at hand: if a

highly-structured 2-D in-plane pattern needs to be excited, the designer may choose a set of

gradient waveforms that cause a 2-D echo-planar (EP) or spiral trajectory to be traversed

in (kx, ky) in excitation k-space. If a parallel transmission system is available, a designer

may “accelerate” the trajectory by undersampling it and using a shorter EP or spiral, as

described in Sec. 2.1.11 and illustrated in Fig. 2-4. Finally, only after deciding upon the

trajectory and gradients does the user proceed to design an RF pulse to accompany and

deposit energy along the trajectory. There are many methods available to accomplish this

task, e.g., [58, 59, 79, 108, 113, 146, 165, 168]. In each of these cases, pulse designers first

decide on the trajectory and only then do they generate an RF waveform to accompany

it; in other words, the RF pulse is automatically optimized based on the desired target

excitation pattern, but the trajectory itself is not. It is worth noting an instance of work

by Hargreaves et al. where k-space trajectories themselves undergo optimization by tuning

gradient waveforms [61]. This approach, however, does not take the desired target excitation

into account during the gradient optimization stage and RF pulses must thus be designed

after the fact in the same fashion discussed above; the gradients are indeed “optimized”,

but not with respect to the desired excitation. Therefore this method, like those above,

does not attempt to jointly solve the trajectory and pulse design problem.

Recent joint trajectory and RF pulse design work. Recently, researchers have

begun to branch away from the conventional design approaches (e.g., [58,59,79,108,113,146,

165,168]) and have developed algorithms that attempt to jointly design both the trajectory

and RF excitation pulse, optimizing both concurrently. These methods are similar in that

they are provided a desired target excitation pattern and then (in some way) search over

numerous trajectories (or types of trajectories), proceeding to find a “(trajectory, pulse)”

pair that produces a version of the trajectory and resulting excitation that meet some pre-

defined constraints, e.g., a particular trajectory duration (e.g., 5 milliseconds), a particular

excitation fidelity (e.g., a normalized root-mean-square error of 20%), or both.

• Levin et al.’s 2-D spiral trajectory optimization. This approach focuses on opti-

mizing 2-D spiral trajectories [88]. This method is limited in two ways: first, it is only

able to optimize over a specific class of spiral trajectories that consists of concentric rings;

124



second, the algorithm and its underlying theory apply only to radially-symmetric 2-D de-

sired excitation patterns; third, the algorithm is limited to optimizing over 2-D k-space

and thus does not apply to routinely-desired 3-D excitations. The latter two limitations

are hindering because they imply that the algorithm is incapable of being used to excite

many commonly-desired spatially-tailored patterns, e.g., a 2-D square, a 3-D box, or a

thin slice. There is one final limitation: from [88], it seems the method applies only to

conventional systems and does not extend to parallel transmission coil arrays.

• Yip et al.’s 2-D echo-planar trajectory optimization. The second joint trajectory

and pulse design method is due to Yip et al. and focuses solely on the optimization of

2-D echo-planar (EP) trajectories [148]. Unlike the method of Levin et al. [88], this

method may be provided with a general 2-D excitation, i.e., radial symmetry of the

desired excitation pattern is no longer a strict requirement. However, analogous to [88],

this technique is limited in that it optimizes only 2-D EP trajectories. It is therefore

sub-optimal for three reasons: first, it cannot be used to excite commonly-used 3-D

patterns, such as thin slices; second, traversing EP trajectories at times have lengthy,

impractical durations because EP traversals are limited by the MR system gradient’s

maximum amplitude and slew rates; finally, when 2-D EP trajectories and waveforms

are applied in the presence of MR system non-idealities, they may cause the produced

excitation to exhibit worse artifacts than an excitation produced by depositing energy

along a 2-D spiral (i.e., spiral trajectories lead to less glaring imaging artifacts).

Moving beyond conventional and current joint design methods to sparsity-

enforced joint trajectory and RF pulse design. In this chapter we overcome the

limitations of prior approaches by proposing a general sparsity-enforcement algorithm that

jointly determines sparse, quickly-traversable excitation k-space trajectories along with cor-

responding excitation pulses and gradient waveforms. The proposed method lets MRI sys-

tem users specify a desired (3-D spatially-tailored and/or 3-D spatially-selective) excitation

and then generates a customized set of gradients and RF excitation pulses explicitly opti-

mized for the task at hand. The algorithm functions by applying an `1-norm penalty while

searching over a large number of possible trajectory segments (and corresponding RF pulse

segments); this process ultimately reveals a small, sparse subset of these segments (along

with an overall RF pulse) that alone form a high-fidelity version of the user-specific target
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excitation. The algorithm is general enough such that these segments may be of any shape

or size, and thus applies to a wide variety of 2-D and 3-D k-space trajectories, so the algo-

rithm may optimize any type of excitation pulse. Furthermore, the method provides users

with intuitive control parameters that allow excitation quality to be traded off directly with

pulse duration and is thus user-friendly.

Organization. In Sec. 5.2, we mathematically develop the sparsity-enforced joint

trajectory-pulse design algorithm as generally as possible and show the relevance of MSSO

simultaneous sparse approximation. In Sec. 5.3, we use it to design single-channel slice-

selective pulses that mitigate B+
1 inhomogeneity in the human brain at 7 Tesla. In Sec. 5.4,

we study both sparsity-enforced spoke-based pulses from an empirical rather than in vivo

standpoint, analyzing the performance of spoke-based sparsity-enforced pulses vs. conven-

tionally designed pulses via simulations and an experiment within an oil phantom at 3T

with an eight-channel parallel transmission system. In Sec. 5.5, we apply the joint design

algorithm to a set of candidate rings in (kx, ky), optimizing spiral-like trajectories to pro-

duce a box-shaped excitation in the presence of single-channel B+
1 inhomogeneity at 7T.

Concluding remarks are given in Sec. 5.6.

5.2 General Sparsity-Enforced Joint Trajectory-Pulse Design

Here we will ultimately pose the algorithm as generally as possible, but to begin, let us

consider only a single-transmit-channel system, as discussed in Sec. 2.1.9 and Sec. 2.1.10.

5.2.1 Derivation for Single-Channel Excitation Systems

Let d(r) be a desired target excitation, where r is an index into the 3-D spatial domain,

i.e., r = [x, y, z]T. We now develop a method to jointly determine a target-specific, fast

k-space trajectory and a corresponding RF pulse that achieve a high-fidelity version of

this desired excitation. To begin, consider J contours in k-space; these may be spoke

segments in kz [108,113,132], rings in (kx, ky), or completely arbitrary curves tracing through

(kx, ky, kz); let the contours be denoted as cj(k) for j = 1, . . . , J . Now assume that for

j = 1, . . . , J , we know Nj points in k-space along contour j, denoted kj,1, . . . ,kj,Nj . Thus,

overall, Nk = N1 + · · ·+ NJ discrete k-space points are known.

If we assume we are in the low-flip angle domain, the discussion of single-channel exci-
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tation in Sec. 2.1.9 holds here, as does (2.9). Let us first eliminate the assumption of time

from (2.9), i.e., we assume the traversal of a k-space contour, but do away with its time

variable. Second, let us assume a homogeneous main field. This yields

m(r) = jγM0S(r)
∫

k
g(k)ejr·kdk, (5.1)

where m(r), γ, M0, and S(r) are the same as in (2.9), and g(k) is the complex-value energy

weighting placed in k-space at a fixed point k = [kx, ky, kz]T. We now apply the linearized

formalism discussed in Sec. 2.1.10 to (5.1), discretizing space at Ns locations r1, . . . , rNs

within a chosen FOX and k-space at the Nk known k-space points along the J contours,

i.e., the locations kj,1, . . . ,kj,Nj for j = 1, . . . , J . This lets us relate energy placed at each

k-space contour to the resulting transverse magnetization that arises at the Ns points in

space:

m = SF1g1 + · · ·+ SFJgJ

= S [F1 · · ·FJ ]




g1

...

gJ


 = SFtotgtot,

(5.2)

where m is an Ns-element vector of complex-valued samples of m(r) at r1, . . . , rNs , and S is

an Ns×Ns complex-valued diagonal matrix of S(r) within-FOX samples. Most importantly,

gj is an Nj-element vector of complex-valued weights the transmit channel places at the Nj

k-space locations of contour j. Each Ns×Nj complex-valued matrix Fj relates how energy

placed along contour j affects the resulting excitation. Formally,

Fj(m, v) = jγ∆tM0 exp(jrm · kj,v), (5.3)

where ∆t is the time-sample spacing of the RF waveform that will ultimately be designed.

Each Fj in (5.3) is simply a specific instance of F in Sec. 2.1.10. To conclude the discretiza-

tion stage, we sample the desired excitation d(r) and stack the samples into d.

The goal now is to find the smallest subset of contours, along with a corresponding pulse,

such that when the pulse is played along the path defined by the small set of contours, a

high-fidelity version of d(r) is produced; the contour segments in the small subset reveal and
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suggest a short, quickly-traversable k-space trajectory; the corresponding energy segments

provide us with the RF pulse. Once this small contour subset is known, the individual

contours within it may be connected using a gradient design algorithm (e.g., [61]), yielding

a fully-determined trajectory and an accompanying RF pulse that have been obtained jointly

and optimized with respect to the desired excitation pattern.

To find the truly optimal smallest contour subset, one must solve:

min
g1, . . . ,gJ

‖d− SFtotgtot‖2 s.t. the usage of only K of the gjs, (5.4)

for the smallest K possible until the smallest-possible subset is found that achieves the

excitation to within an `2 fidelity of ε with the proper choice of corresponding gjs. In other

words, (5.4) essentially requires a search over all 2J − 1 nonempty subsets of the overall J-

contour set; each subset of contours suggests a trajectory, from which a pulse may designed

using one of the many conventional methods, e.g., [58,59,79,108,113,146,165,168]. Then the

various (trajectory, pulse) pairs may be analyzed and the shortest (fastest) trajectory whose

pulse generates a version of the target excitation that meets some desired fidelity constraint

is the optimal solution to the problem. Unfortunately, this approach is computationally

infeasible for even the smallest sets of contours, e.g., even for J = 30, one may need to

search up to 1,073,741,823 possible trajectories. Formally, this problem is NP-Hard [36,96].

A brute-force search is clearly infeasible, but if we study (5.4) closely, we see that it

strongly resembles the NP-Hard MSSO problem, (3.7), given in Sec. 3.2.2.1 Note however

that (5.4) is in fact more general than MSSO in (3.7)—each of the unknown vectors in the

latter must be the same length, whereas here, the gjs may be quite different in size (each

contains Nj elements). Despite the more general nature of the problem here, it still lends

itself to the tractable algorithmic solutions posed in Ch. 3 because every technique given in

Sec. 3.3 is already capable of solving this more general problem (proving this is beyond the

scope of this dissertation). Given the strength of the convex relaxation techniques exhibited

throughout the experiments of Sec. 3.4, we pose a relaxation here that is a generalization

of (3.8):

min
gtot





1
2 ‖d− SFtotgtot‖2

2 + λ
J∑

j=1

‖gj‖2



 . (5.5)

1The variable names in (5.4) differ slightly from those of (3.7) but the optimizations are indeed similar.
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This optimization allows energy to be placed along any of the trajectory contour segments in

k-space to form d(r), but imposes a large penalty whenever one of the contours experiences a

nonzero energy deposition (whenever ‖gj‖2 deviates from zero). This approach discourages

the use of many contours while simultaneously encouraging those that remain to have gjs

that (approximately) solve ‖d − SFtotgtot‖2. The `1-norm penalty on the ‖gj‖2 contour

energies encourages sparsity of contour use. As λ is increased from 0 to 1, increasing

numbers of contours have their energies driven to zero, residual error increases, and smaller

contour subsets are revealed.

After solving (5.5) using a good choice of λ, an optimized Q-contour subset is formed,

comprised of those Q < J contours whose ‖gj‖2s are largest. The Q segments are then con-

nected via a greedy method, producing a short, optimized k-space trajectory. Knowing the

trajectory, we can generate a set of gradient waveforms, G(t), and subsequently determine

the time-dependent k-space trajectory, k(t), discussed in Sec. 2.1.9. The time-dependent

RF pulse, g(t), has also been implicitly determined by (5.5) and is constructed directly from

the complex-valued samples contained in the Q resulting gj vectors.

Now that the time-dependent gradients and k-space trajectory are known, we may

incorporate main field inhomogeneity as in (2.9) and retune (resolve for) the RF pulse by

following the standard single-channel system pulse design steps given in Sec. 2.1.10 and

solving (2.11).

5.2.2 Derivation for Multi-Channel Parallel Transmission Systems

Now let us assume a P -channel parallel transmission system is available. Assume that we

have a sound estimate of each channel’s transmission profile, i.e., we know Sp(r) for p =

1, . . . , P . This causes changes to (5.1, 5.2) because the resulting transverse magnetization,

m(r), is now a linear superposition of the excitations produced by each of the P channels,

as discussed in Sec. 2.1.11. That is, m(r) = m1(r) + · · ·+ mP (r), or in discretized terms,

m = m1 + · · ·+ mP , (5.6)

where mp contains Ns samples of the excitation produced by the pth channel, mp(r), due

to its deposition of energy along the J contours. In analogy to (5.2), the following holds for
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channel p:

mp = SpF1gp,1 + · · ·+ SpFJgp,J

= Sp [F1 · · ·FJ ]




gp,1

...

gp,J


 = SpFtotgp,agg,

(5.7)

where Sp is an Ns×Ns diagonal matrix of samples of Sp(r), gp,j is an Nj element vector of

energy weights placed by channel p along the Nj k-space locations of contour j, and gp,agg

is the aggregation of all J gp,js. Notice that regardless of p, the Ns × Nk Ftot matrix is

always present; this is because prior to the consideration of the transmission profile, there is

always a linear Fourier relationship between energy deposited in k-space and the resulting

magnetization. Now, substituting (5.7) into (5.6), we arrive at

m = S1Ftotg1,agg + · · ·+ SPFtotgP,agg

= [S1Ftot · · ·SPFtot]




g1,agg

...

gP,agg


 = Atotgtot,

(5.8)

where Atot is Ns×PNk in size and gtot is an PNk-element vector representing the weights

placed by all P channels at all Nk locations in k-space. Thus (5.8) expresses the final

excitation achieved by transmission and deposition of energy by all channels at all contour

segments. We now extend the MSSO-inspired single-channel sparsity enforcement algorithm

of (5.5) to multi-channel systems as follows:

min
gtot





1
2 ‖d−Atotgtot‖2

2 + λ
J∑

j=1

∥∥∥
[
gT

1,j · · ·gT
P,j

]T
∥∥∥

2



 , (5.9)

where the regularization term,
∑

j

∥∥∥∥
[
gT

1,j · · ·gT
P,j

]T
∥∥∥∥

2

, is the `1 norm of the overall `2 energies

deposited by the system’s P channels at each of the J contours. In other words, the sparsity-

promoting `1-norm of overall energies per contour is being computed. We only promote

sparsity along the “overall energy per contour” dimension because whether it is one channel

or all channels that make large contributions to a contour does not matter if the use of
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this contour greatly helps at forming the excitation. Fixing λ to a sufficiently large value

and solving (5.9) will therefore yield a solution gtot that is sparse in the contour dimension,

revealing Q < J trajectory contour segments that are useful in forming the excitation

along with the RF energy that each channel should place upon each segment. From the

resulting solution gtot, a high-energy ‖[gT
1,j · · ·gT

P,j ]
T‖2 term indicates that contour j is

worth retaining and useful in forming the excitation, and the associated gp,js indicate the

RF pulse to transmit through the pth channel while traversing contour j. Similarly to (5.5),

the optimization (5.9) may be implemented and solved numerically for practically-sized

systems of equations. Finally, note that when P = 1, (5.9) reduces to the single-channel

base case of (5.5).

Analogously to the single-channel case derived earlier, the time-dependent trajectory,

G(t), and k-space trajectory, k(t), are readily obtained once (5.9) has been solved and

Q contours selected, along with the RF pulses to play along each channel, gp(t), for p =

1, . . . , P . If desired, these pulses may be retuned as in the single-channel case.

5.2.3 Algorithm Variants

It is possible to modify (5.5) and (5.9) such that an `∞ (maximum error) constraint is

imposed on d−m rather than an `2 penalty. Furthermore, if the conditioning of the gp,js

(and thus the overall RF pulse) is a concern, constraints may be placed on their `∞ and

`2 energies. These variants and their combinations yield objective functions that are still

convex.

5.3 Sparsity-Enforced Short-Duration Slice-Selective RF Ex-

citation Pulses for Mitigating B+
1 Inhomogeneity in the

Human Brain at 7 Tesla

5.3.1 Overview

We now jointly optimize spoke-based trajectories [108, 113, 132] and RF excitation pulses

to produce short-duration slice-selective excitations on a high-field single-channel system to

mitigate severe B+
1 inhomogeneity (S(r) inhomogeneity) [16]. Mitigation pulses are designed

and demonstrated at 7 Tesla in a head-shaped water phantom and the brain; in each case,

131



the pulses mitigate a significantly non-uniform transmit profile and produce nearly-uniform

flip angles across the field of excitation.

At a conceptual level, this is accomplished by first fixing the overall shape and height of

the spokes to be used, which reduces spoke-trajectory design to the problem of placing as

few complex-valued weights as possible in (kx, ky) that still achieve a high-fidelity excitation.

One then sets the J contour candidates discussed in Sec. 5.2.1 to be a grid of candidate points

in 2-D (kx, ky) space. Providing the field profile of the in-plane B+
1 inhomogeneity along

with the desired excitation (in this case, a uniformly-flat flip angle across space), one may

then solve the optimization (5.5) using one of the MSSO simultaneous sparse approximation

techniques in Sec. 3.3 to reveal a small subset of good locations (and corresponding weights)

at which to place spokes.

5.3.2 Motivation

The 3-D RF pulse designs proposed in [108,113,132] describe a class of slice-selective pulses

capable of mitigating B+
1 inhomogeneity that offer improvements over high-SAR adiabatic

pulses [117] and image post-processing methods [25]. An overview of spoke-based pulses is

given in Sec. 2.1.7; They consist of modulated sinc-like pulse segments (“spokes”) in the kz

direction of excitation k-space positioned at locations in (kx, ky). Sinc-like RF depositions

in kz produce slice-selectivity in z and the amplitude and phase modulation of each spoke

in (kx, ky) spatially tailors the excitation in (x, y) to mitigate the in-plane inhomogeneity.

An ideal B+
1 mitigation pulse excites the pointwise inverse of the inhomogeneity and yields

a uniform magnetization; therefore in practice, spoke modulation terms are chosen such

that they produce an in-plane excitation that closely resembles the ideal one. Recall that

a “standard slice-selective” pulse was defined in Sec. 2.1.9 and Sec. 2.1.12 as a one-spoke

pulse whose single spoke is placed at (kx = 0, ky = 0).

In prior work, relatively few spokes have been used for inhomogeneity mitigation on

single-channel [108] and multi-channel parallel transmission systems [113,132]. In all cases,

work is performed at field strengths below 7T where B+
1 inhomogeneity in the brain is less

severe, resembling a quadratic function in space [108]. In contrast, B+
1 inhomogeneity at 7T

exhibits significant spatial variation and is not quadratic [133,136]. This means that spoke

designs that utilize single-channel transmit systems and rely on quadratic assumptions about

B+
1 [108] are unlikely to mitigate brain inhomogeneity at 7T. Parallel excitation systems, on
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the other hand, are indeed useful for B+
1 mitigation at high field, but are expensive in terms

of hardware and complexity: each transmission channel requires an RF power amplifier as

well as a SAR monitor. Based on the above, it is evident that a method is needed to design

fast, slice-selective, B+
1 mitigation pulses for use on high-field single-channel systems.

Since B+
1 is highly non-uniform at 7T [133,136], one approach to mitigating it would be

to extend prior spoke-based designs by placing a large number of modulated spokes through-

out (kx, ky)-space, covering both low and high spatial frequencies. Unfortunately, placing

many spokes leads to impractically-long pulses. To avoid this problem, here we provide a

B+
1 map of the head to the sparsity-enforced joint trajectory-pulse algorithm to find a small

number of spokes necessary to mitigate the inhomogeneity along with their placement in

(kx, ky) and their proper modulations. The algorithm enforces sparsity on the number of

spokes allowed while encouraging those that remain to be placed and modulated in a way

that maximizes B+
1 mitigation in the least-squares sense. In this work, we demonstrate the

capabilities of sparsity-enforced pulse design by performing mitigation experiments at 7T

in a head-shaped phantom and the human brain.

5.3.3 Methods

Transmit Profile, Receive Profile, and Flip Angle Map Estimation

In upcoming experiments, we estimate R(r) and |S(r)| (T/V) using a combination of stan-

dard one-spoke pulses, magnetization reset pulses [33], and a parametric fitting technique;

readers are strongly encouraged to review the signal intensity equations of Sec. 2.1.12 and

fitting overview in Sec. 2.1.13 before continuing further. At minimum, recall that one ver-

sion of this technique allows us to compute the actual flip angle across space arising due

to any low-flip pulse (to within a multiplicative constant), which we denote α(r). Finally,

note that throughout this section |B+
1 (r)| will be used synonymously with |S(r)|.

Sparsity-Enforced Spoke Placement and RF Pulse Design

Overview. Once an estimate of the transmit profile magnitude |S(r)| = |B+
1 (r)| is known

we may pursue our goal of exciting a thin uniform slice in the presence of the B+
1 inhomo-

geneity. To achieve slice-selectivity, we will place sinc-like spokes in kz. To ensure excitation

uniformity, we will place and modulate the spokes such that the magnitude of the resulting
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in-plane nominal excitation closely resembles the pointwise inverse of the transmit profile.

Finally, to minimize pulse duration, we will use as few spokes as possible. Note that be-

cause we provide only the transmit profile magnitude to the algorithm, the pulse it designs

will mitigate the magnitude of the inhomogeneity and not attempt to account for the pro-

file’s phase; this is acceptable from an imaging standpoint in most applications because the

profile’s phase is slowly varying.

Optimized spoke placement in 2-D k-space. Let us consider J candidate points

in the (kx, ky) plane, k1, . . . ,kJ , at which we may deposit energy; a nonzero deposition

at a grid point commits us to playing a spoke at this location. Thus we must judiciously

place energy on the grid to mitigate the inhomogeneity while using as few grid points as

possible. This problem is clearly a special case of the NP-Hard general single-channel joint

design problem of (5.4) in Sec. 5.2.1; further, because it involves the sparse approximation

of a single complex-valued vector, this maps to the MSSO problem of Ch. 3 where the

unknowns are two simultaneously sparse real-valued vectors. Therefore, we may solve the

relaxed convex optimization given in (5.5) to find a tractable, approximate solution to the

intractable NP-Hard spoke placement problem. With the proper choice of λ, solving (5.5)

finds a sparse energy deposition across the grid of J candidate locations (the majority of

energy depositions are zero or close to zero) that produces a relatively-flat magnetization:

the few elements of the grid that are large in magnitude indicate good spoke locations,

revealing a small set of points capable of producing the needed excitation. We now place T

spokes at the kjs whose corresponding energy weightings are the largest in magnitude; T is

thus another parameter trading off pulse duration with B+
1 mitigation.

Gradient and RF pulse design. We now know T locations in (kx, ky) at which to

place spokes, as well as the shape of the spoke to play along each. Fixing slice thickness

and spoke shape ends up fixing the pulse shape. We are then able to produce a set of

gradients and in turn determine the time-dependent k-space trajectory. All that remains

is to calculate the complex weight to encode along each spoke. We may now apply the

single-channel pulse design approach of Sec. 2.1.10 (and incorporate a ∆B0(r) field map if

desired), but because we only need to compute the in-plane weightings, (2.11) reduces to

one where SF is Ns × T in size and b has T rather than Nt elements [113]; weights are

computed simply via pseudoinversion of SF. At this point, the gradients and pulse have

been calculated.
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Design parameters. For all T -spoke mitigation pulses presented in this section, λ

equals 0.35, slice thickness is 20 mm, spokes are Hanning-windowed sincs, the DC spoke’s

time-bandwidth-product equals 4, the kz-lengths of the other spokes are half that of the DC

spoke, and ∆B0(r) is estimated from two images with a 1-ms echo time (TE) difference. The

FOX in which Ns samples of r are taken is where the phantom or brain’s inhomogeneity is

nonzero. For all designs, the (kx, ky) grid is Nyquist-spaced corresponding to a 25.6-cm FOV

and contains 289 candidate locations. Gradient amplitude and slew rate are constrained at

35 mT/m and 150 T/m/s. Given these parameters, the entire design process outlined in this

section takes 3-5 minutes in MATLAB when (5.5) is implemented as a second-order-cone

program as described in Sec. 3.3.7.

Choosing the number of spokes, T , is an essential part of the design process and is

accomplished by solving the spoke placement problem once, designing a series of candidate

pulses with increasing numbers of spokes, simulating the magnetization that arises due to

each pulse, and recording the within-FOX standard deviation of each magnetization; T is

then the smallest number of spokes needed to drive the standard deviation below some

chosen value. This automated process takes several seconds.

Data Acquisition

Hardware. Experiments are conducted on a 7T Siemens scanner (Siemens Medical, Erlan-

gen, Germany) with standard body gradients (40 mT/m maximum amplitude, 180 mT/m/s

maximum slew rate). A quadrature bandpass birdcage coil [126,140] is used for transmission

and reception.

Imaging parameters. When collecting intensity images to estimate |B+
1 (r)| we use

a standard slice-selective pulse followed by a 200-V 16-ms BIR4 adiabatic reset, collecting

128x128 GRE images with 25.6-cm FOV, 5-mm slice thickness, 2-mm in-plane resolution,

380 Hz/pixel bandwidth, 1-sec TR, and 8-ms TE. To obtain a low-flip reference image,

L0(r), we apply a standard pulse without the reset and average 8 times; parameters are the

same as above except TR = 100 ms and TE = 8 ms. Finally, when applying a mitigation

pulse, we perform 3-D GRE readouts (without the reset) and collect 16 contiguous 5-mm

slices, using the parameters above except here TR = 100 ms and TE = 8 ms. In-plane

B+
1 mitigation performance is judged by analyzing the magnitude of the center slice of the

volume; slice-selectivity is judged by analyzing the through-plane intensity profile.
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5.3.4 Experiments

Water phantom: R|B+
1 | inhomogeneity mitigation. Here we design a pulse to miti-

gate the inhomogeneity presented by the combination of transmit and receive profiles in a

uniform-T1 head-shaped water phantom. The motivation is as follows: because this pulse

seeks to mitigate the combination of profiles rather than simply the transmit profile, it

will produce a result that is easy to understand and evaluate, since it ideally will produce

a uniform image. In contrast, a pulse that successfully mitigates only the transmit pro-

file will produces an image that is still highly non-uniform, because in this latter case the

non-uniform receive profile is not mitigated. (Note: a successful R|B+
1 | mitigation pulse

produces a non-uniform magnetization and is not practical for clinical scenarios; in clinical

practice we want to mitigate only |B+
1 |.)

To begin, we collect a low-flip image L0(r) using a standard pulse; (2.19) implies that

L0(r) ∝ R(r)·α(r) ∝ R(r)·|B+
1 (r)|. We then design a 23-spoke mitigation pulse by providing

L0(r) as the transmit profile magnitude estimate and then running the algorithm. A stack

of images is acquired using the pulse in conjunction with the 3-D readout. To quantify the

degree to which the inhomogeneity is mitigated, we compare the standard deviation, σ, and

worst-case variation (WV) of the original image L0(r) with those of the center slice of the

post-mitigation readout volume and also observe five 1-D profiles. The WV of an image is

the ratio of its brightest to its darkest pixel within the FOX. Unlike σ, WV is sensitive to

the change of even a single pixel and thus reveals if the mitigation pulse causes the image

to contain undesirable spikes or black holes.

Water phantom: |B+
1 | inhomogeneity mitigation. We now transition to a practical

scenario and design a pulse to mitigate solely the inhomogeneous transmit profile. We first

estimate |B+
1 (r)| by collecting 10 images with transmit voltages V = 20, 60, 100, . . . , 380 V

and performing the Powell fit [103]; collecting the images takes 17 minutes, while fitting

takes under a minute. A low-flip image, L0(r), is also collected and R(r) is then estimated.

We then design a 19-spoke pulse by feeding |B+
1 (r)| to the placement algorithm. The

desired magnetization is a 10-degree uniform flip across the FOX. After playing the pulse

with the 3-D readout, we extract the post-mitigation center slice, Lm(r); taking Lm(r)/R(r)

(pointwise) yields αm(r), the post-mitigation flip angle map. To calculate the performance

of the pulse, five 1-D profiles of |B+
1 (r)| and αm(r) are considered along with the σ and WV
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of each.

Human brain: |B+
1 | inhomogeneity mitigation. Finally, we design a 19-spoke

pulse to mitigate |B+
1 | non-uniformity in an axial slice of the human brain at 7T. This

experiment is conducted exactly like the water phantom |B+
1 | mitigation trial. Experiments

are conducted at the A. A. Martinos Center for Biomedical Imaging (Charlestown, MA)

and obey all safety and Institutional Review Board (IRB) requirements.

5.3.5 Results and Discussion

Water phantom: R|B+
1 | inhomogeneity mitigation. The original image, L0(r), along

with the mitigated image due to a 200-V, 8.5-ms, 23-spoke pulse, Lm(r), are presented in

Panels A and B of Fig. 5-1, respectively. A through-plane profile of the mitigated readout

volume (Panel C) proves the pulse achieves slice selection. Recall that here the in-plane goal

of the pulse is to mitigate the combined transmit and receive profiles, so ideally Lm(r) will

be constant everywhere. From Panel B and the associated 1-D profiles, we see that the pulse

has produced a more uniform image. Based on standard deviation, Lm(r) (Panel B) is 2.6

times smoother than L0(r) (Panel A). Furthermore, worst-case variation has been reduced

by a factor of 1.7. It seems that to some degree, the pulse mitigates the inhomogeneity

presented by the combined profiles. Note that each image is scaled to display its entire

dynamic range within the grayscale spectrum.

Fig. 5-2 shows pulse design details; sparsity-enforced spoke locations are shown in

(kx, ky), along with the RF pulse magnitude, the gradients, and the 3-D k-space trajec-

tory. The in-plane Bloch simulation of the RF closely resembles the inverse of L0(r) in

Panel A of Fig. 5-1 as intended. (Note: because we are not mitigating solely the transmit

profile, we do not know the flip angle per volt of this pulse, so the choice of a 200-V transmit

voltage is completely arbitrary.)

Water phantom: |B+
1 | inhomogeneity mitigation. Here a 19-spoke pulse attempts

to produce a uniform magnetization. Panels A, B, and C of Fig. 5-3 depict the low-flip

image L0(r), receive profile estimate R(r), and transmit profile estimate |B+
1 (r)|; the latter

is highly non-uniform with σ = 0.16 and WV = 2.5. The transmit and receive profiles are

not equal; in fact, each seems to be the mirror image of the other (consider a reflection

across the y axis). Note the smoothness and lack of noise in the transmit profile estimate

(Panel C). This map is not smoothed; rather, it simply comes directly out of the fitting
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Head-Shaped Water Phantom R |B1+| Mitigation Result

A

C

Original Image Mitigated ImageB

Figure 5-1: Water phantom: R|B+
1 | mitigation due to an 8.5-ms 23-spoke pulse.

Panel A: original image, L0(r), collected using standard pulse; highly non-uniform. Panel
B: in-plane mitigated image, Lm(r); standard deviation, σ, and worst-case variation (WV)
reduced by 2.6x and 1.7x, respectively. Panel C: through-plane profile of mitigated readout
volume showing successful slice selection. Given the 1-D profiles, σ, and WV metrics, and
images themselves, it seems the pulse mitigates much of the inhomogeneity presented by
R(r)|B+

1 (r)|.
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Figure 5-2: Water phantom: 23-spoke R|B+
1 | mitigation pulse design. Upper-left:

locations chosen by sparsity-enforced spoke placement method and their in-plane connec-
tions. Mid-left: 8.5-ms mitigation pulse magnitude (V). Bottom-left: gradients; Gz is
dominant, smaller blips are Gx and Gy. Upper-right: in-plane excitation created by RF
pulse (simulated). Lower-right: 3-D k-space trajectory.
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Head-Shaped Water Phantom |B1
+| Mitigation Result
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Figure 5-3: Water phantom: |B+
1 | mitigation due to a 7-ms 19-spoke pulse. Panel

A: original image, L0(r), collected using standard pulse. Panel B: receive profile estimate
R(r). Panel C: transmit profile estimate |B+

1 (r)| in nT/V [proportional to unmitigated flip
angle map α0(r)]. Panel D: in-plane excitation created by mitigation pulse (simulated);
closely resembles |B+

1 (r)|−1. Panel E: in-plane mitigated image, Lm(r). Panel F: through-
plane profile of mitigated readout volume showing successful slice selection. Panel G: post-
mitigation flip angle map estimate, αm(r); σ and WV reduced by 4x and 1.9x relative to
α0(r). It seems the pulse mitigates a large amount of |B+

1 (r)| inhomogeneity.

algorithm whose inputs are non-smoothed raw images. Overall, this suggests that the fitted

transmit profile is a realistic estimate.

The Bloch simulation of the in-plane excitation created by the 19-spoke pulse is given

in Panel D; it closely resembles |B+
1 (r)|−1, as intended. The similarity of the mitigated

in-plane image, Lm(r) (Panel E), to the receive profile, R(r) (Panel B), suggests that the

post-mitigation flip angle map may be fairly uniform, while the through-plane profile of

the mitigated volume (Panel F) indicates the pulse succeeds at slice selection. The post-

mitigation flip angle map, αm(r) (Panel G), does indeed confirm that in-plane flip angle is

fairly uniform across space. Quantitatively, σ and WV have been reduced by factors of 4

and 1.9, respectively.

The pulse itself is 7.5-ms long and transmitted at a peak value of 243 V. Pulse design

details appear in Fig. 5-4. Note here that the spoke locations chosen by the sparsity-enforced
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Figure 5-4: Water phantom: 19-spoke |B+
1 | mitigation pulse design. Upper-left:

locations chosen by sparsity-enforced spoke placement method. Upper-right: 3-D k-space
trajectory. Middle row: 7-ms mitigation pulse magnitude (V). Bottom row: gradients.

method differ from those chosen in the earlier experiment (see Fig. 5-2) because the spoke

patterns and pulses generated by the sparsity-enforced method depend on both the desired

excitation and |B+
1 | map.

In vivo human brain: |B+
1 | inhomogeneity mitigation. In this clinical scenario a

7.5-ms 19-spoke pulse attempts to produce a uniform magnetization in an axial slice of a

healthy volunteer’s brain. Fig. 5-5 depicts the low-flip angle image, receive profile, transmit

profile, and other images; formatting here is identical to Fig. 4. As in prior experiments,

the pulse’s Bloch-predicted excitation (Panel D) closely resembles the inverse of |B+
1 | (Panel

C), and the through-plane profile of the mitigated volume (Panel F) confirms that the pulse

excites only the intended region. The post-mitigation flip angle map, αm(r) (Panel G), is

more uniform that the original transmit profile (Panel C); this is apparent from the 1-D

profiles as well as the fact αm(r) has 3 times and 1.7 times lower σ and WV, respectively,
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Figure 5-5: In vivo |B+
1 | mitigation due to a 7-ms 19-spoke pulse. Panel A: original

image, L0(r), collected using standard pulse. Panel B: receive profile estimate R(r). Panel
C: transmit profile estimate |B+

1 (r)| in nT/V [proportional to unmitigated flip angle map
α0(r)]. Panel D: in-plane excitation created by mitigation pulse (simulated). Panel E: in-
plane mitigated image. Panel F: through-plane readout volume profile showing successful
slice selection. Panel G: post-mitigation flip angle map, αm(r); σ and WV reduced by 3x and
1.7x relative to non-mitigated α0(r). It seems the pulse mitigates the |B+

1 | inhomogeneity
enough to produce a fairly-uniform magnetization.

than the original |B+
1 | profile and flip angle map α0(r).

Fig. 5-6 shows the design of the 19-spoke pulse. It is 7.5-ms long and transmitted at

203 V. We see from the (kx, ky) plot that the automated sparsity-enforced design method

has chosen a placement pattern and pulse differing from those in earlier experiments (see

Fig. 5-2, Fig. 5-4). The algorithm seems capable of determining good spoke locations in a

variety of scenarios.

Robustness to λ. Empirically, we find that pulse designs are robust to the choice of λ

in (5.5). That is, for various λs and fixed T , the algorithm often finds similar sets of spoke

locations and produces magnetizations with similar degrees of uniformity.

Comparisons to prior work. The spoke-based B+
1 mitigation pulse design method

in [108] requires users to visually inspect and tune a control parameter while working on

the scanner in order to produce a mitigated image, whereas the sparsity-enforced placement

method is automated and seems robust to its λ parameter. Furthermore, prior work does
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Figure 5-6: In vivo 19-spoke |B+
1 | mitigation pulse design. Upper-left: locations

chosen by sparsity-enforced spoke placement method; these differ from those chosen in the
phantom experiment. Upper-right: 3-D k-space trajectory. Middle row: 7-ms mitigation
pulse magnitude (V). Bottom row: gradients.
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not provide a means to estimate the post-mitigation flip angle map in the presence of

a non-uniform and possibly proton-weighted receive profile and is thus not able to truly

characterize the extent to which B+
1 inhomogeneity is mitigated by a pulse designed for

that purpose.

Limitations. One limitation here is the lengthy time required to estimate |B+
1 (r)|. The

other involves the slice thickness and duration of mitigation waveforms. In order to play 19

spokes in a feasible period of time given our gradient constraints, we chose to excite 20-mm

slabs, but in many practical cases 5-mm slices are desired. Fortunately, this problem may

be minimized by using commercially-available fast insert head gradients that are already in

use at a number of sites. These gradients have amplitude and slew rate limits of 80 mT/m

and 800 T/m/s, respectively; if these limits are conservatively constrained to 35 mT/m and

600 T/m/s, the 19-spoke patterns discussed earlier are able to be implemented to excite

only 5 mm (10 mm) of tissue in less than 8 ms (5.5 ms).

5.3.6 Summary

Imaging experiments at 7T showed that applying sparsity-enforced joint trajectory-pulse

design to spoke-based pulses yielded designs capable of mitigating B+
1 inhomogeneity in both

a head-shaped water phantom and the human brain, producing nearly uniform transverse

magnetizations in each case. This seems to be a novel contribution to high field MRI RF

excitation pulse design, B+
1 inhomogeneity mitigation, and in vivo brain imaging at 7T.

5.4 Empirical Study of Single-Channel and Multi-Channel

Sparsity-Enforced Spoke Placement and Comparison to

Conventional Techniques

5.4.1 Overview

We continue to apply the general joint trajectory-pulse design algorithm of Sec. 5.2 to

spoke-based pulses [108, 113, 132], but whereas in Sec. 5.3 we designed pulses solely for

a single-channel system, here we design pulses for both single-channel and eight-channel

systems. Our motivation is to compare sparsity-enforced design to conventional methods

and explore the former’s sensitivity to its control parameters. Specifically, the utility of
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the sparsity-enforced spoke placement method is demonstrated by conducting a |R||B+
1 |

mitigation experiment in a head-shaped water phantom on a human scanner at 7T and a

spatially-selective excitation experiment on an eight-channel parallel transmission system

at 3T. In each experiment, the sparsity-enforced placement algorithm is compared to the

conventional Fourier-based placement method and to an extension of the latter, which we

call “inversion-based” placement. After demonstrating the superior performance of the

sparsity-enforced placement algorithm, we proceed to characterize it in detail by exploring

its sensitivity to its control parameters. Results for these various experiments are first

obtained via Bloch-equation simulations and then validated with trials on the 7T and 3T

systems; thus the sparsity-enforced method is investigated in both theory and practice.

Sec. 5.4.2 briefly summarizes spoke-based pulse design for multi-channel excitation sys-

tems along with transmit and receive profile estimation. Sec. 5.4.3 presents the conventional

Fourier-based spoke placement method and the inversion-based technique, while a brief dis-

cussion of the sparsity-enforced algorithm in the context of conventional spoke-based pulse

design) appears in Sec. 5.3.3. Sec. 5.4.5 describes the 7T and 3T systems and their as-

sociated experiments, while Sec. 5.4.6 presents and discusses the experimental results. A

summary of this section’s material is given in Sec. 5.4.7.

5.4.2 Methods

Spoke-based RF excitation pulse generation. For most spoke-based pulse designs,

one fixes not only k(t) and d(r), but desired slice thickness and spoke type as well. In this

work, slice thickness is fixed at 10 mm and each spoke is a Hanning-windowed sinc. For

all T -spoke pulses, the spoke at DC in (kx, ky) has a time-bandwidth product of 4, while

the T − 1 off-DC spokes have kz-lengths half that of the former. (Using shorter off-DC

spokes lets one reduce the duration of a pulse without noticeably impacting slice selection

performance [113].) Overall, these constraints fix the shape of the P RF pulses and all

properties of the slice profile (e.g., sidelobes and sharpness) [108,113], while still letting the

user retain control over the amplitude and phase each channel encodes along each spoke.

For a T -spoke pulse on a P -channel system, these constraints cause substantial changes

to the design equations (2.14, 2.15) given in Sec. 2.1.11. First, all but T columns of F

are discarded, since only T locations in (kx, ky)-space (those where the spokes are located)

are available for weighting. Further, each bp reduces from Nt to T elements. Finally, the
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FOX reduces to a 2-D in-plane region, leading to a far smaller Ns than in a 3-D case. The

system now has only PT unknowns, giving the user control over PT weights to influence

the in-plane excitation pattern; these may be solved for via a pseudoinversion of Atot in

(2.15) or the Tikhonov regularization in (2.16). At this point, we are able to produce a

set of gradients, determine the time-dependent k-space trajectory, and encode the proper

amplitudes and phases along the P pulse shapes, concluding the design process.

Transmit and receive profile estimation. For all experiments in this section, we

estimate the spatial transmit profiles, S1(r), . . . , SP (r) (T/V), via the method outlined in

Sec. 2.1.13. In our work, we only need coil profile estimates in the 2-D plane where the

thin-slice excitation occurs, so here r indexes samples only within a 2-D FOX.

5.4.3 Conventional Spoke Placement

We now describe two conventional methods for determining the placement of spokes in

(kx, ky) when designing a spoke-based RF waveform whose goal is to produce a user-defined

in-plane target excitation, d(x, y), using a P -channel system whose coil profiles are known.

The second method will suggest spoke weights in addition to placement. Assume that the

FOV is a rectangle, so when d(x, y) is sampled, its NFOV samples may be assembled into

D ∈ CM×N . Furthermore, assume the FOX is smaller than the FOV and not necessarily

rectangular. It is discretized and comprised of NFOX < NFOV samples, which are a proper

subset of the FOV samples. (The NFOV − NFOX pixels in the FOV but not in the FOX

comprise a “don’t care” region.) Finally, assume the system’s P coil profiles are sampled

within the FOX and assembled into the diagonal matrices S1 through SP ∈ CNFOX×NFOX .

The goal now is to place spokes at T locations in (kx, ky) such that the resulting in-plane

excitation is close (in the `2 sense) to d(x, y) within the FOX (not the entire FOV).

Fourier-Based Spoke Placement

An intuitive way to determine where to place each spoke is to compute the Discrete Fourier

Transform (DFT) of D and from the resulting discrete grid of (kx, ky) frequencies, choose

the T whose Fourier coefficients are largest in magnitude [145,147]. If the complex weights

at these T locations are brought back into the spatial domain via an inverse transform,

Plancherel’s theorem implies that this image, D̂T , is the best `2 approximation of D within

the FOV [90, 99]. Unfortunately, there are problems with this method: 1) The FOX is
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typically smaller than the FOV, and the RF profile in the don’t care region is not important.

The Fourier method, however, has no concept of the FOX or the don’t care region. This

FOX-FOV mismatch means that the T chosen locations do not necessarily yield the best

`2 representation of d(x, y) within the FOX. 2) The influence of each spatial profile, Sp(r),

is not accounted for, even though each has a major impact on the in-plane excitation. 3)

There is no concept of transmit channels, so the method cannot suggest a weight for each

channel to place at each spoke location.

Inversion-Based Spoke Placement

Single-channel derivation. This method retains the logic of the Fourier technique while

accounting for its shortcomings. For now, assume the system has a single channel and imag-

ine a grid of Nf arbitrarily-spaced points in (kx, ky) located at k1, . . . ,kNf
. An arbitrary

choice of complex weights at different points on this grid results in a nominal spatial domain

excitation, which is related to the weighted grid by a Fourier transform. The nominal excita-

tion is then multiplied (pointwise) by the coil profile to yield the actual excitation, m(x, y).

One may sample this excitation within the FOX at {r1, . . . , rNFOX
} and arrange the samples

into m ∈ CNFOX . Likewise, the weights on the grid may be formed into g ∈ CNf . The rela-

tion between m and g is represented by F ∈ CNFOX×Nf , where F(m,n) = iγM0∆te
irm·kn ,

where the nth column of F describes how the excitation at the rms is influenced by the

weight at kn. When samples of the coil profile are arranged into S ∈ CNFOX×NFOX , this

leads to

m = SFg. (5.10)

In short, (5.10) expresses the excitation that forms at a set of points in the FOX when

an arbitrary set of complex weights is placed on an arbitrary k-space grid. For fixed kn,

the column of F here is nearly identical to the column of its counterpart in (2.14, 2.15) of

Sec. 2.1.11, except now there is no notion of time. For the most part, this is tolerable: kn is

known rather than k(t) at time tn. The difference here is that time-dependent ∆B0 phase

accrual cannot be incorporated because k’s dependence on t is not yet known. Fortunately,

if B0 is nearly homogeneous or pulse duration is short, then the column of F here (nearly)

equals the column of its counterpart in (2.14, 2.15) of Sec. 2.1.11.

By sampling d(x, y) analogously to m(x, y), it is possible to form d ∈ CNFOX , and by
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solving d = SFg for g, the weighting of the (kx, ky) grid that best achieves the target

excitation in the `2 sense within the FOX may be obtained. This solution is generated via

regularization rather than direct pseudoinversion:

min
g

{‖d− SFg‖2
2 + δ‖g‖2

2}. (5.11)

This yields a well-conditioned g that (approximately) solves the system and provides a

set of grid weights that form the desired excitation. At this point, two pitfalls of the

Fourier method have been mitigated: the coil profile has been explicitly incorporated and

the unnecessary constraints on the excitation outside the FOX have been removed. Now,

using the intuition that motivated the Fourier method, we decide to place spokes at the T

points on the grid that correspond to the T largest-magnitude elements of g.

Multi-channel derivation. For multi-channel systems, (5.10) generalizes to

m = S1Fg1 + · · ·+ SPFgP = Atotgtot, (5.12)

analogously to (2.14). A regularization analogous to (5.11) is then applied to solve d =

Atotgtot, yielding a well-conditioned solution, gtot, which is disassembled into {gp}P
p=1,

where gp contains the weights for channel p. When an element of gp is large in magnitude,

channel p is using the corresponding grid point to strongly influence the resulting excitation,

so placing a spoke here may be worthwhile. However, at this same location, imagine that

the other P − 1 channels have weights of zero; should a spoke still be placed here, if only

one channel suggests doing so, or should it be placed at an alternate location, one where

each channel contributes toward the formation of d(x, y)?

The presence of multiple channels has led to a quandary about how to choose the T best

spoke locations. A solution to this problem is to “compress” the energy of the resulting

gp-weighted grids along the channel dimension using the `2 norm. This produces a single

grid that represents the overall energy placed at each (kx, ky) location by all P channels,

denoted g(`2), where g(`2)(i) = ‖[g1(i), . . . ,gP (i)]T‖2. Using this norm to combine the

energy deposited by all P channels at the ith grid location has no sparsifying effects, so

g(`2)(i) will not radically differ if one channel deposits a large amount of energy at the ith

grid point, or if this same amount of total energy is contributed by many channels. Forming

g(`2) is sensible because when performing excitations using a multi-channel system, it doesn’t
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matter if it is one or many channels that place energy at a given point if such a deposition

improves the excitation. Based on this reasoning, we reapply the intuition that inspired

the Fourier-based method, and decide to place spokes at the T locations corresponding to

the largest-magnitude elements of g(`2). A T -spoke pulse and corresponding gradients may

then be generated using the approach given in Sec. 5.4.2.

Unfortunately, using Tikhonov regularization to find gtot yields a dense solution, lead-

ing to a dense g(`2), one where all grid locations experience moderate amounts of energy

deposition. Frequently, the energies at each of the T chosen locations are not much greater

than the energies present at most other points. Up until this point, the magnitude of energy

at a grid point has been used as proxy for whether that point is a good spoke location, but

since the energies being deposited across all candidate locations are now similar, it is no

longer clear if this intuition is useful. The ideal weights for each channel to place on the

candidate grid have indeed been determined, but this process has not restricted the number

of points at which a channel may deposit energy.

This is a serious drawback, because when T spokes are chosen, only T locations in (kx, ky)

remain for the P channels to modulate and attempt to form d(x, y). Thus in practice, when

all weights are zeroed out except those PT weights associated with the chosen locations, the

resulting excitation does not closely resemble the desired one. The achieved excitation is

of low quality because the PT chosen weights relied on the weights placed at all other grid

locations to form an accurate excitation. To mitigate this problem, the PT weights need

to be retuned via the process given in Sec. 5.4.2). In short, this method does not encourage

the channels to form the excitation by modulating only a small number of locations, despite

the fact that only a small subset of candidate grid points are able to be retained for the

final pulse design.

5.4.4 Multi-Channel Sparsity-Enforced Spoke Placement

To mitigate the inversion-based method’s dense g(`2) grid problem, we rely on sparse ap-

proximation and pose an optimization that promotes the sparsity of g(`2):

min
gtot

{1
2 ‖d−Atotgtot‖2

2 + λ‖g(`2)‖1}. (5.13)
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This is equivalent to the MSSO relaxed convex optimization (3.3), the only difference being

notational (‖g(`2)‖1 is used rather than ‖G‖S). With large enough λ, this method produces

gps that approximately solve the system while also yielding a sparse g(`2). Typically, solving

(5.13) yields a g(`2) with many elements close to zero, with only several high-energy grid

points. (The small grid weights are not exactly zero; this is because an `1 regularization is

used to promote sparsity rather than an ideal but computationally intractable `0 penalty.)

In this way, the sparsity-enforced spoke placement reveals a small subset of the overall

grid that alone is able to form the excitation. At this stage, T spoke locations are selected

by choosing those points on the grid corresponding to the largest-magnitude elements of

g(`2). In contrast with the inversion-based method, the PT weights associated with these T

locations alone are typically able to generate a reasonable version of the desired excitation

when other weights are zeroed out. Thus this method determines a small set of spoke

locations and weightings that form an acceptable-quality excitation. Like the inversion-

based method, the weights undergo retuning (discussed next), but in many cases they do

not radically change.

Necessity of simultaneous sparsity. What if rather than promoting the sparsity

of g(`2), we simply promote that of gtot? This would produce a sparse gtot, and thus

individually-sparse gp. But this does not encourage simultaneous sparsity among the gps,

so their sparsity profiles differ, and thus when g(`2) is formed, it is not necessarily sparse,

contradicting our goal. Further, ‖gtot‖1 discourages solutions where many channels deposit

energy at a single location, and thus penalizes solutions which are in fact useful. A T -

spoke pulse and corresponding gradients may then be generated using the approach given

in Sec. 5.4.2.

5.4.5 System and Experiment Setup

|R||B+
1 | Mitigation in a Head-Shaped Water Phantom on a Single-Channel 7T

Scanner

Overview. Each placement method will design pulses that mitigate |R||B+
1 | inhomogeneity

present in a head-shaped water phantom at 7T using different numbers of spokes. Here,

the ideal mitigation pulse is one that excites the multiplicative inverse of the inhomogeneity

[108] and produces a uniform magnetization across the FOX. Each method will attempt to
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produce this ideal excitation.

Hardware. Work is conducted on a 7T whole-body human scanner (Siemens Medical

Solutions, Erlangen, Germany). The scanner is built around a 90-cm diameter magnet

(Magnex Scientific, Oxford, United Kingdom). The amplitude and slew rate of the sys-

tem’s head gradient coils are always constrained to 35 mT/m and 600 T/m/s, respectively.

Potential gradient imperfections are minimized by operating at amplitude and slew rates

below the hardware’s maximum specifications and performing a one-time RF-gradient delay

calibration. A single-channel, 28-cm diameter, quadrature bandpass birdcage coil is used

for transmission and reception [11,126].

Spatial profiles, target pattern, and spoke parameters. A GRE magnitude image

of the head-shaped water phantom is obtained using a conventional low-flip slice-selective

pulse with a repetition time (TR) of 20 ms, an echo time (TE) of 5 ms, a bandwidth (BW)

of 390 Hz/pixel, and a FOV of 25.6 cm in each dimension. The dielectric properties of the

water in the phantom cause its transmit and receive profiles to exhibit significant spatial

variation, causing the resulting image intensity to be highly non-uniform. One sees from

(2.17, 2.19) in Sec. 2.1.12 that this image is linearly related to both the transmit profile and

the receive profile when in the small-tip angle regime, because sin(α) ' α for small α.

We use this image—the combination of the transmit and receive profiles—as proxy for

the transmit profile. Naturally, when one implements a B+
1 mitigation pulse for in vivo use,

one should mitigate only the transmit profile, as this achieves optimal contrast and SNR,

but here we will mitigate the combination of profiles, for two reasons: 1) The combination

exhibits more spatial variation than the transmit profile alone, making the spoke selection

problem more challenging. 2) A pulse designed to mitigate this combination, rather than

simply the transmit profile, produces a result that is easy to understand and evaluate, since

it ideally will produce a uniformly image.

The hypothetical transmit profile to be mitigated appears in Fig. 5-7 in nT/V, with a

25.6 cm × 25.6 cm FOV and 4-mm resolution. The FOX is where the phantom is present.

The in-plane target magnetization magnitude is a uniform 10-degree flip and target phase is

zero. (We have no desire to shape the nearly-constant phase that occurs naturally across the

target.) Spoke parameters for all designs are given in Sec. 5.4.2. Based on these parameters

and gradient constraints, the duration of a T -spoke pulse, L(T ), is close to 0.26T +0.34 ms,

i.e., each spoke adds roughly 1/4 ms to pulse duration. The in-plane (kx, ky) traversals take
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Figure 5-7: Quantitative |R||B+
1 | map of the head-shaped water phantom at 7T

(nT/V). This hypothetical transmit profile is generated by collecting a GRE magnitude
image and scaling the resulting pixels.

negligible time because most time is spent playing spokes in kz. Finally, ∆B0 is estimated

from the phase of two GRE images (TE1=5 ms, TE2=6 ms).

Experiment details: simulations, quality metrics, and validation trial on real

system. First, simulations are conducted as a function of T to demonstrate the superior

performance of the sparsity-enforced technique; here, we assume we know a good value

for the sparsity-enforced method’s λ parameter. The quality of the in-plane excitation

produced by each method is evaluated by computing the within-FOX, in-plane root-mean-

square error (RMSE) and maximum error between each resulting excitation and the desired

magnetization. Because the desired pattern is in degrees, each of these error terms are in

degrees as well. Further, because the resulting pulses are in volts, we calculate the root-

mean-square (VRMS) and peak voltage (Vpeak) of each. After the simulations, a sparsity-

enforced pulse is played on the scanner to show that the experimental result closely matches

the one predicted via simulation. We then return to simulations and characterize how

the sparsity-enforced placement algorithm behaves when provided grids of oversampled

candidate spoke locations. Finally, we investigate how RMSE varies as a function of λ and

T . Results appear in Sec. 5.4.6.

Phase-Encoded, Spatially-Selective Excitation in an Oil Phantom on an Eight-

Channel 3T Scanner

Overview. Here we evaluate how well the spoke placement methods design pulses that

form a highly-structured excitation pattern in a 17-cm oil phantom, where the FOX is

the phantom itself and transmission is conducted using an eight-channel parallel excitation
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system.

Hardware. The parallel system is built around a 3T Magnetom Trio scanner (Siemens

Medical Solutions, Erlangen, Germany). The coil array is composed of eight circular surface

coils arranged on a 28-cm diameter acrylic tube [7]. After a set of pulses is designed for use

on the scanner, the eight resulting waveforms are transmitted simultaneously through their

respective coils and modulated in magnitude and phase as dictated by the pulse design. The

system’s body coil is used for reception. The amplitude and slew rate constraints of the

gradients are 35 mT/m and 150 T/m/s, respectively. Gradient imperfections are mitigated

by operating in a region well within the hardware’s maximum specifications; RF-gradient

mismatch is prevented via a one-time delay calibration.

Spatial profiles, target pattern, and spoke parameters. The system’s 25.6 cm

× 25.6 cm FOV, 4-mm resolution transmit profile magnitudes (nT/V) are illustrated in

Fig. 2-6. The smooth variations exhibited by each profile occur without smoothing the

fitted results, leading us to believe that the fitting method is robust and accurate. The

receive profile (not shown) is smooth, varying less than 5% within the FOX. Spoke type

and thickness are the same as in the single-channel case. The duration of a T -spoke pulse,

L(T ), fits well to 0.47T +0.65 ms; ∆B0 is again obtained from two phase maps with a 1-ms

TE difference.

With the profiles of Fig. 2-6, it is possible to run the spoke placement algorithms and

produce pulses. For all experiments, d(x, y) is the phase-encoded bifurcation depicted in

Fig. 5-8. This target has a high degree of spatial selectivity, experiencing a 10-degree

flip within only two thin “veins” and no flip across the rest of the FOX. The left vein is 90

degrees out of phase with the right vein. Exciting this pattern is worthwhile because highly-

structured excitations may have applications to clinical MRI. Furthermore, the strength

of multi-channel excitation will be demonstrated. Finally, the phase-encoded nature of

this excitation may have applications to phase-contrast magnetic resonance angiography

(MRA) [42,116], perhaps allowing MRA concepts to be ported to general MRI.

Experiment details: simulations, quality metrics, and validation trial on real

system. Analogously to the single-channel system experiments, simulations are first con-

ducted and RMSE and `∞ metrics are used to evaluate the performance of the different

methods as a function of T . Voltages of the resulting pulses are also analyzed. Each design

consists of eight RF pulses, so to succinctly present the data, the maximum peak and max-
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Dual-Vein Target Pattern

10o flip within
each vein

90o phase

0o phase

Figure 5-8: Dual-phase bifurcation target excitation used for all 3T eight-channel
system experiments. Within the two veins the target commands a 10-degree flip and zero
flip elsewhere. Each branch is phase encoded: the left vein is 90 degrees out of phase with
the right. The ability to achieve this structured excitation pattern will show the strength
of both multi-channel excitation and sparsity-enforced spoke placement.

imum RMS voltages observed across each set of eight waveforms are recorded. After the

Bloch-simulated trials, a sparsity-enforced pulse is played on the scanner and the resulting

excitation is compared to the one predicted via simulation. We then return to simulations,

analyzing how the sparsity-enforced algorithm behaves when provided grids of candidate

spoke locations with different extents in k-space, along with the method’s sensitivity to its

control parameter, λ.

5.4.6 Results and Discussion

Single-channel system: Bloch-simulated spoke placement analysis. Here, each

method is used to place T = 1, . . . , 40 spokes. Based on Sec. 5.4.5, we are able to generate

all matrices and vectors needed to run the placement and pulse design routines, e.g., 1138

within-FOX samples of the transmit profile, S(x, y), are used to form the spatial profile

matrix, S, all elements of d are set to 10 degrees based on the desired excitation d(x, y), etc.

The pointwise inverse of the inhomogeneity, S−1(x, y), is provided as the desired excitation

to the Fourier placement method. The inversion-based method’s Tikhonov parameter in

(5.11) is set to 0.1.

The frequency grid of candidate spoke locations provided to the inversion-based and

sparsity-enforced methods is centered at DC, Nyquist-spaced at 1
25.6cm−1, extends out-

ward equally in both kx and ky, and is comprised of 172 points, leading to F ∈ C1138×289.

Providing this same grid to the inversion and sparsity-enforced methods promotes fair com-
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parisons between the algorithms. Ideally, this grid would extend further out in k-space to

reach the maximum and minimum frequencies suggested by the transmit profile’s 4-mm

sample spacing, but using such a large grid increases the sparsity-enforced method’s run-

time to 25 minutes (vs. 3 minutes for the 172-point grid). The smaller grid is acceptable,

however, because the Fourier-based method—which selects spokes on the large, ideal grid—

never chooses to place a spoke outside of this 172 region when T ≤ 40, i.e., the majority

of k-space energy lies on the small grid. (Later we will show how grid extent affects the

sparsity-enforced method’s performance.)

The final step is to run the sparsity-enforced routine for R = 40 values of λ, solving

(5.13) each time and storing each resulting weighted grid, g(r). When the sparsity-enforced

method is used to place T spokes, R possible placements are evaluated—spoke locations

being chosen based on the T maximum values of each g(r)—and the placement yielding

the smallest residual error, ‖d−SFg(r)
trunc,T ‖2, is retained. Thus when the sparsity-enforced

method’s results are presented, they implicitly assume that a good value for λ is known.

(Later on, we will analyze sensitivity to λ.) We do not find it necessary to loop over the

inversion-based method’s Tikhonov term in (5.11) because we observe that once it is tuned

past a certain threshold, all resulting solutions suggest essentially the same set of T spoke

locations.

Each method designs pulses with T = 1, . . . , 40 spokes, which are then simulated. The

RMSE and maximum error of each resulting excitation pattern with respect to the uniform

target are computed, along with the voltage characteristics of each corresponding pulse.

Fig. 5-9 depicts these results, illustrating how each metric varies with T . For each method,

RMSE decreases with T , because using more spokes allows for more spatial tailoring and

inhomogeneity mitigation. For fixed T , the Fourier method is outperformed by the inversion-

based method, which in turn is outperformed by the sparsity-enforced technique. For all T ,

the sparsity-enforced placement method produces the lowest RMSE.

When T < 15, the RMSE for each method is large, and the resulting magnetization

still highly non-uniform. When T ∈ [15, 30], the sparsity-enforced method, on average,

produces an excitation with 1.32 times lower RMSE relative to the inversion method. The

inversion-based method’s excitations, in turn, have on average 1.06 times lower RMSE

than those due to the Fourier method. For T > 30, the RMSE of the sparsity-enforced

and inversion methods converges, but the resulting pulses are over 8-ms long and thus
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Figure 5-9: Bloch-simulated spoke placement algorithm comparisons for mitigat-
ing |R||B+

1 | inhomogeneity in the head-shaped water phantom at 7T. Error and
voltage statistics vs. number of spokes used (T ) are shown for the Fourier, inversion, and
sparsity-enforced spoke placement methods. Upper-left: RMSE vs. T . Lower-left: max-
imum error vs. T . Upper-right: VRMS vs. T . Lower-right: Vmax vs. T . For all three
algorithms, the duration of a T -spoke pulse is close to 0.26T + 0.34 ms.
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impractical. Overall, it is clear that the sparsity-enforced method produces higher-quality

excitations than the other methods for all practical pulse durations. To see the strength of

the sparsity-enforced method, consider its 21-spoke 5.7-ms pulse with 0.68 RMSE. In order

for the inversion method to produce the same quality excitation, a 29-spoke, 7.8-ms pulse

is required. In other words, the sparsity-enforced pulse achieves the same quality excitation

yet is 1.37 times shorter.

Unlike RMSE, maximum error does not vary smoothly with T , because the algorithms

do not explicitly penalize `∞ error. In general, the maximum error curves of the inversion

and sparsity-enforced methods are similar. The RMS voltages of pulses generated by each

method exhibit a downward trend as T increases, because with more spokes, each individual

spoke doesn’t need to be modulated as intensely to form the excitation. Further, the peak

voltages behave more erratically than the RMS voltages, analogously to how the `∞ error

fluctuates more than RMSE. Finally, for T ∈ [10, 20], the sparsity-enforced method often

has the lowest voltages among all methods, whereas for T > 20, its voltages are higher.

Fig. 5-10 depicts the results of each method when T = 21. The left, center, and right

columns show the Fourier, inversion, and sparsity-enforced method’s results, respectively.

The top, middle, and bottom rows depict the simulated excitation before accounting for

transmit profile non-uniformity, the resulting magnetization after accounting for inhomo-

geneity, and a 2-D view of k-space showing where each method places its spokes and how

they are traversed in-plane. Metrics are also given in correspondence with those in Fig. 5-9.

From the top row, one sees that each method produces an excitation that approximates the

inverse of the non-uniform profile in Fig. 5-7. Looking at the middle row, one appreciates

the ability of each method to produce a relatively flat magnetization. The bottom row shows

that the Fourier and inversion methods cluster spokes around DC. The sparsity-enforced

method, however, places its spokes further out on the grid, leading to an excitation with 1.28

times lower RMSE. This improvement is achieved with no increase in pulse duration and

only a moderate voltage increase. The spoke placement determined by the sparsity-enforced

algorithm is not obvious, but by placing spokes at slightly higher spatial frequencies, the

sparsity-enforced method produces a nominal excitation that is less symmetric, better re-

sembling the pointwise inverse of the transmit profile than the excitations produced by the

other methods.

Single-channel system validation. To validate our simulations, we play the 21-
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Figure 5-10: Bloch-simulated 21-spoke pulses designed by the Fourier, inver-
sion, and sparsity-enforced spoke placement algorithms for mitigating |R||B+

1 |
inhomogeneity in the head-shaped water phantom at 7T. Columns, from left to
right: results of the Fourier, inversion, and sparsity-enforced methods. Top row: excita-
tions produced by each algorithm. Middle row: magnetizations after accounting for the
inhomogeneity. Bottom row: 2-D view of k-space illustrating each spoke placement; each
trajectory ends at the center of k-space. The sparsity-enforced pulse produces the lowest-
RMSE excitation.

157



0 1 2 3 4 5 6

0

4

time (ms)

G
x 

&
 G

y 
(m

T
/m

)

Gx
Gy

0 1 2 3 4 5 6

0

20

40
G

z 
(m

T
/m

)

0 1 2 3 4 5 6
0

20

40

60

80

R
F

 M
ag

n
it

u
d

e 
(V

)

Figure 5-11: Experimental result in the head-shaped water phantom on the single-
channel 7T scanner. Here, the 21-spoke sparsity-enforced RF pulse whose simulations
appear in Fig. 5-10 is played on the actual system. Left: RF waveform magnitude and
gradients. Upper-right: in-plane scanner result. Lower-right: through-plane scanner result.
This experimental result closely resembles the Bloch-simulated image in Fig. 5-10, validating
the simulation methodology and proving that the pulse design process is feasible for use on
real systems.

spoke sparsity-enforced pulse from Fig. 5-10 on the scanner and perform a GRE readout.

Since the pulse is designed to mitigate both the transmit and receive profiles, we validate

our simulation by analyzing the magnitude of the readout image. Fig. 5-11 shows the RF

magnitude and gradients of the 21-spoke pulse, along with the in-plane and through-plane

result from the real system. The through-plane image demonstrates excellent slice selection.

Further, there is a striking resemblance between the in-plane result and simulation (middle

row, right column of Fig. 5-10). Note how Fig. 5-10’s Fourier and inversion-based simulated

patterns have two bright spots slightly north-west and north-east of center, whereas the

simulated pattern and the scanner result in Fig. 5-11 have only a single bright spot north-

east of center. This close match between the experimental and simulated result lends strong

support to the simulation method and results.

Multi-channel system: Bloch-simulated spoke placement analysis. Here each

method places 1 to 40 spokes, and RMSE, `∞ error, VRMS, and Vpeak are calculated for

each of the resulting 120 pulses and excitations. The goal here is to produce the dual-vein

target in Fig. 5-8. Since there are 8 channels, the matrices are 8 times larger, e.g., Atot
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in (5.13) is now 1416 × (289 ∗ 8). For all trials, the inversion method’s Tikhonov value in

(5.11) is 0.01. The frequency grid is the same as in the single-channel experiment, so each

gp vector is comprised of 289 elements. With these variables, it takes about 25 minutes to

solve (5.13) for one value of λ.

Analogously to the single-channel experiment, the sparsity-enforced routine is run for

R = 32 different values of λ, so when the method is requested to place T spokes, it evaluates

R possible placements and chooses the one yielding the smallest error. Here, in contrast with

the single-channel experiment, λ ∈ (10−9, 10−1). Small values of λ are necessary because

the application of ‖ · ‖S to the gps results in grids with barely any energy when λ > 10−1.

After these steps, the algorithms place 1 to 40 spokes and design pulses for each. Fig. 5-

12 shows the error and voltage metrics of each method as a function of T . The RMSE plot

shows that the sparsity-enforced routine outperforms the other methods. For T ∈ [10, 40],

the sparsity-enforced technique, on average, has 1.18 times and 1.31 times lower RMSE

than the Fourier and the inversion methods, respectively. Consider the sparsity-enforced

method’s 15-spoke, 7.5-ms pulse with 2.01 RMSE. For the Fourier method to attain this

RMSE, a 26-spoke, 13-ms pulse is required, i.e., the sparsity-enforced pulse generates the

same quality excitation yet is 1.73 times shorter in duration. In terms of voltages, all

methods exhibit similar trends; this differs from the single-channel case where the sparsity-

enforced method at times produced higher-voltage pulses. This means that the sparsity-

enforced method produces pulses that yield higher-quality excitations without significantly

increasing pulse duration, VRMS, or Vpeak.

These error plots also reveal a surprising result: for all T , the inversion method performs

worse than the Fourier one, even though the former was designed to account for pitfalls

of the latter. This differs from the single-channel case of Fig. 5-9, where the inversion

method outperformed the Fourier one. The inversion method fails here because of the “grid

compression” step discussed earlier. This problem does not occur in the single-channel

experiment because in the latter case there is only a single gp vector and the compacting

of various grids to form a dense, problematic g(`2) never occurs.

Fig. 5-13 shows each method’s excitation and spoke placement for T = 15. Its left,

middle, and right columns show the results of the Fourier, inversion, and sparsity-enforced

techniques. The rows, from top to bottom, depict the simulated excitation magnitude,

excitation phase, and spoke placement in (kx, ky). Each method succeeds, to some extent,
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Figure 5-12: Bloch-simulated spoke placement comparisons for forming the dual-
vein target on the eight-channel parallel excitation system at 3T. Error and voltage
statistics vs. number of spokes (T ) are shown for the Fourier, inversion, and sparsity-
enforced placement methods. Upper-left: RMSE vs. T . Lower-left: maximum error vs.
T . Upper-right: max VRMS across all eight channels vs. T . Lower-right: max Vpeak across
all eight channels vs. T . For all algorithms, the duration of a T -spoke pulse is close to
0.47T + 0.65 ms.

160



Fourier-Based Inversion-Based Sparsity-Enforced

E
xc

it
at

io
n

M
ag

n
it

u
d

e
E

xc
it

at
io

n
 P

h
as

e
(w

it
h

in
 R

O
I)

2-
D

 V
ie

w
 o

f 
k-

S
p

ac
e

T = 7.28 msT = 7.37 ms T = 7.54 ms

2

4

6

8

10

12

max(Vrms) = 5.0, Vmax = 39

RMSE = 2.50, MaxErr = 8.54

max(Vrms) = 5.0, Vmax = 39

RMSE = 2.37, MaxErr = 7.93

max(Vrms) = 4.73, Vmax = 33

RMSE = 2.01, MaxErr = 7.70

F
lip

 A
ng

le
 (

de
gr

ee
s)

75

90

105

120

135

150

165

180

195

P
ha

se
 (

de
gr

ee
s)

0.10 0.2 0.3
kx

0

0.1

0.2

0.3

k y

0.10 0.2 0.3
kx

0

0.1

0.2

0.3

k y

0.10 0.2 0.3
kx

0

0.1

0.2

0.3

k y

Figure 5-13: Bloch-simulated 15-spoke pulses designed by the Fourier, inversion,
and sparsity-enforced spoke placement algorithms for forming the dual-vein
target on the eight-channel system at 3T. Columns, from left to right: results of the
Fourier, inversion, and sparsity-enforced spoke placement methods. Top row: excitation
magnitudes. Middle row: excitation phases. Bottom row: 2-D view of k-space showing
each method’s spoke placement; each trajectory ends at the center of k-space. The sparsity-
enforced excitation has the lowest RMSE, `∞ error, VRMS, and Vpeak.
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Figure 5-14: Experimental result in an oil phantom on the eight-channel 3T
system. Here, the 15-spoke sparsity-enforced RF pulse and gradients whose simulation
results appear in Fig. 5-13 are played on the actual system followed by a GRE readout.
This experimental result closely resembles the Bloch-simulated magnitude and phase of
this same waveform in Fig. 5-13, validating the simulation methodology and showing that
the proposed pulse design process is applicable to real multi-channel systems.

in producing the desired excitation, but the sparsity-enforced method produces one that

best resembles the target. Its excitation is better because it is not only less blurry than

the others, its lower vein exhibits a degree of curvature not present in the veins of the

other methods. This leads to the sparsity-enforced method’s 2.01 RMSE, which is 1.18 and

1.24 times lower than those of the Fourier and inversion techniques. The sparsity-enforced

method’s spoke placement exhibits the same trend that it did in the single-channel case: it

places spokes at slightly higher spatial frequencies than the Fourier method. The discussion

about the poor performance of the inversion method (see Sec. 5.4.3) is bolstered by its

placement shown here: the dense g(`2) grid causes the inversion-based technique to tightly

cluster its spokes around DC, and because of this, its resulting excitation completely lacks

distinct edges and is only a “lowpass” version of the target in Fig. 5-8.

Multi-channel system validation. Simulation results are validated by playing the

15-spoke sparsity-enforced pulse on the system. The magnitude and phase of the center

slice are shown in Fig. 5-14, corresponding with the simulated images in the right column

of Fig. 5-13. The experimental and simulated magnitude images are quite similar: there

is a dark ridge in both images where the two veins intersect, the left vein in both images

has barely any curvature, and the right vein of each image exhibits slight curvature. The

lower-left of the experimental image contains ghosts of the left vein, an artifact not present

in the simulation. We believe this occurs because gradient infidelities cause a spoke to be

slightly misplaced in (kx, ky); this misplaced spoke ends up modulating spatial frequencies
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different from those intended, and because the system’s coil profiles are being driven and

superposed to cancel each other out in the majority of the FOX, this slight deviation

perturbs the intended cancellation of the profiles and creates noticeable artifacts. In other

words, commanding no flip in most of the FOX while asking for a 10-degree flip within two

thin veins is an ill-conditioned problem.

The phase of the experimental image in Fig. 5-14 resembles the phase map predicted

by the simulation in Fig. 5-13. On average, the phase in the left vein differs from that in

the right vein by 81.6 degrees, 8.4 degrees off from the ideal 90-degree separation. The

majority of this 8.4-degree error occurs where the two veins intersect. In the ideal target

in Fig. 5-8, we see there is a sharp 90-degree phase cutoff between the left and right veins,

whereas in the experimental map, there is a gradual change in phase in this region. This

behavior is reasonable: it is unrealistic to think that the real system is capable of exciting

a target with a discontinuity. Besides this difference, the observed magnitude and phase

maps match closely with the simulated ones, lending credence to the simulation results and

sparsity-enforced pulse design.

Sparsity-enforced placement: grid oversampling analysis. We have seen that

the sparsity-enforced placement algorithm is superior to the other methods, yielding im-

provements in excitation quality with negligible changes to pulse duration and, at most,

moderate increases in voltage. We now investigate how oversampling the grid of candidate

spoke locations affects the sparsity-enforced algorithm’s RMSE performance. This is done

via simulations in the context of the single-channel system’s inhomogeneity mitigation sce-

nario. Here, for T = 1, 3, . . . , 29, we run the sparsity-enforced method using the 17 × 17

Nyquist grid discussed earlier, along with a 33 × 33 2x-oversampled grid and a 49 × 49

3x-oversampled grid. These oversampled grids extend out to nearly identical maximum and

minimum spatial frequencies in k-space as does the Nyquist grid, so the only difference

among the grids is their oversampling factor. With other parameters held constant, we

run the sparsity-enforced method with various λs for each grid, design T -spoke pulses, and

compute RMSE. The sparsity-enforced method’s runtime increases when provided the over-

sampled grids, because they have roughly 4x and 8x as many candidate locations than does

the Nyquist grid. Fig. 5-15.A shows the results of this Bloch-simulated experiment. Here,

RMSE as a function of oversampling factor is relatively constant, e.g., for T < 7, T > 17,

oversampling the grid has no RMSE benefit. For fixed T ∈ [7, 15], RMSE decreases with
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Figure 5-15: Panel A, single-channel |R||B+
1 | inhomogeneity mitigation experi-

ment: RMSE vs. number of spokes (T ) when providing the sparsity-enforced method
Nyquist-sampled, 2x-oversampled, and 3x-oversampled frequency grids of candidate loca-
tions. Grid oversampling seems to provide little RMSE benefit. Panel B, eight-channel
system, dual-vein target: RMSE vs. T for Nyquist-sampled frequency grids of candi-
date spoke locations that are 7x7, 9x9, ..., 19x19 in size. Each grid is centered at DC and
candidate points extent outward in kx and ky. The 11x11 grid yields reasonable RMSE
results, suggesting that smaller grids may be used to decrease runtime.

increasing oversampling factor, but only slightly.

Sparsity-enforced placement: grid extent analysis. We now investigate whether

increasing (reducing) the extent of the grid out to higher frequencies is of any benefit (detri-

ment). Specifically, we alter the extent of the grid used in the multi-channel experiment and

measure RMSE. We run the sparsity-enforced algorithm using the original Nyquist-spaced

172 grid, along with Nyquist-spaced grids that are 72, 92, . . . , 152, and 192 in size. In terms

of runtime relative to the 172 grid, the sparsity-enforced algorithm runs 5.9, 3.6, 2.4, 1.7,

and 1.3 times faster when the 72 through 152 grids are used, and 1.2 times slower when

the 192 grid is used. For each grid, we sweep over λ (like in the earlier experiments) and

then compute the RMSE of various T -spoke pulses for T = 1, 3, . . . , 29. Fig. 5-15.B shows

RMSE as a function of grid extent and T . Grids of size 112 and up yield relatively the same

RMSE, which means that runtime may be reduced without a loss of performance by using

smaller grids.

Based on the grid-extent results in Fig. 5-15.B and the oversampling results in Fig. 5-

15.A, it is sufficient for our applications to simply pick a Nyquist-sampled grid that extends

out a moderate rather than far distance into k-space. There is no need to extend the grid

to high spatial frequencies or oversample it by even a factor of two. The strength of the

sparsity-enforced algorithm does not come from placing spokes at high or finely-sampled
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Figure 5-16: Single-channel |R||B+
1 | inhomogeneity mitigation experiment: λ sen-

sitivity analysis. The sparsity-enforced spoke placement algorithm’s sensitivity to λ is
analyzed when designing pulses comprised of 11, 15, 21, and 25 spokes. As T increases,
sensitivity to λ decreases. Further, for fixed λ, RMSE does not exhibit a consistent trend
across T .

frequencies, but in simply tuning placements outward from low frequencies and making

slight—but certainly not obvious—alterations to the placements suggested by the Fourier

method.

Sparsity-enforced placement: λ sensitivity analysis. The single-channel simula-

tion results presented in Fig. 5-9 assumed that a good choice of λ was known. We now do

away with this assumption, presenting RMSE as a function of λ and T ∈ {11, 15, 21, 25}
in Fig. 5-16. For small T , the choice of λ is crucial in order to best reduce RMSE, but

as T increases, the algorithm’s sensitivity to λ decreases significantly. Further, for fixed λ,

RMSE does not exhibit a consistent trend across T .

Fig. 5-17 depicts the multi-channel experiment’s sensitivity results, showing RMSE as a

function of λ and T ∈ {11, 15, 21}. As T increases, the RMSE vs. λ curve moves smoothly

downward. We are unsure why more erratic behavior occurs in the single-channel context

(see Fig. 5-16).

Runtime. In the single-channel experiments where a 172 grid is used, it takes ap-

proximately 3 minutes to solve (5.13) using our MATLAB SeDuMi implementation on a

Linux-based computer with a 3.0-GHz Pentium IV processor. In the eight-channel case with

the 172 grid, runtime increases nearly linearly to 25 minutes. In general, the random-access

memory footprint of the SOC program ranges from 200-700 megabytes.
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Figure 5-17: Eight-channel system, dual-vein target: λ sensitivity analysis. The
sparsity-enforced spoke placement algorithm’s sensitivity to λ is analyzed when designing
pulses comprised of 11, 15, and 21 spokes. For fixed λ, RMSE decreases smoothly with T ,
in contrast with the behavior in Fig. 5-16.

5.4.7 Summary

The strength of sparsity-enforced spoke placement was demonstrated by designing fast,

slice-selective RF pulses that mitigated |R||B+
1 | inhomogeneity present in a head-shaped

water phantom on a 7T single-channel system and that achieved a complex-valued target

pattern using an eight-channel 3T parallel excitation system. In both cases, the sparsity-

enforced method outperformed conventional methods, producing excitations with lower

RMSE when pulse duration across the methods was fixed, and producing pulses with sig-

nificantly shorter durations when excitation quality across the methods was fixed. The sim-

ulation results presented throughout this paper were validated by experiments on both the

single-channel 7T system and the eight-channel 3T parallel excitation system and showed

that sparsity-enforced pulses are applicable in real scenarios. Throughout both experiments,

the sparsity-enforced algorithm automated the task of spoke placement and the design of

the corresponding gradients and RF waveforms, yielding placement patterns that were not

obvious and would be difficult or impossible to design by hand, freeing the designer from

the task of slice-selective pulse design. The algorithm was shown to be highly robust to the

choice of many of its input parameters, such as the extent and sample spacing of the grid

of candidate spoke locations, and relatively robust to the choice of its sparsity-enforcing

control parameter, λ, when larger numbers of spokes were placed during the single-channel
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S(x,y) d(x,y)

Figure 5-18: Left: |S(r)|, map of in-plane |B+
1 | inhomogeneity. Right: desired

in-plane target excitation, d(r).

experiments and in general during the multi-channel experiments.

5.5 Joint Spiral-Trajectory RF Excitation Pulse Design

5.5.1 Overview

We now turn our attention towards the optimization of a 2-D spiral trajectory that attempts

to form a smoothed box-shaped excitation in the presence of severe B+
1 inhomogeneity

present in a head-shaped water phantom at 7 Tesla on a single-channel system.

To jointly optimize spiral trajectories and pulses for use on single-channel systems, we

define the J contours discussed in Sec. 5.2.1 as a set of concentric rings and then solve

(5.5) to reveal a small subset of ellipses and corresponding energy weightings that form a

high-fidelity version of the target excitation. The small, useful subset of rings out of the

overall J-ring set is then connected into a spiral-like trajectory to yield a set of gradients,

and the corresponding RF pulse is retuned as discussed in Sec. 5.2.1 by solving (2.11).

We focus on such an approach here and show that sparsity-enforced spirals lead to

improvements in both excitation quality and pulse duration relative to conventional radially-

undersampled (”accelerated”) spirals.

5.5.2 Methods

Transmit profile and desired in-plane excitation pattern. Fig. 5-18 depicts the

transmit profile, S(r), of a birdcage coil in a head-shaped water phantom at 7 Tesla, along

with the desired in-plane excitation pattern, d(r). Forming d(r) in the presence of the

inhomogeneous S(r) is non-trivial.
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Figure 5-19: Left: 15 concentric rings provided to the joint spiral-trajectory
design algorithm and chosen 4-ring subset. Fifteen rings, each comprised of 25 k-space
points, along with a single point at the origin, are provided to the joint design algorithm
as candidates. The four bold rings are those revealed by the algorithm. Right: resulting
1.5-ms four-ring trajectory. The trajectory is generated by connecting the four chosen
rings using a greedy algorithm.

Conventional accelerated spirals. Consider a spiral whose radii are spaced at the

Nyquist-limit (as defined by the desired FOV). Defining an unaccelerated Nyquist-sampled

spiral an “R = 1” spiral, the conventional way to sparsify (accelerate) the trajectory is

to radially undersample its rings by a factor of R. This process does indeed accelerate the

trajectory and reduce pulse duration, but does not explicitly take the desired magnetization

pattern into account.

Sparsity-enforced spiral design. By defining J concentric rings in 2-D k-space, the

approach of Sec. 5.2.1 may be applied directly to yield a sparsity-enforced spiral-trajectory

and accompanying RF excitationo pulse. Note that we could expand the algorithm’s search

space and ability to form excitations by providing the design algorithm additional ring-like

contours in 2-D k-space such as asymmetrical ellipses.

5.5.3 Experimental Results

A sparsity-enforced spiral trajectory and RF excitation pulse are designed by first defining

the J = 16 contours shown in the left panel of Fig. 5-19; there are 15 candidate rings, each

comprised of 25 k-space points, along with a single point at DC (thus the parameter Nk

discussed in Sec. 5.2.1 equals 376).
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Figure 5-20: Sparsity-enforced four-ring RF pulse and gradients. The RF pulse
plays along the trajectory given in the right panel of Fig. 5-19, and the gradients here trace
the four-ring trajectory in 1.5 ms.

These contours, along with sampled versions of S(r) and d(r), are provided to the

method, λ in (5.5) is set to 0.30, and (5.5) is then solved in under 2 minutes. Four rings

are retained as the sparsity-enforced subset and appear as overlays on the left panel of

Fig. 5-19. The right panel of Fig. 5-19 shows how the four-ring subset is connected into a

1.5-ms trajectory.

Figure 5-20 depicts the corresponding gradients and RF excitation pulse, the latter of

which is generated via the steps outlined at the end of Sec. 5.2.1. Fig. 5-21 compares

excitations due to the sparsity-enforced spiral and R-fold accelerated conventional spirals.

The 1.5-ms sparsity-enforced spiral significantly outperforms the 4.9-ms, R = 2 spiral. The

R = 1 spiral does indeed produce a near-perfect excitation, but is 6.4x longer than the

optimized pulse. Note how the sparsity-enforced spiral traverses only a small segment of

k-space yet is capable of forming a high-fidelity version of the box, in spite of the presence of

the inhomogeneous S(r). When R = 7, the conventionally-accelerated spiral has a duration

on-par with that of the optimized spiral, but has four times larger error. Thus for fixed

excitation quality, the sparsity-enforced spiral yields shorter pulses, and for fixed pulse

duration, it yields lower-NRMSE excitations.

5.5.4 Summary

We have shown that the general single-channel joint trajectory-pulse design technique of

Sec. 5.2.1 is indeed applicable to spiral trajectories. Here we showed that the approach
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Figure 5-21: Sparsity-enforced four-ring design vs. conventionally accelerated
spiral designs. Upper row: resulting in-plane excitations due to sparsity-enforced and
R = 1, 2, and 7 accelerated spiral pulses. Lower row: corresponding trajectories with du-
ration overlays. The sparsity-enforced trajectory is essentially a non-trivially-downsampled
variable-density spiral.

was able to rapidly calculate fast, high-quality trajectories and corresponding RF pulses.

Sparsity-enforced spiral trajectories significantly outperformed conventional spirals in sim-

ulated trials in a single-channel, 7T, non-uniform transmit profile setting.

5.6 Conclusion

Sparsity-enforced joint trajectory and pulse design was formulated generally and then ap-

plied to both spoke and spiral trajectories in single-channel and multi-channel contexts;

in both B+
1 mitigation and highly-structured excitation scenarios, the sparsity-enforced

method yielded shorter pulses relative to conventional techniques when excitation quality

was fixed, and higher-quality excitations than conventional techniques when pulse duration

was fixed. To the best of our knowledge, our use of a sparsity-enforced optimization to

jointly generate a target-pattern-specific, fast trajectory and corresponding RF waveform is

a novel idea. The generality of the algorithm—in that it may apply to any set of trajectory

segments and thus optimize over and generate a completely arbitrary trajectory—is, to the

best of our knowledge, novel as well.
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Chapter 6

Sparsity-Enforced Parallel

Transmit Array Mode Subset

Selection

6.1 Introduction

The purpose of this chapter is improve the flexibility of parallel excitation by optimizing the

use of a multi-channel array’s spatial profiles to improve the quality of accelerated spatially-

tailored excitations. We confront an NP-Hard subset selection problem that arises when

a parallel excitation system has more transmit modes available than hardware transmit

channels with which to drive them. We will show the applicability of MSSO theory and

propose a fast target-excitation-dependent sparsity-enforced mode subset selection (SEMSS)

algorithm that explicitly accounts for the desired excitation pattern, d(r), when choosing the

mode subset, in contrast with conventional mode subset selection methods that only analyze

the spatial profiles of the transmit modes and thus determine only a single mode subset

for all desired excitations. Note that although we indeed make use of MSSO theory, the

application here differs completely from Ch. 5’s focus on joint pulse-trajectory design. The

work of this chapter appeared at a conference [151] and also led to a pending patent [163].

Transmission ports. Let us consider a parallel transmission system, the basics of

which were discussed in Sec. 2.1.11, whose physical hardware array consists of a vast number

of input elements (ports). Attaching a port is of essentially no cost and a trivial task
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for a hardware designer so this is a realistic scenario. In most cases, these elements are

distributed radially about the array [3–6,126,140]. Let us assume P transmission channels

available: each channel is simply a device that is capable of generating and transmitting a

chosen waveform. In practice, one might simply connect each transmit channel to a single

array element, spacing the channel-element connections equally around the coil array. This

configuration style was used to generate the spatial profiles given in Fig. 2-6: the high-SNR

regions of the eight spatial profiles are radially spaced by roughly 45 degrees because the

transmit channels were connected in a radial fashion to ports spaced in 45 degree increments

about the coil array.

Transmission modes. There is a more sophisticated approach to connecting a single

transmit channel to the multi-port array, however. Specifically, rather than attaching a

transmit channel directly to one array port, one might consider distributing the transmit

channel waveform into many array ports simultaneously via the use of inexpensive splitter

hardware, with the option of altering the magnitude and phase of the waveform entering

each port via the use of inexpensive attenuators and phase shifters,1 respectively. In other

words, one may form linear combinations of the analog outputs of multiple ports using only

one transmission channel, generating a single spatial profile—a transmit mode—that is not

necessarily localized about a single array port as is each individual profile in Fig. 2-6. It is

simple and inexpensive to configure an array to produce a transmit mode, which means that

many different transmit modes may be made available. One such example of a multi-mode

array is a Butler matrix. This device was first applied to electronically scanned antenna

arrays by Butler and Lowe [19], but its use in an MRI excitation context has recently been

validated; specifically, it has been confirmed that a Butler matrix is capable of producing

a useful basis set of spatial transmit modes [5]. Notationally, let us define the N spatial

transmit mode profiles of a given system as S1(r), . . . , SN (r), where r is a spatial variable.

Transmission modes vs. transmission channels. Unfortunately, in direct contrast

to the ease with which one may add an additional transmit mode is the cost and imple-

mentation difficulties one faces when attempting to add an additional transmit channel

because each such channel (capable of driving only a single transmit mode profile) requires

a separate digital RF generator, a high-power RF amplifier, and a SAR safety monitor.

As a reflection of this, only up to eight-transmit-channel systems have been developed to

1Phase shifters are also called “delays”.
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Figure 6-1: N-mode, P -channel parallel excitation system. Each transmit channel
is capable of driving one transmit mode. Transmission modes are easy to construct and
thus N is large. Transmission channels, however, are costly and complex to implement, and
thus P is small. Given a user-desired target excitation, d(r), which P -mode subset should
one use to form the excitation? There are N -choose-P such subsets to choose from, but a
brute-force search is infeasible for near-real-time pulse design.

date [7, 58,113].

Our problem. In the interest of studying the above problem, we pose a case of practical

interest: given a transmit array with N = 16 available transmit mode profiles2 and a sytem

with only P = 8 transmit channels, choose an advantageous eight-mode subset of these 16

modes to best produce a desired excitation pattern, d(r).

Conventional mode subset selection techniques. One approach to choosing a P -

mode subset is to choose the highest-energy modes among the N available (the “brightest”

modes); another approach that is valid if N = 2P and a Butler matrix is used is to select

solely those P modes that are circularly-polarized (CP) (which are theoretically able to

strongly tailor the effective magnetic field) and forego use of the P anti-circularly-polarized

(ACP) modes (which theoretically produce no signal and are incapable of influencing the

excitation). A full discussion of circular vs. anticircular polarization may be found in [72]

and is beyond the scope of this dissertation. These are general approaches that rely on

intuition and theory, respectively, but we see that they have no concept of the excitation

the user wants to create and thus no ability to exploit this when choosing a subset of modes.

An alternative approach. Our approach differs substantially: we will take the user’s

desired excitation target pattern into account when searching for a subset of modes to

best form the desired excitation. One might imagine that the best subset of modes that

excites one desired pattern may differ from the best subset that excites a radically-different

desired pattern. In short, different d(r)s may call for different subsets of modes. The

2In this chapter we do not focus on the design of the N transmit modes; rather, we simply assume a
hardware array designer provides us an N -mode device. The design of such modes is itself an open and
ongoing problem.
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globally optimal way to solve this problem is to perform a brute-force search over all N -

choose-P mode subsets of size P to find the best such subset; this technique, however, is

incredibly expensive from a computational and runtime standpoint and infeasible for use

in near-real-time pulse design scenarios. Thus, we instead propose a fast target-dependent

sparsity-enforced subset selection (SEMSS) algorithm that explicitly accounts for the desired

excitation pattern when choosing the mode subset.

Experiments. In this chapter, we use SEMSS to determine 8-mode subsets of a 16

mode array for use on an 8-channel parallel transmission system at 7 Tesla when forming

slice-selective spatially-tailored excitations with uniform and ring-shaped target patterns

in a water phantom. Excitations using the SEMSS subsets are compared to those due to

bright-mode and circularly-polarized mode subsets. Brute-force search finds that in this

experiment, SEMSS actually finds the best of all 12,871 possible subsets for the uniform

excitation, and a near-optimal subset for the ring-shaped one. Our results confirm the

hypothesis that the best mode subset may vary substantially depending on the desired

excitation pattern.

Overview. In Sec. 6.2 we state the formal problem and outline pulse design for a

fixed P -mode subset in Sec. 6.3. In Sec. 6.4 we discuss conventional mode subset selection

methods and pose MSSO-inspired Sparsity-Enforced Mode Subset Selection (SEMSS) in

Sec. 6.5. The N = 16-mode array and the two slice-selective excitation experiments are

outlined in Sec. 6.6. Results are presented and discussed in Sec. 6.7. Concluding remarks

appear in Sec. 6.8

6.2 Problem Statement and Assumptions

Given a uniform main field B0, N available transmit mode spatial profiles S1(r), . . . , SN (r),

a desired excitation pattern d(r), a given field-of-excitation (FOX) indexed by r, a fixed

set of gradients G(t) of duration L, and a fixed spoke-based k-space trajectory k(t) (for

t ∈ [0, L]), which P < N transmit mode spatial profiles should be chosen to best excite the

pattern d(r)?

Discretization. Assume space has been sampled at Ns in-plane (x, y) locations, de-

noted r1, . . . , rNs , and time has been sampled at Nt instants t1, . . . , tNt ∈ [0, L] spaced

uniformly by ∆t.
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Spokes trajectory. The slice-selective trajectory consists of T spokes in kz placed in

the (kx, ky) plane [108,113,132]. To simplify the design process, we fix the placement of T

spokes, along with spoke shape and gradients. These constraints fix the shape of the P RF

pulses and all properties of the slice profile (e.g., sidelobes and sharpness) [108, 113], while

still letting the user retain control over the amplitude and phase each channel encodes along

each spoke. For a T -spoke pulse and a given P -mode subset, these constraints cause major

changes to (2.14, 2.15) given in Sec. 2.1.11. First, all but T columns of F are discarded,

since only T locations in (kx, ky)-space (those where the spokes are located) are available

for weighting. Further, each bp reduces from Nt to T elements. Finally, the FOX reduces

to a 2-D in-plane region, leading to a far smaller Ns than in a 3-D case. Users are then free

to shape the in-plane (x, y) excitation pattern that arises by choosing the complex-valued

weights that each of the P driven transmit modes deposits at each of the T locations (i.e.,

users may choose the amplitude and phase each of the P driven transmit modes will encode

along each of the T spokes).

6.3 Parallel Excitation Pulse Design after Choosing a Mode

Subset

Assume we have chosen a P -mode subset Sq1(r), . . . , SqP (r) among the N modes. (The qps

uniquely index the overall set of available modes, {1, . . . , N}.) To design the overall pulse

we simply need to determine the PT weights the P driven modes will encode along the T

in-plane k-space locations k1, . . . ,kT .

We first construct S1, . . . ,SP , where Sp is an Ns × Ns diagonal matrix comprised of

samples of Sqp(r) taken within the in-plane 2-D FOX. We then construct the Ns×T matrix,

F, where F(m, t) = jγM0∆te
jrm·kt . Let gp be a T -element vector representing the T

weights the pth driven mode places at the corresponding T spoke locations, and m(rm) be

the resulting excitation that forms at rm due to the P driven modes depositing energy at

the T locations. Based on (2.13) and analogously to (2.14), we arrive at a system of linear

equations:

m = S1Fg1 + · · ·+ SPFgP = Agtot, (6.1)

where m is an Ns-element vector whose mth element equals m(rm).
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We then sample the desired excitation d(r) at the same Ns rms and stack these samples

into the vector d. Finally, analogously to (2.15), we solve

d = Agtot (6.2)

for gtot, yielding the PT desired weights. This finalizes the pulse design and in the process

yields the lowest `2-residual-error in-plane excitation possible given the P chosen modes

and T fixed spoke locations. In this chapter, because A always consists of PT ≤ 90

columns, (6.2) is well-conditioned and may be solved using any method (e.g., SVD-based

inversion [51,118], LSQR [100,101], etc.)

6.4 Conventional Subset Selection Methods

Below we summarize two approaches with negligible computational cost for selecting P

modes independently of d(r), as well as the brute-force search method that indeed finds

the optimal P -mode subset that produces d(r), but whose use in real design scenarios is

infeasible due to runtime constraints.

6.4.1 Circularly-Polarized Modes

These modes simply arise from the physical construction and use of the Butler matrix in the

scenario where N = 2P . The modes are known based on the construction of the device [19].

6.4.2 Highest-Energy (“Brightest”) Modes

Here we choose the P modes whose `2 energies within the specified FOX are largest in

magnitude. Specifically, given the Sn(r)s, we first sample each at the Ns sampling locations

r1, . . . , rM and then construct sn = [Sn(r1), . . . , Sn(rM )]T for n = 1, . . . , N . The P -mode

subset is then simply comprised of those P modes whose ‖sn‖2s are largest.

6.4.3 Brute-Force Search over N-Choose-P Modes

For each of the N -choose-P total possible P -mode subset choices, design a pulse according

to the steps outlined in Sec. 6.3 and (6.1, 6.2), remembering the resulting residual error

‖d−Agtot‖2 for each case. The globally-optimal P -mode subset is then simply the subset
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that yields the lowest `2 residual error. In case of a tie (i.e., two or more subsets producing

equally-good excitations), any of the lowest-error subsets may be chosen.

6.5 MSSO-Inspired Target-Specific Transmit Mode Subset

Selection

SEMSS is an optimization that designs a set of waveforms to drive the N (rather than P )

modes to form the target pattern, but imposes a strong penalty whenever a mode waveform

becomes nonzero, and in this way seeks out a P -mode subset among the N available modes.

Essentially, SEMSS enforces sparsity on the usage of modes and thus reveals a small subset of

good modes and corresponding waveforms with which to drive each mode. For the purposes

of this chapter, here we derive SEMSS for T -spoke trajectories under the assumptions of

Sec. 6.2, but SEMSS extends readily to other trajectories.

To begin, assume that all N modes may be driven. The equations that relate the

pulses used to drive each mode to the resulting magnetization m(r) are linearized using the

approach of Sec. 6.3, except here we construct N rather than P matrices Sn, . . . ,SN and

N rather than P vectors, g1, . . . ,gN . This yields

m = S1Fg1 + · · ·+ SNFgN = Agtot. (6.3)

Recall that gn contains the T weights the nth mode will encode at the T spoke locations

to influence the samples of the resulting in-plane pattern contained in m.

The desired excitation, denoted d(r), is again vectorized into d. To determine weightings

for each mode to place at each spoke location, one may consider solving

d = Agtot (6.4)

in the minimal-`2-error sense. Such an approach will indeed reveal weightings that form an

excitation quite close to the desired one, but it results in a solution gtot where all N modes

deposit energy, i.e., all ‖gn‖2s will be nonzero. This fails to reveal a useful small mode

subset.

Consider however (approximately) solving (6.4) while penalizing each nonzero mode

energy (each ‖gn‖2), explicitly prohibiting the use of many modes, while encouraging those
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that do remain in use to have gns that still approximately solve (6.4). This could be

accomplished by solving

min
gtot

‖d−Agtot‖2
2 s.t. the use of only P of the gns. (6.5)

Upon close inspection, one sees that (6.5) is simply the brute-force method outlined in

Sec. 6.4, except here it has been stated as a formal optimization problem. Upon even

closer inspection, however, one sees that (6.5) is identical to the alternate formulation of

the NP-Hard MSSO problem, (3.7), given in Sec. 3.2.2.3

Thus, just as in the alternate formulation of MSSO given in Sec. 3.2.2, we may relax

(6.5) into the following tractable convex minimization problem:

min
gtot

{
1
2
‖d−Agtot‖2

2 + λ

N∑

n=1

‖gn‖2

}
. (6.6)

For a fixed λ, such a norm encourages a sparse usage of the gns. As λ is increased, in-

creasing numbers of modes have their ‖gn‖2 energies driven to zero, residual excitation

error increases, and smaller subsets of modes (and corresponding weightings) are revealed.

SEMSS differs from the sparsity-enforced joint trajectory-pulse design methods posed in

Ch. 5 because here we are enforcing sparsity on transmit mode usage rather than on the

physical locations of spokes. In this chapter, we alter (6.6) into a second-order-cone program

as outlined in Sec. 3.3.7 and implement the algorithm in SeDuMi [120].

After solving (6.6) using a sufficiently-large λ, the P modes whose ‖gn‖2 energies are

largest are chosen as the optimized P -mode subset. The weights within the P gns corre-

sponding to the P chosen modes are retuned by truncating the N −P unused Sns and gns

from A and gtot in (6.3, 6.4) and finalizing the design as outlined in Sec. 6.3.

6.6 Experiments

We now study the performance of the four mode subset selection algorithms in the context of

simulated slice-selective excitations within a water phantom at 7T where there are N = 16

transmit modes but only P = 8 transmit channels.

3The variable names in (6.5) differ slightly from those of (3.7) but the optimizations are indeed identical.
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Figure 6-2: N = 16 transmit modes of a Butler matrix in a water phantom at 7
Tesla. For mode n, the in-plane mode magnitude, |Sn(r)|, is depicted and the normalized
`2 mode energy, sn = ‖sn‖2, is also provided.

6.6.1 N = 16 Butler Matrix Transmit Modes in a Water Phantom at 7T

Fig. 6-2 depicts the magnitudes of the N = 16 transmit modes, Sn(r), of a stripline array

in an orthogonal birdcage (BC) basis configuration, as obtained via a Butler matrix [19].

Modes include those with theoretically correct polarization for excitation (CP modes), as

well as those with the opposite polarization (ACP modes). The in-plane, in-FOX `2 energy

of each mode, sn = ‖sn‖2, is calculated as described in Sec. 6.4 and overlaid onto the

figure. The profiles are scaled by a constant so the largest magnitude across all map pixels

equals unity. This scaling makes the mode maps “qualitative” in the low flip angle domain;

they do not convey the exact flip angle achieved, but this is acceptable from a simulation

standpoint.
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Figure 6-3: Uniform excitation experiment: 3-spoke trajectory and gradients.
Both k(t) and G(t) are depicted. Each mode subset selection algorithm will pick P = 8 of
the N = 16 modes given in Fig. 6-2 and then use each mode to place complex weights at
each (kx, ky) spoke location to form uniformly slice-selective excitation.

6.6.2 Slice-Selective Uniform Excitation: Three-Spoke Trajectory, Eight

Modes

For the first experiment, d(r) is a uniform zero-phase excitation and a 1.2-ms three-spoke

trajectory is used; the fixed k(t) and G(t) are illustrated in Fig. 6-3. The slice thickness

of the trajectory is fixed at 10 mm and a Hanning-windowed sinc is used along each spoke.

The spoke at (kx, ky) = (0, 0) has a time-bandwidth product of 4, while the two off-DC

spokes have kz-lengths half that of the former. (Using shorter off-DC spokes lets one reduce

the duration of a pulse without noticeably impacting slice selection performance [113].)

Gradient amplitude and slew are constrained to 35 mT/m and 600 T/m/s, respectively.

The first three mode subset selection techniques are straightforward to implement. Re-

garding SEMSS, we sweep over twenty values of λ, solving (6.6) each time, and remembering

the twenty P -mode subsets; the best subset of these twenty is retained. This sweep over λ is

extremely fast and worthwhile: each individual run of (6.6) involves finding only NT = 48

complex-valued unknowns and takes only a matter of seconds. It allows us to avoid the

intractable brute-force approach of evaluating all possible subsets and yet still conduct an

exploration of the solution space in under a minute. The brute-force approach takes roughly

an hour.
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Figure 6-4: Ring excitation experiment: 9-spoke trajectory and gradients. Each
mode subset selection algorithm will pick P = 8 of the N = 16 modes given in Fig. 6-2
and then use each mode to place complex weights at each (kx, ky) spoke location to form a
slice-selective excitation whose in-plane pattern resembles a ring.

6.6.3 Slice-Selective Ring Excitation: Nine-Spoke Trajectory, Eight Modes

The second experiment involves exciting not only a thin slice, but an in-plane spatially-

selective ring as well. Here we will use a nine-spoke trajectory to give the system more

degrees of freedom in k-space with which to tailor the in-plane excitation. This trajectory

and the accompanying gradients are given in Fig. 6-4; all spoke and SEMSS parameters equal

those used in the uniform excitation experiment, except here NT = 144; The runtimes of

SEMSS and brute-force search equal two minutes and three hours, respectively.
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Figure 6-5: Uniform excitation experiment: mode subset selection results. The
mode subsets selected by the CP, bright modes, globally-optimal brute-force, and sparsity-
enforced SEMSS methods are listed and resulting in-plane excitations are displayed along
with standard deviation (STD) and error overlays. CP produces the worst-quality excita-
tion. In this specific case, SEMSS determines the globally-optimal subset in under a minute
(vs. one hour via brute-force search).

6.7 Results and Discussion

6.7.1 Slice-Selective Uniform Excitation Results

The eight modes chosen by each of the four subset selection algorithms, along with images of

the resulting Bloch-simulated in-plane excitations with in-plane standard deviation (STD)

and error metric overlays, are provided in Fig. 6-5.4

In this case, the reasonable choice of CP modes produces the worst-quality excitation.

Choosing the 8 bright modes improves NRMSE by a factor of 1.13, but fails to reduce STD.

The SEMSS modes (Sp(r), p ∈ {1, 2, 4, 5, 8, 9, 10, 16}) produce a noticeably more uniform

excitation; STD and NRMSE improve by factors of 1.16 and 1.20 relative to the bright

mode result, respectively. The bright subset makes use of S3(r) (of `2-energy 0.75), whereas

SEMSS opts to use S5(r) (of `2-energy 0.32): thus we observe that using a low-energy

“dark mode” in lieu of a bright one results in a better excitation. Brute-force search over

all mode subsets shows that SEMSS determines the best subset among all 16-choose-8

4Normalized root-mean-square errors (NRMSEs) rather than `2 residual errors are provided for easier
understanding; this is permissible because NRMSE always equals `2 error to within a known constant.
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Figure 6-6: Ring excitation experiment: mode subset selection results. Formatting
here is analogous to that of Fig. 6-5. Here, the bright-mode subset yields the worst-quality
excitation. SEMSS finds a subset in two minutes that yields an excitation extremely close
in quality to the globally-optimal one determined via a three-hour brute-force search.

(12,871) possible subsets, proving that it is able to rapidly determine target-specific subsets

and outperform conventional techniques.

6.7.2 Slice-Selective Ring Excitation Results

The slice-selective ring excitation results are depicted in Fig. 6-6; formatting here is analo-

gous to that of Fig. 6-5. In this case, choosing the bright modes yields the worst excitation.

The SEMSS modes in this case are Sp(r), p ∈ {1, 2, 5, 6, 8, 9, 10, 11}. Using these modes leads

to an excitation that is 1.12 times better in quality than those produced by the CP-mode

and bright-mode subsets. In this case, SEMSS’s subset differs from the globally-optimal

one determined via brute-force search, but leads to essentially the same result: the globally-

optimal excitation has only 1.006 times lower NRMSE. As hypothesized, the optimal and

SEMSS subsets are not equivalent to those of the uniform case given in Fig. 6-5: this proves

that different targets call for the use of different modes. Furthermore, we see here that dark

modes are present in both the SEMSS and globally-optimal solutions, e.g., each chooses

S6(r), the second darkest of all 16 available modes.

6.8 Conclusion

By applying multiple-system single-output simultaneous sparsity theory, we derived a sparsity-

enforced mode subset selection (SEMSS) algorithm that determines surprising target-specific

mixtures of light and dark modes, providing increases in excitation quality relative to the

183



usage of CP and bright modes.

To the best of our knowledge, our use of a sparsity-enforced optimization procedure and

incorporation of target profile information in order to determine a useful mode subset are

novel ideas.
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Chapter 7

Specific Absorption Rate Studies

of the Parallel Transmission of

Inner-Volume Excitations at 7

Tesla

7.1 Introduction

Our goal in this chapter is to investigate the behavior of whole-head and local N -gram (Ng)

specific absorption rate (SAR) as a function of trajectory acceleration factor and target

excitation pattern due to the parallel transmission (pTX) of spatially-tailored excitations

at 7 Tesla (7T), especially the potential for a relatively high ratio of local SAR to average

SAR. Along the way, we also propose a fast, low-memory algorithm for computing local

SAR that enables us to analyze hundreds of candidate pTX pulses. The results presented

here have been published in [152,153,156].

As outlined in Sec. 1.2.2 and Sec. 2.1.11, parallel transmission systems are promising

devices because they enable one to accelerate through k-space and reduce the duration of an

RF pulse even after one has exhausted the ability to do so by increasing the amplitude and

slew rates of the system’s gradient coils [58, 79, 113, 130,168]. Unfortunately, as detailed in

Sec. 1.2.3, parallel transmission poses two major SAR concerns: first, concurrently driving

multiple transmit channels causes the electric fields generated by each channel to undergo
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local superposition, which may produce local extremes in electric field magnitude [168] and

thus spikes in local SAR; second, accelerating a k-space trajectory increases the peak power

of the corresponding RF pulse and may significantly increase SAR [56,78,81,141].

In this chapter, we investigate the above concerns and test if global and local SAR obey

intuitive scaling rules as a function of excitation k-space trajectory acceleration factor and

the parameters of an inner-volume excitation pattern excited by 2-D spatially-tailored RF

excitation pulses. Our intent is to give pulse designers, coil array engineers, and RF safety

researchers insight into the SAR characteristics of a high-field pTX system. Specifically,

we study whole-head and maximum local 1 gram (1g) and 10 gram (10g) SAR in a multi-

tissue head model during constant-fidelity excitation of 2-D boxes. Box-shaped excitations

are useful because they allow one to exclude moving tissues from a volume undergoing

imaging [47] and also permit reduced field-of-view (FOV) imaging, which improves temporal

resolution without compromising spatial resolution [66]. Such excitations have applications

to echo-volumnar imaging [135,143] as well as perfusion territory mapping via arterial spin

labeling [35].

The fidelity of each box-shaped excitation is kept constant as measured by normalized

root-mean-square error (NRMSE) with respect to a target pattern. The simulations are

based on an eight-channel parallel transmission system at 7T; this field strength is chosen

because many researchers are focusing on using pTX to mitigate B+
1 inhomogeneity [16]

occurring at 7T. Local 1g and 10g SAR are studied in addition to whole-head mean SAR be-

cause these correspond to limits specified by the Food and Drug Administration (FDA) [21]

and the International Electrotechnical Commission (IEC) [70,71], and will permit observa-

tion of local SAR hot spots.

The study uses finite-difference time domain (FDTD) simulations [85] in a multi-tissue

high-resolution head model as described by Angelone et al. [10], obtaining electric and

B+
1 fields generated by each array element when its corresponding channel is driven by a

unit current, as described by Angelone et al. [8]. The B+
1 maps are then used to design a

variety of pTX box-shaped excitations, the latter of which are validated with Bloch-equation

simulations. Finally, the electric field maps are used to calculate whole-head and maximum

local 1g and 10g SAR due to each pTX pulse as a function of target flip angle, position,

size, smoothness, and orientation, as well as spiral trajectory undersampling (acceleration)

factor, R. The results demonstrate a wide range of SAR values that arise due to tailored
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excitations that produce similar spatial patterns. This data, together with the non-intuitive

behavior SAR exhibits as a function of the excitation parameters, suggests that explicit SAR

calculations will likely be needed on a per-pulse basis, even for relatively minor variations

in RF pulse properties, in order to ensure that local SAR values meet regulatory criteria.

7.2 Materials and Methods

7.2.1 Human Head and Eight-Channel Parallel Transmit Array Model

Head model. SAR characteristics of excitation pulses transmitted through an eight-

channel head array are calculated in a high-resolution (1 × 1 × 2 mm3) 29-tissue human

head model, the latter of which is obtained via segmentation of anatomical MRI data [10].

Each of the tissues in the model is assigned a density, ρ (kg/m3), and electrical conductivity,

σ (S/m), using Federal Communications Commission data.1 Overall, the model consists of

roughly 2.5 million Yee cells [144].

Excitation array. The pTX system is modeled by placing eight copper circular loop

elements at 45-degree increments along a 25-cm-diameter cylindrical surface, the latter of

which is centered on the head, as described in [8]. Each loop element is overlapped to null

mutual inductance with its neighbors and has a diameter of 15 cm, a trace width of 1 cm,

and an input resistance of 50 Ω. Fig. 7-1’s left subplot provides a snapshot of the head and

transmit array, while the right subplot depicts a transverse slice through the head about

z = 0, illustrating the variety of tissues and realism of the model.

Model resolution. The high-resolution model in this study meets or exceeds the

requirements for accurate SAR calculation in volumes as small as 1g because each of its

voxels contains no more than 0.0037 grams of tissue (every possible 1g region consists of at

least 270 cells). Additionally, the model’s fine resolution mitigates staircasing artifacts [20]

that adversely impact local field and local SAR calculations because the model’s ∼1000

cells per 300-MHz wavelength should reduce staircase error to less than one decibel [63].

7.2.2 Electromagnetic Field Simulations and B+
1 Field Map Generation

Overview. Electric and B+
1 fields produced in the head by each individual transmit channel

are needed in order to design and calculate the SAR of pTX excitation pulses. We obtain

1This data is available at www.fcc.gov/fcc-bin/dielec.sh.
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Figure 7-1: Head and excitation array model. Left subplot: head model centered
within the eight-channel array of overlapped copper coils. Right subplot: transverse slice
through the center of the head at z = 0; various finely-structured tissues are visible.

these via 300-MHz FDTD simulations using the XFDTD software package (REMCOM

Inc., State College, PA) and then evaluate the SAR of any given excitation by superim-

posing modulated versions of these electric fields [78, 94, 111, 168]; this approach avoids

the computationally-intractable scenario of FDTD-simulating each of the 162 excitations

evaluated in this paper.

FDTD simulation. For p = 1, . . . , 8, we drive the pth transmit channel of the eight-

channel array with a 1-A peak-to-peak 300-MHz sinusoid, leave all other channels dormant,

and use the FDTD method to obtain steady-state electric fields per ampere of input to the

pth channel, Ep(r) = [Ep,x(r), Ep,y(r), Ep,z(r)]T (V/m/A), and magnetic fields, Bp(r) =

[Bp,x(r), Bp,y(r), Bp,z(r)]T (T/A), generated at each of the 2.5 million spatial locations r =

[x, y, z]T in the head. The use of current sources allows us to accurately approximate

the simultaneous-drive behavior of the array by simply superimposing the field maps of

individual channels [94].

Transmit profiles. The B+
1 field that arises when channel p is driven by the unit

ampere input, denoted Sp(r), is derived at all locations r as follows [64]:

Sp(r) = 1
2 {Bp,x(r) + iBp,y(r)} (T/A) (7.1)

Note: “Sp” is used (rather than “B+
1,p”) to keep upcoming formulations concise. Fig. 7-2

depicts the magnitude of the eight B+
1 field maps obtained via (7.1) through the center

transverse slice of the head about z = 0. Each is inhomogeneous.

188



50

0

100

150

200

250

300

350
|S1(r)|

n
T

/a
m

p
er

e

|S2(r)| |S3(r)| |S4(r)|

|S5(r)| |S6(r)| |S7(r)| |S8(r)|

Figure 7-2: Quantitative B+
1 maps (nT/A) of the center transverse slice of the

head derived from FDTD-simulated fields. Each map exhibits severe inhomogeneity.
Sp(r) is the B+

1 field profile that arises when channel p is driven with a 1-A peak-to-peak
300-MHz sinusoid.

7.2.3 Region-by-Region Error-Constrained Multi-Channel Pulse Design

Overview. We now describe one way to design a set of P RF pulse shapes, a1(t), . . . , aP (t)

(A), each of duration L, to concurrently play through the P elements of a P -channel parallel

transmission array in order to generate a user-defined target excitation, d(r). Here, “pTX

pulse” will be used as shorthand for “a set of P concurrently-transmitted RF pulse shapes

that yields a box-shaped excitation”. To begin, we will apply the linear formalism of [59] as

outlined in Sec. 2.1.11 to reduce the design problem to that of solving a linear system and

arrive essentially at (2.14), but instead of obtaining the pulses via (2.15, 2.16), we will pose

and solve a different optimization. To begin, assume that the gradient waveforms, G(t),

are fixed, the k-space trajectory, k(t), is predetermined, and that each of the P channel’s

B+
1 profiles are known.

Design constants. For all upcoming simulations, we design pTX pulses that form

approximations of a 2-D box-shaped inner-volume target in the center transverse slice of

the head; the desired excitation has zero-degree flip angle at spatial locations outside of

the box, a positive flip angle inside the box, and zero phase everywhere. The FOX is

the center transverse slice of the head. The k-space trajectories are 2-D spirals that are

radially undersampled (accelerated) by a factor of R relative to a 25.6 cm FOV, where

R = 1, 2, . . . , 8 (the R = 1 spiral is a conventional Nyquist-sampled spiral). The gradients

are always constrained to amplitude and slew rates of 30 mT/m and 300 T/m/s, such that

189



the R = 1, . . . , 8 spiral trajectories have durations of 6.8 ms, 3.47 ms, 2.36 ms, 1.81 ms,

1.48 ms, 1.26 ms, 1.11 ms, and 0.99 ms.

Small-Tip-Angle Approximation and Discretization. Imposing the small-tip-

angle assumption [102] reduces the relation between the RF pulse shapes, gradients, and

resulting magnetization to (2.13) as described in Sec. 2.1.11, except in this case we substitute

ap(t)s (current waveforms) for the bp(t)s (voltage waveforms). We then discretize space

at Ns locations r1, . . . , rNs within the user-defined FOX and sample time at Nt instants

t1, . . . , tNt ∈ [0, L]; the ti are spaced uniformly by ∆t. This yields the system of equations

given in (2.14), which we restate here using current vectors:

m = S1Fa1 + · · ·+ SPFaP

= [S1F · · ·SPF]




a1

...

aP


 = Atotatot,

(7.2)

where m is an Ns-element vector of samples of the resulting excitation m(r), Sp is an

Ns × Ns diagonal matrix containing samples of Sp(r) taken within the FOX, and F is an

Ns × Nt matrix that brings energy from k-space into the spatial domain. Finally, each

ap is an Nt-element vector of current samples of ap(t). Note that as a spiral trajectory is

accelerated, fewer points in k-space are traversed and degrees of freedom in k-space are lost.

The number of spatial-domain constraints Ns, however, remains constant, which means that

the number of columns of Atot decreases with R while the number of rows remains constant,

causing the overall system in (7.2) to become increasingly overdetermined with R.

pTX pulse design. To excite a desired pattern, d(r), P pulse shapes are needed. To

generate these pulse shapes we first determine B+
1 maps for each of the P channels and

then decide on a k-space trajectory, which lets us generate the Sps, F , and Atot in (7.2).

We then sample d(r) at r1, . . . , rNs and stack these samples into d. At this point, one way

to generate a set of pulse shapes that (approximately) produce the desired excitation is to

solve (2.15) via pseudoinversion or the Tikhonov regularization [123,124] given in (2.16) to

obtain a solution atot In practice, setting δ in (2.16) to a small nonnegative value and solving

(2.16) results in a reasonably-conditioned solution that produces an excitation close (in the

`2 sense) to the one desired [165]. After solving (2.16), we extract samples of each ap(t)
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waveform from atot and play these waveforms on an actual system (or a Bloch-equation

simulator) to produce an excitation that resembles the desired one [113].

Unfortunately, (2.16) does not let us allocate and fix the residual error between the

resulting and desired excitation across different spatial regions. For example, for box-

shaped excitations, designers are willing to tolerate larger errors outside of the box but

require within-box error to be small. The approach of (2.16), however, gives us only a single

variable, δ, with which to influence overall error, and we are thus unable to design pTX

pulses that achieve both a chosen in-box error and a chosen overall (or out-of-box) error.

To circumvent this problem, we pose a novel algorithm that designs a pTX pulse that

yields an excitation with both a desired in-box error and a desired overall error. First,

we arrange Nin within-box samples of d(r) into din, and Nout out-of-box samples into dout

(where Nin + Nout = Ns), and then set d = [dT
in,d

T
out]

T. Likewise, we structure Ain and

Aout such that Atot = [AT
in,A

T
out]

T. These steps are analogous to those in Sec. 2.1.11 that

lead to (2.16). With these new variables, we solve

min
atot

{
‖W (d−Atotatot)‖2

2 + λ‖atot‖2
2

}
, (7.3)

where W is an Ns×Ns diagonal matrix such that W(n, n) = α if n ∈ {1, . . . , Nin} and unity

otherwise. Thus W weights within-box and out-of-box errors by α and unity, respectively.

Eq. (7.3) has two variables, α and λ, which means we are now able to control both in-box

error and overall error while still ensuring a well-conditioned solution.

In this paper, within-box and overall normalized root-mean-square error (NRMSE)

are used as fidelity metrics and expressed as percentages. In-box NRMSE, ε1, is defined

as 100 · ‖din − Ainatot‖2/‖din‖2, whereas overall NRMSE, εtot, is defined as 100 · ‖d −
Atotatot‖2/‖d‖2. Whenever we design a pTX pulse, we first decide on a desired in-box

error and overall error, denoted ε1,des and εtot,des. We then iteratively search over (α, λ),

repeatedly solving (7.3) until a solution atot is found such that the resulting ε1 and εtot are

close to ε1,des and εtot,des. Finally, we simulate the waveform samples in atot and compare

the simulated excitation to the desired one, ensuring that ε1 and εtot remain close to ε1,des

and εtot,des. Overall, this approach lets us design a variety of pTX pulses across differ-

ent scenarios while guaranteeing that every excitation has essentially identical in-box and

overall error.
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7.2.4 Whole-Head and Local Specific Absorption Rate Calculations

Overview. After designing P pulse shapes to produce a desired excitation, we must deter-

mine the global and local SAR they produce in the head model. At this point, we know Nt

time samples of each pulse shape spaced uniformly in time by ∆t, i.e., for p = 1, . . . , P , we

have [ap(n∆t)|n ∈ {0, 1, Nt − 1}]. Recall that L is the overall duration of each pulse shape.

Also assume we have decided upon the duty cycle, D, with which to play the pTX pulse

(see end of subsection).

SAR per voxel. We first calculate SAR (W/kg) at each location r, denoted SAR(r),

by performing the numerical integration described in (2.22), which superimposes the electric

field produced by each transmit channel due to each time sample in the RF pulse shape

and then time averages the net field’s squared magnitude over the pTX pulse duration and

weights by the conductivity and density of that location; this procedure relies upon the

FDTD-simulated Ep(r)s and the σ and ρ properties of the head model depicted in Fig. 7-1.

Whole-head mean SAR. Having obtained SAR(r) for all 2.5 million locations r in

the head, whole-head global SAR is obtained by averaging the SAR(r) values.

Fast Region Growth to Compute Local N-gram SAR. Local Ng SAR at r is

obtained by finding an Ng cube around r and then averaging SAR(r) over all r within the

cube, in line with [1]. To find an N -gram cube around each r we propose and implement

a fast, low-memory algorithm rather than brute-force region growth because the latter is

computationally infeasible given that there are 2.5 million locations r of interest and 162

pTX pulses to evaluate. We first form a list of spatial positions from a simple cubic lattice

in order of distance from the origin and interpret this as a “universal” list of offsets from any

given position r. We then find the set of voxels that comprises N grams of tissue around r

by choosing the shortest prefix of this list that yields sufficient total mass. Formally, given

the mass per voxel around r, g(r), and this universal list, we form a voxel mass vector and

search the cumulative sum of this voxel mass vector for the number of voxels needed to form

the set; this rapidly determines the cluster of points that comprise an Ng cube around r.

These rapidly-determined points may be viewed as a set of indices, IrN , such that

∑

i∈IrN

g(ri) ≈ N grams, (7.4)
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and thus the Ng SAR at r, denoted SARNg, is computed formally as:

SARNg(r) =
1
|IrN |

∑

i∈IrN

SAR(ri) (7.5)

where |IrN | is the cardinality (number of elements) of IrN . Readers should refer to [156]

for more details about this algorithm and evidence of its superiority over conventional Ng

SAR computation techniques. Finally, note that for a spatial location on the edge of the

head bordering air (where σair = 0), the associated r may not be at the center of the

corresponding Ng averaging cube, but this is mitigated by the fact that this r is often part

of the averaging cubes of many adjacent spatial locations [9].

Duty cycle. When computing SAR, the effect of the trajectory acceleration factor, R,

is always accounted for to ensure that any SAR differences across R reflect only the extra

power needed to maintain target fidelity. For example, R = 1 pTX pulses (6.8 ms long)

have a 100% duty cycle, whereas R = 4 pTX pulses (1.81 ms long) have a 26% duty cycle.

This is accomplished by fixing the repetition time (TR) to 6.8 ms for each effective sequence

in which the pTX pulses are used, regardless of R.

7.3 Results

Birdcage mode. We begin by driving the array in a birdcage configuration, transmitting a

2.6-A, 3-ms, 100%-duty-cycle rectangular pulse shape through each channel in the absence

of gradients and setting the phase of channel p’s pulse shape to 45(p − 1) degrees. This

produces a 90-degree flip angle in the center transverse slice of the head, analogously to

the “90-degree/3-ms” hard pulse of [27]. Fig. 7-3 depicts the inhomogeneous flip angle

map that arises in the head when the set of pulse shapes that comprise one pTX pulse

undergoes Bloch-equation simulation, along with the resulting SAR values. The image

exhibits strong center brightening, resembling brain images collected on actual 7T systems

equipped with homogeneous RF excitation volume birdcage coils [10, 133, 136]. In this

case, there is approximately a 3-to-1 variation in peak-to-trough flip angle. The qualitative

similarity of the simulated birdcage mode shown in Fig. 7-3 to the simulated and in vivo

images presented in the lower half of the fifth figure in [136] suggests, to some extent, that

the simulation methodology accurately captures the behavior of an eight-channel array at
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Figure 7-3: Birdcage mode simulation. For p = 1, . . . , 8, transmission channel p is
driven with a 3-ms, 2.6-A, 100%-duty-cycle rectangular pulse with phase equal to 45(p− 1)
degrees, producing a 90-degree flip in the center of the head (center transverse slice shown
along with 1D profile and SAR statistics). Center brightening is evident, as well as signal
loss left and right of center.

7T.

SAR as a function of R and θ for fixed excitation quality. The top row of

Fig. 7-4 shows the simulated square inner-volume excitations for R = 4, along with ε1 and

εtot error with respect to the 28-mm × 28-mm target box pattern; for all cases, ε1 = 15±2%

and εtot = 40 ± 1%. Figure 7-4 also graphs global and maximum local 1g SAR for each

acceleration factor (R = 1, . . . , 8) as a function of flip angle (θ = 5, 15, . . . , 45degrees). For

fixed R, global and local SAR scale quadratically with flip angle, whereas for fixed θ, mean

and local SAR increase more than quadratically with R. Finally, global and local SAR vary

strikingly by over five orders of magnitude across the various excitations.
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Figure 7-4: SAR as a function of acceleration factor, R, and flip angle, θ (fixed
excitation quality). Target: 28-mm × 28-mm centered square with in-box flip angle θ,
ε1 = 15 ± 2%, εtot = 40 ± 1%. Top row: R = 4 excitations. Bottom row: mean SAR and
maximum 1g SAR as a function of (R, θ). For fixed θ, SAR grows rapidly with R; for fixed
R, SAR grows quadratically with θ.

In general, the eight RF pulse shapes used to produce each of the excitations in Fig. 7-4

consistently exhibit low amperages during the time interval when the trajectory proceeds

through high-frequency k-space regions, and progressively larger amperages as the trajec-

tory spirals inward toward the origin of k-space. In other words, all RF pulse shapes deposit

most of their energy at low spatial frequencies. Fig. 2-7 illustrates design details of the pTX

pulses used to produce the 15-degree, 28-mm × 28-mm target box pattern of Fig. 7-4. We

see here that peak RF magnitude across all eight pulse shapes increases from 1.5 A for

R = 1, to 8 A for R = 4, to 150 A for R = 7. The R = 7 pulse shape has a much higher

peak than the R = 1 pulse shape, a natural consequence of the fact that with only an R = 7

spiral, there are very few degrees of freedom in k-space with which to form the excitation

(relative to the Nyquist-sampled R = 1 spiral), forcing the algorithm to drive the channel

profiles intensely with high-amplitude RF pulse shapes in order to form the desired pattern.

This lack of k-space freedom forces the system to rely heavily upon its degrees of freedom in

the spatial domain and partly explains the high SAR values of the highly-accelerated pTX

pulses.
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Maximum local SAR as a function of R for fixed mean SAR and excitation

quality. Since MR scanners typically monitor mean SAR (in the form of average forward

power), it is informative to assess local SAR under the condition where the operator adjusts

the sequence to achieve a fixed global average SAR. Figure 7-5 depicts such a scenario,

showing iso-SAR operating contours in the (R, θ) parameter space that characterize how

maximum local 1g and 10g SAR vary when mean SAR is held constant at 0.15 W/kg.

Excitation patterns and residual errors here are the same as in Fig. 7-4. Figure 7-5 shows

that maximum local 1g SAR is always higher than maximum local 10g SAR, which in turn

is always higher than whole-head mean SAR. Across R, local 1g and 10g SAR vary from

peak-to-trough by factors of 1.64 and 1.34, respectively. Furthermore, Fig. 7-5’s left panel

shows that in order to produce fixed-fidelity excitations with 0.15 W/kg mean SAR, in-box

flip angle must decrease rapidly with R, e.g., only a 2-degree flip is achievable for R = 6,

whereas a 36-degree flip is possible using an unaccelerated trajectory. Counter-intuitively,

Fig. 7-5’s right panel reveals that maximum local 1g and 10g SAR are not monotonic with

R, e.g., the R = 4 excitation produces 1.3 times less maximum local SAR than the R = 1

excitation. Finally, the ratios of local 1g and 10g SAR to mean SAR are erratic: they are

roughly constant for R = 1 to 3, decrease for R = 4, rise for R = 5, 6, and then decrease

again for R = 7, 8.

SAR as a function of R and spatial position of the excitation. To assess the

effect of excitation symmetry on SAR we design pTX pulses that excite 28-mm × 28-mm,

15-degree flip angle squares at different locations along the right-left (RL, or “x”) axis

and the anterior-posterior (AP, or “y”) axis. Excitation quality is fixed across all designs.

Figure 7-6 illustrates how global and maximum local 1g SAR behave when exciting boxes

centered at different x locations. The upper row depicts R = 4 excitations, while the next

two rows show local 1g SAR maps arising due to R = 1 and R = 5 excitations. For a given

row of local SAR maps, all are displayed using the same dynamic range, permitting local

SAR comparisons among the maps of each row. Furthermore, because a 1g local SAR data

point exists for each of the voxels in the 3-D head model, the 2-D local SAR maps have been

“collapsed” along the z-axis. Namely, for each location (x, y) in each given map, we have

displayed maxz SAR1-gram(x, y, z). Finally, the bottom row of Fig. 7-6 illustrates log-scaled

plots of mean SAR and maximum local 1g SAR as a function of box position. Fig. 7-7 shows

SAR behavior versus box shift along y and is formatted analogously to Fig. 7-6, except here
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Right: maximum 1g and 10g SAR are not monotonic with R, e.g., the R = 4 excitation has
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local SAR maps are not displayed.

In both Fig. 7-6 and Fig. 7-7, SAR as a function of position is roughly convex for low

trajectory acceleration factors (R = 1 to 4), i.e., centered excitation boxes yield the lowest

SAR. At higher acceleration factors, however, centered excitations generally produce the

highest SAR. Figure 7-6 also shows that mean and local SAR do not always behave similarly,

e.g., for R ≤ 4, the mean SAR vs. R curves are generally symmetric about x0 = 0, whereas

the local SAR curves are asymmetric. Figure 7-7 shows that qualitative SAR differences

also arise when shifting the box along y. Furthermore, for fixed R, all of Fig. 7-7’s local

and mean SAR curves seem to exhibit the same shape, in contrast with the R ≤ 4 curves

of Fig. 7-6.

Regarding the local SAR maps of Fig. 7-6, the local 1g SAR patterns for R = 1 change

across space in a way that is correlated with the position of the excited box, while the R = 5

local SAR maps, to the first order, seem to only scale by a multiplicative constant with box

position. Finally, the peaks in both the R = 1 and R = 5 local SAR maps are not strongly

correlated with the box position.

SAR as a function of R and in-box NRMSE, ε1, for fixed overall NRMSE, εtot.

Figure 7-8 shows the effect of excitation quality on SAR, illustrating global and maximum
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Target: 15-degree, 28-mm × 28-mm square whose center x0 varies along x with ε1 = 15±1%
and εtot = 40 ± 1%. Top row: R = 4 excitations. Second and third rows: local 1g
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1g SAR as a function of (R, y0).

local 1g SAR for R = 1, . . . , 8 due to exciting 28-mm × 28-mm centered boxes with different

in-box fidelities; ε1 varies from 10%, 15%, . . . , 30%, while εtot is fixed at 40± 2%. Figure 7-

8’s top row shows excitation patterns associated with R = 4, while the bottom row shows

global and maximum local 1g SAR as a function of ε1. We see from the top row of R = 4

excitations that the in-box flip angle decreases (the boxes grow darker) as more in-box error

is permitted. Further, global SAR and maximum local 1g SAR both increase rapidly with

R, ranging over three orders of magnitude for each fixed ε1. Finally, SAR decreases fairly

regularly with ε1 for most accelerations, but this does not hold for R = 5 and R = 6, e.g.,

when R = 6, the ε1 = 15% excitation produces 1.3 and 1.5 times higher mean and local

SAR than the ε1 = 10% excitation.

SAR as a function of R and εtot for fixed ε1. Figure 7-9 illustrates the dual of

Fig. 7-8’s experiment, showing how global and maximum local 1g SAR behave across R

when producing excitations with different overall fidelities (εtot = 20%, 25%, , 40%) while

keeping ε1 = 15±1%. Here, global SAR and local SAR vary by over four orders of magnitude

across R and εtot. For R 6= 5, global and local SAR decrease monotonically with εtot, and

even for R = 5, SAR is nearly monotonic: the lower-fidelity εtot = 35% excitation produces
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Outside of the square, artifacts increase with εtot. Bottom row: mean SAR and maximum
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only 1.007 times higher SAR than the εtot = 30% case. (Note: there are no data points for

εtot = 20% when R = 7 and R = 8 because for these cases the pTX pulse design algorithm

does not produce well-conditioned solutions.)

SAR vs. R and box orientation. Figure 7-10 illustrates the affect of excitation

orientation on global and maximum local 1g SAR across the eight acceleration factors.

Here we excite 44-mm × 28-mm rectangles in the center of the head that are rotated by

φ degrees, characterizing SAR as a function of R and φ. Excitation fidelity is fixed as in

prior experiments. For R ≤ 4, SAR is relatively constant, whereas for R > 4, SAR exhibits

spikes at particular rotations. For example, when R = 5, exciting a 90-degree-rotated box

produces 3.3 W/kg of maximum local 1g SAR, whereas exciting a 135-degree-rotated box

produces 9.54 W/kg, i.e., local SAR varies by a factor of 2.9 when simply rotating the

excitation by 45 degrees, even with acceleration factor and excitation quality held constant.

Finally, SAR is generally higher when boxes are highly asymmetric with respect to the

AP-direction (y-axis) of the head (consider the R = 6, φ = 45 degrees excitation).

SAR vs. R and box size. Figure 7-11 illustrates how the size of an excitation impacts

global and maximum local 1g SAR. Here a series of increasingly-larger boxes of length and
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Figure 7-10: SAR as a function of R and target rotation angle φ (fixed excitation
quality). Target: 15-degree, 44-mm × 28-mm centered rectangle with varying φ, with
ε1 = 15±1% and εtot = 40±2%. Top row: R = 4 excitations. Bottom row: mean SAR and
maximum 1g SAR as a function of (R,φ). For R ≤ 4, SAR is relatively constant, whereas
for R > 4, SAR varies.
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width N (mm) are excited across various acceleration factors. Excitation fidelity is fixed

as in prior experiments, and Fig. 7-11 is formatted analogously to Figs. 7-7, 7-8, 7-9,7-10.

Both the log-scaled and normalized data along the middle and bottom rows of Fig. 7-11

show that mean and local SAR behave quite differently depending on R: for R ≤ 4, SAR

grows rapidly with N , whereas for R > 4, SAR decreases with N . This means that for

highly accelerated trajectories, exciting larger regions actually reduces energy deposition.

For example, for R = 5, exciting a 52-mm box produces 3.2 times less mean SAR than

exciting a 12-mm box, yet for R = 1, the opposite behavior occurs: exciting a 52-mm

rather than 12-mm box leads to ten times higher mean SAR.

SAR vs. R and box smoothness. Figure 7-12 shows how sharp excitation pattern

edges affect SAR. Here, increasingly-smooth 44-mm × 44-mm centered boxes are excited

and the SAR of each is analyzed. The series of desired excitations is generated by applying

successively larger M -mm ×M -mm Gaussian smoothing kernels to the original sharp-edged

target pattern and running the design algorithm each time to produce a pTX pulse. The

top row of Fig. 7-12 shows that for R = 4, the excitations increase in smoothness with M

as intended. The bottom row shows that mean and local SAR decrease significantly with

target smoothness for all R. For example, when R = 6, exciting the smoothest box requires

2.8 times less global SAR and 2.7 times less maximum local 1g SAR than does exciting the

sharpest-edged box.

Mean vs. maximum local 1g and 10g SAR. Across all experiments, maximum 1g

SAR ranges from 3.8 to 13.8 times larger than corresponding mean SAR and on average is

5.6 times larger. Likewise, maximum 10g SAR is always 2.3 to 7.7 times larger than mean

SAR and on average is 3.4 times larger. Finally, maximum 1g SAR ranges from 1.1 to 2.1

times larger than maximum 10g SAR and on average is 1.7 times larger.

7.4 Discussion

Comparisons across experiments. Considerable effort has been made to keep excitation

fidelity constant across all experiments and thus permit SAR comparisons across experi-

ments. One noticeable trend is that a consistent “jump” in mean and local SAR occurs

as R transitions from 4 to 5, regardless of excitation shape, size, asymmetry, etc., which

suggests the array is better conditioned in the R ≤ 4 operating region.
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Figure 7-11: SAR as a function of R and target size N (fixed excitation quality).
Target: 15-degree centered square of varying size with ε1 = 15 ± 1% and εtot = 40 ± 2%.
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mm) is unity. For R ≤ 4, SAR increases rapidly with N , whereas for R > 4, exciting larger
regions reduces energy deposition.
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The cost of trajectory acceleration and SAR-reduced design. Across all ex-

periments, global and local SAR always increase dramatically with trajectory acceleration

factor. Highly-accelerated pulses yield extremely high SAR values and may not be practical

for invivo imaging. Furthermore, because even moderate trajectory accelerations may lead

to order-of-magnitude SAR increases, it seems likely that further innovation beyond or in

conjunction with conventional pTX pulse design is necessary in order to enable the use of

highly accelerated trajectories. In Sec. 2.1.15, we provided an overview of all recent SAR-

reduced pulse design research, and also cited real-time and hardware-based approaches to

monitoring and reducing SAR. In Ch. 8, we will propose several SAR-reduced pTX design

techniques, and in Ch. 9 we show that time multiplexing a set of similar pTX pulses is an

effective low-computational-cost approach to reduce maximum local SAR.

SAR observations. In Fig. 7-4, mean and local SAR scale quadratically with flip

angle. Fig. 7-5 shows that the ratio of local to mean SAR does not increase monotoni-

cally with acceleration factor. Figures 7-6 and 7-7 show that mean and local SAR behave

non-intuitively when excitation spatial position is varied. For R = 1, local SAR varies

significantly across space with excitation position, whereas for R = 5, to the first order,

the local SAR maps simply undergo scalings by a multiplicative constant. Figure 7-8 shows

that it is not always possible to reduce SAR by simply permitting more excitation error

within a specific spatial region (e.g., within the box) and that one may in fact significantly

increase SAR (e.g., by a factor of 1.5) by generating lower-quality excitations. Figure 7-9,

on the other hand, shows that permitting more overall excitation pattern error generally

decreases SAR. Figure 7-10 shows that for large acceleration factors, excitation asymmetry

detrimentally impacts SAR. Figure 7-11 shows that SAR is sensitive to excitation size, sug-

gesting that parallel transmission may complicate the ability to perform and flexibly scale

reduced-FOV imaging [66]. Finally, Fig. 7-12 suggests that sharp edges are costly in terms

of SAR, revealing that one reliable way to reduce SAR is to excite a smoother version of

the desired pattern.

7.5 Conclusion

In conclusion, with the exception of dramatic SAR increases with trajectory acceleration

factor, global and local SAR do not always exhibit intuitive trends. Nonetheless, it is clear
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from the experiments that maximum local 1g and 10g SAR are always significantly higher

than global SAR. Because both the United States and European Union safety standards

impose limits on maximum local SAR [21, 70, 71], and because the ratio of local to global

SAR is often considerably greater than the regulatory ratio required to maintain safety

compliance for the human head by monitoring average power alone, it is evident that local

SAR, rather than global SAR, is the limiting factor of eight-channel parallel transmission

at 7T. Namely, it is likely that the safety limit imposed upon local SAR will preclude the

user from utilizing the full limit of mean SAR. Seifert et al. have arrived at this identical

conclusion after studying four-channel parallel transmission at 3T [111].

Although the range of excitation patterns studied here is not exhaustive, a sufficient

number of variations of the size, shape, position, rotation and smoothness of the excitation

pattern have been considered to suggest that mean and local SAR exhibit complex and

at times non-intuitive behavior as a function of target excitation pattern and trajectory

acceleration factor. In order to ensure patient safety, it seems that model-based validation

of individual target patterns and corresponding sets of parallel transmission pulses will be

required.
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Chapter 8

Specific-Absorption-Rate-Reduced

Multi-Channel Excitation Pulse

Design

8.1 Introduction

In Ch. 7, we concluded that high local specific absorption rate (SAR) is a major safety

concern of parallel excitation pulses. To address this problem, here we propose to account

for electric-field interactions while designing a radio-frequency (RF) pulse and thus gener-

ate multi-channel excitation waveforms whose SAR characteristics are explicitly optimized.

Versions of this work have appeared at a conference [158,160].

We first pose a linear-algebraic formulation to evaluate whole-head or local N -gram

(Ng) SAR when designing RF pulses on P -channel systems that exploits knowledge of the

steady state electric fields generated per unit of current sent through each transmit channel,

the tissue’s electrical properties, and spatial sensitivity profiles (B+
1 maps) of each coil; we

show local Ng SAR at any location may be computed using a highly-sparse matrix. We

then pose optimization problems that produce RF pulses with optimal SAR characteristics.

In particular, we provide a closed-form solution for optimizing mean SAR, introduce a

method to explore excitation fidelity, mean SAR, and pulse duration tradeoffs, and pose

a constrained optimization problem that ensures local Ng SAR meets certain constraints.

We then discuss the computational difficulties one ultimately faces when attempting to
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implement such local-SAR-optimized pulse design methods.

Note that throughout this chapter we will rely on background material from Sec. 2.1.11

and Sec. 2.1.14, as well as the Ng SAR cubic region concept of Sec. 7.2.4. Readers interested

in more information on SAR-reduced design should refer to Sec. 2.1.15 for a host of citations

to recent work.

8.2 Assumptions

Let us consider a P -channel system whose transmission profiles S1(r), . . . , SP (r) (T/A) are

known for all MFOX points of interest r within a user-defined field of excitation (FOX); these

rs that index within-FOX points are contained in the set CFOX. Our goal is to determine

a set of current waveforms a1(t), . . . , aP (t), each of duration L, to play through the system

to form a high-fidelity version of the small-tip-angle excitation d(r) within the FOX while

constraining (or minimizing) whole-head mean SAR, local SAR, or both. The pulse will have

a fixed and known repetition time, TR. Let us also assume that the gradient waveforms,

G(t), are fixed, which means that the excitation k-space trajectory, k(t), is predetermined.

Our specific goal now is to determine Nt discrete samples of each ap(t) (spaced by ∆t in

time) to transmit through each transmission channel to produce a low-SAR high-quality

excitation.

To enable SAR computations, we have a model of the human body and full knowledge

of the 3-D electric fields that arise at all Mmodel locations r within it due to the use of each

transmission channel. That is, for p = 1, . . . , 8, we know the steady-state electric fields

per unit ampere of input to the pth channel, Ep(r) = [Ep,x(r), Ep,y(r), Ep,z(r)]T (V/m/A).1

We also know the density, ρ(r) (kg/m3), and electrical conductivity, σ(r) (S/m), at each

location. Further, let all rs that index the body be contained in the set Cmodel. This set

may be quite large, e.g., in Ch. 7, the head model depicted in Fig. 7-1 consists of 2.5 million

voxels. Finally, assume that for each rm, we know the cluster of points that comprise an Ng

cube about rm; this cluster may be viewed as a set of Rm known indices, Irm
N . [Ng region

set notation and fast determination of such sets were discussed in Sec. 7.2.4; see (7.4).]

1Assuming the use of current sources allows us to accurately approximate the simultaneous-drive behavior
of the array by simply superimposing the field maps of individual channels [94].
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8.3 Regularized Multi-Channel RF Excitation Pulse Design

For a P -channel system, linearizing and discretizing the equations relating the RF pulse

shapes played through each transmission channel to the resulting excitation as in Sec. 2.1.11

yields the system given in (2.14), which we restate:

m = S1Fa1 + · · ·SPFaP = Aatot, (8.1)

where here we have specified aps rather than bps (i.e., vectors of current samples rather

than vectors of voltage samples). The vector m contains samples of the excitation m(r) that

forms within the FOX due to the transmission of the pulse samples in the aps. The Sps, F,

and A are constructed only with respect to the FOX, so they are of sizes MFOX ×MFOX,

MFOX ×Nt, and MFOX × PNt, respectively.

At this point, we might form MFOX within-FOX samples of d(r) into the vector d and

design a set of pulses to accomplish the excitation via the Tikhonov regularization given

in (2.16), but this would not explicitly account for whole-head or local SAR. We see that

the linear expression Aatot only explains how a given set of pulses influences the excitation

across space, not how a pulse set influences SAR. Thus, to capture SAR explicitly in the

design process, we must first construct new linear-algebraic variables that allow us to express

SAR as a function of atot.

8.4 Linear-Algebraic Formulation of SAR using Sparse Block-

Diagonal Matrices

We now derive a matrix-vector expression for SAR(rm), the point SAR in W/kg at spatial

location rm, as well as a SAR matrix that allows us to compute local Ng SAR at rm given a

set of pulse samples represented by atot in (8.1). Our work in this section ultimately obtains

a matrix analogous to the mean-SAR matrix given in [168], but we arrive at our matrix

using a different approach. Our resulting matrix is capable of computing local Ng SAR

about any location rather than simply whole-head mean SAR. We hope our step-by-step

formulation given here provides designers new insight into the design problem. We feel

that the expressions below, given their sparse, structured natures, may be exploited from a

computational standpoint to reduce the complexity of SAR calculations, but this is outside
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the scope of the dissertation.

To begin, we know from (2.22) in Sec. 2.1.14 that we may accurately approximate

SAR(rm) via numeric integration:

SAR(rm) ≈ w(rm)
Nt−1∑

n=0

‖E(rm, n∆t)‖2
2, (8.2)

where w(rm) = σ(rm)∆t/(2ρ(rm) ·TR) and E(r, t) is given in (2.21). Now we expand (2.21)

as follows:

E(r, t) = E1(r)a1(t) + · · ·+ EP (r)aP (t)

= [E1(r) · · ·EP (r)]




a1(t)
...

aP (t)




= F(r)q(t),

(8.3)

where F(r) is a 3× P matrix containing all relevant electric field data at point r and q(t)

is a vector of the P samples (in amperes) transmitted concurrently through the P channels

at one time instant. Notice that if P ≥ 3 and assuming F(r) is not singular (i.e., that the

channels each influence the electric field at this location differently and that a substantial

number of the Ep(r)s are not collinear), then at any single instant in time we will be able

to find a P -element solution vector q(t) that tailors E(r, t) to any desired pattern. In the

case of a P = 2-channel system, however, this is not possible: there are too few unknowns

to guarantee an exact solution to the 3× P system of equations. This seems to imply that

small-P systems—and especially P = 2 systems—will be unable to minimize or control

SAR as well as high-P systems when both types of systems are faced with high-fidelity

excitation constraints.

Returning to our derivation, we substitute (8.3) into (8.2), yielding

SAR(rm) ≈ w(rm)
Nt−1∑

n=0

qH(n∆t)FH(rm)F(rm)q(n∆t) = qtotG(rm)qtot, (8.4)

where qtot = [qT(0), . . . ,qT((Nt−1)∆t)]T ∈ CPNt and G(rm) = INt⊗(w(rm)FH(rm)F(rm))

is PNt × PNt elements in size, block-diagonal (with Nt identical P × P blocks), and very
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sparse (at most, only P 2Nt of its P 2N2
t total elements are nonzero). Here, INt is an Nt×Nt

identity matrix and ⊗ indicates the Kronecker product, sometimes referred to as the matrix

direct product [110].

Equation (8.4) shows that SAR(rm) is a purely quadratic function of the pulse samples.

Further, the block-diagonal sparse G(rm) may be precomputed ahead of time for each rm

of interest. Finally, qtot is simply a permutation of atot in (8.1), and thus atot = Zqtot holds

for a constant known permutation matrix Z.

Now let us consider the ultimate goal of calculating local Ng SAR about location rm,

denoted SARNg(rm). Recalling that the cluster of Rm points that comprise an Ng cube

about rm are indexed by the set Irm
N , we may write

SARNg(rm) =
1

Rm

∑

i∈Irm
N

SAR(ri). (8.5)

Now, by substituting (8.4) into (8.5), we arrive at

SARNg(rm) =
1

Rm

∑

i∈Irm
N

qH
totG(ri)qtot = qH

tot


 1

Rm

∑

i∈Irm
N

G(ri)


qtot = qH

totQ(rm)qtot.

(8.6)

We have arrived at the single matrix that one needs, Q(rm), in order to compute local Ng

SAR at location rm due to the transmission of a set of pulses represented by qtot. The matrix

itself, being an average of the G(ri)s, has the same highly-sparse, low-rank, redundant

block-diagonal structure. With this formulation, we may now solve any optimization that

explicitly constrains or regularizes Ng SAR. Note that since this is derived for general N ,

it is possible to construct a single matrix that computes whole-head mean SAR directly.

8.5 Closed-Form Solution for Mean-SAR Optimization

We first propose optimally minimizing the residual excitation error (i.e., maximizing the

excitation fidelity) while limiting the whole-head mean SAR. Using the methodology of

Sec. 8.4 and (8.5, 8.6), we construct Q that allows us to express whole-head mean SAR

quadratically in qtot. We then use the fact that atot = Zqtot (where Z is the known
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permutation matrix) to rewrite (8.1) as follows:

m = Aatot = AZqtot. (8.7)

Now, whereas Zhu solves the following optimization [168]:

min
qtot

qH
totQqtot s.t. d = AZqtot, (8.8)

where d contains samples of the desired excitation, we instead propose a relaxation of (8.8)’s

equality constraint

min
qtot

‖d−AZqtot‖2
2 + δqH

totQqtot, (8.9)

which is a Tikhonov regularization [123, 124] that may be solved by a conjugate-gradient

(CG) technique such as LSQR [100,101] for a fixed δ ≥ 0. An optimal closed-form solution

to (8.9) also exists for fixed δ ≥ 0:

qopt
tot = [(AZ)H(AZ) + δQ]−1(AZ)Hd. (8.10)

Regardless of whether one solves for qtot directly as in (8.10) or via a CG method, the

optimal solution vector may then be substituted into both the residual error and mean

SAR expressions (‖d−AZqtot‖2 and qH
totQqtot, respectively), which simply reduces them

to functions of the scalar δ.

8.6 Exploring Excitation Fidelity, SAR and Pulse Duration

Tradeoffs

Solving (8.9) for many values of δ ∈ [0,∞) generates a curve of the lowest residual error

‖d − AZqtot‖2 achievable vs. mean SAR. This allows one to explore the entire range of

fidelity-SAR tradeoffs. One may extend this concept by allowing pulse duration, L, to vary

as well, i.e., turning overall pulse duration into a free variable. Then solving the system

of equations for many (L, δ) pairs generates a contour of the best residual error achievable

for a given mean SAR and pulse duration, illuminating fidelity vs. mean SAR vs. pulse

duration tradeoffs.
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8.7 Local N-Gram SAR Optimization

We now pose a constrained optimization that provides the highest-fidelity excitation while

ensuring that the local Ng SARs at locations r1, . . . , rH are at most Wh W/kg:

min
qtot

‖d−AZqtot‖2
2 s.t. qH

totQ(r1)qtot ≤ W1, . . . ,qH
totQ(rH)qtot ≤ WH , (8.11)

where Q(r) is the matrix that computes local Ng SAR at location r as defined in (8.6). We

may also easily include the whole-head mean SAR Q matrix and thus constrain mean SAR

as well. To conclude this section we note that a form of (8.11) was recently implemented [57],

but only for H = 3.

8.8 Implementation and Computational Discussion

The issue of most concern to regulatory bodies in both the United States [21] and Europe

[70, 71] is maximum local Ng SAR. Therefore, one limitation that seems unavoidable from

a design standpoint is that in order to design truly SAR-optimal pulses—ones where local

SAR is guaranteed at all Nmodel spatial locations in the model—one is faced with the

computationally-intractable problem of solving a system of equations with hundreds of

thousands (millions) of quadratic constraints for moderate (high) resolution models; parallel

computing might be one way to calculate SAR-optimal pulses in reasonable amounts of

time [114].

8.9 Conclusion

Using novel derivations, we showed that local Ng SAR at any spatial point of interest r

may be calculated using the highly-sparse, redundant-block-diagonal matrix Q(r) given in

(8.6). We then posed a variety of optimization problems using such matrices, but unfor-

tunately concluded that truly “SAR-optimal” pulse design remains, for the time being, a

computationally intractable problem.

In Ch. 9, we will explore an approach that avoids computationally-intensive SAR-

reduced design of a single pulse and instead time multiplexes a sequence of similar pulses

to reduce maximum local SAR.
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Chapter 9

Reduction of Maximum Local

Specific Absorption Rate via Pulse

Multiplexing

9.1 Introduction

In Ch. 7, we concluded that high local specific absorption rate (SAR) is a major safety

concern of parallel excitation pulses, whereas in Ch. 8, we saw that reducing the SAR of

a single pulse may be at times be computationally intractable from a design standpoint.

Here we branch away from the optimization of a single pulse. The content of this chapter

will soon be submitted to a journal [154].

A different SAR reduction approach: time multiplexing a set of pulses. The

SAR-reduced pulse design techniques outlined in Sec. 2.1.15 and Ch. 8 all focus on designing

a single pulse with favorable SAR characteristics; this pulse is then transmitted over many

TRs to accomplish the imaging task for which it is intended. The distribution of SAR

across space produced by this pulse may be determined exactly (along with mean and

maximum local Ng SAR) by performing calculations involving the local electric field data

and characteristics of the human model (see Sec. 7.2.4). But what if there were one or

more pulses that accomplished essentially the same task (e.g., produced uniform thin-slice

excitations), yet produced two significantly different distributions of SAR across space?

For example, two pulses might each successfully excite a thin slice of tissue to within a
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certain fidelity, yet the first might produce 1 and 3 W/kg of local SAR at locations A and

B, whereas the second might produce 3 and 1 W/kg at these respective locations. If we

transmit the first pulse repeatedly over many TRs, maximum local SAR equals 3 W/kg.

This also holds true if we transmit the second pulse over many TRs. Consider, however,

transmitting each pulse 50% of the time (e.g., playing the first pulse during odd TRs and

the second pulse during even TRs): this produces a local SAR of 2 W/kg at both location

A and location B.1 Time multiplexing the two pulses has reduced maximum local SAR by

a factor of 1.5; excitation quality differs from that of transmitting either pulse individually,

but is not necessarily worse than each individual excitation because each pulse produces

essentially the same excitation pattern. Based on a review of current literature, it seems

multiplexing pulses to reduce SAR is a novel concept.

Purpose. The aim of this chapter is to develop an algorithm for determining the

optimal multiplexing scheme (in the lowest maximum local SAR sense) when given a set

of candidate pulses and develop the above thought experiment into a practical application:

reducing the maximum local SAR of fast thin-slice excitation pulses transmitted through

an eight-channel (P = 8) parallel transmission system. Although we focus on slice-selective

pTX pulses, the concept of time multiplexing and the proposed algorithm are applicable to

conventional single-channel systems and any type of pulse.

Overview. FDTD simulations [85] in a 1× 1× 2 mm3-resolution, 29-tissue head model

[10] are conducted to obtain B+
1 and electric field maps of an eight-channel transmit head

array at a field strength of 7T as described in [8]. A field strength of 7 Tesla is chosen because

many researchers are focusing on using pTX to mitigate B+
1 inhomogeneity occurring at

this strength.

The resulting B+
1 maps are fed to a magnitude-least-squares (MLS) pulse design algo-

rithm [112] to generate 162 candidate pulses, each comprised of two “spokes” (kz traversals

that ensure slice selection) [108, 113, 132] and capable of exciting a 1-cm-thick transverse

slice of the brain located at z = 0 with a normalized root-mean-square error (NRMSE)

of only 3.9 to 5.9% with respect to the desired target flip angle magnitude of 0.1 radians

across the field of excitation (FOX). Each pulse’s two spokes are placed at slightly differ-

ent locations in k-space, parameterized by their distance from the k-space origin and their

1In this case, the overall local SAR that arises at point X is the average of the local SAR produced by
each pulse at this point (see Sec. 9.2.5).
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degree of rotation. SAR calculations are then conducted using the electric field data and

whole-head, local 10g, and local 1g SAR due to each pTX pulse are calculated at each of the

head model’s 2.5 million spatial locations (voxels) and stored as real-valued data vectors.

While Bloch simulations confirm that the pulses all accomplish essentially the same

excitation, the SAR calculation process reveals that the pulses at times create substantially

different distributions of SAR across space. This occurs because by slightly perturbing the

spoke locations in k-space, the design algorithm generates pulses with different magnitudes

and phases, and these magnitudes and phases impact the superposition of the electric fields

over time and thus the spatial SAR distribution.

Optimal pulse multiplexing in the lowest maximum local 1g SAR sense is then posed as

a convex optimization [17, 97]—essentially, this algorithm efficiently searches over different

pulse multiplexing schemes by evaluating linear combinations of the local SAR vectors and

determines one that yields the lowest-possible maximum local 1g SAR. The outputs of the

algorithm in this case are 162 weights that indicate the proportion of TRs to play each pulse;

during the search, each weight is constrained to equal a nonnegative value between zero and

one and the sum of the weights is enforced to always equal one—this ensures the resulting

solution is a physically meaningful multiplexing scheme. The optimal multiplexing scheme

in this case is shown to decrease maximum local SAR by a moderate amount while producing

an excitation whose NRMSE fidelity falls within the fidelity range of the individual pulses’

excitations.

Structure. Sec. 9.2 details the FDTD simulations, B+
1 map generation, MLS pulse

design, SAR calculation, and the multiplexing optimization algorithm. Sec. 9.3 depicts

and discusses the results when applying the multiplexing technique to slice-selective eight-

channel pTX pulses at 7T. Final remarks are given in Sec. 9.4.

9.2 Materials and Methods

9.2.1 Human Head and Eight-Channel Parallel Transmit Array Model

The model used here is described in Sec. 7.2.1 and depicted in Fig. 7-1.
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9.2.2 Electromagnetic Field Simulations and B+
1 Field Map Generation

Using the approach outlined in Sec. 7.2.2, we obtain the steady-state electric field per

ampere of input produced by each of the P = 8 transmit channels, i.e., for p = 1, . . . , P , we

obtain Ep(r) = [Ep,x(r), Ep,y(r), Ep,z(r)]T (V/m/A). We also compute the B+
1 field profiles

S1(r), . . . , SP (r) (T/A) whose inhomogeneous in-plane magnitudes are depicted in Fig. 7-2.

The pulse design process described next will essentially find an efficient way to modulate

these profiles in both magnitude and phase such that their combination over time yields a

uniformly-flat excitation within a thin slice of the head through the z = 0 plane.

9.2.3 Magnitude Least Squares (MLS) Multi-Channel Pulse Design

Overview. We now summarize the key points of [112] and describe one way to design a set

of P RF pulse shapes to concurrently play through the P elements of a P -channel parallel

transmission array in order to generate a user-defined target excitation, d(r). Note that

“pTX pulse” will be used as shorthand for “a set of P concurrently-transmitted RF pulse

shapes that yields a thin-slice excitation”.

Spoke-based pulses. We will use small-tip-angle slice-selective spoke-based pulses

[108,113,132], descriptions of which are provided in Sec. 2.1.7.

Design parameters. For all upcoming simulations, we design pTX pulses that excite

a 1-cm-thick transverse slice of the head; the FOX in each case is wherever the head is

present within the slice. The desired excitation, d(r), has a 0.1 radian flip angle at spatial

locations in the FOX and a phase that varies slowly enough across space such that intravoxel

dephasing is not a concern (slowly-varying phase is permissible for the majority of standard

imaging scenarios where one is only interested in image magnitude). The MLS algorithm

will produce pulses that achieve excitations close to the desired one. The k-space trajectory

of each pulse consists of two spokes symmetrically spaced by a fixed distance away from the

origin and rotated about the origin within the (kx, ky) plane by a specific amount. Twenty-

seven radii choices for each pair are evaluated, along with six possible rotations, leading to

162 total two-spoke pulses.2 Figure 9-1 provides an overhead (kx, ky)-space view of the 162

spoke pairs—the pair of gray boxes indicates the positions of the 52nd pulse’s two spokes.

The gradients are always constrained to amplitude and slew rates of 15 mT/m and 150

2Because eight transmit channels are present, only two spokes are needed to form uniform excitations,
illustrating the strength of pTX systems.
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Figure 9-1: Overhead view of spoke pairs placed parallel to the kz axis. The
placements of spokes in (kx, ky) for each two-spoke pulse is displayed. Each pulse’s trajectory
consists of two spokes spaced by a fixed distance away from the origin and rotated within the
(kx, ky) plane by a specific amount. Twenty-seven radii choices for each pair are evaluated,
along with six possible rotations, leading to 162 total two-spoke pulses. The pair of gray
boxes indicates the positions of the 52nd pulse’s two spokes; details about this specific pulse
are given in Fig. 9-2.

T/m/s, such that all pulses have durations of 2.87 to 2.91 ms.

Algorithm setup. To begin, assume we have decided where to place the pair of spokes.

This means that the k-space trajectory, k(t) = [kx(t), ky(t), kz(t)]T, is fixed, along with the

gradient waveforms, G(t) = [Gx(t), Gy(t), Gz(t)]T. Also assume that each channel’s B+
1

profile, Sp(r), is also known. Now, by assuming a small-tip angle excitation [102], we may

apply the linear formalism of [59] to arrive at (2.13) as described in Sec. 2.1.11. We then

discretize (2.13) by sampling space at locations r1, . . . , rNs within the FOX and sampling

time at t1, . . . , tNt ∈ [0, L]; the ti are spaced uniformly by ∆t = 10µs, yielding (2.14),

restated here:

m = S1Fa1 + · · ·+ SPFaP = Atotatot, (9.1)

where we have used aps (vectors of current samples) in place of bps (vectors of voltage

samples).
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MLS algorithm. We now apply MLS to generate P RF pulse shapes that will excite

a pattern close to the desired d(r). We form Ns samples of the desired pattern into the

vector d ∈ CNs . In this case, because we desire a uniform excitation, every element of d is

fixed to equal 0.1 radians, but no phase is specified per element because a slowly-varying

phase will be inherently determined by the MLS algorithm. On a conceptual level, MLS

then solves the following optimization:

min
atot

{‖d− |Atotatot|‖2
2 + δ‖atot‖2

2}, (9.2)

where δ is a small nonnegative value that penalizes pulse candidates with excessive `2 pulse

energies. It is crucial to note the absolute value operator surrounding Atotatot: this means

that the resulting phase of the excitation is given no heed during the optimization procedure

and that (9.2) seeks only to find a set of pulse shapes that produce an excitation whose

magnitude at all spatial locations is close to the desired magnitude. Therefore, in order

to prevent rapidly-varying phase in the resulting excitation, m(r), and avoid detrimental

intravoxel dephrasing, the above optimization is solved a number of times, modifying the

initial input to the optimization each time as described in [112]. Ultimately, this iterative

process yields a solution atot whose pulse samples, when evaluated with a Bloch equation [14]

simulator, produce a high-fidelity version of the desired magnitude pattern and whose phase

variation is always less than 8 degrees per millimeter. For all 162 pulse designs, the NRMSE

between the resulting and desired flip angle magnitude, defined as

NRMSE = 100 · ‖d− |Atotatot|‖2

‖d‖2
(%), (9.3)

always falls between 3.9 and 5.9%; that is, MLS successfully ensures that every two-spoke

pulse it designs produces an essentially uniform excitation (even though the RF pulse shapes

of each design may at times vary significantly in magnitude and phase due to their spoke

position differences in (kx, ky)-space).

MLS pulse example. Details about the 52nd pulse designed by the MLS algorithm

are given in Fig. 9-2. The Bloch-simulated magnitude, |m(r)|, and Bloch-simulated phase,

angle{m(r)}, are displayed along the upper row. The flip angle is highly uniform across

space and the phase is smoothly varying, as intended. The lower-left subplot depicts the

two-spoke trajectory in 3D, while the lower-right subplots show the magnitude of the first
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Figure 9-2: Pulse #52 designed using MLS algorithm. Upper row: Bloch-simulated
magnitude and phase of the excitation that arises due to the application of the pulse; the
flip angle is uniform across space and phase varies slowly, as intended. Lower-left subplot:
3D k-space trajectory. Lower-right subplots: magnitude of the first RF pulse shape, |a1(t)|,
and the gradient waveforms, G(t). Fig. 9-1’s gray boxes indicate the locations of this pulse’s
two spokes in (kx, ky) space.

RF pulse shape, |a1(t)|, along with the gradient waveforms, G(t). The locations of this

pulse’s two spokes in (kx, ky)-space are indicated by the gray boxes in Fig. 9-1.

9.2.4 Whole-Head and Local Specific Absorption Rate Calculations

Overview. After designing a pTX pulse (i.e., P RF pulse shapes) to produce a desired

excitation, we must determine the global and local SAR the pulse produces in the head

model. At this point, we know Nt time samples of each pulse shape spaced uniformly in

time by ∆t, i.e., for p = 1, . . . , P , we know ap(n∆t) for n ∈ {0, 1, . . . , Nt − 1}. Recall from

(2.13) that L is the duration of each pulse shape and thus L = Nt∆t.
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SAR per voxel. We first calculate SAR (W/kg) at each location r, denoted SAR(r),

via numerical integration as given in (2.22) of Sec. 2.1.14, where we assume that the P pulse

shapes are concurrently transmitted from time 0 to L and nothing is transmitted during

the time interval (L,TR). (See end of subsection regarding choice of TR and duty cycle.)

Whole-head and local N-gram SAR. Having obtained SAR(r) for all r in the head,

whole-head global SAR is obtained by averaging the SAR(r) values. Likewise, Ng SAR at

each r is obtained by finding an N -gram cube around each r and then averaging SAR(r) over

all r within the cube, in line with [1]. We accomplish this rapidly by using the Ng region

growth technique described in Sec. 7.2.4. Recall that for each location r, this algorithm

rapidly determines the cluster of points that comprise an N -gram cube around r, and that

this cluster may be perceived as a set of indices, IrN , such that the mass equation (7.4)

holds. Local Ng SAR at r, denoted SARNg, is computed formally as:

SARNg(r) =
1
|IrN |

∑

i∈IrN

SAR(ri) (9.4)

where |IrN | is the cardinality (number of elements) of IrN .

Fixed repetition time per pulse. The effect of repetition time (TR) is accounted

for when calculating the SAR of each pulse by setting TR equal to 20 ms for all pulses.

Because all pulses are essentially L = 2.9 ms long, this corresponds to a constant duty

cycle D = L/TR of 14.5%. This choice of TR is arbitrary in the sense that the optimal

multiplexing scheme is invariant to the choice of TR.3 Further, because the SAR of each

pulse decreases linearly with TR [see (2.20, 2.22)], all relative SAR improvements stated in

Sec. 9.3 hold for any physically-valid TR.

9.2.5 Pulse Time-Multiplexing for SAR Reduction (PTMSR)

Overview. Here we derive a convex optimization algorithm that determines how to time-

multiplex a set of J candidate pulses such that the resulting maximum local Ng SAR is

minimized as best as possible. Assume each pulse j produces approximately the same

excitation, but none of the pulses are exactly equal to any of the others (i.e., there are

at least slight magnitude and phase differences among the pulses). Because of this, the

3Of course, the choice of TR must be realistic—equal to or longer than the duration of the longest pulse
among those being optimized over.
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spatial distribution of SAR across space due to pulse j will not exactly equal the spatial

distribution of SAR across space due to the other J − 1 pulses. Thus, analogously to the

thought experiment of Sec. 9.1 that involved two pulses, we may be able to multiplex these

J pulses to reduce maximum local SAR.

Objective. The goal is to compute J weights, wj ∈ [0, 1], j ∈ {1, . . . , J}, subject to

the physically-realistic constraint that the weights sum to unity. Each wj indicates the

proportion of TRs to play pulse j assuming an infinite number of TRs are used. For

example, if wA = 0.837, wB = 0.163, and all other wjs equal zero, then the optimal

multiplexing scheme involves playing pulse A 83.7% of the time and pulse B 16.3% of the

time. Since the number of TRs one employs to conduct an imaging task is always finite,

these weights may simply be rounded off to obtain a nearly-optimal realistic solution, e.g.,

if 100 TRs are necessary, one would play pulse A eighty-four times and pulse B sixteen

times. It is up to the user to choose the exact order in which to play the pulses.

Initialization. For j = 1, . . . , J , we use the method of Sec. 9.2.4 to calculate the

local Ng SAR produced by the jth pulse at spatial locations r1, . . . , rM in the head model,

yielding SARNg
j (rm) in W/kg at M locations. We then construct the following M -element

vector:

sj = [SARNg
j (r1), . . . ,SARNg

j (rM )]T. (9.5)

These vectors are useful representations, e.g., ‖sj‖∞ is the maximum local Ng SAR pro-

duced by pulse j.

SAR due to the transmission of H pulses. We now derive the SAR that arises

at location r when H pulses are played over H TRs. Note that we are not necessarily

playing H different pulses. During the hth TR, pulse h, whose duration equals Lh, is

played from time (h − 1)TR through (h − 1)TR + Lh and nothing is transmitted during

the time interval beginning at (h− 1)TR + Lh and ending at hTR. By applying (2.20), we

know the “standalone” SAR for this pulse, which we denote SARh(r). Moving forward, the

SAR equation for this scenario is:

SAR(r) =
σ(r)
2ρ(r)

1
H · TR

∫ H·TR

0
‖E(r, t)‖2

2 dt. (9.6)
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We now expand (9.6) and then apply (2.20) to each subinterval:

SAR(r) =
1
H

(
σ(r)
2ρ(r)

1
TR

∫ TR

0
‖E(r, t)‖2

2 dt + · · ·+ σ(r)
2ρ(r)

1
TR

∫ H·TR

(H−1)·TR
‖E(r, t)‖2

2 dt

)

=
1
H

(SAR1(r) + · · ·+ SARH(r))

=
1
H

H∑

h=1

SARh(r).

(9.7)

We have obtained the overall point SAR at r due to the train of H pulses. Now we seek to

determine the Ng SAR that will arise at r when we apply this same pulse train. Recalling

from Sec. 9.2.4 that for each r, we know of an index set IrN that properly indexes an Ng

cube about r, we substitute (9.7) into (9.4) and shuffle the two resulting summations:

SARNg(r) =
1
|IrN |

∑

i∈IrN

SAR(ri)

=
1
|IrN |

∑

i∈IrN

(
1
H

H∑

h=1

SARh(ri)

)

=
1
H

H∑

h=1


 1
|IrN |

∑

i∈IrN

SARh(ri)




=
1
H

H∑

h=1

SARNg
h (r).

(9.8)

Eq. (9.8) thus proves that the local Ng SAR arising at r due to the H-pulse train is the

average of the local Ng SARs produced at this same location by each of the individual

pulses.

Let us conclude our derivations by assuming we play a very long train of pulses, i.e., we

let H tend toward ∞. Returning to our set of J candidate pulses, let us assume in the limit

we play pulse j a fraction wj ∈ [0, 1] of the total number of TRs, imposing the constraint
∑J

j=1 wj = 1 to ensure the scheme is physically sensible, i.e., we assume some fixed, valid

multiplexing scheme for the J pulses. Under this multiplexing scheme, (9.8) becomes:

SARNg(r) =
J∑

j=1

wj · SARNg
j (r). (9.9)
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Eq. (9.9) shows that the overall local Ng SAR arising at r due to a particular multiplexing

scheme of J pulses over many TRs is simply the weighted average of the J pulses’ local Ng

SARs based on the fraction of total TRs each pulse is transmitted.

Finally, having derived the local Ng SAR that arises at a single location r, we propose

a linear-algebraic way to compute the local Ng SAR at all M spatial locations r1, . . . , rM

in the head model that arises due to the multiplexing scheme of the J pulses represented

by the wjs:

sNg
overall =




SARNg(r1)
...

SARNg(rM )


 =




w1 · SARNg
1 (r1) + · · ·+ wJ · SARNg

J (r1)
...

w1 · SARNg
1 (rM ) + · · ·+ wJ · SARNg

J (rM )




=




SARNg
1 (r1)
...

SARNg
1 (rM )


w1 + · · ·+




SARNg
1 (r1)
...

SARNg
1 (rM )


wJ

= s1w1 + · · · sJwJ

=
[

s1 · · · sJ

]



w1

...

wJ




= Sw,

(9.10)

where sj = [SARNg
j (r1), . . . , SARNg

j (rM )]T [as in (9.5)], S = [s1 · · · sJ ], and w = [w1, . . . , wJ ]T.

Optimal pulse multiplexing algorithm. We now arrive at the core problem: given

the J candidate pulses, find the optimal choice of wjs that best minimizes the maximum local

Ng SAR that arises when applying the pulses over many TRs. The following optimization

solves this problem in a globally optimal sense:

min
w

‖Sw‖∞ s.t. wj ∈ [0, 1] for j ∈ 1, . . . , J and
J∑

j=1

wj = 1. (9.11)

This is a convex optimization [17,97]. By solving (9.11) we obtain w that is the best-possible

minimizer of the objective function. After running the algorithm, one extracts the wjs from

w and knows the multiplexing scheme to use that best minimizes local Ng SAR.

Software implementation. We implement (9.11) in SeDuMi (Self-Dual-Minimization)
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[120], a free software package consisting of MATLAB and C routines. Since the true M of

the head model equals 2.5 million, we downsample the sj vectors from a resolution of

1×1×2 mm2 to 4×4×4 mm2, retaining the largest SAR value per downsampled region. This

reduces the sjs to roughly 75,000 elements each and allows the optimization to be solved

in 8 minutes on a Linux server with a 3.0-GHz Intel Pentium IV processor; the random

access memory footprint of this process is well under one gigabyte. After determining w

that yields the optimal multiplexing scheme in this worst-case lower-resolution setting, we

make use of the original full-resolution sjs for all local SAR computations and figures given

in Sec. 9.3 to present results as fairly and realistically as possible.

9.3 Experimental Results

Overview. Having created the 162 candidate pulses in Sec. 9.2.3 and derived the multiplex-

ing algorithm in Sec. 9.2.5, we now investigate the SAR properties of these pulses, examine

their local SAR distributions across space, determine the best individual pulse (in the lowest

maximum SAR sense), compute the optimal multiplexing scheme of the 162 pulses, verify

that the multiplexing scheme produces a high-fidelity excitation, and compare how well the

multiplexed pulse scheme reduces maximum local SAR relative to the maximum local SAR

produced simply by playing the best individual pulse among the original 162.

Mean and maximum local SARs of the 162 individual candidate pulses. As-

sume we transmit pulse j (and no other pulse) over many TRs. The resulting mean,

maximum local 10g, and maximum local 1g SARs that arise in this situation are plotted in

Fig. 9-3. Although the mean SARs of the pulses are similar, their maximum local SARs ex-

hibit significant variation: some pulses are clearly superior to others in the maximum local

SAR sense, even though all pulses produce similar high-fidelity excitations with NRMSEs

of only 3.9 to 5.9%. Among the pulses, maximum 1g SAR ranges from 3.8 to 10.2 times

greater than corresponding mean SAR. Likewise, maximum 10g SAR is always 2.6 to 5.8

times larger than mean SAR. If we are restricted to using only one pulse, #52 is the opti-

mum choice because it produces a maximum local 1g SAR of only 0.083 W/kg, the lowest

among all pulses.

Correlations of the spatial distribution of local 1g SAR of the 162 candidate

pulses. We now analyze the extent to which the local 1g SAR distributions of the pulses are
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Figure 9-3: Mean and maximum local SARs of each individual candidate pulse.
These SAR values arise when pulse j alone is transmitted over many TRs. Pulse 52 is
the best individual pulse among the 162 evaluated in the maximum local 1g SAR sense,
producing a maximum local 1g SAR of only 0.083 W/kg.

correlated across space by computing the Pearson product-moment correlation coefficient

between the local 1g SAR vectors of each pair of pulses. Formally, for each pair (j, k) of

M -element local 1g SAR vectors (sj , sk), we compute

ρj,k =
1

M − 1
(sj − µj)T(sk − µk)

σjσk
, (9.12)

where µj and σj indicate the mean and standard deviation of the M elements of sj . A

value of ρj,k close to unity means that the local 1g SAR patterns produced by pulses j and

k across space are essentially identical, whereas |ρj,k| ≈ 0 indicates the SAR distributions

radically differ across space. Pulses that produce uncorrelated SAR patterns might be good

candidates in the multiplexing sense. The overall correlation matrix (a display of all ρj,ks) is

given in Fig. 9-4. Many pulse pairs produce highly-correlated distributions of local 1g SAR

across space, while the lowest observed correlation is 70.6% and the average correlation is

87.0%.

Closer look: distributions of local 1g SAR across space arising due to the

application of three pulses. The local 1g SAR distributions arising due to pulses 13, 118,

and 160 are depicted in Fig. 9-5. All SAR maps are displayed using the same dynamic range,

permitting direct comparisons among the maps. Furthermore, because a local 1g SAR data

point exists for each of the voxels in the 3D head model, the 3D data has been displayed in
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Figure 9-4: Correlations of the spatial distributions of local 1g SAR produced
by pairs of pulses. For each pair of pulses (j, k), the extent of similarity between the
distributions of local 1g SAR each pulse produces across space is quantified by computing the
Pearson correlation coefficient between the corresponding sj and sk vectors. The pairwise
vector correlation, on average, is 87.0%.

2D by “collapsing” SAR values along the spatial z axis. Namely, for each location (x, y) in

pulse j’s map, we have displayed maxz SAR1g
j (x, y, z). Dashed boxes indicate the hotspot

where local 1g SAR is largest. The distribution of local SAR indeed varies across space

depending on which excitation pulse is used. The correlation coefficients ρ13,118, ρ13,160,

and ρ118,160 equal 81, 71, and 78%, respectively.

Optimal time multiplexing scheme. We now feed s1, . . . , s162 to the multiplexing

algorithm as described in Sec. 9.2.5 and obtain the optimized weights w1, . . . , w162; these

weights are displayed in Fig. 9-6. Only eight pulses have been utilized (less than 5% of

available candidates) even though (9.11) does not penalize the use of many pulses in the

multiplexing scheme. We convert the weights from percentiles into real values for use in a

61-TR scenario where we will collect 61 lines of ky data in readout k-space. For each of the

eight pulses whose weights are nonzero in Fig. 9-6, we use each one for 8, 8, 16, 15, 2, 2, 6,

and 4 TRs, respectively. The overall resulting smooth excitation due to the multiplexing

scheme is depicted in Fig. 9-7: its NRMSE of 5.5% is within the NRMSE range of the 8

excitations due to the individual pulses belonging to the multiplexing scheme, confirming

its high degree of fidelity. Using (9.9, 9.10), we find that the maximum local 1g SAR that

arises due to this multiplexing scheme is 0.075 W/kg; relative to the best individual pulse, we
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For each (x,y) location depicted, maxz SAR(x,y,z) has been plotted. Dashed boxes indicate (x,y) location of max 1g SAR.
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Figure 9-5: Local 1g SAR distributions across space due to three pulses. All maps
have the same dynamic range. The 3D SAR data has been displayed in 2D by “collapsing”
the spatial z axis, i.e., for each (x, y) coordinate in pulse j’s map, maxz SAR1g

j (x, y, z) is
displayed. Dashed boxes indicate the (x, y) location where local 1g SAR is largest. The
correlation coefficients ρ13,118, ρ13,160, and ρ118,160 equal 0.81, 0.71, and 0.78, respectively.
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Figure 9-6: Optimal time multiplexing scheme. The optimized weights wj , j =
1, . . . , 162 as determined by the optimization (9.11) are displayed as percentages. Only
eight of the 162 pulses are utilized in the multiplexing scheme. The resulting maximum
local 1g SAR is 1.11 times lower than the maximum local 1g SAR of the best individual
pulse. (See Table 9.1.)

have decreased maximum local 1g SAR by a factor of 1.11 with no loss in excitation quality

relative to that of the candidate pulse set. The SAR statistics of the optimal multiplexing

scheme vs. those of the best individual pulse are summarized in Table 9.1.

Local 1g SAR distribution of the time-multiplexed pulse scheme vs. that of

the best individual pulse. Finally, we compare the local 1g SAR map of the best indi-

vidual pulse to that which arises when the optimal multiplexing scheme is used. Fig. 9-8

displays these SAR maps side-by-side using the same dynamic range to allow for direct com-

parisons. The 3D SAR data has been collapsed along the z axis as in Fig. 9-5 and hatched

boxes indicate the (x, y) location of the hotspot. The SAR maps are indeed similar, but

when the multiplexing scheme is used the hotspot shifts its position and, most importantly,
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Figure 9-7: Resulting excitation due to time multiplexing scheme. We convert the
eight optimized nonzero weights given in Fig. 9-6 from percentiles into real values for use in
a 61-TR scenario where we will collect 61 lines of ky data in readout k-space. For each of
the eight pulses whose weights are nonzero in Fig. 9-6, we use each one for 8, 8, 16, 15, 2, 2,
6, and 4 TRs, respectively. The resulting excitation’s magnitude, |m(r)|, is fairly uniform;
its NRMSE is similar to those of the 162 individual candidates.

SAR Characteristics Best Indiv. Pulse Opt. Multiplexing Scheme
Mean SAR (W/kg) 0.021 0.022
Max. Local 10g SAR (W/kg) 0.057 0.064
Max. Local 1g SAR (W/kg) 0.083 0.075

Table 9.1: SAR characteristics of the best individual pulse vs. those of the optimal
multiplexing scheme. The multiplexing scheme reduces maximum local 1g SAR by a
factor of 1.11. Multiplexing indeed increases local 10g SAR by roughly the same factor,
but this is permissible: the local 1g SAR, being the highest value in both cases, is the SAR
characteristic of most concern and the limiting factor in this scenario.

is reduced in magnitude.

9.4 Conclusion

Using an optimization to determine the optimal time-multiplexing scheme of a set of candi-

date pulses reveals a small subset of pulses that, when played over a number of TRs, yields

not only a high-fidelity excitation (5.5% NRMSE) but 1.11 times lower maximum local 1g

SAR than does transmitting simply the best individual pulse. This concept was applied to

slice-selective parallel transmission pulses, but readily applies to conventional single-channel

transmission systems and other pulse types.

The concept of time multiplexing to reduce SAR, the optimal multiplexing convex opti-

mization algorithm, and the linear-algebraic derivations of local SAR calculations all seem
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Figure 9-8: Local 1g SAR distributions of best standalone pulse and time-
multiplexed scheme. The SAR maps due to the best individual pulse and the multi-
plexing scheme are displayed side-by-side. The 3D SAR data is collapsed along z axis as in
Fig. 9-5. Hatched boxes indicate where local 1g SAR is highest. The multiplexing scheme
shifts the hotspot and reduces it by a factor of 1.11.

to be novel contributions.
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Chapter 10

Summary and Recommendations

10.1 Summary

Chapter 2 presented background information on MRI excitation theory, conventional

single-channel and multi-channel pulse design, and sparse approximation.

Chapter 3 proposed the novel multiple-system, single-output (MSSO) simultaneous

sparsity problem. Three greedy techniques were developed to approximately solve the prob-

lem (matching pursuit, orthogonal matching pursuit, and least squares matching pursuit)

along with four methods based on a convex relaxation (iteratively reweighted least squares,

two forms of iterative shrinkage, and formulation as a second-order cone program). While

deriving the algorithms, we proved that seeking a single sparse complex-valued vector is

equivalent to seeking two simultaneously sparse real-valued vectors, increasing the rele-

vance and applicability of MSSO theory. The MSSO algorithms were then evaluated across

noiseless and noisy sparsity profile estimation experiments as well as a magnetic resonance

imaging pulse design experiment. For sparsity profile recovery, algorithms that minimized

the relaxed convex objective function outperformed the greedy methods, whereas in the

noiseless magnetic resonance imaging pulse design experiment, greedy least-squares match-

ing pursuit exhibited superior performance.

Chapter 4 studied three algorithms for solving linearized systems of RF waveform de-

sign equations for calculating accelerated spatially-tailored excitations on parallel excitation

MRI systems. Two iterative conjugate gradient (CG) methods, Least Squares QR (LSQR)

and Conjugate Gradient Least Squares (CGLS), were shown to obtain better-quality or

equal-quality excitations compared to a Singular Value Decomposition (SVD) truncated
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pseudoinversion method, while simultaneously producing pulses with significantly lower

peak and RMS waveform voltages. This was shown to hold across a range of targets, k-

space trajectories, and acceleration factors. Between LSQR and CGLS, the former had

superior numerical properties. Results were validated via Bloch-equation simulations and

by conducting actual accelerated parallel excitations on an eight-channel system at 3 Tesla.

Chapter 5 used MSSO theory to develop a sparsity-enforcement algorithm that jointly

determined quickly-traversable excitation k-space trajectories along with corresponding ex-

citation pulses. The algorithm functioned by applying an `1-norm penalty while searching

over a large number of possible trajectory segments (and corresponding RF pulse segments)

that ultimately revealed a small subset of trajectory and pulse segments that alone formed a

high-fidelity version of the desired target excitation. Imaging experiments at 7 Tesla showed

that applying sparsity-enforced joint trajectory-pulse design to spoke-based pulses yielded

designs capable of mitigating B+
1 inhomogeneity in both a head-shaped water phantom and

the human brain, a seemingly novel contribution to high field MRI RF excitation pulse de-

sign, B+
1 inhomogeneity mitigation, and in vivo brain imaging at 7 Tesla. The strength of

sparsity-enforced spoke placement was also demonstrated by designing fast, slice-selective

RF pulses that achieved a complex-valued target pattern using an eight-channel 3-Tesla

parallel excitation system. Finally, sparsity-enforced spiral trajectories were designed to

mitigate non-uniform 7-Tesla transmit inhomogeneity using a single-channel system. In all

cases, the sparsity-enforced method outperformed conventional methods, producing excita-

tions with lower RMSE when pulse duration across the methods was fixed, and producing

pulses with significantly shorter durations when excitation quality across the methods was

fixed.

Chapter 6 confronted a subset selection problem that arose when a parallel excitation

system had more transmit modes available than hardware transmit channels with which

to drive them. By applying multiple-system single-output simultaneous sparsity theory, we

derived a sparsity-enforced mode subset selection (SEMSS) algorithm that determined sur-

prising target-specific mixtures of light and dark modes and provided increases in excitation

quality relative to the usage of circularly-polarized and bright modes. In one simulated ex-

periment, the proposed fast algorithm actually found the optimal solution to the underlying

NP-Hard combinatoric subset selection problem.

Chapter 7 investigated the behavior of whole-head and local specific absorption rate
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(SAR) as a function of trajectory acceleration factor and target excitation pattern due to

the parallel transmission of spatially-tailored excitations at a high field strength of 7 Tesla.

With the exception of dramatic SAR increases with trajectory acceleration factor, global

and local SAR did not always exhibit intuitive trends. Nonetheless, it was clear from the

experiments that maximum local 1g and 10g SAR were always significantly higher than

global SAR. The results showed that local SAR, rather than global SAR, was the limiting

factor of eight-channel parallel transmission at 7 Tesla. In order to ensure patient safety, it

seems that model-based validation of individual target patterns and corresponding sets of

parallel transmission pulses will be required.

Chapter 8 proposed several ways to reduce the maximum local SAR produced by

parallel excitation pulses. Using novel derivations, it was shown that local Ng SAR at

any spatial point of interest r might be calculated using a highly-sparse, redundant-block-

diagonal matrix. A variety of optimization problems were then posed using such matrices.

Chapter 9 introduced the novel concept of time-multiplexing a set of similar-excitation-

fidelity pulses to reduce maximum local SAR without impacting excitation quality. This

approach led to safer excitations than did transmitting the best individual pulse (from a

local SAR standpoint) over many repetition times. An optimization was formulated and

used to determine the optimal time-multiplexing scheme of a set of candidate pulses. A

small subset of pulses was revealed that, when played over a number of repetitions, yielded

not only a high-fidelity excitation (5.5% NRMSE) but 1.11 times lower maximum local

1g SAR than did transmitting simply the best individual pulse in the lowest maximum

local 1g SAR sense. This concept was applied to slice-selective parallel transmission pulses,

but readily applies to conventional single-channel transmission systems and other pulse

types. The concept of time multiplexing to reduce SAR, the optimal multiplexing convex

optimization algorithm, and the linear-algebraic derivations of local SAR calculations all

seem to be novel contributions.

10.2 Recommendations

We conclude the thesis simply by listing a variety of ideas for future research.

MSSO automated control parameter selection. A fast technique for finding ideal

values of the regularization parameter, λ, in the MSSO optimization problems of Ch. 3,
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Ch. 5 and Ch. 6 is an open problem. It might be worth investigating several approaches to

automated parameter selection: the “L-curve” method [60], universal parameter selection

[41], and min-max parameter selection [75].

MSSO algorithm runtime reduction. The runtimes of the seven MSSO algorithms

given in Ch. 7 could be reduced significantly by implementing them in a completely compiled

format such as C. The least-squares matching pursuit algorithm’s computation and runtime

could be improved upon by extending the projection based recursive updating schemes

of [31, 32]. Runtime might also be reduced via a multi-resolution approach as in [92]. For

example, in the context of sparsity-enforced spoke placement, one might first supply the

algorithm with a coarse frequency grid, note which spoke locations are revealed, and then

run the algorithm with a grid that is finely sampled around the locations suggested by

the coarse result. This is faster than providing the algorithm a large, finely-sampled grid

and attempting to solve the problem in one step. Further, because the desired solution to

the spoke placement problem is sparse and the matrices involved are dense, solving this

problem using iterative shrinkage techniques [34,44], greedy-pursuit algorithms [24,129], or

special-purpose solvers (e.g., [83, 109]) may lead to major runtime improvements.

MSSO shrinkage algorithm convergence improvements. Both iterated shrinkage

methods given in Ch. 3 (row-by-row and column-by-column shrinkage) required excessive

iterations and hence exhibited lengthy runtimes. To mitigate these problems, one may

consider extending parallel coordinate descent (PCD) shrinkage techniques used for single-

system single-output sparse approximation (as in [43,44]). Sequential subspace optimization

(SESOP) [45] might also be employed to reduce runtime. Combining PCD with SESOP and

adding a line search after each iteration would yield sophisticated versions of row-by-row

and column-by-column shrinkage.

Study of the relaxed MSSO convex objective. Theoretical exploration of (3.3,

3.8) is merited, perhaps along the lines of [39,40,127,128].

Multiple-system multiple-output (MSMO) simultaneous sparse approxima-

tion. In the future it may be useful to consider a combined problem where there are

multiple observations as well as multiple system matrices. That is, assume we have a series

of J observations, d1, . . . ,dJ , each of which arises due to a set of P simultaneously K-sparse

unknown vectors g1,j , . . . ,gP,j
1 passing through a set of P system matrices F1,j , . . . ,FP,j

1The K-term simultaneous sparsity profile of each set of gp,js may or may not change with j.
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and then undergoing linear combination, as follows:

dj = F1,jg1,j + · · ·+ FP,jgP,j =
P∑

p=1

Fp,jgp,j for j = 1, . . . , J. (10.1)

If Fp,j is constant for all J observations then the problem reduces to

dj = F1g1,j + · · ·+ FPgP,j = Ftotgtot,j for j = 1, . . . , J, (10.2)

and we may stack the matrices and terms as follows:

[d1, . . . ,dJ ] = Ftot

[
gtot,1, . . . ,gtot,J

]
. (10.3)

Having posed (10.1, 10.2, 10.3), one may formulate optimization problems similar to (2.27,

3.3) to determine simultaneously sparse gp,js that solve (10.3). Algorithms to solve such

problems may arise by combining the concepts of SSMO algorithms [32, 92, 127, 129] with

those of the MSSO algorithms posed in Ch. 3 of this thesis.

Transmission mode design. In Ch. 6 we focused solely on the selection of transmit

modes, not on their design. The latter might be an interesting topic that blends optimization

with transmission array hardware research.

Rapid, automated B+
1 profile mapping. The sparsity-enforced single-channel spoke-

based pulse design algorithm of Sec. 5.3 required a |B+
1 | map to design a pulse to mitigate

inhomogeneity. This requirement posed a challenge because |B+
1 | varied per slice and per

subject and estimating the map for a given slice and subject required 17 minutes (collecting

10 images at 1.7 minutes/image and then fitting). To enable clinical use of such techniques,

mapping time must be reduced. First, it may not be necessary to collect ten high-resolution

images for B+
1 mapping; it seems 5-6 lower-resolution images may be sufficient, but at most

this reduces mapping time to 4-5 minutes. Instead, or additionally, it may be possible to

rapidly map |B+
1 | in under a minute by exploiting some empirical trends we have observed:

for example, |B+
1 (r)| varies slowly with z, so a map estimate obtained at z = z0 may be

accurate within some range z0 ± δ, allowing |B+
1 | to be mapped once per slab rather than

once per slice. It also seems that |B+
1 | does not differ radically across subjects for a fixed

axial slice. Thus it may be possible to develop a prototypical slice-by-slice |B+
1 | model of the

average brain and retune the slice maps of this model for a given subject by simply collecting
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a small set of rapidly-acquired calibration scans to account for individual differences from

the atlas.

SAR-reduced pulse design. The SAR expressions given in Ch. 8, given their sparse,

structured natures, might be exploited from a computational standpoint to reduce the

complexity of SAR calculations, perhaps via parallel computing.

SAR reduction via pulse optimization and multiplexing. The work of Ch. 8

and Ch. 9 might be extended by merging SAR-reduced parallel transmission pulse design

technologies with the time multiplexing concept. It may also be worth investigating optimal

time multiplexing schemes for spiral-trajectory-based (rather than spoke-based) parallel

excitation pulses.
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